Linear Programming Models for Traffic Engineering Under Combined IS-IS and MPLS-TE Protocols

D. Cherubini¹ A. Fanni² A. Frangioni³ C. Murgia⁴ M.G. Scutellà³ P. Zuddas⁵ A. Mereu²

¹Tiscali International Network

²DIEE - University of Cagliari

³DI - University of Pisa

⁴Tiscali Italia

⁵DIT - University of Cagliari

October 8, 2008

Part I

Introduction and Background

< <p>>

5900

Problem Description

Scenario

- Very large scale networks have been built by the Network Engineers
- Experience and Best Common Practice
 - Planning
 - Reaction to critical Network Events

< □ > < 🗗 >

→ < ≣ >

うへつ

- Network Design and Capacity Allocation
- Traffic Management and Restoration

Collection of IP Networks and routers controlled by a single administrative entity

Two routing protocols

- End System-to-Intermediate System (ES-IS)
- Intermediate System-to-Intermediate System (IS-IS)

IS-IS: link state routing protocol

Interior Gateway Protocol

IS-IS/OSPF

- Metric associated to each arc
- Route selection using Dijkstra's Shortest Path Algorithm
- Equal Cost Multiple Paths (ECMP)

MPLS Technology

MPLS-TE

- Allows the configuration of the traffic in order to optimize the resources.
 - Allows the building of VPN (Virtual Private Networks), using LSP (Label Switched Paths)-Tunnels.
- Extends existing IP protocol

< □

SOG

Restoration Schemes: Link Restoration

Figure: Link Restoration for single failure condition

< □ >

67 🕨

→ < ≣ >

5990

Restoration Schemes: Path Restoration

Figure: Path Restoration for single failure condition

< <p>>

5990

• 20% : scheduled network maintenance activities

うへつ

- 80% : unplanned failures where :
 - 30% shared link failures
 - 70% single link failures

- Is it possible to obtain a robust configuration of the network using the combination of IS-IS routing and MPLS-TE techniques?
- Is it possible to formulate the question as a pure LP problem?

- $\min c \cdot x$
- $A \cdot x = b$
- x ≥ 0

Graphs and Network Flows

• Generally, in Operations Research, the term network denotes a weighted graph G = (N, A) where the weights are numeric values associated to nodes and/or arcs of the graph.

- $\min c \cdot x$
- $A \cdot x = b$
- x ≥ 0

Graphs and Network Flows

• Generally, in Operations Research, the term network denotes a weighted graph G = (N, A) where the weights are numeric values associated to nodes and/or arcs of the graph.

MMCF Problem Definition

Notation

- G = (N, A) where N is the set of nodes and A ⊆ N × N is the set of arcs
- *K* is the set of commodities
- h th commodity determined by: (d^h, s^h, t^h), where s^h ∈ N and t^h ∈ N, with s^h ≠ t^h, are the starting and ending node, and d^h is the quantity to be moved from s^h to t^h

Formulations

- node-arc formulation : the variables are x_{ii}^h
- arc-path formulation: the variables are f_p

MMCF: Node-arc formulation

The problem

•
$$\min \sum_{h \in \mathcal{K}} \sum_{(i,j) \in \mathcal{A}} c_{ij}^h \cdot x_{ij}^h$$

•
$$\sum_{(j,i) \in \mathcal{BS}(i)} x_{ji}^h - \sum_{(i,j) \in \mathcal{FS}(i)} x_{ij}^h = \begin{cases} -d^h & i = s^h \\ d^h & i = t^h \\ 0 & \text{otherwise} \end{cases}$$

•
$$\sum_{h \in \mathcal{K}} x_{ij}^h \le u_{ij} \quad (i,j) \in \mathcal{A}$$

•
$$x_{ij}^h \ge 0 \quad (i,j) \in \mathcal{A}$$

< □ ▶

ð

5990

≣≯

|N||K| + |A| constraints |K||A| variables

MMCF: Arc-path formulation

The notation

- P^h : the set of paths in G from the node s^h to the node t^h
- $P = \bigcup_{h \in K} P^h$: the set of all relevant paths
- *p* ∈ *P* belongs to a unique commodity, identified by the starting and ending nodes of *p*; *h*(*p*)

•
$$c_p = \sum_{(i,j) \in p} c_{ij}$$
 cost of the path p

The problem

• min
$$\sum_{h \in \mathcal{K}} \sum_{p \in \mathcal{P}^h} c_p$$

• $\sum_{p \in P^h} f_p = d^h \quad h \in K$
• $\sum_{p:(i,j) \in p} f_p \leq u_{ij} \quad (i,j) \in A$
• $f_p \geq 0 \quad p \in P$

The problem has |A| + |K| constraints

< 🗆 > < 🗗 >

5900

3

Let's consider a reduced set of paths $B \subset P$.

A_B	$A_{(P/B)}$
E_B	$E_{(P/B)}$

D_B • max $\lambda u + \gamma d$ • $\lambda A_B + \gamma E_B \leq c_B$ • $\lambda \leq 0$

æ

→ < ≣ >

< 🗆 🕨

5990

Let's consider a reduced set of paths $B \subset P$.

A_B	$A_{(P/B)}$
E_B	$E_{(P/B)}$

D_B • max $\lambda u + \gamma d$ • $\lambda A_B + \gamma E_B \leq c_B$ • $\lambda \leq 0$

67 🕨

< □ >

◆ 문 → ◆ 문 → …

5990

₹

Let's consider a reduced set of paths $B \subset P$.

A_B	$A_{(P/B)}$
E_B	$E_{(P/B)}$

$$D_B$$
• max $\lambda u + \gamma d$
• $\lambda A_B + \gamma E_B \leq c_B$
• $\lambda \leq 0$

< 🗆

5990

≣⊳

- If we solve the master problem we obtain: \hat{f}_B and $(\hat{\lambda}, \hat{\gamma})$.
- Strong Duality: if $(\hat{\lambda}, \hat{\gamma})$ is feasible to DMMCF then \hat{f}_B is optimal for MMCF
- Feasibility of the dual problem can be conveniently restated in terms of *reduced cost* of paths

$$ar{c}_{p} = c_{p} - \hat{\gamma}_{h(p)} - \sum_{(i,j)\in P} \hat{\lambda}_{ij} = \sum_{(i,j)\in P} (c_{ij} - \hat{\lambda}_{ij}) - \hat{\gamma}_{h(p)}$$

- For all the paths p that belong to the set B we have that $\bar{c}_p \ge 0$.
- What can we say about the paths $p \in P \setminus B$?

- For each $h \in K$, we compute a minimum cost path from s^h to t^h by associating with each arc the new costs $c_{ij} \hat{\lambda}_{ij}$
- This minimum cost path is indicated by p̂_h reduced cost of paths
- We compute the *reduced cost* c
 _{p̂h}: if it's greater or equal to zero for all h ∈ K: the set B holds the optimal paths
- If, instead, at least one path \hat{p}_h has negative reduced cost, then it can be added to B and the process is iterated.

Part II

Models

5990

Ē

・ロト ・日ト ・三

▶ ★ 훈 ▶ .

LP MODEL with Node-Arc Formulation

Data

- ${\cal N}$ Node set
- \mathcal{A} Edge set
- \mathcal{F} Commodity set
- u_{ij} Capacity associated with link (i, j)
- d^f Effective bit rate of flow f
- x_{ij}^{f} Share of flow f carried by IS-IS and traversing link (i, j)

Variables

- u_{max} Maximum utilization in the network objective function
- *is^f* Flow *f* carried by IS-IS
- $flow_{ij}^{f}$ Flow f carried by MPLS and traversing link (i, j)

LP MODEL with Node-Arc Formulation

Data

- \mathcal{N} Node set
- \mathcal{A} Edge set
- \mathcal{F} Commodity set
- u_{ij} Capacity associated with link (i, j)
- d^f Effective bit rate of flow f
- x_{ij}^{f} Share of flow f carried by IS-IS and traversing link (i, j)

Variables

- u_{max} Maximum utilization in the network objective function
- is^f Flow f carried by IS-IS
- flow f_{ij} Flow f carried by MPLS and traversing link (i, j)

Commodities aggregation by source node

$$flow_{ij}^h = \sum_{f:I(f)=h} flow_{ij}^f$$

Example

Commodities $A \rightarrow B$, $A \rightarrow C$, and $A \rightarrow D$ are replaced by a single commodity "A"

< 口 > < 団 > < 三 > < 三 > < 団 > < □ > < □ > <

Commodities aggregation by source node

$$flow_{ij}^h = \sum_{f:I(f)=h} flow_{ij}^f$$

Example

Commodities $A \rightarrow B$, $A \rightarrow C$, and $A \rightarrow D$ are replaced by a single commodity "A"

Objective function

< 🗆

5900

$$\begin{aligned} z &= \min(u_{max}) \\ \sum_{f \in \mathcal{F}} x_{ij}^{f} \cdot is^{f} + \sum_{h \in \mathcal{N}} flow_{ij}^{h} \leq u_{max} \cdot u_{ij} \quad \forall (i,j) \in \mathcal{A} \\ \sum_{j:(j,i) \in \mathcal{A}} flow_{ji}^{h} - \sum_{j:(i,j) \in \mathcal{A}} flow_{ij}^{h} = \begin{cases} -\sum_{f \in F(h)} d^{f} + is^{f} & i = h \\ d^{f} - is^{f} & if i \neq h, i = E(f), f \in F(h) \\ 0 & \text{otherwise} \end{cases} \\ flow_{ii}^{h} \geq 0 \quad \forall (i,j) \in \mathcal{A}, \ \forall h \in \mathcal{N} \end{aligned}$$

 $is^{f} \geq 0 \quad \forall f \in \mathcal{F}$

Capacity constraints

< □

æ

5900

- ≣ →

$$z = \min(u_{max})$$

$$\sum_{f \in \mathcal{F}} x_{ij}^{f} \cdot is^{f} + \sum_{h \in \mathcal{N}} flow_{ij}^{h} \leq u_{max} \cdot u_{ij} \quad \forall (i, j) \in \mathcal{A}$$

$$\sum_{j:(j,i) \in \mathcal{A}} flow_{ji}^{h} - \sum_{j:(i,j) \in \mathcal{A}} flow_{ij}^{h} = \begin{cases} -\sum_{f \in F(h)} d^{f} + is^{f} & i = h \\ d^{f} - is^{f} & if i \neq h, i = E(f), f \in F(h) \\ 0 & \text{otherwise} \end{cases}$$

$$flow_{ij}^{h} \geq 0 \quad \forall (i, i) \in \mathcal{A} \quad \forall h \in \mathcal{N}$$

 $\begin{aligned} & \text{flow}_{ij}^{ii} \geq 0 \quad \forall (i,j) \in \mathcal{A}, \ \forall h \in \mathcal{N} \\ & \text{is}^{f} \geq 0 \quad \forall f \in \mathcal{F} \end{aligned}$

Flow conservation equations

5990

$$z = \min(u_{max})$$

$$\sum_{f \in \mathcal{F}} x_{ij}^{f} \cdot is^{f} + \sum_{h \in \mathcal{N}} flow_{ij}^{h} \leq u_{max} \cdot u_{ij} \quad \forall (i,j) \in \mathcal{A}$$

$$\sum_{j:(j,i) \in \mathcal{A}} flow_{ji}^{h} - \sum_{j:(i,j) \in \mathcal{A}} flow_{ij}^{h} = \begin{cases} -\sum_{f \in F(h)} d^{f} + is^{f} & i = h \\ d^{f} - is^{f} & if i \neq h, i = E(f), f \in F(h) \\ 0 & \text{otherwise} \end{cases}$$

$$flow_{ii}^{h} \geq 0 \quad \forall (i,i) \in \mathcal{A}, \forall h \in \mathcal{N}$$

 $iow_{ij} \ge 0 \quad \forall (I,J) \in \mathcal{A},$ $is^{f} \ge 0 \quad \forall f \in \mathcal{F}$

Positivity constraint

< □

ð

▶ ◀ 톤 ▶

5900

$$z = \min(u_{max})$$

$$\sum_{f \in \mathcal{F}} x_{ij}^{f} \cdot is^{f} + \sum_{h \in \mathcal{N}} flow_{ij}^{h} \leq u_{max} \cdot u_{ij} \quad \forall (i, j) \in \mathcal{A}$$

$$\sum_{j:(j,i) \in \mathcal{A}} flow_{ji}^{h} - \sum_{j:(i,j) \in \mathcal{A}} flow_{ij}^{h} = \begin{cases} -\sum_{f \in F(h)} d^{f} + is^{f} & i = h \\ d^{f} - is^{f} & if i \neq h, i = E(f), f \in F(h) \\ 0 & \text{otherwise} \end{cases}$$

$$flow_{ij}^{h} \geq 0 \quad \forall (i, i) \in \mathcal{A} \quad \forall h \in \mathcal{N}$$

 $\begin{aligned} & \textit{flow}_{ij}^n \geq 0 \quad \forall (i,j) \in \mathcal{A}, \; \forall h \in \mathcal{N} \\ & \textit{is}^f \geq 0 \quad \forall f \in \mathcal{F} \end{aligned}$

Positivity constraint

< 🗆

æ

-∢ ≣ ▶

5900

$$z = \min(u_{max})$$

$$\sum_{f \in \mathcal{F}} x_{ij}^{f} \cdot is^{f} + \sum_{h \in \mathcal{N}} flow_{ij}^{h} \leq u_{max} \cdot u_{ij} \quad \forall (i, j) \in \mathcal{A}$$

$$\sum_{j:(j,i) \in \mathcal{A}} flow_{ji}^{h} - \sum_{j:(i,j) \in \mathcal{A}} flow_{ij}^{h} = \begin{cases} -\sum_{f \in F(h)} d^{f} + is^{f} & i = h \\ d^{f} - is^{f} & if i \neq h, i = E(f), f \in F(h) \\ 0 & \text{otherwise} \end{cases}$$

$$flow_{ij}^{h} \geq 0 \quad \forall (i, i) \in \mathcal{A} \quad \forall h \in \mathcal{N}$$

 $\begin{aligned} & \text{flow}_{ij}^* \geq 0 \quad \forall (i,j) \in \mathcal{A}, \ \forall h \in \mathcal{N} \\ & \text{is}^f \geq 0 \quad \forall f \in \mathcal{F} \end{aligned}$

 $\sum_{f \in \mathcal{F}} x_{ij}^{f,l} \cdot is^{f} + \sum_{h \in \mathcal{N}} \textit{flow}_{ij}^{h} + \sum_{h \in \mathcal{N}} (x_{ij}^{l+,l} \cdot \textit{flow}_{l_{+}}^{h} + x_{ij}^{l-,l} \cdot \textit{flow}_{l_{-}}^{h}) \leq u_{max} \cdot c_{ij} \quad \forall (i,j) \neq l_{+}, l_{-} \in \mathcal{A}$

Share of flow carried by IS-IS when edge *I* fails

Flow carried by explicit MPLS LSP along link (i, j)

Share of flow flowing through edge l from node p to node q (arc l_+) and those from node q to node p (arc l_-) that is rerouted by IS-IS along link (i, j)

▶ Proof

$$\sum_{f \in \mathcal{F}} x_{ij}^{f,l} \cdot is^{f} + \sum_{h \in \mathcal{N}} \textit{flow}_{ij}^{h} + \sum_{h \in \mathcal{N}} (x_{ij}^{l_+,l} \cdot \textit{flow}_{l_+}^{h} + x_{ij}^{l_-,l} \cdot \textit{flow}_{l_-}^{h}) \leq u_{max} \cdot c_{ij} \quad \forall (i,j) \neq l_+, l_- \in \mathcal{A}$$

Share of flow carried by IS-IS when edge / fails

Flow carried by explicit MPLS LSP along link (i, j)

Share of flow flowing through edge l from node p to node q (arc l_+) and those from node q to node p (arc l_-) that is rerouted by IS-IS along link (i, j)

▶ Proof

$$\sum_{f \in \mathcal{F}} x_{ij}^{f,l} \cdot is^{f} + \sum_{h \in \mathcal{N}} \textit{flow}_{ij}^{h} + \sum_{h \in \mathcal{N}} (x_{ij}^{l_+,l} \cdot \textit{flow}_{l_+}^{h} + x_{ij}^{l_-,l} \cdot \textit{flow}_{l_-}^{h}) \leq u_{max} \cdot c_{ij} \quad \forall (i,j) \neq l_+, l_- \in \mathcal{A}$$

Share of flow carried by IS-IS when edge *I* fails

Flow carried by explicit MPLS LSP along link (i, j)

Share of flow flowing through edge l from node p to node q (arc l_+) and those from node q to node p (arc l_-) that is rerouted by IS-IS along link (i, j)

▶ Proof

$$\sum_{f \in \mathcal{F}} x_{ij}^{f,l} \cdot is^{f} + \sum_{h \in \mathcal{N}} flow_{ij}^{h} + \sum_{h \in \mathcal{N}} (x_{ij}^{l_+,l} \cdot flow_{l_+}^{h} + x_{ij}^{l_-,l} \cdot flow_{l_-}^{h}) \leq u_{max} \cdot u_{ij} \quad \forall (i,j) \neq l_+, l_- \in \mathcal{A}$$

Share of flow carried by IS-IS when edge *I* fails

Flow carried by explicit MPLS LSP along link (i, j)

Share of flow flowing through edge l from node p to node q (arc l_+) and those from node q to node p (arc l_-) that is rerouted by IS-IS along link (i, j)

< 🗆 🕨

Proof

TINet Italy-Normal Condition

- 18 nodes
- 54 arcs

< O > < 🗗

- 306 flows
- 1279 variables
- 378 constraints

5990

TINet Italy-Normal Condition

- 18 nodes
- 54 arcs
- 306 flows
- 1279 variables
- 378 constraints

Routing Optimization						
[U _{max}	Gain (Def)	Gain (Tis)	# LSP	
	Default	$u_{max} = 72\%$	—	—	0	
	Existing metrics	$u_{max} = 66\%$	8.3%	_	0	
	IS-IS opt.	$u_{max} = 61\%$	15.2%	7.6%	0	
	MPLS-TE opt.	$u_{max} = 59\%$	18.1%	10.6%	105	

TINet Italy - Survivability

- 18 nodes
- 54 arcs
- 306 flows
- 1279 variables
- 1782 constraints

Survivability Optimization

	U _{max}	Gain (Def)	Gain (Tis)	# LSP
Default	$u_{max} = 128\%$	-	-	0
Existing metrics	$u_{max} = 117\%$	8.6%	-	0
IS-IS opt.	$u_{max} = 85\%$	33.6%	27.3%	0
MPLS-TE opt.	$u_{max} = 83\%$	35.2%	29.1%	86

Graphical Results - Routing

Graphical Results - Routing

Graphical Results - Survivability

うへつ

< D > < 🗗 >

Graphical Results - Survivability

うへつ

< D > < 🗗 >

IBCN European Network

- 37 nodes
- 114 arcs

< 🗆

- 1332 flows
- 5551 variables
- 1483 constraints
- 7867 constraints (with survivability)

5990

IBCN - Normal condition

- 37 nodes
- 114 arcs
- 1332 flows
- 5551 variables
- 1483 constraints
- 7867 constraints (with survivability)

Routing Optimization

	Work. Cond.	Failure Cond.	# LSP
IS-IS/OSPF with def. metrics	71%	101%	0
IS-IS with optim. metrics	54%	74%	0
LP models with optim. metrics	40%	64%	543

Figure: Is-Is Routing Normal Condition Default Metrics Umax=71% Figure: Is-Is Routing Normal Condition Optimized Metrics Umax=54%

・ロシ (四) (三) (三) (日) (日)

Figure: Is-Is Routing Normal Condition Optimized Metrics Umax=54% Figure: Mpls Routing Normal Condition Optimized Metrics Umax=40%

< 🗆

୬ବ୍ଦ

Figure: Is-Is Routing Failure Condition Default Metrics Umax=101% Figure: Is-Is Routing Failure Condition Optimized Metrics Umax=74%

< <p>>

うえぐ

Figure: Is-Is Routing Failure Condition Optimized Metrics Umax=74% Figure: Mpls Routing Failure Condition Optimized Metrics Umax=64%

<ロ> <四> <四> <三> <三> <三> <三> <三</p>

An extended description of this work is available as Technical Report of the University of Pisa at the following link:

http://compass2.di.unipi.it/TR/Files/TR-08-24.pdf.gz

500

Thank you for your attention

< □ ▶ <

₫ >

1

€

5990

Return