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Part I

Introduction and Background



Problem Description

Scenario

Very large scale networks have been built by the Network
Engineers

Experience and Best Common Practice

Planning
Reaction to critical Network Events



Network survivability Techniques

Network Design and Capacity Allocation

Traffic Management and Restoration



Autonomous System (AS)

Collection of IP Networks and routers controlled by a single
administrative entity

Two routing protocols

End System-to-Intermediate System (ES-IS)

Intermediate System-to-Intermediate System (IS-IS)

IS-IS: link state routing protocol



Interior Gateway Protocol

IS-IS/OSPF

Metric associated to each arc

Route selection using Dijkstra’s Shortest Path Algorithm

Equal Cost Multiple Paths (ECMP)



MPLS Technology

MPLS-TE

Allows the configuration of the traffic in order to optimize the
resources.

Allows the building of VPN (Virtual Private Networks), using
LSP (Label Switched Paths)-Tunnels.

Extends existing IP protocol



Restoration Schemes: Link Restoration

Figure: Link Restoration for single failure condition



Restoration Schemes: Path Restoration

Figure: Path Restoration for single failure condition



Failure Analysis

20% : scheduled network maintenance activities

80% : unplanned failures where :

30% shared link failures
70% single link failures



Problem Statement

Is it possible to obtain a robust configuration of the network
using the combination of IS-IS routing and MPLS-TE
techniques?

Is it possible to formulate the question as a pure LP problem?



Linear Programmin Models

minc · x

A · x = b

x ≥ 0

Graphs and Network Flows

Generally, in Operations Research, the term network denotes a
weighted graph G = (N,A) where the weights are numeric
values associated to nodes and/or arcs of the graph.
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MMCF Problem Definition

Notation

G = (N,A) where N is the set of nodes and A ⊆ N ×N is the
set of arcs

K is the set of commodities

h − th commodity determined by: (dh, sh, th), where sh ∈ N

and th ∈ N, with sh 6= th, are the starting and ending node,
and dh is the quantity to be moved from sh to th

Formulations

node-arc formulation : the variables are xh
ij

arc-path formulation: the variables are fp



MMCF: Node-arc formulation

The problem

min
∑

h∈K

∑

(i ,j)∈A ch
ij · x

h
ij

∑

(j ,i)∈BS(i) xh
ji −

∑

(i ,j)∈FS(i) xh
ij =











−dh i = sh

dh i = th

0 otherwise
∑

h∈K xh
ij ≤ uij (i , j) ∈ A

xh
ij ≥ 0 (i , j) ∈ A

|N||K | + |A| constraints
|K ||A| variables



MMCF: Arc-path formulation

The notation

Ph: the set of paths in G from the node sh to the node th

P = ∪h∈KPh: the set of all relevant paths

p ∈ P belongs to a unique commodity, identified by the
starting and ending nodes of p; h(p)

cp =
∑

(i ,j)∈p cij cost of the path p

The problem

min
∑

h∈K

∑

p∈Ph cp
∑

p∈Ph fp = dh h ∈ K
∑

p:(i ,j)∈p fp ≤ uij (i , j) ∈ A

fp ≥ 0 p ∈ P



Column generation.1

The problem has |A| + |K | constraints



Column generation.2

Let’s consider a reduced set of paths B ⊂ P .

PB

min cB fB

AB fB ≤ u

EB fB = d

fB ≥ 0

DB

max λu + γd

λAB + γEB ≤ cB

λ ≤ 0
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Column generation.3

If we solve the master problem we obtain: f̂B and (λ̂, γ̂).

Strong Duality: if (λ̂, γ̂) is feasible to DMMCF then f̂B is
optimal for MMCF

Feasibility of the dual problem can be conveniently restated in
terms of reduced cost of paths

c̄p = cp − γ̂h(p) −
∑

(i ,j)∈P

λ̂ij =
∑

(i ,j)∈P

(cij − λ̂ij) − γ̂h(p) .

For all the paths p that belong to the set B we have that
c̄p ≥ 0.

What can we say about the paths p ∈ P \ B?



Column generation.4

For each h ∈ K , we compute a minimum cost path from sh to
th by associating with each arc the new costs cij − λ̂ij

This minimum cost path is indicated by p̂h reduced cost of
paths

We compute the reduced cost c̄p̂h
: if it’s greater or equal to

zero for all h ∈ K : the set B holds the optimal paths

If, instead, at least one path p̂h has negative reduced cost,
then it can be added to B and the process is iterated.



Part II

Models



LP MODEL with Node-Arc Formulation

Data

N - Node set

A - Edge set

F - Commodity set

uij - Capacity associated with link (i , j)

d f - Effective bit rate of flow f

x f
ij - Share of flow f carried by IS-IS and traversing link (i , j)

Variables

umax - Maximum utilization in the network - objective function

is f - Flow f carried by IS-IS

flow f
ij - Flow f carried by MPLS and traversing link (i , j)
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Flows Aggregation

Commodities aggregation by source node

flowh
ij =

∑

f :I (f )=h

flow f
ij

Example

Commodities A → B , A → C , and A → D

are replaced by a single commodity “A”
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General Routing Problem

Objective function

z = min(umax)
∑

f ∈F
x f
ij · is

f +
∑

h∈N
flowh

ij ≤ umax · uij ∀(i , j) ∈ A

∑

j:(j,i)∈A flowh
ji −

∑

j:(i ,j)∈A flowh
ij =











−
∑

f ∈F (h) d f + is f i = h

d f − is f if i 6= h, i = E (f ), f ∈ F (h)

0 otherwise

flowh
ij ≥ 0 ∀(i , j) ∈ A, ∀h ∈ N

is f ≥ 0 ∀f ∈ F
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General Routing Problem

Flow conservation equations

z = min(umax)
∑

f ∈F
x f
ij · is

f +
∑

h∈N
flowh
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∑
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General Routing Problem

Positivity constraint

z = min(umax)
∑

f ∈F
x f
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Link restoration



Survivability Constraints

X

f ∈F

x
f ,l
ij ·is

f +
X

h∈N

flow
h
ij +

X

h∈N

(x
l+,l

ij ·flow
h
l++x

l
−

,l

ij ·flow
h
l
−

) ≤ umax ·cij ∀(i , j) 6= l+, l− ∈ A

Share of flow carried by IS-IS when edge l fails

Flow carried by explicit MPLS LSP along link (i , j)

Share of flow flowing through edge l from node p to node q (arc l+) and those
from node q to node p (arc l−) that is rerouted by IS-IS along link (i , j)

Proof
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TINet Italy-Normal Condition

18 nodes

54 arcs

306 flows

1279 variables
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TINet Italy-Normal Condition

18 nodes

54 arcs

306 flows

1279 variables

378 constraints

Routing Optimization

umax Gain (Def) Gain (Tis) # LSP

Default umax = 72% – – 0

Existing metrics umax = 66% 8.3% – 0

IS-IS opt. umax = 61% 15.2% 7.6% 0

MPLS-TE opt. umax = 59% 18.1% 10.6% 105



TINet Italy - Survivability

18 nodes

54 arcs

306 flows

1279 variables

1782 constraints

Survivability Optimization

umax Gain (Def) Gain (Tis) # LSP

Default umax = 128% – – 0

Existing metrics umax = 117% 8.6% – 0

IS-IS opt. umax = 85% 33.6% 27.3% 0

MPLS-TE opt. umax = 83% 35.2% 29.1% 86



Graphical Results - Routing

Statistics

umax = 66%
Average = 26.12%
Variance = 0.028

Statistics

umax = 61%
Average = 24.52%
Variance = 0.037



Graphical Results - Routing

Statistics

umax = 61%
Average = 24.52%
Variance = 0.037

Statistics

umax = 59%
Average = 27.22%
Variance = 0.029



Graphical Results - Survivability

Statistics

umax = 117%
Average = 72.66%
Variance = 0.021

Statistics

umax = 85%
Average = 76.63%
Variance = 0.001



Graphical Results - Survivability

Statistics

umax = 85%
Average = 76.63%
Variance = 0.001

Statistics

umax = 83%
Average = 81.59%
Variance = 0.0002



IBCN European Network

37 nodes

114 arcs

1332 flows

5551 variables

1483 constraints

7867 constraints
(with survivability)



IBCN - Normal condition

37 nodes

114 arcs

1332 flows

5551 variables

1483 constraints

7867 constraints (with survivability)

Routing Optimization

Work. Cond. Failure Cond. # LSP

IS-IS/OSPF with def. metrics 71% 101% 0

IS-IS with optim. metrics 54% 74% 0

LP models with optim. metrics 40% 64% 543



IBCN - Graphical Results

Figure: Is-Is Routing Normal

Condition Default Metrics

Umax=71%

Figure: Is-Is Routing Normal Condition

Optimized Metrics Umax=54%



IBCN - Graphical Results

Figure: Is-Is Routing Normal

Condition Optimized Metrics

Umax=54%

Figure: Mpls Routing Normal Condition

Optimized Metrics Umax=40%



IBCN - Graphical Results

Figure: Is-Is Routing Failure

Condition Default Metrics

Umax=101%

Figure: Is-Is Routing Failure Condition

Optimized Metrics Umax=74%



IBCN - Graphical Results

Figure: Is-Is Routing Failure

Condition Optimized Metrics

Umax=74%

Figure: Mpls Routing Failure Condition

Optimized Metrics Umax=64%



An extended description of this work is available as Technical
Report of the University of Pisa at the following link:

http://compass2.di.unipi.it/TR/Files/TR-08-24.pdf.gz



Thank you for your attention
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