

BUSINESS ROLE BookingAgent is

 INTERACTIONS
 …

 r&s bookTrip
  from,to:airport
 out,in:date
  fconf:fcode
 hconf:hcode
 amount:moneyvalue
 ask log(username,password):bool
 ask getData(username):usrdata
 ask getCard(username):paydata
 s&r bookFlight
  from,to:airport
 out,in:date
 traveller:usrdata

  fconf:fcode
 amount:moneyvalue

 beneficiary:accountn
 payService:serviceId

 s&r payment
  amount:moneyvalue
 beneficiary:accountn
 originator:usrdata
 cardNo:paydata

  proof:pcode
 s&r bookHotel

  checkin,checkout:date
 traveller:usrdata
  hconf:hcode
 snd payAck
  proof:pcode
 status:bool
 rcv ackRefundRcv
  amount:moneyvalue
 snd ackRefundSnd
  amount:moneyvalue

 SLA VARIABLES
 BOOKFEE:[0..100], KD:[1..30]

 ORCHESTRATION
local s:[START, LOGGED, QUERIED, FLIGHT_OK, HOTEL_OK, CONFIRMED, END_PAID,
END_UNBOOKED, COMPENSATING, END_COMPENSATED],
logged:bool, traveller:usrdata, travcard:paydata

 …

 transition HotelAnswer
triggeredBy bookHotel
guardedBy s=FLIGHT_OK
effects bookHotel.Reply ⊃ s’=HOTEL_OK
 ∧ ¬bookHotel.Reply ⊃ s’=END_UNBOOKED
sends bookHotel.Reply ⊃ bookTrip
 ∧ bookTrip.fconf=bookFlight.fconf
 ∧ bookTrip.amount=bookFlight.amount + BOOKFEE
 ∧ bookTrip.hconf=bookHotel.hconf
 ∧ ¬bookHotel.Reply ⊃ bookFlight
 ∧ bookTrip
 ∧ bookTrip.Reply=False

 transition TripCommit
triggeredBy bookTrip
guardedBy s=HOTEL_OK
effects s’=CONFIRMED
sends bookFlight ∧ bookHotel ∧ payment
 ∧ payment.amount=bookFlight.amount + BOOKFEE
 ∧ payment.beneficiary=bookFlight.beneficiary
 ∧ payment.originator=traveller
 ∧ payment.cardNo=travcard

 transition PaymentAnswer
triggeredBy payment
guardedBy s=CONFIRMED
effects payment.Reply ⊃ s’=END_PAID
 ∧ ¬payment.Reply ⊃ s’=END_UNBOOKED
sends payAck
 ∧ payAck.proof=payment.proof
 ∧ payAck.status=payment.Reply

…

BUSINESS PROTOCOL Customer is

 INTERACTIONS
 r&s login

  usr:username, pwd:password
 r&s bookTrip

  from,to:airport,
 out,in:date
  fconf:fcode,
 hconf:hcode,
 amount:moneyvalue
 snd payNotify
  status:bool
 snd refund
  amount:moneyvalue
 SLA VARIABLES
 BOOKFEE:[0..100], KD:[1..30]
 BEHAVIOUR

 initiallyEnabled login?
 (login! ∧ login.Reply) enables bookTrip?
 (bookTrip ∧ bookTrip?) ensures payNotify!

 (payNotify! ∧ payNotify.status) enables bookTrip?
 until today≥bookTrip.out+KD
 (bookTrip? ∧ today+KD<bookTrip.out) ensures refund!
 ∧ refund.amount=bookTrip.amount-BOOKFEE

 – 1 – Continues on the next page

Define, for the module TravelBooking, an external policy on the SLA variables:

• CR.PROCODE: is a variable associated to CR that denote the promotional
code used by the customer to obtain discounts,

• CR.PERC, FA.PERC: is a variable associated to CR that denote the
percentage of refund,

• CR.FEE: is the variable associated to CR that denote the forfait price for each
booking,

The external policy must contain a number of constraints that ensure:

a. That the percentage of refund concessed to the customer must always be between
50% and 100% and the flight agent must support this.

b. The degree of satisfaction is inversely proportional to the percentage of refund
(PERC) concessed to the customer.

c. If the promotional code of the customer is “VIP” then CR.FEE is the zero, if it is is
“MEMBER” the satisfaction is directly proportional to CR.FEE but less than 10£
and if it is “OTHER” then it 11£.

EXTERNAL POLICY

 SLA VARIABLES
 CA.PERC, FA.PERC, CR.FEE, CR.PROCODE

 CONSTRAINTS
 C1: {CA.PERC, FA.PERC}

 def(x,y)=

€

1 if 50 ≤ x ≤ 100 ∧ x ≤ y

0 otherwise





 C2: {CA.PERC}

 def(s)=

€

1/x if x > 0

0 otherwise





 C3: {CR.FEE, CR.PROCODE},

def(f,p)=

€

1 if (p ="VIP" ∧ f = 0) ∨ (p ="OTHER" ∧ f = 11)

f/10 if p =" MEMBER" and f ≤ 10

0 othherwise






 

– 2 –

BUSINESS PROTOCOL Customer is

 INTERACTIONS
 r&s login

  usr:username, pwd:password
 r&s bookTrip

  from,to:airport,
 out,in:date
  fconf:fcode,
 hconf:hcode,
 amount:moneyvalue
 snd payNotify
  status:bool
 snd refund
  amount:moneyvalue
 BEHAVIOUR

 initiallyEnabled login?
 (login! ∧ login.Reply) enables bookTrip?
 (bookTrip ∧ bookTrip?) ensures payNotify!

 …

Define the following statement for the business protocol Customer:

 - That the percentage of refund (Refund.amount) concessed to the customer must
always be between 50% and 100%.

50 ≤ refund.amount ∧ refund.amount ≤ 100 after refund!

- That the compensation of bookTrip is always allowed after a payNotify with a positive
status (one statement) but that the amount refund (which is ensured after payNotify) will
be zero on or after the day of the trip (one statement).
1- payNotify! ∧ payNotify.status enables bookTrip?

2- Refund.amount=0 after bookTrip.out ≥ today

(bookTrip? ensures refund!) this was assumed…

– 3 –

- That (alternative to the previous) the compensation of bookTrip is not allowed on or
after the day of the trip (one statement) but the amount of the refund is always as the
one agreed with the SLA variable PERC (one statement).
1- payNotify! ∧ payNotify.status enables bookTrip? until bookTrip.out ≥ today

2- refund.amount=bookTrip.amount*PERC after refund!

(we should declare the SLA variable PERC in Customer)

