
An overview

Laura Bocchi
bocchi@mcs.le.ac.uk

Agenda
Formal Methods and Engineering Practice
(and some motivation)

An overview of SRML as related with other languages

SCA (Service Deployment)

PEPA (Quantitative analysis)

StPowla (Workflows and Business Policies)

BPEL (Web services orchestration)

Different languages and levels of abstractions for different purposes

e.g., Petri-Nets is a graphical formal language to model/analyze concurrent
processes

e.g., Pi-calculus is a process calculus to model/analyze concurrent
communicating processes (it has primitives for modelling reconfiguration)

e.g., Z is a logic notation to specify systems ...

Why many? Because each targets a specific aspect and aim. Focusing on a
specific target and aim limits the complexity of models.

Why formal methods? Specification, transformation, analysis, understanding the
semantics of “real” languages or real problems or real scenarios

Formal Methods

BPEL is a standard for Web Service orchestration inspired by pi-calculus. It does
not come with a formal semantics (although some proposals have been done in
academia)

A number of engines support BPEL. Each BPEL engine may implement a slightly
different semantics

E.g., if you have two parallel threads in a transaction and one fails: do you have
to interrupt the other one? do you have to wait for its completion and then
compensate it? In which order should the compensations be executed?

Background knowledge about orchestration semantics enables BPEL programmers
to update and adapt to evolving technologies (e.g., update or change).

In general, the understanding of the key problems of a scenario is a know-how
which makes it easier to familiarise and cope with evolving technologies

One Example: the semantics of
BPEL

Service-oriented modelling is an emerging discipline and issue, supported and
encouraged by major companies (Microsoft, IBM, BEA, etc)

There are a number of formal languages that address, very specifically, the different
aspects of service-oriented engineering

There is no standard language for the modelling of service oriented systems (yet)

SRML is the only language (at the moment) that address architectural and
behavioural modelling in a whole formal framework

algebraic semantics of reconfiguration, logics of interaction, c-semirings

Will I use SRML in industry? Probably not, but you will possibly use (or even define!)
some language that models some of the features modelled by SRML.

Learning an reference language which is general enough, because defined for being
such, provides a basis to cope with an evolving set of technologies in the context of
distributed dynamically reconfiguring systems

What about SRML?

A view of ensemble
use case diagrams Define requirements

Define modules + EX-Is

Define behaviours

Deploy

Define internal structure

from scratch
reuse

refinement

Analyse

from scratch
use case -> SRML

from scratch
CBD

The mortgage example
use case diagrams Define requirements

the Mortgage scenario

The mortgage example
use case diagrams Define requirements

Define modules + EX-Is
from scratch

use case -> SRML

?

?

A view of ensemble
use case diagrams Define requirements

Define modules + EX-Is

Define internal structure

from scratch
use case -> SRML

from scratch
CBD

more component could be defined
for modular development, reuse,

limiting the complexity etc.

A view of ensemble
use case diagrams Define requirements

Define modules + EX-Is

Define behaviours

Define internal structure

from scratch
reuse

refinement

from scratch
use case -> SRML

from scratch
CBD

The specifications (interactions)
MA

The specifications
(textual notation)

The orchestration as a statechart

!

¬

The specifications
(the business role - interactions)

The specifications
(the business role - interactions)

...

The specifications
(the business role - interactions)

...

The specifications
(the business protocols)

The specifications
(the business protocols)

A view of ensemble
use case diagrams Define requirements

Define modules + EX-Is

Define behaviours

Define internal structure
(textual notation)

from scratch
reuse

refinement

from scratch
use case -> SRML

from scratch
CBD

The textual definition (nodes)

...

The textual definition
(nodes and internal policies)

...

The textual definition
(external policies)

...

e.g., if I give 2 hours and
the charge is more than 20 then I am

happy

C1 relates the
charge with the deadline of

getProposal

e.g., if I give 2
hours and the charge is

between 10 and 20 then the
satisfaction depends on c

and t

C2 enforces that the
chosen lender is in the set of
trusted lenders stored in the

registry

C3 ensures that the
deadline for proposal can be met

wrt the delays

C4 ensures that the cost
is inversely proportional to the

satisfaction and directly
proportional to the deadline of

requestMortgage

...

The textual definition
(wires part1)

This was the end of the module
The module refers to a number of specifications

(as seen before)

The textual definition
(wires part2)

A view of ensemble
use case diagrams Define requirements

Define modules + EX-Is

Define behaviours

Deploy

Define internal structure

from scratch
reuse

refinement

Analyse

from scratch
use case -> SRML

from scratch
CBD

PEPA
Logics of Interactions

SRML2PEPA

SRML

PEPA

 PEPA is a process algebra for stochastic quantitative analysis whose building entities are
(1) components and (2) activities (a,r) where a is an action and r is a rate

 There are tools for PEPA (Eclipse Plugin) that allow to make quantitative analysis

 We provided an encoding from SRML modules to PEPA terms to perform quantitative
analysis on SRML modules

A Formal Approach to Model Time Properties in Service-Oriented Systems
Bocchi, Fiadeiro, Gilmore, Abreu, Solanki, Vankayala
http://www.cs.le.ac.uk/people/jfiadeiro/Papers/SRML-T.pdf

The aim is to enable quantitative analysis of SRML modules

SRML describes behaviours terms of interaction events

We want to determine the delay between couple of interaction events

We want to determine how the single rates influence the overall delay
between couples of interaction events

“is the reply to the event getProposal, in the 80% of the
cases, received in 7s?”

“which rates worth to be improved?”

SRML -> PEPA

The aim of the encoding

We want to determine the delay between couples of events in the provides-interface

For example, we want to analyze the delay between getProposal and
getProposal in CR ((1) in the sequence diagram)

In order to analyze time-related properties in a SRML module:

we determine which delays occur in a SRML module

we encode SRML into PEPA

GETLOAN

SLA_GL

RE:
Registry

OR:
Orchestration

LE:
Lender

intLE

BA:
Bank

intBA

IN:
Insurance

intIN

CO
 CR:

 Customer

RO

LO

BO

IO

COCR OR LO LE

getProposal!

getProposal!

askProposal!

askProposal!

askProposa"

askProposal"

getProposal"

getProposal"

1

2

3

4

5

4

6

2

Delays in SRML

 affecting all the interactions through that wire

GETLOAN

SLA_GL

RE:
Registry

OR:
Orchestration

LE:
Lender

intLE

BA:
Bank

intBA

IN:
Insurance

intIN

CO
 CR:

 Customer

RO

LO

BO

IO

COCR OR LO LE

getProposal!

getProposal!

askProposal!

askProposal!

askProposa"

askProposal"

getProposal"

getProposal"

1

2

3

4

5

4

6

2

CO transfers getProposal to from CR to OR

Wires can take some amount of time to transfer events between nodes

because of bandwidth/capacity

because of the execution of an interaction protocol

Each wire has its own TRANSFER RATE

For example, the delay of wire CO is CO.transferRate

Delays and dependencies
COCR OR LO LE

getProposal!

getProposal!

askProposal!

askProposal!

askProposa"

askProposal"

getProposal"

getProposal"

1

2

3

4

5

4

6

2

GETLOAN

SLA_GL

RE:
Registry

OR:
Orchestration

LE:
Lender

intLE

BA:
Bank

intBA

IN:
Insurance

intIN

CO
 CR:

 Customer

RO

LO

BO

IO

The event getProposal is stored in OR‘s buffer, waiting to be processed

Each component is associated to a PROCESSING RATE, which represents the delay of
processing a received event

All the events received by a specific component are affected by the same processing rate

For example the delay of OR for processing events is processingRate(OR)

Delays and dependencies
COCR OR LO LE

getProposal!

getProposal!

askProposal!

askProposal!

askProposa"

askProposal"

getProposal"

getProposal"

1

2

3

4

5

4

6

2

GETLOAN

SLA_GL

RE:
Registry

OR:
Orchestration

LE:
Lender

intLE

BA:
Bank

intBA

IN:
Insurance

intIN

CO
 CR:

 Customer

RO

LO

BO

IO

When the event is processed it can be either executed or discarded

The execution of an event corresponds to the execution of a transition.

Each transition is associated to an EXECUTION RATE which represents the time taken to compute the
reaction to an event, for example to execute transition P2

The execution rate is different for any transition of the same component (e.g., executionRate(OR)(P1))

COCR OR LO LE

getProposal!

getProposal!

askProposal!

askProposal!

askProposa"

askProposal"

getProposal"

getProposal"

1

2

3

4

5

4

6

2

Delays and dependencies

GETLOAN

SLA_GL

RE:
Registry

OR:
Orchestration

LE:
Lender

intLE

BA:
Bank

intBA

IN:
Insurance

intIN

CO
 CR:

 Customer

RO

LO

BO

IO

Again there is a delay due to a wire

(4) represents transferRate(LO)

COCR OR LO LE

getProposal!

getProposal!

askProposal!

askProposal!

askProposa"

askProposal"

getProposal"

getProposal"

1

2

3

4

5

4

6

2

Delays and dependencies

GETLOAN

SLA_GL

RE:
Registry

OR:
Orchestration

LE:
Lender

intLE

BA:
Bank

intBA

IN:
Insurance

intIN

CO
 CR:

 Customer

RO

LO

BO

IO

when a requires interface is discovered and bound at run time, we have a delay which we call
COMPOSITION RATE

For example, the composition rate of LE is compositionRate(LE)

Also, each requires-interface is associated to a RESPONSE RATE representing the time taken by an
external interface to reply to an event

e associate a responseRate to every r&s (delay between -event and -event)

(5) is compositionRate(LE) + responseRate(LE)(askProposal,askProposal)

34

PEPA Eclipse Plugin
After having extended a SRML module with delays, associating one or more rate to each
component, EX-I, and wire, we can encode the module into a PEPA term

35

Passage Time Analysis

Time

Probability

 Using the Passage Time Analysis we analyse for which rates the following
holds: “In 80% of the cases, the delay between getProposal and getProposal has an
upper bound of 7s”֠֠

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

P
ro

b
a
b
ili

ty
 o

f
c
o
m

p
le

ti
o
n

Time

Varying orProcessingRate

orProcessingRate=1
orProcessingRate=2
orProcessingRate=3
orProcessingRate=4
orProcessingRate=5
orProcessingRate=6
orProcessingRate=7

36

Passage Time Analysis

GETLOAN

SLA_GL

RE:
Registry

OR:
Orchestration

LE:
Lender

intLE

BA:
Bank

intBA

IN:
Insurance

intIN

CO
 CR:

 Customer

RO

LO

BO

IO

37

Passage Time Analysis

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

P
ro

b
a

b
ili

ty
 o

f
co

m
p

le
tio

n

Time

Varying transferRate(CM)

+

transferRate(CM)=0.25
transferRate(CM)=0.5

transferRate(CM)=0.75
transferRate(CM)=1.0

transferRate(CM)=1.25
transferRate(CM)=1.5

transferRate(CM)=1.75

GETLOAN

SLA_GL

RE:
Registry

OR:
Orchestration

LE:
Lender

intLE

BA:
Bank

intBA

IN:
Insurance

intIN

CO
 CR:

 Customer

RO

LO

BO

IO

CM

A view of ensemble
use case diagrams Define requirements

Define modules + EX-Is

Define behaviours

Deploy

Define internal structure

from scratch
reuse

refinement

Analyse

from scratch
use case -> SRML

from scratch
CBD

SCA

PEPA
Logics of Interactions

SCA
The Service Component Architecture (SCA) is a recent set of specifications, proposed by
an industrial consortium including major vendors like IBM, ORACLE, BEA, etc.

SCA describe a middleware-independent model for building over SOAs.

Similarly to SCA, SRML provides primitives for modelling, in a technology agnostic way,
business processes as assemblies of

(1) tightly coupled components that may be implemented using different technologies
(including wrapped-up legacy systems, BPEL, Java, etc.)

(2) loosely coupled, dynamically discovered services.

Differently from SRML, SCA is not a modelling language but a framework for
modelling the structure of a service-oriented software artefact and for its
deployment.

SCA abstracts from the business logic provided by components in the sense
that it does not provide a means to model the behavioural aspects of services.

SRML is, instead, a modelling language that

provides the primitives to specify such behavioural aspects.

relies on a mathematical framework for reconfiguration, behavioural
interfaces and SLA

SCA

A view of ensemble
use case diagrams Define requirements

Define modules + EX-Is

Define behaviours

Deploy

Define internal structure

from scratch
reuse

refinement

Analyse

from scratch
use case -> SRML

from scratch
CBD

SCA

PEPA
Logics of Interactions

BPEL
StPowla

WS-BPEL is an OASIS specification for defining business processes of Web services

We defined an encoding to extract SRML models out of existing BPEL processes

In fact we defined an encoding of (part of) BPEL into SRML

Aspects of session/fault/configuration management still have to be added

BPEL2SRML

BPEL Tag/Construct Tool Encoding

Invoke , Receive, Reply, Assign (BA) ! !

Wait, Empty, Exit (BA) " !

Throw (BA) " "

Sequence, Switch (SA) ! !

Flow, While (SA) " !

Control Links, Scopes, Correlation Sets " "

From BPEL to SRML: a formal transformational approach
Bocchi, Hong, Lopes and Fiadeiro, WSFM 2008
http://www.cs.le.ac.uk/people/jfiadeiro/Papers/BPEL2SRML.pdf

Model Extraction
BPEL and SRML: Advantages

The main aim is not to provide BPEL with a formal semantics
The aim is

to enable extraction of models,
to provide a library of models (SRML components),
to allow the models deriving from existing processes to be used to define other
SRML models. The components may be more than one and they can be

derived by BPEL processes,
defined from scratch,
derived from any language for which an encoding into SRML exists.

To allow the ensemble to be analysed within one formal framework.

The encoding has been done as follows...

EMF tree for WSDL/BPEL derived from XSD and Eclipse BPEL project

EMF tree for SRML being refined (while implementing the SRML editor)

Design of transformation rules (structure and behaviour)

The encoding BPEL2SRML

BPEL
SRML

A BPEL process is encoded into a SRML module with one component

The encoding of a simple activity (receive)

The encoding BPEL2SRML

<receive partnerLink="pl"
 portType="pt"
 operation="op"
 variable="v"

 createInstance=…/>

transition transition_A
triggeredBy pt.op!?
guardedBy ra ! ¬exit
effects ¬ra’ ! fa’
 ! v.p1’=pt.op!.v.p1 ! …

 ! v.pn’=pt.op!.v.pn

The encoding of a structured activity (sequence)
<sequence
 name=”X”>
 activity A
 activity B
</sequence>

transition transition_X
triggeredBy true
guardedBy (rx ! fa ! fb) " ¬exit
effects (rx # ra’"¬rx) " (fa # rb’"¬fa’) " (fb # fx’"¬fb’)

The transition is executed the first time when X is triggered

The effect is to enable the execution of A

The transition is executed the second time when A terminates

The effect is to trigger B
When the last activity terminates, the end of X is notified

For every transition A we define a variable ra (“a is ready”) and fa (“a has finished”),
which are initially false.

A view of ensemble
use case diagrams Define requirements

Define modules + EX-Is

Define behaviours

Deploy

Define internal structure

from scratch
reuse

refinement

Analyse

from scratch
use case -> SRML

from scratch
CBD

SCA

PEPA
Logics of Interactions

StPowla
BPEL

StPowla

[S Gorton, C Montangero, S Reiff-Marganiec and L Semini. StPowla: SOA, Policies
and Workflows. WESOA 2007]

is a service-targeted, policy-oriented, workflow approach

workflows

reconfiguration through policies

StPowla has been encoded into SRML in order to

provide StPowla with a formal framework

add a higher level of modelling in SRML

StPowla2SRML

Engineering Service Oriented Applications: From StPowla Processes to SRML Models
Bocchi, Gorton, Reiff-Marganiec, FASE 2008
http://www.cs.le.ac.uk/people/srm13/publications/fase08.pdf

A bit of history...

Workflow
The automation of a business process, in whole or part, during which documents,
information or tasks are passed from one participant to another for action, according to
a set of procedural rules.

from WFMC (Workflow Management Coalition) Glossary
(http://www.aiai.ed.ac.uk/project/wfmc/ARCHIVE/DOCS/glossary/glossary.html)

Business Process
A set of one or more linked procedures or activities which collectively realise a
business objective or policy goal, normally within the context of an organisational
structure defining functional roles and relationships.

A sample notation...

sequence split join condition join random preference

Activities

Link

Example

receive order process order

Business Modelling

concerned with the ordering of tasks in an execution model

kept at a high-level for end-users to create

Business Policies

There exists a need for flexibility: customization of a core model to handle
variability in domain

Business models are subjected to overarching constraints (e.g., business rules,
global or enterprise constraints) expressed as business policies

getDepositIfLargeOrder
appliesTo receiveOrder

when task_completion
if receiveOrder.orderValue > £250000 do
insert(requestDeposit, receiveOrder, true)

request
deposit

request
deposit receive order process orderreceive order process order

StPowla: Reconfiguration
Functions

 - fail() -
declares the current task to have failed (i.e., discard further task processing and generates
the task_failure event)

 - abort() -
aborts the current task and progresses to the next task, generating the task_abort event

 - block(s,p) -
waits until predicate p is true before commencing scope s

 - insert(x,y,z) -
inserts task or scope y into the current workflow instance after task x if z is true, or in
parallel with x is z is false

 - delete(x) -
deletes task/scope x from the current workflow instance

StPowla2SRML

BUSINESS ROLE BusinessProcess is
 INTERACTIONS

 r&s delete[i:natural]

  task:taskId

 r&s insert[i:natural]

  task:taskId

 newTask:taskId

 c:condition

 ...

 r&s fail[i:natural]

  task:taskId

 r&s abort[i:natural]

  task:taskId

 r&s block[i:natural]

  task:taskId

 c:condition

The internal structure of the SRML module is organised in two components: one
implementing the business process and one implementing the policy interface

The policy interface determines when a policy requires a reconfiguration and notifies the
business process component

BP has one interaction for each of the reconfiguration functions...

StPowla2SRML
The business role of BP has one or more transition that model
the reaction to each reconfiguration function

The the transitions for the delete task reconfiguration
function are presented below:

transition policyHandler_delete_1
 triggeredBy delete[i]?
 guardedBy state[delete[i].task]=toStart
 effects policy[delete[i].task]’

transition policyHandler_delete_2
 triggeredBy start[x]
 guardedBy P_delete[i]? ∧ P_delete[i].task=x

 effects ¬start[x]’ ∧ done[x]’ ∧ state[x]’=done
 sends delete[i]!

The encoding of the workflow constructs is similar to the one of
the encoding from BPEL

A view of ensemble
use case diagrams Define requirements

Define modules + EX-Is

Define behaviours

Deploy

Define internal structure

from scratch
reuse

refinement

Analyse

from scratch
use case -> SRML

from scratch
CBD

SCA

PEPA
Logics of Interactions

StPowla
BPEL

A view of ensemble

SRML

UML

StPowla
BPEL
WSDL

SCA

PEPA
COWS

BPEL
Java?

analysis

deployment

