An overview

Laura Bocchi
bocchi@mcs.le.ac.uk

Agenda

Formal Methods and Engineering Practice
(and some motivation)

An overview of SRML as related with other languages
SCA (Service Deployment)
PEPA (Quantitative analysis)
StPowla (Workflows and Business Policies)

BPEL (Web services orchestration)

Formal Methods

Different languages and levels of abstractions for different purposes

e.g., Petri-Nets is a graphical formal language to model/analyze concurrent
processes

e.g., Pi-calculus is a process calculus to model/analyze concurrent
communicating processes (it has primitives for modelling reconfiguration)

e.g., Z is a logic notation to specify systems ..

Why many? Because each targets a specific aspect and aim. Focusing on a
specific target and aim limits the complexity of models.

Why formal methods? Specification, transformation, analysis, understanding the
semantics of “real” languages or real problems or real scenarios

One Example: the semantics of
BPEL

BPEL is a standard for Web Service orchestration inspired by pi-calculus. It does
not come with a formal semantics (although some proposals have been done in
academia)

A number of engines support BPEL. Each BPEL engine may implement a slightly
different semantics

E.g., if you have two parallel threads in a transaction and one fails: do you have
to interrupt the other one? do you have to wait for its completion and then
compensate it? In which order should the compensations be executed?

Background knowledge about orchestration semantics enables BPEL programmers
to update and adapt to evolving technologies (e.g., update or change).

In general, the understanding of the key problems of a scenario is a know-how
which makes it easier to familiarise and cope with evolving technologies

What about SRML?

Service-oriented modelling is an emerging discipline and issue, supported and
encouraged by major companies (Microsoft, IBM, BEA, etc)

There are a number of formal languages that address, very specifically, the different
aspects of service-oriented engineering

There is no standard language for the modelling of service oriented systems (yet)

SRML is the only language (at the moment) that address architectural and
behavioural modelling in a whole formal framework

algebraic semantics of reconfiguration, logics of interaction, c-semirings

Will T use SRML in industry? Probably not, but you will possibly use (or even define!)
some language that models some of the features modelled by SRML.

Learning an reference language which is general enough, because defined for being
such, provides a basis to cope with an evolving set of technologies in the context of
distributed dynamically reconfiguring systems

A view of ensemble

use case diagrams

from scratch
use case -> SRML

from scratch
CBD

from scratch
reuse
refinement

Define requirements

v

Define modules + EX-Is

v

Define internal structure

v

Define behaviours

Y

Analyse

v

Deploy

The mortgage example

use case diagrams Define requirements

the Mortgage scenario

The mortgage example

use case diagrams Define requirements

from scratch

use case -> SRML Deﬁne modules + EX-Is

RM:
Registry
Manager

i UPDATEREGISTRY
?7/ intMC (!

intCA (|
Registry CA:
Manager MA Certification
Mortgage Finder Lender Autority
t MR
77N\ -
\ g
N GetMortgage Bank O
VL —a— RE:
Registry
Customer N
UpdateRegist
pdaietiegistry \/ stacm
Insurance !
GETMORTGAGE

Certification
Authority {>—- CC

Registry

A view of ensemble

use case diagrams Define requirements

v

from scratch

use case -> SRML Deﬁne modules + EX-Is
from scratch . C
CBD Define internal structure
Vsmar

GETMORTGAGE intLE (]
) LE:

—CL Lender more component could be defined

intBR (| .
’ n inBA (| —— for modular development, reuse,
cC : CB ' Y .
MortgageAgent Pak limiting the complexity etc.
BE

(i

intIN

IN:

— ClI Insurance
QO
RE:
Registry

g

A view of ensemble

use case diagrams

from scratch
use case -> SRML

from scratch
CBD

from scratch
reuse
refinement

Define requirements

v

Define modules + EX-Is

v

Define internal structure

v

Define behaviours

The specifications (interactions)

Q,SLA_GM 5
T T

intLE (|
LE:
CL Lender

GETMORTGAGE

BUSINESS ROLE MortgageAgent is e

- N = e iy = - CR:
INTERACTIONS ' Ecmamer§°°

r&s getProposal ! getProposal! _
askProposal - —————1

I
1
-~ 9 I
£y idData:usrdata, ; | LE S
' askProposall<
|
[}
|
I
I
]
I
I
I

intBA (|
i BA: >
cB Bank

intIN (]
IN:

income:moneyvalue,
preferences:prefdata,
> proposal:mortgageproposal
cost:moneyvalue alt /
s&r askProposal
£y idpata:usrdata,
income:moneyvalue,
>/ proposal:mortgageproposal
loanData:loandata,
accountIncluded:bool,
insuranceReqguired:bool
s&r getInsurance
£y idpata:usrdata,
loanData:loandata,
> insuranceData:insurancedata
s&r openiAccount
£y idpata:usrdata,
loanData:loandata,
> accountData:accountdata
s&r signOutLoan
£, insuranceData:insurancedata,
accountData:accountdata,
>4 contract:loancontract
snd confirmation

getProposall

getProposalX

askProposalvy’

par) meédAccounﬂ
| openAccount

openAccount<

[needInsurance)

getlnsuranceé- —

getinsurancel I

signOutLoan !

signOutLoan!><

£L contract:loancontract
ask getLenders(prefdata):setids
tll regContract(lcandata,loancontract

confirmation.

The specifications
(textual notation)

SPECIFICATIONS

LAYER PROTOCOL Registry is

INTERACTIONS
rpl getLenders(prefdata):setids
prf registerContract(loandata,loancontract)

BEHAVIOUR

The orchestration as a statechart

QSLA_C.M 3
T

intLE
LE:
g~ CL Lender

GETMORTGAGE
. .A intiN o
° cl —<Z Insurance 2
<
RE:
—

getProposal & /
@ end

GetClientRequest

/ askProposal

\ askProposall< / (
[WAITPROPOSAL | GetProposal

J/

[[kskProposal.Reply] / getProposali< -
[WAIT DECISION [askProposal.Reply] / getProposall>< _ -

—‘ now>getProposal.UseBy / { TimeoutProposal } / askProposal X FINAL
getProposalv” [now<askProposal.UseBy]/ getProposal X / [ProposalNotAccepted } / askProposal ¥ T / confirmation /.
[ProposalAccepted } [~ needAccount A = needInsurance]/ / signOutLoan £ [Conclude]
[needAccount v needinsurancel/ signOutLoanb< /

(PROPOSAL_ACCEPTED A
[askProposal.needInsurance] / getinsuranceld/ [

@ getinsurance £ PA1 m @ L SIGNING]

[- askProposal.needinsurance]

/ signOutLoan&

[askProposal.needAccount] /

® () openAccount&) PA2 openAccount@/ @

[~ askProposal.needAccount] A

The specifications
(the business role - interactions)

BUSINESS ROLE MortgageAgent is

INTERACTIONS
r&s getProposal
L. idpata:usrdata,
income:moneyvalue,
preferences:prefdata,
> proposal:mortgageproposal
cost:moneyvalue
s&r askProposal
L. idpata:usrdata,
income:moneyvalue,
><{ proposal:mortgageproposal
loanData:loandata,
accountIncluded:bool,
insuranceReguired:bool
s&r getInsurance
£, idpata:usrdata,
loanData:loandata,
>4 insuranceData:insurancedata
s&r openiAccount
£ idpata:usrdata,
loanData:loandata,
>< accountData:accountdata
s&r signOutLoan
£ insuranceData:insurancedata,
accountData:accountdata,
> contract:loancontract
snd confirmation
£ contract:loancontract
ask getLenders(prefdata):setids
tll regContract(locandata,loancontract)

|sLa variasLES
Crarce: [0..100)]

ORCEESTRATION

local 8:[INITIAL, WAIT PROPOSAL, WAIT DECISION,
PROPOSAL_ ACCEPTED, SICGNING, FINAL],
lenders:setids,
needAccount, needInsurance:bool,

insuranceData:insurancedata, accountData:accountdata

transition GetClientRequest

triggeredBy getProposals:

guardedBy s=INITIAL

effects s’=WAIT PROPOSAL
A lenders’= getLenders(prefdata)

sends askProposalfll
A askProposal.idData=getProposal.idData
A askProposal.income=getProposal.income

transition CGetProposal

triggeredBy askProposal’<

guardedBy s=WAIT PROPOSAL

effects needaccount’=askProposal.accountIncluded

A askProposal.Reply O s’'=WAIT DECISION
A =askProposal.Reply D s’=FINAL
sends getProposall<
A getProposal.Reply=askProposal.Reply
A getProposal.proposal=askProposal.proposal
A getProposal.cost=(Caarce/100+1)*750

transition TimeoutProposal
triggeredBy now>getProposal.UseBy
guardedBy s=WAIT DECISION

effects s’=FINAL

sends askProposalx

A needInsurance’=askProposal.insuranceRequired

GETMORTGAGE

CR:

Cl

O
4 RE:
Registry

&SM_CM41L
FrerT T
intLE
LE:
g CL Lender
3 inBA (| o
MA; é : >
cB Bank
A‘ intIN
IN:
Insurance

The specifications
(the business role - interactions)

BUSINESS ROLE MortgageAgent is

INTERACTIONS

r&s getProposal
£ idpata:usrdata,
income:moneyvalue,
preferences:prefdata,
>{ proposal:mortgageproposal
cost:moneyvalue
s&r askProposal
£, idpata:usrdata,
income:moneyvalue,
><{ proposal:mortgageproposal
loanData:loandata,
accountIncluded:bool,
insuranceReguired:bool
s&r getInsurance
£ idpata:usrdata,
loanData:loandata,
>4 insuranceData:insurancedata
s&r openiccount
£y idpata:usrdata,
loanData:loandata,
> accountData:accountdata
s&r signOutLoan
£ insuranceData:insurancedata,
accountData:accountdata,
>4 contract:loancontract
snd confirmation
£i contract:loancontract
ask getLenders(prefdata):setids
tll regContract(lcandata,loancontract)

SLA VARIABLES

Crarce: [0..100)

ORCEESTRATION

local

8:[INITIAL, WAIT PROPOSAL, WAIT DECISION,

PROPOSAL_ ACCEPTED, SICGNING, FINAL],
lenders:setids,
needAccount, needInsurance:bool,
insurancebData:insurancedata,

ltransition ProposalNotAccepted

triggeredBy getProposalx

guardedBy s=WAIT DECISION
A now<askProposal.UseBy

effects s’=FINAL

sends askProposalx

transition Proposaliccepted

A

triggeredBy getProposaly
guardedBy s=WAIT DECISION
A now<deadline
effects needaccount v needInsurance -

-needAccount A =-needInsurance - s'=SIGNING

sends askProposalv
A needAccount D openAccountil

A openAccount.idData=getProposal.idData
A openAccount.loanData=getProposal.loanData

A needInsurance _ getInsurances.

A getInsurance.idData=getProposal.idData
A getInsurance.loanData=getProposal.loanData

A =-needAccount a -needInsurance _ signOutLoanil
A signOutLoan.insuranceData=insuranceData

A signOutlLoan.accountData=accountData

GETMORTGAGE

CR:
E Customer # ce

accountData:accountdata

O-sow—=
e

intLE

LE:
_—CL —¢ Lender

intBg (|

MA:
MortgageAgent

intBA (|
i BA: >
cs Bank
intIN
IN:
Cl —%: Insurance >

s "=PROPOSAL ACCEFTED

: Registry /

The specifications
(the business role - interactions)

Qjmw s
T

BUSINESS ROLE MortgageAgent is

INTERACTIONS
r&s getProposal
L. idpata:usrdata,
income:moneyvalue,
preferences:prefdata,
> proposal:mortgageproposal
cost:moneyvalue
s&r askProposal
L. idpata:usrdata,
income:moneyvalue,
><{ proposal:mortgageproposal
loanData:loandata,
accountIncluded:bool,
insuranceReguired:bool
s&r getInsurance
£, idpata:usrdata,
loanData:loandata,

>< insuranceData:insurancedata

s&r openaAccount
£y idpata:usrdata,
loanData:loandata,
>< accountData:accountdata
s&r signOutLoan

£ insuranceData:insurancedata,

accountData:accountdata,
> contract:loancontract
snd confirmation
£ contract:loancontract
ask getLenders(prefdata):setids

tll regContract(locandata,loancontract)

GETMORTGAGE

SLA VARIABLES

Crarce: [0..100)

ORCEESTRATION

local 8:[INITIAL, WAIT PROPOSAL, WAIT DECISION,

PROPOSAL_ ACCEPTED, SICGNING, FINAL],

transition GetAccount
triggeredBy openAccount<
guardedBy s=PROPOSAL ACCEFTED
effects neediaccount’=false
A =needInsurance - s'=SIGNINING
A accountData=openAccount.accountData
sends -needInsurance _ signOutLoans!
A signOutlLoan.insuranceData=insuranceData
A signOutLoan.accountData=accountData

transition CetInsurance
triggeredBy getInsurance’<
guardedBy s=PROPOSAL ACCEFTED
effects needInsurance’=false
A =needAccount D s8’=SIGNING
A insuranceData=getInsurance.insuranceData
sends -needAccount D signOutLoanil
A signOutLoan.insuranceData=insuranceData
A signOutLoan.accountData=accountData

transition Conclude
triggeredBy signOutlLoan’<
guardedBy s=SIGNING
effects s’=FINAL
sends confirmations:
A confirmation.contract=signOutLoan.contract
A regContract(askProposal.loanData,signOutLoan.contract)

RE:
Registry

Cl

intLE (]
LE:
CL ﬁ> Lender
Y
intBA (|
) BA:
Bank
intN (-]
IN:
Insurance

The specifications
the business protocols)

&2 SLAGM __|=

T i

GETMORTGAGE

intLE ('
LE:
BUSINESS PROTOCOL Bank is ‘ CL@

INTERACTIONS
r&s newMortgageAccount
£ idData:usrdata,

Insurance

loanData:loandata, ;.
> accountData:accountdata
BEHAVIOUR

initiallyEnabled newMortgageAccount&i?
newMortgageAccount.Reply after newMortgageAccounti<!

BUSINESS PROTOCOL Insurance is
INTERACTIONS
| r&s newMortgageInsurance
£ idData:usrdata,
loanData:loandata,
> insuranceData:insurancedata

BEHAVIOUR
initiallyEnabled newMortgagelnsurancefi?
newMortgageInsurance.Reply after newMortgageInsurancel<!

The specifications
(the business protocols)

GETMORTGAGE

intBR (|

CR:
> Customer cc

Q SLA GM

0T ==

BUSINESS PROTOCOL Customer is

INTERACTIONS
r&s getProposal
idData:usrdata,
income:moneyvalue,
preferences:prefdata,
< proposal:mortgageproposal
cost:moneyvalue
snd confirmation
contract:loancontract
SLA VARIABLES
Cuarce: [0..100]

BEHAVIOUR
initiallyEnabled getProposalé&i?
getProposal.cost<750* (CHARGE/100+1) after
getProposalvY'? ensures confirmationfl!

P

~
L=

intIN (£
) IN:
Cl Insurance

BUSINESS PROTOCOL Lender is

O
RE:
Registry

INTERACTIONS
r&s requestMortgage
idData:usrdata,
income:moneyvalue,
>4l proposal:mortgageproposal
loanData: loandata,
accountIncluded:bool,
insuranceRequired:bool
r&s requestSignOut
insuranceData:insurancedata,
accountData:accountdata,
>4 contract:loancontract

~
=)

~
&3

BEHAVIOUR
initiallyEnabled requestMortgage&?
requestMortgagev'? enables requestSignOut&?

getProposall{!
requestSignOutX.Reply after requestSignOutlx<?

END SPECIFICATIONS

A view of ensemble

use case diagrams Define requirements
from scratch @
use case -> SRML Deﬁne modules + EX-Is
from scratch . @
CBD Define internal structure

(textual notation)

from scratch @

reuse Define behaviours
refinement

e textual definition (nodes)

MODULE GETMORTGAGE iS VA

GETMORTGAGE intLE T
CL —<Z LeLn%er >
DATATYPES —— 1B (| .y
sorts: usrdata, prefdata, >Cu§§;,,e,<} cc %Mongage;\gem cs —{E Bk 0
moneyvalue, mortgageproposal, | <O -y
loandata, loancontract, BE C'Q e >
insurancedata, accountdata, | & ,
setids, bool, nat
PROVIDES
CR: Customer
CR MA
Customer MortgageAgent
r&s getProposal r&s getProposal
& idData & idData
income income
preferences preferences
< proposal < proposal
cost cost
snd confirmation snd confirmation
& contract & contract
SLA VARIABLES SLA VARIABLES
CHARGE CHARGE

The textual definition

nodes and internal policies

REQUIRES
LE: Lender
intLE(trigger: getproposalfl?
BA: Bank
intBA('trigger: default

IN: Insurance
intIN(trigger: default

COMPONENTS

MortgageAgent
intMA('init: s=INITIAL
intMA| term: s=FINAL

2

USES
RE: Registry

GETMORTGAGE

| BE

RE:
{ Registry

Q SLAGM _ |#
L [1 .

intLE (f

CL

intBA

=

intIN

Cl

IN:
Insurance

The textual definition
(external policies)

EXTERNAL POLICY

SLA VARIABLES
MA.CEARGE, MA.getProposalé™,
| LE.Serviceld, LE.Cost, LE.requestMortgageé™
CONSTRAINTS

13 {MA.CeaRGE,MA.getProposalé™}

Cl relates the
charge with the deadline of
getProposal

e.g., if I give 2 hom

the charge is more than 20 then I am
happy

1 if t<10=*c

e.g., if I give 2

hours and the charge is
between 10 and 20 then the
satisfaction depends on ¢
and t

C2 enforces that the
chosen lender is in the set of
trusted lenders stored in the
registry

def(c,t)= §1+2xc-02=¢t if 10*c<ts5+10=%c
0 otherwise
C,: {LE.ServicelId}

l if s € MA.lenders
def(s)=

C3 ensures that the
deadline for proposal can be met
wrt the delays

0 otherwise

{MA.getProposalé™,LE.requestMortgageé*},

w

1l if t2> tl+ CC.Delay + CL.Delay oo s
def(tl ’ t2)= GETMORTGAGE — ‘_'; 1
Cé4 ensures that the cost ¢ otherwise o N
is inverse tional to the y J
S Invers b/Propor of [o th {LE.Cost,LE.requestMortgageé} ey T
satisfaction and directly ECUSw;ne cB Bank
proportional to the deadline of 1 t

—+—— 1f c <500
def(c,t)= c 100

intIN
IN:
Cl —<Z Insurance >
O
RE:
0 otherwise Registry

requestMortgage

The textual definition

(wires partl)

WIRES
MA RE
C. BE d, .
MortgageAgent Registry
ask getLenders S, Straight. R, rpl getLenders
A(prefdata)R(setids)
tll regContract S, Straight. R, prf registerContract
T(loandata,loancontract)
MA BA
C, CB d,

MortgageAgent Bank
s&r openAccount S, Straight. R, r&s newMortgageAccount

& idData i, I(usrdata, i, & idData

loanData i, loandata) i, loanData
< accountData o, O(accountdata) o, < accountData
MA IN
c, CI d,

MortgageAgent Insurance
s&r getInsurance S, Straight. R, r&s newMortgagelInsurance

& idData i, I(usrdata, i, & idData

loanData i, loandata) i, loanData
< insuranceData | o, O(insurancedata) 0, < insuranceData

The textual definition
(wires part2)

[#8e]
MA
C, CcC
MortgageAgent
S r&s getProposal
il Straight. ' ~ deatap
ot I(usrdata, o
i income
l‘ moneyvalue,prefdata) references
’ O (mortageproposal, }(p 1
o >4 proposa
01 moneyvalue) Eosi
2
R,) nd nfi
i Straight mation
' O(loancon tract) -

END MODULE

This was the end of the module
The module refers fo a number of specifications
(as seen before)

A view of ensemble

use case diagrams

from scratch
use case -> SRML

from scratch
CBD

from scratch
reuse
refinement

Logics of Interactions

Define requirements

v

Define modules + EX-Is

v

Define internal structure

v

Define behaviours

Y

Analyse

v

Deploy

SRMLZPEPA

A Formal Approach to Model Time Properties in Service-Oriented Systems
Bocchi, Fiadeiro, Gilmore, Abreu, Solanki, Vankayala
http:/ /www.cs.le.ac.uk /people/jfiadeiro/ Papers/SRML-T.pdf

PEPA

GG

Service-Oriented Modeling

Model-driven
Development

Core Calculi for Service Computing

ﬂ Deployment

Eﬂ] /Q\ /E\
== 22—
Legacy System Global Computer Global Computer

PEPA is a process algebra for stochastic quantitative analysis whose building entities are
(1) components and (2) activities (a,r) where a is an action and r is a rate

SRML

Re-Engineering
Legacy Systems

Qualitative and Quantitative Analysis .

There are tools for PEPA (Eclipse Plugin) that allow to make quantitative analysis

We provided an encoding from SRML modules to PEPA terms fo perform quantitative
analysis on SRML modules

SRML -> PEPA

The aim is fo enable quantitative analysis of SRML modules
SRML describes behaviours terms of interaction events

We want to determine the delay between couple of interaction events

“is the reply to the event getProposal, in the 80% of the
cases, received in 7s?”

We want to determine how the single rates influence the overall delay
between couples of interaction events

“which rates worth to be improved?”

The aim of the engod!ng

1
| getProposal&

1
> getProposal® :

CR:
Customer

1
1
' askProposall< ‘

1
1 1
1 1
1 1
1 1
1 1
1
1
1
1
1
1
1
1
1
1
1
:
i getProposal>4
1
getProposall>4
Qo i
1 1
1 1 1
1 1 1
1 1 1
1 1 1

We want fo determine the delay between couples of events in the provides-interface

For example, we want to analyze the delay between getProposals and
getProposall< in CR ((1) in the sequence diagram)

In order to analyze time-related properties in a SRML module:
we determine which delays occur in a SRML module

we encode SRML into PEPA

Delays in SRML

CR

% CcoO
1

i getProposalf)

!
getProposall<
RE:
Registry
I
i
1 1

> getProposal &

1
: getProposall<

CO ftransfers getProposal& to from CR to OR

Wires can take some amount of time fo transfer events between nodes
because of bandwidth/capacity
because of the execution of an interaction protocol

Each wire has its own TRANSFER RATE

For example, the delay of wire CO is CO.transferRate

Delays and dependencies

CR 'Y

co

| | OR] |

getProposal &

2

getProposal 2

askProposal &

askProposall><

|
getProposaIM\U
6

getProposall<
@
I

The event getProposal2 is stored in OR's buffer, waiting to be processed

Each component is associated to a PROCESSING RATE, which represents the delay of
processing a received event

All the events received by a specific component are affected by the same processing rate

For example the delay of OR for processing events is processingRate(OR)

Delays and dependencies

CR 'Y

co

| getProposal &

2

getProposal 2

getProposall<

getProposall<
@
I

askProposal &

askProposall><

6

|

transition P1

triggeredBy getProposal&
guardedBy s=INITIAL
effects s’=WAIT_PROPOSAL
sends askProposalé&

Gertkoan ~— drrrrrrren

intBA (1
CR: OR:
é Customer ; co Orchestration BO ;
intIN~ (] N
10 7{ Insura-nce
RE:
Registry

When the event is processed it can be either executed or discarded

The execution of an event corresponds to the execution of a transition.

Each transition is associated to an EXECUTION RATE which represents the time taken to compute the

reaction to an event, for example to execute transition P2

The execution rate is different for any transition of the same component (e.g., executionRate(OR)(P1))

Delays and dependencies

CR] | co] | OR] | Lo

i getProposal& i

getProposal & 3 ,

I
1
1
3 askProposal® |
] G askProposal £
! 4
1
1
1

1
| askProposad

]
| askProposall<

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I |

I

I

I

:

| getProposall<

]

getProposall<

I
:

I I

I I

I I

1 1

Again there is a delay due to a wire

Cr

(4) represents transferRate(LO)

CR

[¢]¢]
1

Delays and dependencies

i getProposal &

1
getProposal& :

1 1

1 1

1 1

1 1

1 1

1 1

askProposal® | 1

R |

4 askProposal &) !
i i
1 1
1 1

1

1 | askProposal<
1

! askProposall< .

1 1

1 1

1 1

1 1

1 1 1

1 1 1

| getProposalid | !

1 1 1

getProposall< 1 1

(1 ! ! ! RE:

| | | | Registry

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

2
[

GETLOAN

when a requires interface is discovered and bound at run time, we have a delay which we call
COMPOSITION RATE

For example, the composition rate of LE is compositionRate(LE)

Also, each requires-interface is associated to a RESPONSE RATE representing the time taken by an
external interface to reply to an event

e associate a responseRate to every r&s (delay between £i-event and D</-event)

(5) is compositionRate(LE) + responseRate(LE)(askProposal &,askProposall><)

PEPA Eclipse Plugin

After having extended a SRML module with delays, associating one or more rate to each

component, EX-I, and wire, we can encode the module into a PEPA term

® Eclipse File Edit Navigate Search Project Sample Run Window Help H 3 = 5= (=1 Mon 10:08 Q
»O O PEPA - FirstPEPAProject/MyPEPA2.pepa - Eclipse Platfo LaTeXify... iworkspace (@)
,) CTMC >
rEalale Bt Time Series Analysis Wizard 55 3] pera & Java
= Navigator &3\ N R Passage Time Analysis...) (5= outline [[Performance 23 _= O]

¥ = FirstPEPAProject
P = results
X .project
X ARCOPEPA.xmi
ARCOPEPA zargo
D MyPEPAL pepa
D0 MyPEPA2 pepa
Jak MyPEPA2 tex

W—— Convert to EMF...

'/ rate specifications

startRate~1;
coTransferRate~1;
orProcessingRate«4;
orplExecutionRate=2;
orp2ExecutionRate~1.5;
clTransferRate~1.5;
leResponseTime«2;
//1eCompositionRate~8.1;

(R=(crgetProposalB,startRate).(R1;
CR1=(crgetProposalE,T).C(R;

-FO = (crgetProposalB,T).C01b + (orgetProposalE,T).(0le;
C01b=(orgetProposal8,coTransferRate).CO;
C0le~(crgetProposalk,coTransferRate).(0;

OR«(orgetProposal8,T).0R1;
OR1=(p1,orProcessingRate).0R2;
OR2-(oraskProposalB,orplExecutionRate).0R3;

&= ™

< -

+

Utilisation Throughput Population .

» CR (2 local states)
» OR (6 local states)
> LE (2 local states)
» CO (3 local states)
» CL (3 local states)

|2 Problems |—' AST View | [] State Space View Zia Console|

)

10 states

|

S CRl OR3 LE CO CL1b 0.0975609756097560%9

6 CRl OR3 LEl1 CO CL 0.07317073170731707

7 CRl OR3 LE CO CLle 0.14634146341463414

8 CR1 OR4 LE CO CL 0.036585365853658534

9 CRl1 ORS LE CO CL 0,09756097560975609 4

10 CR1 OR LE COle CL 0.14634146341463414

34

Passage Time Analysis

= Using the Passage Time Analysis we analyse for which rates the following

holds: “In 80% of the cases, the delay between getProposals and getProposal>< has an
upper bound of 7s”

Cumulative distribution function graph

0 2 4 6 8 10
1 1
—
08 + -1 08
06 F -4 06
Probability
04 -1 04
0.2 F 4 0.2
0 4 | 1 1 0
0 2 4 6 8 10

— cdf

Tirne

. . customer 97 %0 X oronesaton
Passage Time Analysis 2oty

GETLOAN

Probability of completion

0.8

0.6

0.4

0.2

SLA_GL s
rrrrrrrrrn

Lender

Bank A

intIN_~ (1
10 IN:
;'E Insurance A

Varying orProcessingRate

1 1 1 1
orProcessingRate=1 ——+—

orProcessingRate=2

orProcessingRate=3 ---

orProcessingRate=4
orProcessingRate=5
orProcessingRate=6

orProcessingRate=7 -- -e-- -

36

Passage Time Analysis ey tMSoutu,

GETLOAN

Probability of completion

0.8

0.6

0.4

0.2

Varying transferRate(CM)

BO

THH_HHH

intLE
LO

intBA (|

SLA_GL

i

LE:
Lender

transferRate(CM) =0.
transferRate(CM)=
transferRate(CM)=0.
;
;

transferRate(C

transferRate(CM)=1.2

transferRate(C

transferRate(CM)=

25
0.5
75 ---
1.0

5
M)=1.5

/5 -- -e4

37

A view of ensemble

use case diagrams

from scratch
use case -> SRML

from scratch
CBD

from scratch
reuse
refinement

PEPA
Logics of Interactions

Define requirements

v

Define modules + EX-Is

v

Define internal structure

v

Define behaviours

Y

Analyse

v

Deploy

SCA

The Service Component Architecture (SCA) is a recent set of specifications, proposed by
an industrial consortium including major vendors like IBM, ORACLE, BEA, etc.

SCA describe a middleware-independent model for building over SOAs.

Similarly to SCA, SRML provides primitives for modelling, in a technology agnostic way,
business processes as assemblies of

(1) tightly coupled components that may be implemented using different technologies
(including wrapped-up legacy systems, BPEL, Java, efc.)

(2) loosely coupled, dynamically discovered services.

System

Subsystem X

Entry

Subsystem Y

Subsystem X

Point

Module

‘ZE Component

Module External
Component : Service

Wire

implementation

=

re

Module A

D882

ere

implementation

Module B

-8

SCA

Differently from SRML, SCA is not a modelling language but a framework for
modelling the structure of a service-oriented software artefact and for its

deployment.

SCA abstracts from the business logic provided by components in the sense
that it does not provide a means to model the behavioural aspects of services.

SRML is, instead, a modelling language that

provides the primitives to specify such behavioural aspects.

relies on a mathematical framework for reconfiguration, behavioural

interfaces and SLA System

Subsystem X

»

Subsystem Y

Module Module
—— Component > Comp it
Wire

D\ 4
g%
§d

Subsystem X

Wire

implementation

implementation

Module A

D880

[Beo

A view of ensemble

use case diagrams

from scratch
use case -> SRML

from scratch
CBD

from scratch
reuse
refinement

PEPA
Logics of Interactions

SCA

Define requirements

v

Define modules + EX-Is

v

Define internal structure

v

Define behaviours

Y

Analyse

v

Deploy

BPEL2SRML

From BPEL to SRML: a formal transformational approach
Bocchi, Hong, Lopes and Fiadeiro, WSFM 2008
http: / /www.cs.le.ac.uk/people/jfiadeiro /Papers /BPEL2SRML.pdf

WS-BPEL is an OASIS specification for defining business processes of Web services
We defined an encoding to extract SRML models out of existing BPEL processes
In fact we defined an encoding of (part of) BPEL into SRML

Aspects of session/fault/configuration management still have to be added

BPEL Tag/Construct

Invoke , Receive, Reply, Assign (BA)
Wait, Empty, Exit (BA)

Throw (BA)

Sequence, Switch (SA)

Flow, While (SA)

Control Links, Scopes, Correlation Sets

x % % % [
L NI NI NI

Model Extraction
BPEL and SRML: Advantages

The main aim is not fo provide BPEL with a formal semantics
The aim is
to enable extraction of models,

to provide a library of models (SRML components),

to allow the models deriving from existing processes to be used to define other
SRML models. The components may be more than one and they can be

derived by BPEL processes,

defined from scratch,
derived from any language for which an encoding into SRML exists.

To allow the ensemble to be analysed within one formal framework.

EASYBANSKPROCESS
INVOICESERVICE

buyer:
buyerBF‘

shoppingLink invoicingLink

The encoding BPEL2SRML

The encoding has been done as follows...

EMF tree for WSDL/BPEL derived from XSD and Eclipse BPEL project
EMF tree for SRML being refined (while implementing the SRML editor)

Design of transformation rules (structure and behaviour)

[:documIentRoot B—-fF-—------- <> “““““““
————— @> ---------- L

BusinessRole :Component

B p E L nal'\e-."centralBR" name='central’ |
SRML

EASYBANKPROCESS

EB:

A BPEL process is encoded into a SRML module with one component

The encoding BPEL2SRML

For every transition A we define a variable ra (“a is ready”) and fa (*a has finished”),
which are initially false.

The encoding of a simple activity (receive)

<receive partnerLink="pl" transition transition A
portType="pt" _, triggeredBy pt.op&?
operation="op" guardedBy ra A -—exit
variable="v" effects -ra’ A fa’
createInstance=../> A v.pl’=pt.op&.v.pl A ..
A V.pn’'=pt.op&f.v.pn

The encoding of a structured activity (sequence)
SsocygucliCe

name="X">
activity A
activity B

</sequence>
| The transition is executed the first time when X is triggered]

The transition is executed the second time when A terminates]

transition transiti

triggeredBy (rx v fa v fb) A -exit

guardedBy (rx v fa v fb) A -exit

effects (rx D ra’'A-rx) A (fa DO rb’'aA-fa’) A (fb DO fx’'A-£fb")

__— T~ R

The effect is to enable the execution of A] [The effect is to trigger B] [When the last activity terminates, the end of X is notified]

A view of ensemble

use case diagrams

from scratch
use case -> SRML

from scratch
CBD

from scratch BPEL

reuse
refinement

PEPA
Logics of Interactions

SCA

Define requirements

v

Define modules + EX-Is

v

Define internal structure

v

Define behaviours

Y

Analyse

v

Deploy

StPowla2SRML

StPowla

[S Gorton, C Montangero, S Reiff-Marganiec and L Semini. StPowla: SOA, Policies
and Workflows. WESOA 2007]

is a service-targeted, policy-oriented, workflow approach
workflows
reconfiguration through policies

StPowla has been encoded into SRML in order to
provide StPowla with a formal framework

add a higher level of modelling in SRML

Engineering Service Oriented Applications: From StPowla Processes to SRML Models

J Bocchi, Gorton, Reiff-Marganiec, FASE 2008
L | hitp: / / www.cs.]le.ac.uk/people/srm13/publications/fase08.pdf

A bit of history..

3 3 X% 3
td LA LA L

UIMS UIMS
APPL APPL 8 APPL 8 n

= =

wn w

1960°s 1970°s 1980°s 1990°s

ﬁ

e

Workflow

The automation of a business process, in whole or part, during which documents,
information or tasks are passed from one participant to another for action, according fo
a set of procedural rules.

Business Process

A set of one or more linked procedures or activities which collectively realise a
business objective or policy goal, normally within the context of an organisational
structure defining functional roles and relationships.

from WFMC (Workflow Management Coalition) Glossary
(http://www.aiai.ed.ac.uk/project/wfmc/ARCHIVE/DOCS/glossary/glossary.html)

A sample notation...

Activities
F0 Coen

|
Link

sequence split join condition join random preference

Example

Q—)[receive ordeerrocess order]—>©

Business Modelling

concerned with the ordering of tasks in an execution model

kept at a high-level for end-users to create

Business Policies

There exists a need for flexibility: customization of a core model to handle

variability in domain

Business models are subjected to overarching constraints (e.g., business rules,
global or enterprise constraints) expressed as business policies

getDepositIfLargeOrder

appliesTo receiveOrder requesf
when task_completion)
if receiveOrder.orderValue > £250000 do d€P05|1'

insert(requestDeposit, receiveOrder, true)

receive order

re
Joy Process order}zr@}g

StPowla: Reconfiguration
Functions

- fail() -
declares the current task to have failed (i.e., discard further task processing and generates
the task_failure event)

- abort() -
aborts the current task and progresses to the next task, generating the task_abort event

- block(s,p) -
waits until predicate p is frue before commencing scope s

- insert(x,y,z) -
inserts task or scope y into the current workflow instance after task x if z is true, or in
parallel with x is z is false

- delete(x) -
deletes task/scope x from the current workflow instance

StPowla2SRML

The internal structure of the SRML module is organised in two components: one
implementing the business process and one implementing the policy interface

The policy interface determines when a policy requires a reconfiguration and notifies the
business process component

PROCUREMENTSERVICE

Pl:
PolicyInterface % P/BL
BP: /} OP:
8 ‘% BusinessProcess .

BP has one interaction for each of the reconfiguration functions...
BUSINESS ROLE BusinessProcess is

INTERACTIONS
r&s delete[i:natural] r&s fail[i:natural]
£ task:taskId £ task:taskId
r&s insert[i:natural] r&s abort[i:natural]
£ task:taskId £ task:taskId
newTask:taskId r&s block[i:natural]
c:condition £ task:taskId

c:condition

StPowla2SRML

The business role of BP has one or more transition that model
the reaction to each reconfiguration function

The the transitions for the delete fask reconfiguration
function are presented below:

PROCUREMENTSERVICE

Pl:
PB
A . O
transition policyHandler delete 1 m & A) -
triggeredBy delete [1] @? BusinessProcess orderProcessor.

guardedBy state[delete[i]&.task]=toStart
effects policy[delete[i]& .task]’

transition policyHandler delete 2
triggeredBy start[x]

guardedBy P delete[i]&? A P delete[i]&.task=x
effects —-start[x]’ A done[x]’' A state[x]'=done
sends delete[1]!

The encoding of the workflow constructs is similar fo the one of
the encoding from BPEL

A view of ensemble

use case diagrams

from scratch
use case -> SRML

from scratch
CBD
StPowla

from scratch BPEL
reuse
refinement

PEPA
Logics of Interactions

SCA

Define requirements

v

Define modules + EX-Is

v

Define internal structure

v

Define behaviours

Y

Analyse

v

Deploy

A view of ensemble

analysis DEDA
ML > > cows
StPowla :> SRML SCA

BPEL :> @ Java

WSDL deployment BPEL

