
SRML and Policies

Laura Bocchi
bocchi@mcs.le.ac.uk

Agenda

Internal configuration policies

External condiguration policies

Non-functional properties and SLA

A SRML module describes one instance of the session of a service or an activity

A configuration describes the active entities in the dimension overlaid by the service layer

Configuration Policies

The nodes of a

configuration represent

entities that execute some

computation

The nodes of a

configuration correspond to

the nodes of a SRML

module

The nodes of a

configuration may derive

form different initial

moules
The

computation of a node in a

configuration is modelled by the

specification of the node in the

SRML module

During the execution of a module instance,

some user may launch a new activity from the top layer

some event happening in an existing node may trigger the a service discovery

In these cases we have a dynamic reconfiguration

A SRML module specifies configuration policies to model a number of aspects
of the dynamic reconfiguration:

when the reconfiguration should happen (for both Activities and Services)

how a new instance should be initialized (for both Activities and Services)

which functional properties the Activity/Service requires to the discovered services

which functional properties the Activity/Service requires to the discovered services

which non-functional properties the Activity/Service requires to the discovered services

which non-functional properties the Activity/Service requires to the discovered services

Configuration Policies

Internal
configuration

policies

Business
protocols

Internal
configuration

policies

SRML do not describe the discovery process itself that we assume provided
by the middleware

Dynamic Reconfiguration

The trigger (e.g., intMO) becomes true

Discovery (in a repository, through a broker, etc.)

Matchmaking (of Business Protocols giving syntactic and behavioural description)

Ranking (External policies expressing SLA constraints)

Selection

Binding (Reconfiguration)

Dynamic Reconfiguration

... and binding

Internal configuration policies: concern aspects related with the
instantiation of the module or those reconfiguration issues that do not
involve negotiation with external parties

the initialization of service components (when declared in the module)

the triggering of the discovery of required services

Internal Configuration
Policies

FA: FlightAgent

intFA trigger: BA.bookFlight  ? (or default)

PA: PayAgent

intPA trigger: BA.bookFlight ✔ ?

HA: HotelAgent

intHA trigger: BA.bookFlight ✉ ? ∧ BA.bookFlight.Reply

BA: BookingAgent

 intBA init: S=START ∧ logged=false

 intBA term: S=END_UNBOOKED ∨

 (S=END_PAID ∧ today>=bookTrip.out) ∨

 S=END_COMPENSATED

see notes page 50...

The complete example:

see notes page 50...

The complete example:

see notes page 50...

The complete example:

...

...

see notes page 50...

Just two notes about
wires...

...

...

see notes page 50...

Just two notes about
wires...

...
...

Agenda

Internal configuration policies

External condiguration policies

Non-functional properties and SLA

SLA in SRML
SRML supports service selection based on QoS

Model for non-functional requirements of a dynamically changing
configuration

QoS in SRML relies on

c-semirings to model satifiability

CSP to model the dynamic reconfiguration of constraints
concerning QoS

S.Bistarelli, U. Montanari, F. Rossi (1997)
Semiring-based constraint satisfaction and optimization.
Journal of the ACM (JACM) 44(2): 201-236

External policies in SRML
EXTERNAL POLICY
 <[0..1],max,min,0,1>

 SLA VARIABLES
 HA.DIST2CENTRE, HA.DIST2METRO

 FA.BOOKFEE, CR.BOOKFEE
 CR.PERC, FA.PERC

CONSTRAINTS

 C1:
{HA.DIST2CENTRE, HA.DIST2METRO}

def1(d,p)= if d<1000 or p<100 then 1 otherwise 200/p

 C2:
{CR.BOOKFEE}

 def2(n)= if n>5 then 1 otherwise 0

 C3:
{CR.BOOKFEE, FA.BOOKFEE}

def3(d,p)= if d>p the 1- 1/(d-p+1) otherwise 0

 C3:
{CR.PERC, FA.PERC}

 def3(a,b)= if a=b then 1 otherwise 0

A c-semiring is an algebraic structure <A,+,×,0,1> where:

A is a set of values such that {0,1}∈A

+ is a binary operation on A that is commutative, associative,
idempotent and with unit element 0

× is another binary operation on A that is commutative, associative
with unit element 1 and absorbing element 0

× distributes over +

A is the domain of the degree of satisfaction
- {0,1} for yes/no
- [0,1] for intermediate degrees

What is a c-semiring?

A c-semiring is an algebraic structure <A,+,×,0,1> where:

A is a set of values such that {0,1}∈A

+ is a binary operation on A that is commutative, associative,
idempotent and with unit element 0

× is another binary operation on A that is commutative, associative
with unit element 1 and absorbing element 0

× distributes over +
+ is a comparison primitive

a<b ⇔ a+b=b (b is better than a)

<{0,1},∨,∧,0,1>
<[0,1],max,min,0,1>

What is a c-semiring?

A c-semiring is an algebraic structure <A,+,×,0,1> where:

A is a set of values such that {0,1}∈A

+ is a binary operation on A that is commutative, associative,
idempotent and with unit element 0

× is another binary operation on A that is commutative, associative
with unit element 1 and absorbing element 0

× distributes over +

× is a composition primitive

<[0,1],∨,∧,0,1>
<{0,1},max,min,0,1>

What is a c-semiring?

SLA in SRML
A constraint system is a triple < S, D, V > where

S is a C-semiring

D is a finite set (domain of possible elements taken by the variables)

V is a totally ordered set (of variables)

A constraint is a pair < def, con > where

con ⊆ V is called the type of the constraint

def : D|con| → A is the value (mapping) of the constraint

<a1,a2,..,a|con|>

degree of satisfaction

SLA in SRML

<50,1> -> 1 (if I pay 50 and I wait 1 day I am happy)
<50,2> -> 0.5 (If I wait 2 days buy then I pay only 50 I am happy)

 <100,1> -> 0.5 (if I pay 100 and I wait 1 day I am half happy)
<0,7> -> 0 (if I have to wait more than 7 days I am unhappy, even if it is free)

def : D|con| → A is the value (mapping) of the constraint

<a1,a2,..,a|con|>

degree of satisfaction
For example, if we have V = { cost , waitingTime} then def could map:

Defining def through enumeration could be not practical as there may be
infinite values for the variables to consider

We use functions

External policies in SRML
EXTERNAL POLICY
 <[0..1],max,min,0,1>

 SLA VARIABLES
 HA.DIST2CENTRE, HA.DIST2METRO

 FA.BOOKFEE, CR.BOOKFEE
 CR.PERC, FA.PERC

CONSTRAINTS

 C1:
{HA.DIST2CENTRE, HA.DIST2METRO}

def1(d,p)= if d<1000 or p<100 then 1 otherwise 200/p

If the hotel is less than one Km from the centre or less than 100 m
from the metro station then the degree of satisfaction is 1 (maximal)

Otherwise the degree of satisfaction is inversely proportional to the
distance from the metro station

External policies in SRML
EXTERNAL POLICY
 <[0..1],max,min,0,1>

 SLA VARIABLES
 HA.DIST2CENTRE, HA.DIST2METRO

 FA.BOOKFEE, CR.BOOKFEE
 CR.PERC, FA.PERC

CONSTRAINTS

 C1:
{HA.DIST2CENTRE, HA.DIST2METRO}

def1(d,p)= if d<1000 or p<100 then 1 otherwise 200/p

 C2:
{CR.BOOKFEE}

 def2(n)= if n>5 then 1 otherwise 0

The booking fee that the customer will agree to pay to
TravelBooking must be greater than 5£

External policies in SRML
EXTERNAL POLICY
 <[0..1],max,min,0,1>

 SLA VARIABLES
 HA.DIST2CENTRE, HA.DIST2METRO

 FA.BOOKFEE, CR.BOOKFEE
 CR.PERC, FA.PERC

CONSTRAINTS

 ...

 C2:
{CR.BOOKFEE}

 def2(n)= if n>5 then 1 otherwise 0

 C3:
{CR.BOOKFEE, FA.BOOKFEE}

def3(d,p)= if d>p the 1- 1/(d-p+1) otherwise 0

The booking fee of asked by the flight agent must be lower than the booking fee asked by TravelBooking to
the customer.

Specifically, the degree of satisfaction of TravelBooking is directly proportional to the difference of the fee
gained (from Customer) and the fee paid (fo FlightAgent).

External policies in SRML
EXTERNAL POLICY
 <[0..1],max,min,0,1>

 SLA VARIABLES
 HA.DIST2CENTRE, HA.DIST2METRO

 FA.BOOKFEE, CR.BOOKFEE
 CR.PERC, FA.PERC

CONSTRAINTS

 ...
 C3:
{CR.BOOKFEE, FA.BOOKFEE}

def3(d,p)= if d>p the 1- 1/(d-p+1) otherwise 0

 C4:
{CR.PERC, FA.PERC}

 def3(a,b)= if a=b then 1 otherwise 0

The percentage of refund promised to the customer must be the
same as the one offered by the flight agent

Reconfiguration and SLA

P1=<C1,con1> P2=<C2,con2>

• Compatibility checked by combining

• the projection of P1 on the attributes of HA

• the projection of P2 on the attributes of CS

<C1⊗C2,con1∪con2>

see notes page 50...

The complete example:

How should we change (restrict) the behaviour of FlightAgent to allow the
compensation of lockFlight to be accepted only until 5 days before the trip?

And to ensure the refund only if the compensation occurs more than 5 days before
the trip?

see notes page 50...

The complete example:

5
5

Remember that we were negotiating the parameter FA.KD in the SLA ?

And to ensure the refund only if the compensation occurs more than 5 days before
the trip?

see notes page 50...

The complete example:

5
5

Can BookTrip provide the business protocol Customer, relying on FlightAgent?

Customer is allowed to compensate the flight, e.g., the day before the trip but the flight agent does
not allow this and will not provide any refund

In theory BookTrip could provide Customer BUT it should implement the orchestration accordingly (and
pay the refund by itself if the customer compensates, e.g., the day before the trip!)

see notes page 50...

The complete example:

5
5

Can BookTrip provide the business protocol Customer, relying on FlightAgent?

Yes, because we provide a more restrictive condition to customer than the one we can rely on

On the down side, we should not restrict Customer more than what if necessary otherwise the
customer may choose another service that provides better conditions

The properties (functional and non functional) provided and required should be well tuned.

External policies in
SRML

EXTERNAL POLICY
 <[0..1],max,min,0,1>

 SLA VARIABLES
 CR.KD, FA.KD,
 ...

CONSTRAINTS

 C3:
 {CR.KD,FA.KD}

 def3(a,b)= 1 if a=c and 0 otherwise

The values of KD provided to the customer has to be the same as
the one agreed with the flight agent

see notes page 50...

The complete example:

We can use the SLA variables in the business protocols.
The value of CR.KD is defined when the instance of BookTrip is created (and bound to the service/
activity of the customer)
The value of FA.KD is defined when a flight service is discovered, selected and instantiated

as soon as BookTrip is intantiated (if the trigger of FA is defined as “true”)
at the first attempt of interaction of BookTrip with the flight agent (if the trigger is “default”)
whenever the trigger of FA becomes true...

see notes page 50...

The complete example:

The business role of BookingAgent, that orchestrate the interactions between the customer
and the flight agent has to be “tuned” with the business protocols
Also business role can depend on SLA variables

External policies in
SRML

EXTERNAL POLICY
 <[0..1],max,min,0,1>

 SLA VARIABLES
 PA.ServiceID

CONSTRAINTS

 C2:
{PA.ServiceId}

 def2(n)= 1 if n=FA.lockFlight.payService and 0 otherwise

ServiceId is the service identifier of PA
(similar to an URI)

BookTrip does not perform an actual discovery
but binds to the pay agent specified by the
flight agent

The value of ServceId is communicated by FA
during the orchestration

Problems

Change the business role BookingAgent to let customer pay
CR.BOOKFEE to the payagent (ignore the problem of
“distributing” the amount between TravelBooking and
FlightAgent)

EXTERNAL POLICY
 <[0..1],max,min,0,1>

SLA VARIABLES

 HA.DIST2CENTRE, HA.DIST2METRO, FA.BOOKFEE, CR.BOOKFEE, CR.PERC, FA.PERC

CONSTRAINTS
 ...

 C2:
{CR.BOOKFEE} def2(n)= if n>5 then 1 otherwise 0
 C3:
{CR.BOOKFEE, FA.BOOKFEE} def3(d,p)= if d>p the 1- 1/(d-p+1) otherwise 0

Problems

Change the business protocol Customer to ensure that the
parameter amount of refund is equal to the amount of the trip
minus the booking fee (which is not refunded)

EXTERNAL POLICY
 <[0..1],max,min,0,1>

SLA VARIABLES

 HA.DIST2CENTRE, HA.DIST2METRO, FA.BOOKFEE, CR.BOOKFEE, CR.PERC, FA.PERC

CONSTRAINTS
 ...

 C2:
{CR.BOOKFEE} def2(n)= if n>5 then 1 otherwise 0
 C3:
{CR.BOOKFEE, FA.BOOKFEE} def3(d,p)= if d>p the 1- 1/(d-p+1) otherwise 0

Problems
EXTERNAL POLICY
 <[0..1],max,min,0,1>

SLA VARIABLES

 HA.DIST2CENTRE, HA.DIST2METRO, FA.BOOKFEE, CR.BOOKFEE, CR.PERC, FA.PERC

CONSTRAINTS
 ...

 C2:
{CR.BOOKFEE} def2(n)= if n>5 then 1 otherwise 0
 C3:
{CR.BOOKFEE, FA.BOOKFEE} def3(d,p)= if d>p the 1- 1/(d-p+1) otherwise 0

Which value is negotiated/
defined first: CR.BOOKFEE or
FA.BOOKFEE?

How to change to internal
reconfiguration policies to
negotiate them together?

Problems
EXTERNAL POLICY
 <[0..1],max,min,0,1>

SLA VARIABLES

 HA.PETS, FA.PETS, HA.PETS, FA.MILESPROGRAM, CR.MILESPROGRAM, HA.MILESPROGRAM

CONSTRAINTS

Problems

if the customer has pets it is mandatory that FA and HA accept pets
(FA.PETS=true and HA.PETS=true). If the customer does not have pets then the
satisfaction is maximal in either case.

the miles program of the customer must be the same as the miles program of
the flight agent

if the miles program of the hotel is not as the miles program of the satisfaction
is inversely proportional to the booking fee (HO.BOOKINGFEE)

EXTERNAL POLICY
 <[0..1],max,min,0,1>

SLA VARIABLES

HA.PETS, FA.PETS, HA.PETS, FA.MILESPROGRAM, CR.MILESPROGRAM, HA.MILESPROGRAM,
HA.BOOKINGFEE

CONSTRAINTS

Problems
EXTERNAL POLICY
 <[0..1],max,min,0,1>

SLA VARIABLES

 HA.PETS, FA.PETS, HA.PETS, FA.MILESPROGRAM, CR.MILESPROGRAM, HA.MILESPROGRAM,
HA.BOOKINGFEE

CONSTRAINTS

 C1:
{CR.PETS, FA.PETS, HA.PETS}

 def1(a,b,c)= if a=true then (if b=c=true then 1 otherwise 0)
 otherwise 1

C2:
{CR.MILESPROGRAM, FA.MILESPROGRAM}

 def2(a,b)= if a=b then 1
 otherwise 0

C3:
{CR.MILESPROGRAM, HA.MILESPROGRAM, HA.BOOKINGFEE}

 def2(a,b,c)= if a=b then 1
 otherwise 1/c+1

