
SRML
primitives

Laura Bocchi
bocchi@mcs.le.ac.uk

PROCUREMENT

 CR:

 Customer

SP:

Supplier

LS:

Stock

WR:

Warehouse

intWR

CT:

Costs

intCT

intSP

CS

SS
SC

SW

The service Procurement
Procurement service ...
provides a service to a
customer that wants to
purchase a product...

...first we check if the
product is in the local

stock...

...if the product is not in
stock searches for a
warehouse that can
provide the product...

...we use a service to
quote the specific

product..

Specification Languages

Business
Roles

Business
Protocols

Interaction
Protocols

Interactions

Orchestration

Interactions

Behaviour

Role A Role B

Coordination

Layer
Protocols

Interactions

Behaviour

= = = =

+ + + +

Declaring interactions (1/2)

BUSINESS ROLE Supplier is
 INTERACTIONS

 r&s requestQuote

 which:product

 cost:money

 r&s orderGoods

 many:nat

 much:money

 rcv makePayment

 snd shipOrder

 s&r checkShipAvail

 which:product, many:nat

 rcv confirmShip

 ask how(product):money

 ask checkStock(product,nat):bool

 tll incStock(product,nat)

 tll decStock(product,nat)

an asynchronous interaction
is defined by

interaction type

interaction name

parameters

parameters are defined by

associated event

parameter name

parameters type

{

Declaring interactions (2/2)

BUSINESS ROLE Supplier is
 INTERACTIONS

 r&s requestQuote

 which:product

 cost:money

 r&s orderGoods

 many:nat

 much:money

 rcv makePayment

 snd shipOrder

 s&r checkShipAvail

 which:product, many:nat

 rcv confirmShip

 ask how(product):money

 ask checkStock(product,nat):bool

 tll incStock(product,nat)

 tll decStock(product,nat)

a synchronous interaction is
defined by

interaction type

interaction name

input types

output types

Interaction Names

Each node (component interface, EX-P, EX-R, uses/serves-interface) has
a type which is its specification

Each specification declares a set of interactions

Each specification identifies each interaction through a name which is
unique for that specification

Each specification has been defined, maybe, independently (e.g., in
different times and places)

Interaction Names

In a module:

two nodes may be instances of specifications that use the same name for
pairs of interaction that are unrelated in the module

two communicating nodes may be instances of specifications that use
different names for pairs of interactions that are related

The “coupling” of interactions is done explicitly with the wires

PROCUREMENT

 CR:

 Customer

SP:

Supplier

LS:

Stock

WR:

Warehouse

intWR

CT:

Costs

intCT

intSP

CS

SS
SC

SW

requestQuote
requestQuote

getQuote

Synchronous
Interaction Types

The sender blocks while waiting for the reply

synchronisation on performing an operation

tll the party requests the co-party to perform an operation
and blocks

prf party performs an operation and frees the co-party that
requested it

sychronisation with data transfer

ask ask the party synchronizes to obtain data

rpl the party synchronizes to transmit data

e.g., incStock(product,nat)

e.g., checkStock(product,nat):bool

Asynchronous
Interaction Types

The sender does not block waiting for the message to be received

One-way: only involve one event

snd the interaction is initiated by the party

rcv the interaction is initiated by the co-party

Conversational: start a conversation involving multiple events

s&r the conversation is initiated by the party

r&s the conversation is initiated by the co-party

Event Types

One-way interactions are associated ONLY to initiation
events (i.e., -events)

Conversational interactions can be associated to a number
of interaction events:

PartyS declares an interaction e1 of type s&r

PartyR declares an interaction e2 of type r&s (connected via wires to e1)

PartyS starts the conversation issuing the first interaction event associated to
an interaction name

A number of events can be associated to an interaction name, corresponding to
the different phases of the conversation

Conversations

Computational model

PartyS declares an interaction e1 of type s&r and PartyR declares an
interaction e2 of type r&s (connected via wires to e1)

the initiation event for e is:
(1) issued by the partyS: e!
(2) stored in a buffer of partyR,
(3) processed by partyR and then
(4) either executed e? by partyR or discarded

the reply event for e is:
(1) issued by the partyR: e!
(2) stored in a buffer of partyS,
(3) processed by partyS and then
(4) either executed e? by partyS or discarded

the same for
cancel/commit/revoke

events

PROCUREMENT

 CR:

 Customer

SP:

Supplier

LS:

Stock

WR:

Warehouse

intWR

CT:

Costs

intCT

intSP

CS

SS
SC

SW

BUSINESS ROLE Supplier is
 INTERACTIONS

 r&s requestQuote

 which:product

 cost:money

 r&s orderGoods

 many:nat

 much:money

 rcv makePayment

 snd shipOrder

 s&r checkShipAvail

 which:product, many:nat

 rcv confirmShip

 ask how(product):money

 ask checkStock(product,nat):bool

 tll incStock(product,nat)

 tll decStock(product,nat)

orderGoods?

checkStock(requestQuote.which,orderGoods.many)
if the product is not in stock SP interacts with WR

checkShipAvail!

checkShipAvail.which=requestQuote.which

checkschipAvail.many=orderGoods.many

Events in SP: Examples
As exercise, we informally describe a fragment of the
orchesration of SP in terms of interaction events

Important details (1/3)

We assume the existence of some environment functions that return
(synchronously) information about the time:

“today” returns the current date (a value of type “date”)

“now” returns the current instant (a value ot type “time”)

Important details (2/3)
each reply-event has two default parameters (i.e., they are defined even if
they do not appear in the declaration of the interactions)

Reply: is a boolean

UseBy: is a value of type time

If the value of Reply is true, PartyR ensures a number of properties for an
interval of time denoted by . Also, the confirm-event and the cancel-event
are enabled.

If the value of Reply is false, no property is ensured and the confirm-event
and the cancel-event are not enabled.

We use the notation interactionName.Reply
to denote interactionName.Reply=true
and ¬interactionName.Reply to denote
interactionName.Reply=false

Important details (3/3)
If the value Reply is true, the parameter UseBy represents the deadline
(i.e., the instant from which the properties are not anymore ensured).

PartyR calculates the value UseBy by adding the interval to the value now
(referring to when the -event is sent)

PROCUREMENT

 CR:

 Customer

SP:

Supplier

LS:

Stock

WR:

Warehouse

intWR

CT:

Costs

intCT

intSP

CS

SS
SC

SW

BUSINESS ROLE Supplier is
 INTERACTIONS

 r&s requestQuote

 which:product

 cost:money

 r&s orderGoods

 many:nat

 much:money

 rcv makePayment

 snd shipOrder

 s&r checkShipAvail

 which:product, many:nat

 rcv confirmShip

 ask how(product):money

 ask checkStock(product,nat):bool

 tll incStock(product,nat)

 tll decStock(product,nat)

if checkShipAvail? and checkShipAvail.Reply=true

orderGoods!

the price is fixed for the interval orderGoods,

orderGoods.Reply is set to true,

orderGoods.UseBy is set to now+orderGoods,

the following events are enabled:

orderGoods✓?

orderGoods✗? ...

Events in SP: Examples

PROCUREMENT

 CR:

 Customer

SP:

Supplier

LS:

Stock

WR:

Warehouse

intWR

CT:

Costs

intCT

intSP

CS

SS
SC

SW

BUSINESS ROLE Supplier is
 INTERACTIONS

 r&s requestQuote

 which:product

 cost:money

 r&s orderGoods

 many:nat

 much:money

 rcv makePayment

 snd shipOrder

 s&r checkShipAvail

 which:product, many:nat

 rcv confirmShip

 ask how(product):money

 ask checkStock(product,nat):bool

 tll incStock(product,nat)

 tll decStock(product,nat)

if checkShipAvail? and checkShipAvail.Reply=false

orderGoods!

orderGoods.Reply is set to false

Events in SP: Examples

Iconography of SRML

