
Designing the structure of
a service-oriented

application
Laura Bocchi

bocchi@mcs.le.ac.uk

Agenda

UML use case diagrams

Use case diagrams for service-oriented
applications

SRML: an overview of the module
structure

Use Case Diagrams (recall)
System boundaries

Actors

Use cases

Associations between one
actor and one use case

There are also other
aspects such as the
associations between use
cases (extension,
inclusion, generalisation)
and generalisation
between actors. We do
not consider them here.

Procurement

Supply

Customer

Warehouse

PriceAnalyst

LocalStock

Use Cases and scenarios (1/2)

The set of functionalities (use cases) of a system can be derived by
creating a number of scenarios

A scenario involves one or more actors and can be described as an
interaction between the involved actors and the system

E.g., Scenario 1: (1) the customer asks for a quote, (2) the system gets
a quote using pricing analyst, (3) the system returns the quote

E.g., Scenario 2: (1) the customer asks for a quote, (2) the system
gets a quote using the price analyst, (3) the product is no longer on
the market, the system return a warning message to the customer

Use Cases and scenarios (2/2)

A use case represents a collection of scenarios that fulfill a common
goal from the perspective of the user

E.g., the use case “evaluation” collects Scenario 1 and Scenario 2

Procurement

Evaluate

Customer

PriceAnalyst

Primary & Secondary Actors
An actor can be a person, a device, a system, etc.

An actor can be a primary actor or a secondary actor

A primary actor

acts on the system

initiates an interaction with the system

uses the system to fulfill his/her goal

A secondary actor

is acted on/invoked/used by the system

helps the system to fulfills its goal

Primary & Secondary Actors
(example)

Procurement

Supply

Customer

Warehouse

PriceAnalyst

LocalStock

Discussion:

which actors are
primary and which
are secondary?

Agenda

UML use case diagrams

Use case diagrams for service-oriented
applications

SRML: an overview of the module
structure

Use-Case for SOA

We refine the notion of system boundary

We refine the notion of use case

We define different types of primary and secondary actors

SRML notes: section 2

Secondary actors in a SOA

service-actor

resource-actor

Secondary Actors: represent entities to rely on in order to
achieve the underlying business goal

Service-actors: represent a functionality to be provided on the fly
(typically change from instance to instance)

Resource-actors: are statically bound and persistent (they are the
same for all the instances)

Activities vs Services

activities:
- applications that use but do not provide services
- developed to meet requirements of a specific business organisation

services:
- applications that may use and do provide a service
- developed to be published and discovered at run-time

!

Discovery and selection

 Business
IT teams

Service
providers

Publication Application
development

Ontology
(including hierarchies
of business protocols)

!

Service repository

Configuration Management

Activity

repository

!

Activity

A_Lau

Activity

A_Ant
Reconfiguration

!

Trigger
s

 !
(from the service layer for discovery or from

the top layer for new activities)

(activity-oriented as a
result of service binding

or activity creation)

Current Business Configuration
(activities and their types)

!

Ontology

!
(includes hierarchies

of business

protocols)

Primary actors in a SOA

requester-actor

user-actor

Primary Actors: represent entities that initiate the use
case and whose goals are fulfilled through the successful
complention of the use case

User-actors: instantiate an activity

Requester-actors: are service requester that discovery/instantiate
a servicecase diagrams: overview of usage requirements for a
system to be built

Different Types of Actor
(example)

Procurement

Supply

Customer

Warehouse

PriceAnalyst

LocalStock

ProcurementService

Customer

Supply

Warehouse

Costs

LocalStock

Discussion:

determine the
user, requester,
service and
resource actors

System boundary and
use cases in SOA

In a service-oriented context there is no “system” but a
number of services and activities

The system boundary represents the scope as a logic unit
developed by the same company

The scope may encompass entities that are physically
distributed but are assembled together at design time

A service/activity describes a single usage requirement
thus results in one use case

Agenda

UML use case diagrams

A profile for use case diagrams for
service-oriented applications

SRML: an overview of the module
structure

Modelling in SRML

SRML is a high level modelling language for service-oriented
systems with a formal semantics

SRML provides primitives for modelling composite

services

activities

What do we compose?

ONROADREPAIR

OR:
Orchestrator

GP:
GPS

OP

intOR

DI:
DriverInterface

OI
IM:

InterfaceManager

ID

intIM

SLA

SM:
SensorMonitor

SO

OC
CR:

CarRental

intCR

GA:
Garage

intGA

OG

A SRML activity module

One serves-interface:
interface to the user

that triggers the activity

An Activity Module is launched by the top layer in a traditional way (no discovery)

A number of
component-interfaces

describing the
orchestration

A number of uses-interfaces (e.g., GP, DI) representing
persistent resources (no discovery)

A number of
requires-interfaces

describing the
properties expected
by external services
discovered at run-

time

A SRML service module

One provides-
interface: a description

of the properties
provided to the

requester

A Service Module is published, discovered and invoked by a service requester

Use-Case for SOA

ProcurementService

Customer

Supply

Warehouse

Costs

LocalStock

PROCUREMENT

 CR:

 Customer

SP:

Supplier

LS:

Stock

WR:

Warehouse

intWR

CT:

Costs

intCT

intSP

CS

SS
SC

SW

The internal structure, in terms of components, of the module derived from
the Use-Case diagram depends on the components we have already available

Textual representation of modules
The module can have

parameters

A module defines some internal
reconfiguration policies

Initialization: assignments and state
Termination condition

Triggering event for the discovery of each
requires-interface

Internal policies

The discovery of GA is
triggered by the first interaction

with GA

The discovery of CR is
triggered by the request

to book the garage

Discussion:

Why we do not define
initialisation and
termination condition for
uses-interfaces?

Why we do not define
triggering conditions for
provides-interfaces?

Specification Languages 1/2

Business Roles
(Garage,

Orchestrator)

Business
Protocols

(Customer, TowTruck)

Interaction
Protocols

(used by the wires CG,
GT, GB, GL)

Layer Protocols
(Bank, LocalAgenda)

lo
gi

cs
 o

f i
nt

er
ac

tio
ns

the properties
provided by the module are

entailed by the body of the module,
relying on the properties of the

required services

e.g., the component
GO is an instance of
the business role

GarageOrchestrator

e.g., the provides-
interface CR is an

instance of the business
protocol Customer

e.g., the uses-
interface BK is an

instance of the layer
protocol Bank

Summary
Use cases and scenarios

Primary and secondary actors

Services vs activities

System boundaries, use cases and actors in SOA

User, requester, resource and service actors

Activities and services in SRML

Graphical and textual notation, internal policies

From use cases to SRML module structure

