
SRML
wires and interaction protocols

Laura Bocchi
bocchi@mcs.le.ac.uk

Agenda

Wires

Interaction Protocols

BUSINESS PROTOCOL Warehouse is
 INTERACTIONS

 r&s tellShipAvail

 which:product, many:nat

 snd makePayment

 rcv shipOrder
 BEHAVIOUR

 ...

In general, we can reuse specifications. This
could cause mismatching of some names or
even duplication (if two nodes have the same
specification)

Wires
BUSINESS PROTOCOL Warehouse is
 INTERACTIONS

 r&s checkShipAvail

 which:product, many:nat

 snd makePayment

 rcv shipOrder
 BEHAVIOUR

 ...

BUSINESS ROLE Broker is
 INTERACTIONS

 r&s requestQuote

 which:product

 cost:money

 r&s orderGoods

 many:nat

 much:money

 s&r checkShipAvail

 which:product, many:nat

 rcv makePayment

 snd shipOrder

 rcv confirmShip

 ask how(product):money

 ...
 ORCHESTRATION

 ...

Often we assumed, for simplicity, that the
names for the interactions and the parameters
are pairwise corresponding

Wires and connectors
Wires specify the correspondence between interaction/parameter names of
different nodes

E.g., SW specifies the correspondence between SP and WA

A wire is defined as one or more connectors

PROCUREMENT

 CR:

 Customer

SP:

Supplier

LS:

Stock

WR:

Warehouse

intWR

CT:

Costs

intCT

intSP

CS

SS
SC

SW

wire

each line
represents a
connector

A connector is a triple: < μA , P , μB > where

P is an interaction protocol. We use roleAP and roleBP to designate its roles
and glueP to designate the coordination

μA and μB are attachments that connect the roles of P to the signatures of
the connected nodes

Wires and connectors

PRoleA RoleB
(Part of)

WR’s
signature

(Part of)
SP’s

signature

μA
μB

A simple interaction
protocol

INTERACTION PROTOCOL Straight is
 ROLE A
 s&r S1
 i1:product
 i2:money
 ROLE B
 r&s R1
 o1:product
 o2:money
 COORDINATION
 S1 ≡ R1
 S1.i1=R1.o1
 S1.i2=R1.o2

the events associated to S1 are the same as
the events associated to R1

a one-to-one correspondence is stated
between parameters

Another interaction
protocol

INTERACTION PROTOCOL RobinHood is
 ROLE A
 s&r S1
 i1:product
 o1:money
 ROLE B
 r&s R1
 i1:product
 o1:money
 COORDINATION
 S1 ≡ R1
 S1.i1=R1.i1
 S1.o1 >100 ⊃ S1.o1=R1.o1-50

the data can be also elaborated

if the amount is > 100£ then the
protocol RobinHood steals 50£

A simple interaction protocol
INTERACTION PROTOCOL Straight is
 ROLE A
 s&r S1
 i1:product
 o1:money
 ROLE B
 r&s R1
 i1:product
 o1:money
 COORDINATION
 S1 ≡ R1
 S1.i1=R1.i1
 S1.o1=R1.o1

Straight can be used only on a couple of conversational interactions (s&r and r&s)
that have exactly one -parameter and exactly one -parameter

For couples of conversational interaction with a different number of parameters we
must define another interaction protocol (e.g., two -parameter, one -parameter
and one ✔-parameters)

INTERACTION PROTOCOL Straight is
 ROLE A
 s&r S1
 i1:product
 i2:usrId
 o1:money
 ✔ c1:payData
 ROLE B
 r&s R1
 i1:product
 i2:usrId
 o1:money
 ✔ c1:payData
 COORDINATION
 S1 ≡ R1
 S1.i1=R1.i1
 S1.i2=R1.i2
 S1.o1=R1.o1
 S1.c1=R1.c1

A simple interaction protocol

The protocol above can be used only if the parameters are all of type product,
usrId, money and payData

If we want to use, say, destination, outdate, money and paydata we have to define
another protocol

Otherwise we can parametrize interaction protocols ...

INTERACTION PROTOCOL Straight is
 ROLE A
 s&r S1
 i1:destination
 i2:outdate
 o1:money
 ✔ c1:payData
 ROLE B
 r&s R1
 i1:destination
 i2:outdate
 o1:money
 ✔ c1:payData
 COORDINATION
 S1 ≡ R1
 S1.i1=R1.i1
 S1.i2=R1.i2
 S1.o1=R1.o1
 S1.c1=R1.c1

INTERACTION PROTOCOL Straight is
 ROLE A
 s&r S1
 i1:product
 i2:usrId
 o1:money
 ✔ c1:payData
 ROLE B
 r&s R1
 i1:product
 i2:usrId
 o1:money
 ✔ c1:payData
 COORDINATION
 S1 ≡ R1
 S1.i1=R1.i1
 S1.i2=R1.i2
 S1.o1=R1.o1
 S1.c1=R1.c1

A parametrized
interaction protocol

INTERACTION PROTOCOL Straight.I(d1)O(d2) is
 ROLE A
 s&r S1
 i1:d1
 i2:d2
 ROLE B
 r&s R1
 o1:d1
 o2:d2
 COORDINATION
 S1 ≡ R1
 S1.i1=R1.o1
 S1.i2=R1.o2

Straight.I(d1)O(d2) can be used only on a couple of conversational interactions (s&r
and r&s) that have exactly one -parameter and exactly one -parameter...

But it can be used also for interaction that carry other data types than product and
money

Straight . I[product]
O[money]

Example: parameters
mismatching

INTERACTION PROTOCOL Internal2SMS is !

 ROLE A !

 snd S1 !

 !! i1:phoneNum!

 i2:reference!
 i3:string!

 i4:geoData!

 ROLE B !

 rcv R1!

 ! i1:phoneNum!

 i2:string!

 LOCAL!

 !textify:reference,string,geoData!string!

 COORDINATION!

 !S1 " R1!

 !S1.i1 = R1.i1 !

 !R1.i2 = textify(S1.i2, S1.i3, S1.i4)!

Example: add authentication
PROCUREMENT

 CR:

 Customer

SP:

Supplier

LS:

Stock

WR:

Warehouse

intWR

CT:

Costs

intCT

intSP

CS

SS
SC

SW

What if we wish to add authenitcation in the
interactions between WR and SP?

Well, we could modify Supplier and Warehouse

But what if we decide to use services for
warehouses with authentication but we do not
want to change Supplier?

We can add authentication in the interaction
protocol

INTERACTION PROTOCOL Secure is
 ROLE A
 s&r S1
 i1:product
 o1:money
 ROLE B
 r&s R1
 i1:product
 i2:password
 o1:money
 COORDINATION
 S1 ≡ R1
 S1.i1=R1.i1
 S1.o1=R1.o1
 R1.i2=”secret”

Secure

Let’s go back to the example...
PROCUREMENT

 CR:

 Customer

SP:

Supplier

LS:

Stock

WR:

Warehouse

intWR

CT:

Costs

intCT

intSP

CS

SS
SC

SW

EX-Ps describe what the module provides

EX-Rs describe what the module requires

EX-Is are not a node that executes but just a description

In fact, what CR “provides” is what SP “provides”

In fact, WR describes what some other node in another module
“provides” and we have to interact to

The protocol of the EX-P
BUSINESS PROTOCOL Customer is
 INTERACTIONS

 r&s requestQuote

 which:product

 cost:money

 r&s orderGoods

 many:nat

 much:money

 rcv makePayment

 snd shipOrder
 BEHAVIOUR

 ...

BUSINESS ROLE Supplier is
 INTERACTIONS

 r&s requestQuote

 which:product

 cost:money

 r&s orderGoods

 many:nat

 much:money

 rcv makePayment

 snd shipOrder

 s&r checkShipAvail

 which:product, many:nat

 rcv confirmShip

 ask how(product):money

 ask checkStock(product,nat):bool

 tll incStock(product,nat)

 tll decStock(product,nat)
 BEHAVIOUR

 ...

EX-P have the same
“direction” of the node to
which they are connected

The protocol of the EX-R
BUSINESS ROLE Supplier is
 INTERACTIONS

 r&s requestQuote

 which:product

 cost:money

 r&s orderGoods

 many:nat

 much:money

 rcv makePayment

 snd shipOrder

 s&r checkShipAvail

 which:product, many:nat

 rcv confirmShip

 ask how(product):money

 ask checkStock(product,nat):bool

 tll incStock(product,nat)

 tll decStock(product,nat)
 ORCHESTRATION

 ...

EX-R have complementary
“direction” with respect to
the node to which they

are connected

BUSINESS PROTOCOL Warehouse is
 INTERACTIONS

 r&s checkShipAvail

 which:product, many:nat

 snd confirmShip

 BEHAVIOUR

 ...

The wires to EX-I

c1 c2

The specification of the wires that connect module components to the provides-
interface use a slightly different syntax.

 Notice that SP (component) and WA (EX-R) have complementary interaction types

