1

A tool for choreography-based analysis of
message-passing software

Julien Lange!, Emilio Tuosto?, Nobuko Yoshida!

!Imperial College London, UK
2University of Leicester, UK

Abstract

An appealing characteristic of choreographies is that they provide two com-
plementary views of communicating software: the global and the local views.
Communicating finite-state machines (CFSMs) have been proposed as an
expressive formalism to specify local views. Global views have been rep-
resented with global graphs, that is graphical choreographies (akin to BPMN
and UML) suitable to represent general multiparty session specifications.
Global graphs feature expressive constructs such as forking, merging, and
joining for representing application-level protocols.

An algorithm for the reconstruction of global graphs from CFSMs has
been introduced in [17]; the algorithm ensures that the reconstructed global
graph faithfully represents the original CFSMs provided that they satisfy a
suitable condition, called generalised multiparty compatibility (GMC). The
CFSMs enjoying GMC are guaranteed to interact without deadlocks and
other communication errors. After reviewing the basic concepts underlying
global graphs, communicating machines and safe communications, we high-
light the main features of ChorGram, a tool implementing the generalised
multiparty compatibility and reconstruction of global graphs of [17]. We
overview the architecture of ChorGram and present a comprehensive exam-
ple to illustrate how it is used directly to analyse message-passing software
and programs.

An Edited Volume, 1-21.
© 2017 River Publishers. All rights reserved.

2 Atool for choreography-based analysis of message-passing software

Keywords: Distributed coordination, choreography, communicating finite-
state machines, global graphs, multiparty compatibility, communication sound-
ness.

1.1 Introduction

Choreographic approaches are becoming popular in the “top-down” develop-
ment of distributed software. In fact, a choreography-based model features
two views of software: the global view and the local view. The former is a
“holistic” specification of the behaviour of the composition of all compo-
nents (and it abstracts away low level details such as asynchrony). The latter
view specifies the behaviour of each component in isolation and should be
obtained by projecting the global behaviour with respect to each component.
In this framework, well-formedness of the global view and compliance of the
realisation of software with respect to the corresponding projection should
guarantee the soundness of the communication of the application.

The recent rise of services, cloud, and micro-services is changing the way
software is produced. As a matter of fact, applications are being developed by
composing (possibly distributed) independent components which coordinate
their execution by exchanging messages. Modern applications offer and rely
on public APIs to interact with each other, are deployed on different archi-
tectures and devices, and try to accommodate the needs of a vast number
of users. The term “API economy” (see e.g., [ibm.com/apieconomy) has
been coined to refer to such applications. Existing and novel languages, as
well as middlewares and programming models, foster this shift in software
development. Languages such as Erlang, Elixir, Scala, and Go are paramount
examples of this shift and start to be used in a wider range of application do-
mains than the ones they were originally conceived for. For instance, Erlang
plays a main role in well-known applications such as WhatsApp [23] and
Facebook [11].

The trend described above is dictated by the compelling requirements
of openness, scalability, and heterogeneity and caters for new challenges.
Firstly, this shift pushes the applicability of top-down software development
approaches to their limits. The composition mechanisms required to guaran-
tee the interoperability of applications have to be of an order of magnitude
more sophisticated than just the type signature of their APIs, as in traditional
software engineering practice. More precisely, in order to attain a correct
composition, it is crucial to expose (part of) the communication pattern of
components. Hence, developers are responsible to guarantee the correct com-

ibm.com/apieconomy

1.2 Overview of the theory 3

position of their components. This is not an easy task. Subtle and hard to fix
bugs can be introduced by inappropriate communications.

Our recent work [17] has shown that communication soundness is guar-
anteed when a set of communicating components enjoys the generalised mul-
tiparty compatibility property. Moreover, we have defined an algorithm that
reconstructs a global view of a system from the composition of its local com-
ponents. These results enable the realisation of an effective tool-supported
approach to the design and analysis of communicating software. In fact, we
have developed ChorGram [16]], a tool supporting the theory of multiparty
compatibility and choreography construction, i.e., ChorGram implements
two fundamentals functionalities: it ensures that a system of CFSMs vali-
dates the GMC condition and if so, it returns a choreography which faithfully
captures the interactions of the original system.

In this paper, we introduce ChorGram and show how it supports soft-
ware architects in the design and analysis of software. We first review the
theoretical results underlying the tool; Section presents our theory only
informally and with the help of a simple example. Section presents the
architecture of the tool, how it integrates with the auxiliary tools it relies upon,
and its data flow. Section |1.4]{ shows an application to a non trivial example.
We start from a multiparty compatible application and show how a naive
evolution could break its multiparty compatibility. We then use ChorGram to
analyse and fix the problem. Section [I.5]gives our concluding remarks.

1.2 Overview of the theory

Here we introduce the key ingredients of our framework which constructs
choreographies, i.e., global graphs such as the one in Figure [I.2] from local
specifications, i.e., communicating finite-state machines, such as the ones in

Figure[I.1]

CFSMs In this framework, we use communicating finite-state machines |7
as behavioural specifications of distributed components (i.e., end-point speci-
fications) from which a choreography can be built. CFSMs are a conceptually
simple model and are well-established for analysing properties of distributed
systems. A system of CFSMs consists of a finite number of automata which
communicate with each other via unbounded FIFO channels. There are two
channels for each pair of CFSMs in the system, one in each direction. We
present the semantics of CFSMs informally through the example below.

4 A tool for choreography-based analysis of message-passing software

C-B ?bLose B-A!sig A-D 7 free

Figure 1.1: Four player game — CFSMs

Consider the system of four machines in Figure [I.T| whose initial states
are highlighted in blue. Each machine has three input buffers to receive mes-
sages from the other three participants and has access to three output buffers
to send messages to other participants. Each transition in a machine is ei-
ther a send action, e.g., A-B!bWin in machine A or a receive action, e.g.,
A -B?bWin in machine B. The system realises a protocol of a fictive game
where: Alice (A) sends either bWin to Bob (B) or cWin to Carol (C) to de-
cide who wins the game. In the former case, A fires the transition A - B!bWin
whereby the message bWin is put in the FIFO buffer AB from A to B, and
likewise in the latter case. If B wins (that is the message bWin is on top of
the queue AB and B consumes it by taking the transition A - B?bWin), then he

1.2 Overview of the theory 5

sends a notification (cLose) to C to notify her that she has lost. Symmetrically,
C notifies B of her victory (bLose). During the game, C notifies Dave (D) that
she is busy.

After B and C have been notified of the outcome of the game, B sends a
signal (sig) to A, while C sends a message (msg) to A. Once the result is sent,
A notifies D that C is now free and a new round starts.

Global graph The final product of our framework is the construction of a
choreography which is equivalent to the original system of CFSMs. Global
graphs [17]] were inspired by the generalised global types [9] and BPMN
choreography [19]. Given as input the CFSMs from Figure[I.1] our tool gen-
erates the global graph in Figure[I.2] The nodes of a global graph are labelled
according to their function: a node labelled with © indicates the starting
point of the interactions; a node labelled with © indicates the termination of
the interactions (not used in Figure [I.2); a node labelled with an interaction
A — B : msg indicates that participant A sends a message of type msg to B;
a node labelled ¢ indicates either a choice, merge, or recursion; or a node
labelled with mindicates either the start or the end of concurrent interactions.
The graphical notation for branch and merge is inspired by process-algebraic
notations; the reader familiar with BPMN should note that our ¢ -node corre-
sponds to the & and <> gateways in BPMN, while our m-node corresponds
to the & gateway in BPMN.

In the global graph of Figure [I.2] the flow of the four player game be-
comes much clearer. In particular, one can clearly see that either B or C win
the game and that, while the results of the game are being announced, C and
D are interacting.

Communication soundness properties A (runtime) configuration of a sys-
tem of CFSMs, is a tuple consisting of the states in which each machine is
and the content of each channel.

We say that a machine is in a sending (resp. receiving) state if all its
outgoing transitions are send (resp. receive) actions. A state without any
outgoing transition is said to be final. A state that is neither final, sending
nor receiving is a mixed state.

We say that a configuration is a deadlock if all the buffers are empty,
there is at least one machine in a receiving state, and all the other machines
are either in a receiving state or a final state. A system has the eventual re-
ception property [J3]] if whenever a message has been sent by a participant,

6 A tool for choreography-based analysis of message-passing software

C = D:busy

| A — B:bWin | ‘ A — C:cWin |

¥ 1
|B—>C:cbose| lC—)B:bLose|

A = Difiree

Figure 1.2: Four player game — Global graph

that message will be eventually received. We say that a system of CFSMs is
communication sound if none of its reachable configuration is a deadlock and
it validates the eventual reception property.

Ensuring communication soundness Our tool checks that the CFSMs val-
idate generalised multiparty compatibility (GMC) [17] which guarantees that
(i) the projections of the generated global graph are equivalent to the origi-
nal system and (ii) the system is communication sound (as defined above).
The GMC condition consists of two parts: representability and branching

1.3 Architecture 7

property. Both parts are checked against the machines and their synchronous
executions, i.e., the finite labelled transition system (dubbed 7'Sy) of the ma-
chines executing with the additional constraint that a message can be sent
only if its partner is ready to receive it and no other messages are pending
in other buffers. For instance, all the synchronous executions of our running
example are modelled in the finite labelled transition system in Figure

The representability condition essentially requires that for each partici-
pant, the projection of 7Sy onto that participant yields an automaton that is
bisimilar to the original machine. The branching property condition requires
that whenever a branching occurs in 7Sy then either (i) the branching com-
mutes, i.e., it corresponds to two independent (concurrent) interactions, or (if)
it corresponds to a choice and the following constraints must be met:

1. The choice is made by a single participant (the selector).

2. If a participant is not the selector but behaves differently in two branches
of the choice, then it must receive different messages in each branch
(before the point where its behaviours differ).

Item (I)) guarantees that every choice is located at exactly one participant (this
is crucial since we are assuming asynchronous communications). Item (2))
ensures that all the participants involved in the choice are made aware of
which branch was chosen by the selector.

Besides guaranteeing communication soundness, our GMC condition en-
sures that if a system of CFSMs validates it, then we can construct a global
graph which is equivalent to the original system, i.e., the global graph con-
tains exactly the same information than the system of CFSMs.

1.3 Architecture

The structure and the work-flow of our tool is illustrated in Figure[I.4] Before
commenting on the diagram, we explain its graphical conventions. Dashed
arrows represent files used to exchange data; the input files are provided by
the user, those of hkc are generated by the Haskell module Representability.
Solid arrows do not represent invocations but rather control/data flow. For
instance, the arrow from TS represents the fact that the check of the GMC
property is made by concurrent threads on the results produced by TS.

8 A tool for choreography-based analysis of message-passing software

a0sb0ecOedO

C—D:busy /A—C:cWin\A—B:bWin

alebOecledO

C—B:bLose
a

@ lsb2ec3sd0

alsblscOd0

a0sbDec2ed1
alsbecdedl

A—D:free

B—A:sig C—Amsg

adeb0ecOed |
Figure 1.3: Four player game — TSg

Data- and control-flow The Python script cfsm2gg provides a command
line interface to the application and connects it with the external tools hke [[6]
and petrify [8], respectively used to check language equivalence between
projections and their corresponding CFSMs and to extract a Petri net from
a transition system. The script takes a description of the system in (a file
that is in) either of the two formats described in the following paragraph and
triggers all the other activities.

The core functionalities are implemented in the Haskell modules (within
the dotted box) and are described below.

gmc is the main program; it is invoked by cfsm2gg, which passes over
the input file (after having set some parameters according to the flags
of the invocation). After invoking SystemParser, the internal Haskell
representation of the system of CFSMs is passed by gmc to TS, which
computes the synchronous transition system — TS (and the bounded one
if required with the -b flag of cfsm2gg). The synchronous transition

1.3 Architecture 9

Y
BuildGlobal I

| BranchingProperty I

x,.

Figure 1.4: Architecture of ChorGram

system is then checked for generalised multiparty compatibility [17,
Definitions 3.4(ii) and 3.5] (but for the language equivalence part [17,
Definition 3.4(i)] later checked by invoking hkc from cfsm2gg). This
check is performed in parallel and has the side effect of producing the
files to give in input to hkc.

cfsm2gg invokes hkc, once it has obtained the control back from gmc, to
check the language equivalence of the original CFSMs with respect
to the corresponding projections of the synchronous transition system.
Finally, petrify is invoked and its output is then transformed by Build-
Global as described in [[17]] to obtain a global graph (in dot format) of
the system. Besides, cfsm2gg generates also graphical representation
of the communicating machines and the transition systems (again in the
dot format).

Input formats The syntax of the input files of gmc can be specified either
in the fsa (after finite state automata) or cms format, the latter being a simple
process-algebraic syntax (described below). Which format is used depends
on the extension of the file name (.fsa or .cms respectively, and for file names
without extensions the default format is fsa).

A system consists of a list of automata, each described by specifying an
(optional) identifier, its initial state, and its transitions. (Identifiers of CFSMs
are strings starting with a letter.) We refer to the example in Figure [.5] to

10 A ool for choreography-based analysis of message-passing software

.outputs A Uthello /7N 1lword
.state graph .FA<E> i\ <E>

q0 1 ! hello gl

gl 1 ! world g2 . D2hello /N 12 world -
.marking q0 ! N {z>
.end

The first automaton has an identifier A while for the second no identifier is specified,

-outputs so the automaton is identified by 1, its position in the file (automata positions start
.state graph from 0). The lines following each .state graph line yield the transitions followed
q0 0 ? hello ql by the specification of the initial state with the line starting with .marking, and

finally with the end of the automaton specification (line starting with .end). Transi-
ql 0 ? world g2 tions are written as src m act msg tgt, where src and tgt are respectively the source
. marking qO and target state, m is the position of the partner CFSM, act is the action (! and ?
cend respectively for output and input actions), and msg is the message.

Figure 1.5: HelloWorld example — fsa representation

describe the fsa format. Consider the text on the left of Figure [I.3|specifying
the (system consisting of) two simple automata depicted on the right.

It is sometimes more convenient to have a more concrete syntax to rep-
resent machines. Therefore we define the alternative cms format. The idea is
that each CFSM of a system is described by a process in the syntax that we
now describe.

The cms format of a system is a term of the following grammar:

S u= systemidof Ay, oo AL A =My || || A =My,

where id is a string used to identify the system, Ay,---, A, are the names of
the machines forming the system, and for each 1 <i < m (withm > n > 2)
we have a unique defining equation assigning an expression that specifies the
behaviour of A;. We can now model the HelloWorld example of Figure
as follows:

system helloWorld of A,B: A=--- [[B="---

(where the ellipsis will be defined in a moment). The list of defining equations
specify the behaviour M; of each role A;, with 1 < i < n, of the system and
the behaviour of some auxiliary machines. For each 1 < i < m, the identity
A; cannot appear in the communication actions of the behaviour M; of the
defining equation A;=M;.

Basically, the behaviour of a machineﬂis specified as a regular expression
on an alphabet of actions. We impose some syntactic restrictions to keep out

' The fsa format provides a richer and more flexible syntax which we omit here because
not used in the examples. The full syntax is described at https://bitbucket.org/emlio_
tuosto/chorgram/wiki/Home,

https://bitbucket.org/emlio_tuosto/chorgram/wiki/Home
https://bitbucket.org/emlio_tuosto/chorgram/wiki/Home

1.4 Modelling of an ATM service 11

some meaningless terms and define:

M = B+M branching B = pre;end prefix
pre = Alm output pre; M prefix
‘ A?m input predo A iteration

A machine M is a sum of branches B. A branch is a prefix-guarded behaviour
(a machine or end) or it is the invocation to the behaviour of a machine A
specified in the set of defining equations of the system. Prefixes yield the
possible actions of a participant: in A!m (resp. A?m), the message m is sent
to (resp. received from) participant A. The equations for the participants of
the helloWorld system are:

A = Blhello; B!world; end and B = A?hello; A?world; end

Trailing occurrences of end can be omitted, e.g., writing A = B'hello;B!world.
Finally, + is right-associative and gives precedence to all the other operators
except ||, which has the lowest precedence.

1.4 Modelling of an ATM service

We use a simple scenario to showcase ChorGram. We want to design the
protocol of a service between an ATM (A), a bank (B), and a customer (C),
where, after a successful authentication, the customer C can withdraw cash
or check the balance of their account. Such services are enabled only after
the ATM has successfully checked the credentials of C. We also require that
bank B monitors the usage of the cards of its customers, so that unsuccess-
ful attempts to use it are reported to C (e.g., via an SMS to the customers’
mobile).

1.4.1 ATM service — version 1

For the moment, we will assume that the protocol repeats only after a suc-
cessful withdrawal. Let us start with the description of the bank B:

B = A ? accessFailed;
C ! failedAttempt
¥
A ? accessGranted ; (
A ? checkBalance;
A'! balance
4
A ? withdraw ; (
Al deny
+ B
Alallow do B

12 A ool for choreography-based analysis of message-passing software

)

+
A ? quit
)

The bank B is notified of the outcome of the authentication by the ATM A.
If the access fails, B sends a message to the customer C (lines 1-2); oth-
erwise, the bank waits to be told which service has been requested by the
customer and acts accordingly (lines 4-14). (The symbol “..” is for single-line
comments.)

The specification for the customer C is as follows:

C = Alauth;(
A ? authPass; (
A ! checkBalance;
A ? balance
¥
A'! withdraw do Cw ©
+
Al quit;
A ? card

)
+
A ? authFail ;
A?card;
B ? failedAttempt
)
Il
Cw = A ? card
+
A ? money do C

Firstly, C provides the ATM A with their credentials by sending the auth
message (line 1). If the authentication fails, the ATM replies with the authFail
message; in this case the customer also expects their card back and the mes-
sage failedAttempt from the bank (line 14). On successful authentication, C
can select one of the services offered by the ATM or quit the protocol (lines
3-9). In the latter case, C receives their card and terminates (line 9). To check
their balance, C sends the message checkBalance to A and waits for the result
(line 3). If C sends A the message withdraw, then C continues to Cw (line 6),
namely they expects to receive their cash (in which case the protocol restarts)
or their card back.
The most complex participant is the ATM A. It can be specified as fol-
lows:
A = C?auth;(
C ! authFail;
B ! accessFailed;
C! card
E ! authPass;
B! accessGranted ; (
C ? checkBalance do Ac

i
C? withdraw do Aw

1.4 Modelling of an ATM service 13

| A — C:authPass ‘ | A — C:authFail |
l A — BiaccessGranted | | A — B:accessFailed |

[c— A:with:ﬂr:\w | [c = AwcheckBalance | [€ = Aquit | | B = Cifailedanempt |
[A= Bowithdraw | [A > BicheckBalance | [A - Biquit |
[B> amatance | [A — Creard |
‘ B — Auallow B — Adeny | | A — C:balance ‘
[A > Cimaney | [A>cead |
©

Figure 1.6: Global graph for ATM service vl

+

C? quit;
B! quit;
C!card

)

The structure of participant A is very similar to the one of C with the addition
of the interactions to liaise with the bank. In case A receives the request for a
service from C, it will behave according to Ac (for checking the balance) or
to Aw (for withdrawing money). These behaviours are specified below.

Ac = B! checkBalance; B ? balance ;C! balance
Il
Aw = B! withdraw; (
B ? deny;
C! card

14 A tool for choreography-based analysis of message-passing software

E ? allow ;
C ! money do A
)

Auxiliary machine Ac forwards the checkBalance message to B, waits for
the balance, and returns it to the customer (line 1). Similarly, auxiliary ma-
chine Aw forwards the request for withdrawal to B, and waits for the outcome
(lines 3-8). If the withdrawal is denied (line 4), then the card is returned to
the customer, otherwise the customer receives the money and the protocol
restarts (line 8).

Executing ChorGram on the system

system atm of C, A, B:

C=--|| Ow=-:--

I

A=-- || Ac=---| AwW=---
Il

B=-...

we verify that the system is GMC and the resulting global graph is reported
in Figure[1.6] where the overall protocol becomes apparent.

1.4.2 ATM service — version 2

The previous specification is GMC, but has several drawbacks, the most evi-
dent of which is the fact that when the protocol is repeated the customer has to
re-authenticate. We therefore replace the previous participants C and A with
the following ones:

C = Alauth;(
A ? authPass do Ca @
¥
A ? authFail ;A ?card; B ? failedAttempt
)

I
Ca = A! checkBalance; A ? balance do Cf C
+
A'! withdraw ; (
A? card
¥
A? money do Cf
)
I
Cf = A! newService do Ca
+
Al quit; A?card

I
A = C?auth; (
C ! authPass; B! accessGranted do Aa

¥
C ! authFail; B! accessFailed ;C! card
)
Il
Aa = C? checkBalance do Ac
+
C? withdraw do Aw

1.4 Modelling of an ATM service 15

I
Ac = B! checkBalance; B ? balance ;C! balance do Af
Il
Aw = B! withdraw; (
B ? deny; C! card
+
B ?allow ;C! money do Af

)
I

Af = (C?quit; C!card) +(C? newService do Ac)

Now, after successful authentication, the customer C decides which service
to invoke, behaving as specified by Ca (lines 7-12). Once the request has been
served, the customer executes Cf deciding whether to quit or ask for a new
service (lines 15-17). Accordingly, A reacts to service requests as per Aa on
lines 25-27 of the above snippet, similarly to the previous version of ATM,
but after the completion of each request, A behaves as per Af on line 37 and
returns the card to C if a quit message is received or repeats from Aa when a
new service is requested.

The verification of the new version of the system with ChorGram now
highlights some problems as shown by the following output message (slightly
manipulated for readability):

gmc: Branching Property (part (ii)): oo)]
(qCf,qAf,C,A, Tau, newService)
(qCf,qAf,C,A,Tau, quit) No choice awareness

The above message reports that a reachable configuration where participants
C, A, and B respectively are in state qCf, gAf, and gBa is a ‘No choice
awareness’ configuration. This configuration is highlighted in yellow in the
synchronous transition system, which is reported in Figure Inspecting
the synchronous transition system, we note that this configuration leads to
deadlocks (the configurations highlighted in orange in Figure[1.7), due to the
fact that the participant B is not notified when the quit branch is taken, i.e., B
is not aware of which branch of the protocol was chosen by C.

Notice that ChorGram builds a global graph also when the system vio-
lates GMC (not shown for space restrictions). Such a synthesised global graph
reflects some of their possible communication sound executions while leaving
out traces where communication misbehaviour happen. The global graph of
our second version of the ATM system can also be used to understand what
goes wrong in the overall choreography.

16 A tool for choreography-based analysis of message-passing software

1.4.3 ATM service — version 3 (fixed)

Besides making the refined specification of Section [I.4.2) GMC, in the next
version we also want to let the customer quit the protocol immediately after
the authentication. This change makes Cf and Af unnecessary: so, we replace
Ca and Cf with the following new versions:

Ca = A! checkBalance; A ? balance do Ca
+
A'! withdraw ; (
A ? card
+
A ? money do Ca

)

+
Al quit

|
Aa = C? checkBalance do Ac
+
C ? withdraw do Aw
+
C? quit;
B! quit

Note that now A notifies B when the protocol quits (line 15). This modifica-
tion requires also to modify the bank, which is now:
B = A ? accessFailed; C !failedAttempt

A ? accessGranted do Ba
Il
Ba = A ? checkBalance; A! balance do Ba
+
A ? withdraw ; (
Al deny
+
A!lallow do Ba

)

+
A? quit

The above changes re-establish GMC, hence communication soundness
of the system, as verified by ChorGram, which returns the global graph of
Figure|1.8

1.5 Conclusions and Related Work

Conclusions & future work We presented ChorGram, a tool supporting
the analysis and design of choreography-based development. We have dis-
cussed only part of the features of ChorGram, those strictly related to the
bottom-up development relying on our theory [[17)], which is itself an ex-
tension of previous work on synthesising global types from local specifica-
tions [15} 10} [13]]. Recently, ChorGram has been extended with new func-
tionalities for top-down development. These new functionalities rely on new
semantic framework [12]. We are also planning to plug the “bottom-up” ap-

1.5 Conclusions and Related Work 17

qC+gA+qB

—Acauth

_0v_0egB

A—C:authFail \A—C:authPass

_3«_8eqB qCas_4+qB

A—B:accessFailed A—B:accessGranted

B—A:balance B—A:allow \B—A:deny

A—C:balance /A—C:money A—C:card
No choice awareness

qCfeqAfeqBa @

C—A:quit \C—A:mewService

A—C:card A—B:checkBalance

B—A:balance

qCa=_5+qBa

Figure 1.7: Synchronous transition system of ATM service v2

18 A ool for choreography-based analysis of message-passing software

| A = C:authFail A — C:authPass ‘

| A = B:accessFailed | | A = B:accessGranted]

B = C:failedAttempt

| C = A:checkBalance

C — A:withdraw ‘ l C — A:quit |

!

| A — B:checkBalance | | A — Biwithdraw ‘ ‘ A — B:quit |

B — A:balance

‘ A — C:balance l

B— A:allow’] | B — Audeny I

A = C:money

) 4

©

Figure 1.8: Global graph for ATM service v3

©

©

1.5 Conclusions and Related Work 19

proach advocated here with the classical “top-down” approach as advocated
by, e.g., the Scribble specification language [21, 24]. Such an integration
would give the flexibility of designing protocols at the global level and obtain
the local level automatically, and vice-versa.

As illustrated in Section [I.4] our approach can be used to give feedback
to protocol designers. Hence, we are considering integrating ChorGram with
a framework [20] allowing programmers to obtain real-time feedback wrt.
the multiparty compatibility of the system they are designing. Currently, the
prototype highlights communication mismatches at the local level and it is
sometimes difficult to identify the real cause of such errors [20]. However, it
appears that a (possibly partial) global graph can help giving precise feedback
to the developer so that they can fix the error(s) easily.

Existing extensions and applications Recent work extends the theory un-
derlying ChorGram [[17]] to communicating timed automata (CTA) [5], i.e.,
CFSMs which use clocks to constrain when send and receive actions may
take place. The authors show that if a system validates some conditions on
communication soundness and deadlines, it is possible to construct a chore-
ography with time constraints which is equivalent to the original system of
CTAs.

The synthesis of global graphs from local specifications has been applied
thus far in two programming languages. A tool to statically detect deadlocks
in the Go programming language is available [[18]]. Such tool first extracts
CFSMs from each Go-routine in the source code, then feeds them into a slight
variation of ChorGram (for synchronous semantics) which checks whether
the system is multiparty compatible and generates the corresponding global
graph (which may be used to analyse the cause of the deadlocks). Also,
ChorGram has been used to model and analyse genserver([22], a part of the
Erlang OTP standard library widely used in the Erlang community for the
development of client/server applications. The analysis highlighted possible
coordination errors and was conducted following the pattern showed in Sec-
tion [I.4] The main difference was that the participants and the corresponding
CFSMs had to be extracted from the API documentation of genserver.

An interesting use [[14) 2]] of multiparty compatibility is to support an or-
chestration mechanism based on the agreement of behavioural contracts [4].
Recently this theoretical framework has been used to develop Diogenes [1]],
a middleware supporting designers (and developers) to write honest pro-
grams [3]], namely programs that respect all their contracts in all their execu-

20

A tool for choreography-based analysis of message-passing software

tion contexts. An interesting future work is to integrate Diogenes and Chor-
Gram in order to adapt components when they are not multiparty compatible.
In such cases, (as discussed at the end of Section[I1.4.2) ChorGram synthe-
sises a choreography which, although not faithfully reflecting the behaviour
of participants, represents some of their possible communication sound exe-
cutions. Such a synthesised choreography could then be used to obtain pro-
jections that help to attain honesty.

References

(1]

(2]
(3]
(4]
(5]

(6]
(7]

(8]

(9]

[10]

[11]

[12]

[13]

Nicola Atzei and Massimo Bartoletti. Developing honest Java programs with Diogenes.
In Formal Techniques for Distributed Objects, Components, and Systems (FORTE),
pages 52-61, 2016.

Massimo Bartoletti, Julien Lange, Alceste Scalas, and Roberto Zunino. Choreographies
in the wild. Sci. Comput. Program., 109:36-60, 2015.

Massimo Bartoletti, Alceste Scalas, Emilio Tuosto, and Roberto Zunino. Honesty by
typing. In FMOODS/FORTE, volume 7892 of LNCS, pages 305-320. Springer, 2013.
Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino. Contract-oriented computing
in CO». Scientific Annals in Comp. Sci., 22(1):5-60, 2012.

Laura Bocchi, Julien Lange, and Nobuko Yoshida. Meeting deadlines together. In
26th International Conference on Concurrency Theory, CONCUR 2015, Madrid, Spain,
September 1.4, 2015, pages 283-296, 2015.

Filippo Bonchi and Damien Pous. HKC. http://perso.ens-1lyon.fr/damien.pous/
hknt /|

Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. JACM,
30(2):323-342, 1983.

Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, Enric
Pastor, and Alexandre Yakovlev. Petrify. |http://www.lsi.upc.edu/~Jjordicf/
petrify/l

Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet communicat-
ing automata. In Programming Languages and Systems - 21st European Symposium on
Programming, ESOP 2012, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012.
Proceedings, pages 194-213, 2012.

Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in communicating
automata: Characterisation and synthesis of global session types. In Automata, Lan-
guages, and Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia,
July 8-12, 2013, Proceedings, Part I, pages 174-186, 2013.
https://goo.qgl/Z1tpgAal

Roberto Guanciale and Emilio Tuosto. An Abstract Semantics of the Global View of
Choreographies. In Proceedings 9th Interaction and Concurrency Experience, ICE 2016,
Heraklion, Greece, 8-9 June 2016., pages 67-82, 2016.

Julien Lange. On the Synthesis of Choreographies. PhD thesis, Department of Computer
Science, University of Leicester, 2013.

http://perso.ens-lyon.fr/damien.pous/hknt/
http://perso.ens-lyon.fr/damien.pous/hknt/
http://www.lsi.upc.edu/~jordicf/petrify/
http://www.lsi.upc.edu/~jordicf/petrify/
https://goo.gl/Z1tpgA

(14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]
[22]

(23]
[24]

References 21

Julien Lange and Alceste Scalas. Choreography synthesis as contract agreement. In ICE,
volume 131 of EPTCS, pages 52-67, 2013.

Julien Lange and Emilio Tuosto. Synthesising choreographies from local session types.
In CONCUR 2012 - Concurrency Theory - 23rd International Conference, CONCUR
2012, Newcastle upon Tyne, UK, September 4-7, 2012. Proceedings, pages 225-239,
2012.

Julien Lange and Emilio Tuosto. ChorGram: tool support for choreographic deveelop-
ment. Available at https://bitbucket.org/emlio_tuosto/chorgram/wiki/Home,
2015.

Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating machines to
graphical choreographies. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India,
January 15-17, 2015, pages 221-232, 2015.

Nicholas Ng and Nobuko Yoshida. Static deadlock detection for concurrent go by global
session graph synthesis. In Proceedings of the 25th International Conference on Com-
piler Construction, CC 2016, Barcelona, Spain, March 12-18, 2016, pages 174—184,
2016.

Object Management Group. Business Process Model and Notation. http://www.bpmn.
org.

Roly Perera, Julien Lange, and Simon J. Gay. Multiparty compatibility for concurrent
objects. In Proceedings of the Ninth workshop on Programming Language Approaches
to Concurrency- and Communication-cEntric Software, PLACES 2016, Eindhoven, The
Netherlands, 8th April 2016., pages 73—-82, 2016.

Scribble. http://www.scribble.org.

Ramsay Taylor, Emilio Tuosto, Neil Walkinshaw, and John Derrick. Choreography-
based analysis of distributed message passing programs. In 24th Euromicro Interna-
tional Conference on Parallel, Distributed, and Network-Based Processing, PDP 2016,
Heraklion, Crete, Greece, February 17-19, 2016, pages 512-519, 2016.
https://goo.gl/eXKngl, 2013.

Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The Scribble
protocol language. In Trustworthy Global Computing - S8th International Symposium,
TGC 2013, Buenos Aires, Argentina, August 30-31, 2013, Revised Selected Papers, pages
22-41, 2013.

https://bitbucket.org/emlio_tuosto/chorgram/wiki/Home
http://www.bpmn.org
http://www.bpmn.org
http://www.scribble.org
https://goo.gl/eXKng1

	Introduction
	Overview of the theory
	Architecture
	Modelling of an ATM service
	ATM service – version 1
	ATM service – version 2
	ATM service – version 3 (fixed)

	Conclusions and Related Work

