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@ Architecture & SOC (our view)
@ ADR
@ main features

@ ADR as ADL (through simple examples)
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o [Perry & Wolfs, 92] @ [Tracz, 93]): 4 'Cs
@ elements @ components
@ form @ connectors
@ rationale @ configurations

@ constraints
Software architectures specify the design of system at a

high level of abstraction (not the implementation level):
@ the structure of components
@ how they are interconnected
@ (valid) architectural configurations (aka topologies), i.e.
@ present components
@ interconnections
@ their current state
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ADR's Key features @ - L

@ Hierarchical/graphical design & algebraic presentation

@ Architectures as typed designs

@ Composed through design productions (operators)
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ADRS Key features™ ' & =

® Rule-based approach & inductively-defined reconfigurations
@ SOS
@ conditional ferm rewriting

@ Constraints and architectural styles via types
sto /
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ADR “expressivity” =1 {0 = -

@ Typed designs (graphs + interfaces)
@ styles as design terms

@ architectures as designs (i.e., graphs interpreting of
design terms)

@ Hierarchical design (productions as operators of a
multisorted algebra of designs)

@ refinement (top-down)
@ bottom-up (typing and well-formed composition)

@ Reconfiguration as conditional term rewriting over
design terms (rather than over designs)

@ style conformance can be guaranteed by construction
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ADR as ADL oy L0 L,

"An ADL must provide the means for their! explicit specification”
[Medvidovic & Taylor, 00]

lcomponents (with interfaces), connectors and configurations

ADR meets most of the requirements of an ADL

@ Components/connectors @ Architectural configurations
@ Typed elements with @ Compositionality/
interfaces Understandability
@ Formal semantics @ Refinement
@ Constraints @ Traceability

@ Evolution @ Scalability/Dynamism



Nodes &
hyperedges
can be typed
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ADR promotes types for
encoding constraints when
possible, so that
constraints preserving
reconfigurations are given

by construction

Interfaces



Semantic/Evolution™ ' L0 = —

Algebraic graph
transformation / SOS
conditional term rewriting
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Compositionality =7 Lo — —

Compositionality achiedved using
design productions that yield
hierarchical composition
(featuring also understandability)
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Refinement o = L

Design production can be

Y _EH'Z read "top-down”: a ‘pipe’ can
¢ ~ -<—§E >}>e~e be refined by forking two

¢
q
EH§ parallel ‘pipes’

Remarkably, design production can

be read “"bottom-up” as well: the

forking ‘pipes’ are valide provided
that the two inner ‘pipes’ are
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Traceability Tl =L

A design (i.e. an actual architecture)
are traced frough a design terms
namely a “witness” of the design

construction
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Dynamism sl T

Architectural changes are expressed in ADR by
conditional rewrite rules in a SOS style in order fo
define complex behaviours and reconfigurations.

ADR vyields a modular approach, so that, e.qg., the
addition of new components can be localised in the
desired sub-architecture, without affecting the rest

of the system.
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