
Architectural Design Rewriting
as

Architectural Description Language

R. Bruni
A. LLuch-Lafuente

U. Montanari
E. Tuosto

Plan

Architecture & SOC (our view)

ADR

main features

ADR as ADL (through simple examples)

2

Models of SA
[Perry & Wolf’s, 92]

elements

form

rationale

3

[Tracz, 93]: 4 ‘C’s

components

connectors

configurations

constraints
Software architectures specify the design of system at a
high level of abstraction (not the implementation level):

 the structure of components
 how they are interconnected
 (valid) architectural configurations (aka topologies), i.e.

 present components
 interconnections
 their current state

Models of SA
[Perry & Wolf’s, 92]

elements

form

rationale

3

[Tracz, 93]: 4 ‘C’s

components

connectors

configurations

constraints
Software architectures specify the design of system at a
high level of abstraction (not the implementation level):

 the structure of components
 how they are interconnected
 (valid) architectural configurations (aka topologies), i.e.

 present components
 interconnections
 their current state

ADR’s Key features
Hierarchical/graphical design & algebraic presentation

Architectures as typed designs

Composed through design productions (operators)

4

Z
• !" • Z !! • Z !! • •"! "! "!

pipe :Z×Z→Z

pipe(atom, atom)

pipe(pipe(atom, atom), atom)

atom :→Z
Z

• !" • b !! • •"!

• !" • b !! • b !! • •"!

• !" • b !! • b !! • b !! •"!

Ex
am

pl
es

ADR’s Key features
5

Rule-based approach & inductively-defined reconfigurations
SOS
conditional term rewriting

Constraints and architectural styles via types

Z
• Z !! •

• !" • <"" > !! • •"!

• Z !! •

fork :Z×Z→Z

x
stop−→ x′

fork(x, y) join−→ y

Z

•
!"!"!"!" •

#$ #$ #$

• Z !! •

ADR “expressivity”

Typed designs (graphs + interfaces)
styles as design terms

architectures as designs (i.e., graphs interpreting of
design terms)

Hierarchical design (productions as operators of a
multisorted algebra of designs)

refinement (top-down)

bottom-up (typing and well-formed composition)

Reconfiguration as conditional term rewriting over
design terms (rather than over designs)

style conformance can be guaranteed by construction

6

ADR as ADL

Components/connectors

Typed elements with
interfaces

Formal semantics

Constraints

Evolution

7

“An ADL must provide the means for their1 explicit specification”
[Medvidovic & Taylor, 00]

1components (with interfaces), connectors and configurations

ADR meets most of the requirements of an ADL

Architectural configurations

Compositionality/
Understandability

Refinement

Traceability

Scalability/Dynamism

Types&Interfaces
8

Z

•
!"!"!"!" •

#$ #$ #$

• Z !! •

Type

Interfaces

Nodes &
hyperedges

can be typed

ADR promotes types for
encoding constraints when

possible, so that
constraints preserving

reconfigurations are given
by construction

Semantic/Evolution
9

Z
• Z !! •

• !" • <"" > !! • •"!

• Z !! •

fork :Z×Z→Z

x
stop−→ x′

fork(x, y) join−→ y

Z

•
!"!"!"!" •

#$ #$ #$

• Z !! •

Algebraic graph
transformation / SOS

conditional term rewriting

Compositionality
10

Z
• !" • Z !! • Z !! • •"! "! "!

pipe :Z×Z→Z

pipe(atom, atom)

pipe(pipe(atom, atom), atom)

atom :→Z
Z

• !" • b !! • •"!

• !" • b !! • b !! • •"!

• !" • b !! • b !! • b !! •"!

Ex
am

pl
es

Compositionality achiedved using
design productions that yield

hierarchical composition
(featuring also understandability)

Refinement
11

Z
• Z !! •

• !" • <"" > !! • •"!

• Z !! •

Design production can be
read “top-down”: a ‘pipe’ can
be refined by forking two

parallel ‘pipes’

Remarkably, design production can
be read “bottom-up” as well: the
forking ‘pipes’ are valide provided

that the two inner ‘pipes’ are

Traceability
12

Z
• !" • Z !! • Z !! • •"! "! "!

pipe :Z×Z→Z

pipe(atom, atom)

pipe(pipe(atom, atom), atom)

atom :→Z
Z

• !" • b !! • •"!

• !" • b !! • b !! • •"!

• !" • b !! • b !! • b !! •"!

A design (i.e. an actual architecture)
are traced trough a design terms
namely a “witness” of the design

construction

Dynamism
13

 Architectural changes are expressed in ADR by
conditional rewrite rules in a SOS style in order to

define complex behaviours and reconfigurations.

ADR yields a modular approach, so that, e.g., the
addition of new components can be localised in the
desired sub-architecture, without affecting the rest

of the system.

References
ADR site http://www.albertolluch.com/adr.html

[Perry & Wolf’s, 92]: “Foundations for the study of
software architectures”. SIGSOFT Software Eng.
Notes, V. 17, No. 4, October 1992

[Tracz, 93]: “LILEANNA: A parameterized
programming language”. Proc. 2nd Int. Workshop on
Software Reuse and Eng. Center. July 1995

[Medvidovic & Taylor, 00]: “A classification and
comparison framework for software Architecture
Description language”. IEEE trans. on Soft. Eng., V. 26
N. 1, January 2000

14

http://www.albertolluch.com/adr.html
http://www.albertolluch.com/adr.html

