Architectural Design Rewriting
as
Architectural Description Language

R. Bruni
A. LLuch-Lafuente E. Tuosto
U. Montanari

X University of

< Leicester




Plan B

@ Architecture & SOC (our view)
@ ADR
@ main features

@ ADR as ADL (through simple examples)



VA o

Models of SA g R ]

o [Perry & Wolfs, 92] @ [Tracz, 93]): 4 'Cs
@ elements @ components
@ form @ connectors
@ rationale @ configurations

@ constraints
Software architectures specify the design of system at a

high level of abstraction (not the implementation level):
@ the structure of components
@ how they are interconnected
@ (valid) architectural configurations (aka topologies), i.e.
@ present components
@ interconnections
@ their current state



VA o

Models of SA g R ]

o [Perry & Wolf's, 92] @ [Tracz, 93]: 4 'Cs

@ components

@ elements \
o form \o connectors
@ configurations

@ ra’rionale\
@ constraints

Software architectures specify the design of system at a
high level of abstraction (not the implementation level):
@ the structure of components
@ how they are interconnected
@ (valid) architectural configurations (aka topologies), i.e.
@ present components
@ interconnections
@ their current state



A

ADR's Key features @ - L

@ Hierarchical/graphical design & algebraic presentation

@ Architectures as typed designs

@ Composed through design productions (operators)

fplpe@Xl@—)@ fatomzﬁlg
N =
o~ 06 —[I|I—~ o E”ﬁo»»»?»o .’\}.—ﬁl}%.f\,.
v
pipe(atom, atom) o~eJalre—Jalre~o o
=
pipe(pipe(atom, atom), atom) e~eJalrefalrefalve >
w



ADRS Key features™ ' & =

® Rule-based approach & inductively-defined reconfigurations
@ SOS
@ conditional ferm rewriting

@ Constraints and architectural styles via types
sto /

fork : & X ¥ — = o [i5] e



ADR “expressivity” =1 {0 = -

@ Typed designs (graphs + interfaces)
@ styles as design terms

@ architectures as designs (i.e., graphs interpreting of
design terms)

@ Hierarchical design (productions as operators of a
multisorted algebra of designs)

@ refinement (top-down)
@ bottom-up (typing and well-formed composition)

@ Reconfiguration as conditional term rewriting over
design terms (rather than over designs)

@ style conformance can be guaranteed by construction



7

ADR as ADL oy L0 L,

"An ADL must provide the means for their! explicit specification”
[Medvidovic & Taylor, 00]

lcomponents (with interfaces), connectors and configurations

ADR meets most of the requirements of an ADL

@ Components/connectors @ Architectural configurations
@ Typed elements with @ Compositionality/
interfaces Understandability
@ Formal semantics @ Refinement
@ Constraints @ Traceability

@ Evolution @ Scalability/Dynamism



Nodes &
hyperedges
can be typed

7

ADR promotes types for
encoding constraints when
possible, so that
constraints preserving
reconfigurations are given

by construction

Interfaces



Semantic/Evolution™ ' L0 = —

Algebraic graph
transformation / SOS
conditional term rewriting

fork : = X ¥ — = o 5]~



Compositionality =7 Lo — —

Compositionality achiedved using
design productions that yield
hierarchical composition
(featuring also understandability)

fplpe@Xl@—)@ fatomzﬁlg
e 7
o~ 06 —[I|I—~ o E”ﬁo»»»?»o .’\}.—ﬁl}%.f\,.
v
pipe(atom, atom) o~eJalre—Jalre~o o
=
pipe(pipe(atom, atom), atom) e~eJalrefalrefalve >
w



#: / '\ 11

———

Refinement o = L

Design production can be

Y _EH'Z read "top-down”: a ‘pipe’ can
¢ ~ -<—§E >}>e~e be refined by forking two

¢
q
EH§ parallel ‘pipes’

Remarkably, design production can

be read “"bottom-up” as well: the

forking ‘pipes’ are valide provided
that the two inner ‘pipes’ are



12

Traceability Tl =L

A design (i.e. an actual architecture)
are traced frough a design terms
namely a “witness” of the design

construction

plpe =X =

pipe(atom, atom) e~o [Alse T[alse~e

pipe(pipe(atom, atom), atom) o~o fa]reJalrefalse




Dynamism sl T

Architectural changes are expressed in ADR by
conditional rewrite rules in a SOS style in order fo
define complex behaviours and reconfigurations.

ADR vyields a modular approach, so that, e.qg., the
addition of new components can be localised in the
desired sub-architecture, without affecting the rest

of the system.



References il N

@ ADR site http://www.albertolluch.com/adr.html

@ [Perry & Wolf's, 92): “Foundations for the study of
software architectures”. SIGSOFT Software Eng.
Notes, V. 17, No. 4, October 1992

@ [Tracz, 93]: "LILEANNA: A parameterized
programming language”. Proc. 2nd Int. Workshop on
Software Reuse and Eng. Center. July 1995

@ [Medvidovic & Taylor, 00]: “A classification and
comparison framework for software Architecture
Description language”. IEEE trans. on Soft. Eng., V. 26
N. 1, January 2000


http://www.albertolluch.com/adr.html
http://www.albertolluch.com/adr.html

