TYPE THEORETICAL TOPICS IN TOPOS THEORY

TYPETHEORETISCHE THEMA'S IN DE TOPOSTHEORIE

(MET EEN SAMENVATTING IN HET NEDERLANDS)

PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE
RIJKSUNIVERSITEIT TE UTRECHT
OP GEZAG VAN DE RECTOR MAGNIFICUS,
PROF. DR. J.A. VAN GINKEL,
INGEVOLGE HET BESLUIT VAN HET COLLEGE VAN DEKANEN

IN HET OPENBAAR TE VERDEDIGEN

OP DONDERDAG 16 FEBRUARI 1989
DES NAMIDDAGS TE 4.15 UUR

DOOR
FERDINAND JAN DE VRIES

GEBOREN OP 10 MAART 1956 TE KERKRADE



PROMOTOR: PROF. DR. D. VAN DALEN



Contents
COMEENES. . i e e i
ACKNOWIEAZEMENS ... e e iviiniinii ittt e e e e e e e e e e, il
General INtrodUCHION.......oiiiiiiiiiiiiiiiii i cceeee e e e e e e e e e ee e eeeenns iv
1 Type theory with natural DUMDETS ..........vvenieneineeieein e eeseieeeennns 1
1.1 Type theory without funCtion tyPes .........eueeeneeneneensnenrnnannnn, 2
1.2 Type theory with function types...........oeeueeeeeneneenseeennenannns, 6
1.3 Two examples Of type theOTIES ... ...vuuvvneeeeeeeeneinirnsneeneraennnn, 8
1.4 List of additional NOtAtIONS ...........iiuiinieneeneeeeniaeeesieaaannnns 9
1.5 Toposes, models for intuitionistic type theory..........c..eevunnenn.... 9
1.6 The natural nUMDET tyPe.......uuiueiiiiiiiiiee e eeee e eeaannns 13
2 Truth values, topologies and ShEAVES ..........eeeueeeeueerneerineeneereessanenn.. 23
2.1 The object of truth ValUES.......ccoevueeveeereeeeeeeereeereesereesseenss 23
2.2 TOPOIOZIES v vevneenetntiniineieeteeie et e e e e ee s 25
2.3 Sheaves and related NOMONS........o.uuenrenenreeeeeneeainieieenseinnns 34
3 Singletons and associated sheaf fUnCtors ............oeeeveeeeneensuieeeeinnnn.n, 39
3.1 Various notions of SIngleton .............vvvvuneeinneeeneeneerneannnnnnn, 40
3.2 The generalized Grothendieck construction. ...............ceeuuenn..... 46
3.3 The Lawvere-Tierney CONSIUCHON. ... ..uvviueeereeernenneennrernnnnn. 49
3.4 The generalized Lawvere-Tierney COnStruction......................... 51
3.5 The Barr-Wells variant........oeceveivnieeneeeeneeeeeeeseseennanns 52
3.6 Preservation properties of Li........ccocoviieecoueeccereeeeireeeeeeneans 53
4 Algebraic theories and subalgebra Classifiers.............c..veeuneenneunnrvennnnn., 55
4.1 Internal finitary algebras............vviuiiiiiinrieninieneenreneneneennnnns 55
4.2 A generalized type of truth values ............coeiinivineenninnneennnnnn. 58
5 Topologies, sheaves and localizations for some algebraic theories.............. 69
5.2 Commutative and Semi-commutative algebras............c.ou......... 78
5.3 Sheaves for a Gabriel-Grothendieck topology........c..ccueeunenenn... 79
5.4 Associated sheaves & la Grothendieck. ..........ccovivviniinenneennnnn. 82
6 Generalized GOdel-transSlations.........cueiivvieeeeieieeeeeeeeirereeeeesssnseees 89
6.1 Translating from ShjE into E.......cccoovviiviviiooieeiieeeiieeeann. 91
6.2 The generalized Godel-translation..............cccovvivvevnviniinnennn... 99




type theoretic topics in topos theory ii

6.4 G-Preservable theories.....coovviiiiviueeeeeieeseieeeeeneeeeseeeeeennnss 112
6.5 A second Godel-translation preserving types.......cc.eeueenvenennnnn.. 114
6.6 On the relation between [A] and [A]G ...oveeieeneeeieeeeinnn, 116
7 Classical real numbers from an intuitionistic point of View....................... 118
7.1 Linguistic variations on Dedekind real numbers........................ 119
7.2 Dedekind reals extended by singletons ..............ccevveeernnennnnn.. 126
7.3 Dedekind reals obtained by Gédel translations ......................... 127
RELETENCES ..ttt e e, 131
SAMENVALINZ ... tutit ittt et e e e 137




iii

Acknowledgements

Looking back at the period I studied Logic in Utrecht, there are several people that I
would like to acknowledge, in particular those connected to the Utrecht Logic
Group with its friendly atmosphere, enthusiasm, expertise, and its eagerness to
discuss logic. It is only by leaving them that I have become aware of the loss of this
logical environment.

Foremost I am grateful to the originator of the Utrecht Logic Group, Dirk van
Dalen, who taught me logic and guided me into the field of intuitionistic
mathematics and metamathematics.

I would like to thank Albert Visser for his great spirits and insights in logic (it was
wonderful to share an open door with him), Gerard Renardel de Lavalette, Hans
Mulder, Ieke Moerdijk, Jan Beumers, Josje Lodder, Karst Koymans (among other
qualities, a superb expert in matters of daily computer use), Piet Rodenburg, Pierre
America and, last but certainly not least, Wim Ruitenburg, who has supervised my
masters thesis.

Dirk van Dalen has advised me to participate in the European Peripatetic Seminar
Seminar on Sheaves and Logic. This has been a valuable advise. The quarterly
meetings of this seminar are stimulating. I would like to mention especially Francis
Borceux, Martin Hyland, Peter Johnstone, Anders Kock, Valeria diPaiva, Cristina
Pedicchio, Andy Pitts, Edmund Robinson, Pino Rosolini and Jaap Vermeulen.
Their lectures, enthusiasm, advice and encouragement have meant much to me. I
remember the warm hospitality of meetings of the PSSL in Cambridge, Falmer
(Sussex), Louvain-La-Neuve and Trieste. It was a pleasure to return this hospitality
by organizing two meetings in Utrecht.

With respect to this thesis I am grateful to Dirk van Dalen and Ieke Moerdijk for
detailed comments on matters of content and style.

I would like to thank de faculteit der Wijsbegeerte for the excellent (social and
material) environment to work in.

Finally I apologize to my family and friends for a growing neglect during the work
on this thesis.




type theoretic topics in topos theory iv

Introduction, Abstract
and
Summary

Before giving a technical introduction to this thesis, I would like to present an
introduction aimed at the more innocent reader of this thesis.

Suppose we have an arbitrary topos E that we imagine to be the universe of a
certain mathematician Mr. E doing mathematics within the logic dictated by the
topos. In general Mr. E's logic will not resemble ordinary classical logic of
everyday. The principle, that for every statement A either A is true or A is true,
which is Aristotle's principle of the excluded middle, is likely to fail. Mr. E's logic
will be of an intuitionistic kind.

For instance, he will state that there exist a number with a particular property if and
only if he has a genuine construction of such a number.

If this principle does not hold then certain proofs will be blocked. A well-known
example of such a proof (cf. [Troelstra and van Dalen 88)) is the following.

Theorem. There exist two irrational numbers a and b such that ab is a rational
number.

Tentative proof. Knowing that V2 is irrational, we consider the number (\/2)‘/2.
Now (\/2)‘/2 is rational, or it is not. If (\/2)‘/2 happens to be rational, we choose
a=b=\2. If (V2)¥2 is irrational, then we choose a=(¥2)V2 and b=\2, and we
calculate that ab=((\V2)¥2)V2=(v/2)2=2. Hence also in this case we can find irrational
numbers a and b such that ab is rational.

O

This proof is blocked if the principle of excluded third fails. Note that this proof is
far from constructive. The proof does not provide us with a recipe to construct two
irrational numbers a and b such that ab is rational. It has been the Dutch
mathematician L.E.J. Brouwer who criticized classical mathematics, and instead
proposed intuitionistic mathematics.

If the principle of the excluded middle fails then the principle that if not A is not
true, then A is true, fails as well, for an arbitrary statement A. In his Brouwer
memorial lecture (1987), Manin has given the following beautiful metaphor, why
this last principle ought to fail: "Negation of a particular dogma opens up before the
mind such a universe of alternative possibilities that no subsequent negation can
return it to the status quo."
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Now suppose that our Mr. E has become aware of the double negation, —= as a
logical operator. And suppose that at a particular night he has a dream about
classical natural numbers. On the following day he tries to reconstruct the classical
natural numbers in his world. One attempt of Mr. E could be Lifschitz' singleton
construction on natural numbers (cf. [Lifschitz], or chapter 3 and 7 of this thesis).
Instead of his own natural numbers, N, Mr. E considers in this reconstruction the
collection of non empty subsets S of N that contain at most one element of N, i.e.,
subsets S such that ==3neN neS. Indeed, modulo a translation he can now
recapture the first order properties of classical natural numbers.

If, from a distance, we look at the accomplishments of Mr. E, then we see that by
his singleton construction Mr. E has lifted his own natural numbers to an object that
also is an object of the topos of sheaves for the double negation. This sheaf topos is
a universe in which the principle of the excluded middle holds, i.e., a universe of
classical logic. The new object even (modulo an isomorphism) is the object of
natural numbers in this sheaf topos.

Abstract.

In this thesis we consider in several contexts general constructions to make sheaves
for unary logical operators, that are Lawvere-Tierney topologies. Then we give a
translation directly from the sheaf topos to the base topos. With help of this
translation we then define a general Godel-Friedman translation for type theories.
We give a general criterion that a type theory H should satisfy in order that for
instance H+principle of excluded middle proves a statement A if and only if H itself
proves the Godel-Friedman translation of A. Finally we consider Dedekind real
numbers, and show what kind of real number objects can be obtained by applying
sheaf constructions or by Gddel-Friedman translating classical Dedekind reals with
respect to arbitrary Lawvere-Tierney topologies.

Summary.

Chapter 1. The language rules, axioms and models, toposes of type theory are
described, following the presentation of [Lambek and Scott]. We extend this system
with explicit types of functions in order to facilitate the description of mathematical
proofs and constructions in the languages. As an example of the use of the internal
type theory of a topos for proving facts on that topos we introduce natural numbers
and give an entirely constructive proof that the recursion principle that, in the
internal type theory of a topos, is the interpretation of Lawvere's elegant categorical
description is equivalent with the axioms of Peano. A second example is an
elementary, direct, internal proof of a well-known categorical theorem of
Mikkelsen, that states the equivalence of the presence of a natural number object to
the constructability of free monoids.
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Chapter 2. We give an entirely internal treatment of the following notions from
elementary topos theory: Lawvere-Tierney topologies on the type of truth values Q,
Grothendieck topologies on Q, dense and closed subtypes and sheaves. The
internal treatment of Grothendieck topologies appears to be new, but is implicit in
[Johnstone 77]. The operations that make the Grothendieck topologies on Q as well
as the dense Grothendieck topologies into a complete Heyting algebras are easy to
describe. Internal proofs do not necessarily follow the same strategy as categorical
proofs. An example is an internal proof of the well-known fact that O j is a sheaf.

Chapter 3. We present a systematic internal treatment of the construction of the
associated sheaf functor. By a careful investigation of the various different ways of
expressing the notion of singleton subset in intuitionistic type theory we find twelve
different, but related constructions including the well known constructions of
Lawvere and Tierney, and Grothendieck and Johnstone.

Chapter 4. Given a topos E we consider the category E1 of T-algebras in E, for
internal finitary algebraic theory T. We show that the object of subalgebras of the
free T-algebra generated by 1 acts as a subalgebra classifier for a suitable class of
characteristic morphisms. For commutative theories we show that our notion of
characteristic morphism is equivalent to a notion of Borceux and Van den Bossche.
We present all this within the constructive setting of type theory.

Chapter 5. Internalizing ideas of Borceux, Van den Bossche and Veit we give an
internal treatment of the one-one correspondence of universal closure operations,
Lawvere-Tierney topologies and Grothendieck topologies. For commutative
algebras we can give a notion of sheaf with a corresponding internal associated
sheaf construction a la Grothendieck-Johnstone. Although a different, entirely
categorical construction of associated sheaves for a larger class of algebras recently
has been given we still think that it is of interest to see how the Grothendieck-
Johnstone method can be adapted to this algebraic context.

Chapter 6. Given a topology j: Q0 —> Q the topos of sheaves SHE is a subcategory
of the base topos E. We extract this well-known phenomenon a translation
ELgp e —> LE satisfying SGEE¢ ¢ E=¢l. Let Hu{j} denote the type theory H
exterided with a unary logical operator j that satisfies the axioms of a Lawvere-
Tierney topology. An interpretation of Hu{j} in E is easy to transform into a
interpretation of the language of H in the SﬁjIE. Combining this with the j-
translation, we find a generalization of both the G&del negative translation and the
Friedman translation for type theories H, that basically is nothing but an endo-
translation of the types and function symbols of the language of H. Modulo the
inhabitedness of the types of the free variables involved, for this G-translation we
can prove that Hu{j}+-HG if and only if Hu{j}+¢6 & H+PEMj¢, where PEM;
stands for YoeQ(jo-w), the generalization with respect to j of a principle
equivalent to the principle of excluded middle. Of interest are type theories that
prove their own translation: Hu{j}+~HC. The interpretation of such type theories is
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preserved under the associated sheaf functor. Examples are Heyting's Arithmetic,
Geometric Logic and Existential Fixed Point Logic of Gurevich and Blass.

Chapter 7. Inside a type theory with natural numbers we can construct Dedekind
reals. In the constructive context there are many different definitions and
constructions that eventually can be seen (modulo isomorphisms) linguistic
variations of the standard definition. Dedekind reals, MacNeille reals, Troelstra's
extended reals, Troelstra's classical reals, Staples reals and van Dalen's singleton
reals. We give a systematic and general treatment of these notions and the three
methods (linguistic variations, application of the associated sheaf functor and
application of the general Godel-Friedman translation) using again an arbitrary
Lawvere-Tierney topology instead of the double negation topology.

Chapter 8. References.




Chapter 1

Type theory
with natural numbers

In this chapter we describe language, rules, axioms and models of typed
intuitionistic set theories with natural numbers or, shortly, type theory. The
expressive power of the language of such formal systems is great: after a little
practice one gets the feeling that mathematics can be formalized in them.

As basis for our definition of type theory we take the formal system of [L.ambek and
P.J. Scott], and we extend it with explicit types of functions. The system of
[Lambek and P.J. Scott] is related to the formal system of [Boileau and Joyal] and
to the Mitchell-Bénabou language described in [Johnstone 77]. Formal systems of
this kind are closer to the categorical definition of toposes then systems in the style
of [Fourman], [D.S. Scott 79] and [Fourman and D.S. Scott] which are designed to
incorporate extra notions like designators and existence predicates.

The natural models for such intuitionistic set theories with natural numbers are
toposes with natural number objects. Toposes are categories with finite limits, a
subobject classifier and exponentials. Standard textbooks on topos theory are
[Johnstone 77] and [Barr and Wells]. Mac Lane's Categories for the Working
Mathematician is a standard reference for category theory.

Proving facts about a topos can be done in category theory or with help of the
internal intuitionistic set theory of a topos with an appeal to the soundness theorem
of intuitionistic set theory for toposes. It is customary to use the terminology
"internal proof" for type theoretical proofs in contrast to "external proof" for
categorical proofs of facts about a topos. Occasionally results concerning categorical
notions of toposes, that can be seen as interpretations of meta type theoretical
statements, are more conveniently proved via the internal constructive type theory of
a topos followed by an appeal to the soundness theorem of intuitionistic set theory
for toposes. We will use the terminology internal proof for such proofs as well.

We will present an example of such a result concerning natural numbers. In
mathematical practice natural numbers are axiomatized set theoretically via the
axioms of Peano. [Lawvere 64] has given an elegant definition of natural numbers
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in simple categorical terms. This definition is the recursion principle in a categorical
setting. It is equivalent with Peano's axioms, which is among the oldest known
facts in topos theory. Now, there exists a well-known theorem of Mikkelsen
expressing the equivalence of the presence of a natural number object to the
constructability of free monoids. Using type theory it is possible to give a direct

internal proof of this theorem. Only indirect external proofs of this theorem seem to
exist.

Finally, when we are proving facts about categories by categorical means we will
speak of objects and morphisms. If we give a proof in which we use type theory,
we will speak of types and functions. Some statements that we will be prove
internally will be just formulas in type theory. Other statements will be in meta type
theory, i.e. they are statements in which we quantify over types and morphisms we
will prove. A simple example: different ways of expressing that "the successor
function s:N— N is injective”, are

@ VYxy:NIs(x)=s(y)—>x=y]
(i) for all types A and all functions f,g: A—> N it holds that
Vn:N [s(f(n))=s(g(n))]—> Vn:N [f(n)=g(n)].

1.1 Type theory without function types

Our aim is to give a definition of type theory in which we have exponential types
containing functions. In this section we will give a definition of type theory as
provided by [Lambek and P.J. Scott]. More precisely, we take over their notion of
type theory generated by a graph G as occurs in example 1.2 at page 132 of
[Lambek and P.J. Scott] omitting at first the natural numbers. In the next section we
will present our (conservative) extension of this definition with function types.

The language of a type theory will be defined in two steps. First we define a kernel,
then we extend this kernel to the full language. The interpretation of type theory in
the models will follow this two step pattern: a full type theory will be translated into
a kernel type theory, and the kernel type theory will be interpreted in the topos
models.

There are three pieces of information from which one constructs a kernel type
theory without function types:

(i) aset of basic type symbols,

(i) a set of function symbols, where each function symbol has basic type
symbols as domain and codomain, notation f: A—> B,
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(iii) a set of axioms formulated in the language constructed from the first two data.

1.1.1 Types

The set of types of the theory is the smallest set containing the given basic type
symbols and the type 1, and closed under products and powerset formation.
Respective notations: AxB, P(A). The power of 1 will contain the truth values and
is denoted by 0.

1.1.2 Terms and formulas of kernel type theory
Terms of kernel type theory are constructed as usual:

() * isaterm of type 1, and for each type A we have countably many

variables Xy, X2, ... .
(i) terms are closed under the following constructions:

<s,t>:AXxB  forall terms s:A and t:B
s=t:0) for all terms s,t: A
{x:Al19}:P(A) foreach ¢:Q
tes: Q)  for t:A and s:P(A)
f(t):B  foreach t:A and function symbol f:A—>B.

Formulas are terms of type Q. This can cause confusion, which can be avoided by
writing (¢) to indicate that we use a formula ¢ as term of type Q.

1.1.3 Terms and formulas of full type theory

A full type theory is obtained by extending the language of a kernel type theory with
the following symbols: T,L,-,-, A,v,V,3 and 3!. The translation of these
symbols into the language of the kernel type theory is given in the following list (we
will sometimes use square brackets [ and ] to facilitate reading of the formulas):

T = (%k=2%)
dAy = <b,y>=<T,T>
VAP = {XAld}={x:A|T}
by (bAy)=d
by = d=y
bvy = Vo:Q [(d>0)A(y=0)>0]
L = Vo:Qo=T
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-
A ¢
A ¢
dxeB ¢
VxeB ¢

XeEA

1.1.4 Axioms and rules

—

-1

Yo:Q VXA (d-o)-onl

KA [DIAVY:A ($(y)-x=Yy)].

Ax: A [xeB A9 (x)], where B is a term of type P(A)

Vx:A [xeB-$(x)], where B is a term of type P(A)
X=X, where A is the type of x.

Having constructed the terms and formulas of type theories, we now can give the
axioms and rules for entailment . Precision is needed here, entailment Ky is
defined for each finite set X of variables between terms of type ), whose free
variables are contained in X. We tacitly assume that the customary conventions
concerning renaming bound variables are observed in order to avoid clashes which
substitution of terms for variables can cause.
The set of axioms and rules of a type theory contains the axioms of the data definin g
this specific type theory together with the following standard set of axioms and

rules:
1.1.4.1.  Structural rules.

@ ¢ rFxo

I'x¢ Tu{é}ryy

(ii) Tryv
Gy ——xb
Tu{y} Fx
I'xd

(iv)
I'=xutyy ¢

T(y) Fxutyr wly)

& o -y w(b)

, provided that b and y are of the same type and b is free

for y, i.e., no free variable of b becomes bound in y(b).

1.1.4.2.  Pure equality rules




@
(ii)

(iii)

1.1.43.
@
(i)
(i)

(iv)

)

(vi)

1.1.44.

(©)
(ii)

type theory with natural numbers

-y t=t

d(x/8), s=t yx P(x/t)
provided that t and s are free for xin o,
and the free variables of s appear free in the conclusion.

Tu{d} Fxy Tu{y} Fyx o
'-x b=y

Other rules

<X, Y>=<X", Y >y X=X’
XKYy>=<X,y>x y=y'

Fx Xe{x:Al ¢} e ¢, where xeX.

I'~xuix} ¢ (x)=xeB
'y {x:Ald(x)}=B

. where X is not free in I”

k2 Z=3%, where z is of type 1

I, Z=<X,Y> Fxuix,y,2} 9(2)
I' Fxutz) $(2)

, where x and y do not occur free in I” or ¢(2).

Notations

We will often write I't-¢ for I'+-y ¢, when X happens to be the empty set.

We will often write ¢ for -y ¢ when X contains exactly the types of the
free variables occurring in ¢.

1.1.5 Theorem. The following are consequences of the foregoing rules and

axioms:

)

the usual propositional axioms of intuitionism, for example:
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@ ¢->(y-0)

(b) [d=>(y=>a)]-[(d>y)=(d>0)]
© (bAy)-d

@ Ay)>y

© ¢-=>[y-(dAy)]

(if) the axioms for = concerning symmetry and transitivity:
(&) VXy:Ax=y-y=x)
(h) VXy,Z:A (X=yAy=z-x=2)

(iii) three rules:

b by

@) provided that the free variables of ¢ appear free in y
0 L

m provided that x does not occur free in ¢

) by

XADS Y provided that x does not occur free in

(iv) Two more axioms for quantifiers
O (Yx:Ad)-od
(m) (dAIXAT)I-»IXA P
where 3x: A T expresses that the type A is inhabited.

1.2 Type theory with function types

We are not satisfied with a formulation of type theory in which there are no explicit
types for functions. We would like to have available an internal notion of function,
such that we can introduce a function whenever we encounter a predicate d(x,y) for
which we can prove that it represents a function, i.e., for which we can prove
Vx:Adly:B ¢(x,y).

Thereto we extend the above given definition of type theory in the following way.
(1.1.1") Types.
We add to the rules that define the formation of types the new rule: closure under

exponentials, notation BA or just A—>B.

(1.1.2") Terms.
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We add closure under application to the term formation rules: if f is a term of type
BA and t is a term of type A then f(t) is a term of type B.

(1.1.4") Axioms and rules.
We add the following axiom concerning extensionality of functions and the axiom
scheme that formulates the unique choice of functions

(8 VF.g:BA(F=ge Vx:Af()=g(x)
() [Vx:A3ly:B d(x,y)]-»IF:BAVXA 6(x (X))

Notation: we will write Ty ¢ for entailment in this theory of types with
functions.

Observe that one can define a translation ( )* from a language L of a type theory H
with functions into a subset of £ that is type theory without function types, such
that the following properties hold:

@D Fund*ed

(ii) Hl—fund) @ H#l—(b#.

The definition of the translation & * of ¢ will go by induction to the structure of ¢,
the idea is to replace subterms of the form {x:BA |y} by

{zP(AB) Iy"AVX:ATly:B z(x,y)}
and to conjugate subformula with formulas Va: A, 3!b: Bxzy(a,b) for each free
variable x of exponential type Ax—> By that occurs in the subformula ¢.
However we have to be careful as exponential types can have been used in the
construction of other types.

1.2.1 Definition Consider some type theory with function types. For each type A
we define a corresponding type A* constructed without exponentials by induction
to the structure of A:

(i) A%=A for basic types

(i) (AxB)*=A*xB* for product types
(iii) (P(A))*=P(A") for power types
(iv) (BA)*=P(A¥,B*) for exponential types.
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It is clear that A® does not need to be isomorphic with A. The next predicate
standard will cut out the subtype of A* isomorphic with A.

1.2.2 Definition Consider some type theory with function types. For each type A
we define a corresponding formula standard(x): Q with x: A* by induction to the
structure of A:

(i) standard(x)=T, for basic types A

(i) standard<x,y>=standard(x) standard(y), for product types BxC
(iii) standard(x)=Vy:A* (yex-sstandard(y)), for power types P(B)
(iv) standard(x)=Vz:C# 3ly:B*x(z,y), exponential types BC.

Now we have sufficient tools to define the translation # of a formula ¢ into an
equivalent formula ¢* in which no types occur in whose definition somewhere
exponentials are used.

1.2.3 Definition Consider some type theory with function types. For formula ¢
we define a corresponding formula ¢ *, in which no terms occur of exponential
type, by induction to the structure of §:

(1) forall types A replace all variables of type A by variables of type A¥.

(if) replace each subformula y(xy,...,xy) by Y(X1,euXn) A A gignstandard(x;)

The proofs of the two properties are easy proofs by inductions to structure.

1.3 Two examples of type theories

(1) Higher order Heyting arithmetic.
One basic type N, two function symbols 0:1—> N and s:N—> N are given, plus
the axioms of Peano (cf. 1.6.1). This system is sometimes called "Type Theory".

(i) The canonical intuitionistic set theory of a topos E.
The internal language LE has as basic type symbols the objects of E and as function
symbols the morphisms of E. Note that the collection of types of Lg described by
the syntax is larger than the collection of objects of E. The axioms of Hg will
correct this again,

The axioms of the type theory Hg are
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(i) expressions stating for function symbols which corresponding arrows are
compositions of (two - which suffices! -) others.
(ii) expressions stating that type constructions correspond to particular basictypes.

The usual indirect way of describing the axioms is (cf. [Fourman]) that the axioms
of the canonical type theory of a topos E are exactly those formulas that are true in
E under the canonical interpretation, which we will define in section (1.5).

1.4 List of additional notations

(i) Two types A and B are isomorphic, notation A~B,
if IF:A—>B[VX,yeA (F(X)=f(y)>X=y) A VxeB IyeA f(y)=x]

(i) In case of a family of subtypes of a type A indexed by a type I, and given to
us by a function index: | — PA, we will employ the following notation:
Aj=index(i)
Nic1 Aj={aeA| Viel acA;}
Uiel Aj= {aeA| Jiel acA;}

(iif) For f:X—> A and g:X—>B we write <f,0>:X—=> AxB: x> <f(x),g(x)>

(iv) Forf:A—B and ¢g:C—D we write fxg: AXC—>BxD:<a,c> > <f(a),g(c)>

(v) REAXB is called a graph (of a function) from A to B if
VaeA3dlbeB <a,b>eR.

(vi) Definition of a function by cases. Assume for subtypes A,B & C and functions
f:A—>Xand g:B—>X that VceAnB f(c)=g(c) and AUB=C then

R={(c,x)eCxX|(ce A»x=F(c)) A(ceB-x=g(c))}
is a graph from C to X.
We are justified to use the following notation to define the function corresponding
to R:

f(c) if ceA

f:C%X:cH{g(c) if ceB

(vii) Forf:A—>B and m:C>>B we write f~1(C) for {ceC | JacA m(c)=f(a)}.

1.5 Toposes, models for intuitionistic type theory
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Toposes are categories with extra properties which makes them into suitable models
for constructive set theory. In the early sixties Grothendieck and Giraud tried to
capture the properties of sheaves over topological spaces and discovered the concept
of Grothendieck topos (cf. [Grothendieck and Verdier]). The more general notion
of an elementary topos has been introduced by Lawvere and Tierney around 1970 in
an attempt to characterize in an categorical axiomatic way the properties of the
elementary theory of categories of sheaves.
It has been considered as a surprising fact that toposes happen to be the natural
models for intuitionistic set theories. In retrospect hints in this direction have been:
(i) the old result of [Stone] and [Tarski] that topological spaces are models for
intuitionistic propositional logic (cf. [Rasiowa and Sikorski]).
(i) [Scott 68]'s topological interpretation to intuitionistic analysis.
Since then the definition of an elementary topos has been simplified. Ample
information and further references to topos theory can be found in [Johnstone 77].
A short introduction is provided by [Lambek and P.J. Scott 86].

1.5.1 Definition. An (elementary) topos is a cartesian closed category with finite
limits and a subobject classifier.

In [Mac Lane] and [Barr and Wells] one can find good introductions to the notions
of category, (finite) limit, cartesian closedness and other categorical notions that we
will use.

Recall that in order to prove that a category C has finite limits it suffices to show that
C has equalisers and products or, equivalently, that C has a terminal object 1 and
pullbacks.

We repeat the definitions of cartesian closedness and subobject classifier.

1.5.2 Definition. A category C that has products is cartesian closed if for all
objects A and B in Cthere is an exponent BA in | Cand an evaluation ev: AXBA—B
such that for each f: AXC—> B there is a unique f :C—>BA such that the following
diagram commutes:

A,.(BA_.E_V_. B

id xF /

AxC
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1.5.3 Definition. A category C with finite limits has a subobject classifier
T:1— Q if for each monomorphism m: A >> B there is a unique morphism
Xm:B—> ) such that the following diagram is a pullback.

A>m_>B

|

11-—_]_—'0

Xm

xm:B—> Q) is then called the characteristic morphism of m: A >>B.

1.5.4 Interpretation of type theories in toposes

An interpretation of a type theory H into a topos E maps types into objects,
constants into morphisms. As no confusion can arise, we will denote both maps by
the same symbol [ ]. Since terminal object, products and exponentials are only
uniquely determined upto isomorphisms, an interpretation of types in a topos has to
make specific choices for constructs in a coherent way such that the following
conditions on types and constants hold:

() [1l~1

(b) [Ql=Q

(c) [AxBI~[AIxIBI

@ [P(A)I=QIA]

(e [BAI~IBIIA]

() afunction f: A—>B is mapped to a morphism [f]:[A]—>[B]

From such an interpretation of the types and functions of type theory an
interpretation of terms and formulas - with respect to finite sequences of variables X
in which all free variables of the term that has to be interpreted occur - can be
constructed by induction on the structure of the terms with help of the following
equations (where the sequence of types corresponding with the sequence of
variables in X is AX...XAp):

(@) [#Ix=(AX.XAp1:AX. XAy 1,
(h) [xilx=1i Ax...xAp—> A, if the type of x; is A;,
@ [F®OIx=I[fl[tlx: Aix..xAp,—> A—B,
if the types of function symbol f and term t are respectively A—>B and A,
&) [gt)Ix=evae<lgly, [tlx>: Aix...xAp—> BAXA—B,
if the types of term g and term t are respectively BA and A,
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D [t=sly==pac<0tlx[s]x>: Ax...xAp—> AXA— Q,
if the type of both s and t is A,and =A=X GdA,idA>; AXA—> Q)

(m) l[tesﬂx:=EVA°<|[t]|x,|[r‘]|x>:A1X...XAn—'9AXQA—>Q,
if the types of s and t are QA and A,

(l’l) |I<t,$>]|x:=<|[t]]x,|[5]|x>:A]X...XAn"‘éAXB,
if the types of s and t are B and A,

() [{x:Ald}xy= [9lxeo :AX..xAp-1—> QA,
where o is the permutation AKX XARXAXA X XAn—D AXAX... XA

1.5.5 Definition.

(i) An interpretation [ ] of a type theory H into a topos E satisfies ¢ (notation
[ =) if for each finite sequence X containing all free variables of ¢ the morphism
[$]x factors through T:1— Q.

(i) An interpretation [] of a type theory H into a topos E satisfies ¢y (notation
[ 1,¢=y) if for each finite sequence X containing all free variables of ¢ and y the
morphism [y]y factors through T:1—> Q) whenever the morphism [$]x factors
through T: 1= Q.

1.5.6 Soundness Theorem. Let H be a type theory. If H¢ then for any topos E
that satisfies H it holds that it satisfies [0}

1.5.7 Completeness Theorem. Let H be a type theory. Then Hr ¢ if and only if
for any interpretation in a topos E that satisfies H it holds that it satisfies b.

1.5.8 Theorem. Let E be a topos.

(1) Letf,g:A—>B be two morphisms in E. Then f and g are identical in E if and
only if E=f=g.

(1) Description holds in a topos: if EE Vx: A Aly:B $(x,y) then there is a unique
morphism g: A—> B such that E= Vx:Ady:B ¢(x,f(y)).

Proofs. Detailed proofs can be found in [Lambek & Scott 86].

1.5.9 Lemma. A morphism f:A—B is a monomorphism in a topos E if and only
if EE VX, yeA (F(X)=f(y)-x=y).
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Proof.
f:A—> B is a monomorphism in E
&

for all objects C and morphisms g,h:C—> A in E we have that if f og=foh then g=h
&

for all types C and constants g,h:C—> A in L it holds that if Erfog=foh then
EE=g=h.

o F
EE VX yeA (F(x)=f(y)-x=y).

(= *) We prove for arbitrary type theory H: if for all types C it holds that
Vg,h:C—> A (fog=foh->g=h) then Vx,yeA (F(X)=f(y)-x=y).

Proof. Assume for all types C and Vg,h:C—> A (feg=foh—g=h). Now suppose for
X,y€A that f(x)=f(y). Construct function x":1—> A: % F>x, and a similar function
y'. Because fox'(#)=f(x)=f(y)=foy'(%) we get Vz:1 fox'(z)=foy'(z). Hence
fox'=fey’. Applying the assumption we get x'=y", and so X=X'(¥)=y'(¥)=y.

o

1.6 The natural number type

One can play the game of doing mathematics without having recourse to a type of
natural numbers, like Bénabou did in his lecture Imperial Logic given at the
Category conference in Louvain-la-Neuve 1987. However, we will need a type of
natural numbers to work with algebras, and therefore we will introduce them here.

A type N and functions 0:1—> N and s: N—> N is a natural number type if the
axioms of Peano hold for them:

1.6.1 The axioms of Peano

@) Vn,meN (s(n)=s(m)-h=m)

(i) VneN (0=s(n)->.L)

(iii) VXSN[0eXA Vn(neX->s(n)eX)->X=NI.

1.6.2 Recursion principle. Let S be atype. Let f:S—>S be a function and let
aeS. Then there is a unique g:N—>S such that

(i) 9(0)=a

(i) VneN g(s(n))=f(g(n))
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This principle can be represented by the diagram:

11_0» N-—=->N

xig g

f .5

The interpretation of the recursion principle in a topos is precisely Lawvere's
categorical definition of a natural number object (cf. [Lawvere 64]).

In the context of toposes the equivalence of the Peano axioms with the recursion
principle is well-known. [Freyd], [Johnstone 77], [Osius] and [Goldblatt] are
sources for categorical proofs. In classical logic the equivalence is older and
belongs to folklore (cf. [Hatcher]). For instance, [Henkin] gives a proof for
classical logic of (=) and credits it to Lorentzen, Hilbert and Bernays.

For sake of completeness and because we will need a similar proof later on, we
have given an elementary intuitionistic proof. We have followed [Osius] to prove

(#), and we have rewritten [Henkin]'s classical proof into an intuitionistic proof of
(=).

1.6.3 Theorem. A triple <N, 0:1—> N, s:IN—> N> satisfies the axioms of Peano if
and only if the recursion principle holds for it.

Proof. () Assume the Peano axioms hold for <N, 0:1—=>N, s: N—> N>. Let <A,
a:1— A, f:A—>A> be another triple.We will construct the unique g: N— A that

makes the recursion diagram commute by approximating graphs on segments of N.
Define:

Segments:={SCSN|0eSA VYneN(s(n)eS—=neS)}
ApproxGraphs={RcNXA | 3SeSegments 3g:5— N

[graph(g)=R A g(0)=a A VneN (s(n)eS—g(s(n))=f(g(n))1}
ext=[NXA]—> [NxAL:R+>{(0,a)} u {(s(n),f(b)) | (n,b)eR}

Claim (a) For Re ApproxGraphs it holds that ext(R)eApproxGraphs.

Claim (b) For R,TeApproxGraphs it holds that
VneN Vb,ceA [((n,b)eRA(n,c)eT)—b=c]

Now define:

G=U{RCSNXA|ReApproxGraphs}.
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Claim (c¢) VneN 3lbeA (n,b)eG.

By the axiom of unique choice and the construction of G it follows that
GeApproxGraphs and is the graph of a function, say, g:N—> A. Hence, g fits in the
diagram of the recursion principle. By induction it follows that it is the unique
function with this property. Hence the recursion principle holds for <N, 0:1—> N,
s:N—> N>, modulo a proof of the claims.

Proof of claim (a). Let Re ApproxGraphs. Using induction, it is easy to see that
ext(R) is a graph, i.e., VneN Vb,ceAl((n,b)eext(R) ~ (n,c)eext(R)) = b=c]. Let
S be the domain of ext(R). Clearly SeSegments. Let g: S —> A be the function
corresponding to the graph. It is not difficult to see that for g it holds that g(0)=a
and VneN (s(n)eS—-g(s(n))=Ff(g(n)).

Therefore ext(R)e ApproxGraphs.

Proof of claim (b). Let R,T be elements of ApproxGraphs.

Suppose for b,ceA it holds that ((0,b)eRA(0,c)eT). Then b=c=a.

Next, suppose that for neN we have Vh,ceA [((n,b)eR A(n,c)eT)—»b=c]. Assume
for some b,ceA we have [((s(n),b)eRA(s(n),c)eT)-b=c]. Since R and T belong
to ApproxGraphs it follows that there are b',c'e A such that (n,b')eR and (n,c')eT.
But then b'=c' and hence b=c.

By induction we get VneN Vb,ceA [((n,b)eRA(n,c)eT)-b=cl.

Proof of claim (c¢). By induction it follows that for each neN there exists an R in
ApproxGraphs such that n belongs to the domain of R. Hence there is a be A such
that (n,b)eREG. By claim (b) there is only one such b in A.

(«) Assume the recursion principle holds for <N, 0:1—> N, s: N —> N>. First we
will construct the predecessor function p: N — N satisfying p(0)=0 and
VneNp(s(n))=n. Then we prove the three axioms of Peano.

Consider the functions:

<0,0>:1—> NxN:%H>(0,0),
F:NXN—> NxN:(nh,m)> (m,s(m)).

Because of the recursion principle there is a unique function h: N—> NxN making
the following diagram commute:
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1 0 s

— N—2—- N

o\ ]
NxN —— NxN

It follows by the product axioms of type theory that h is of the form <p,q> where
P,4:IN—> N satisfy:

p(0)=0 and for each meN p(s(m))=q(m)
q(0)=0 and for each meN q(s(m))=s(q(m)).

By the recursion principle q is the identity on N. Hence, for meN we have
p(s(m))=m.
Therefore p is the desired predecessor function.

The proof of Peano's axioms now has become easy:

(i) Assume that for some neN we have s(n)=s(m). Then n=p(s(n))=p(s(m))=m
by the second property of the predecessor p. Hence ¥n,meN (s(n)=s(m)—n=m).

(i) Assume that for some neN we have s(n)=0. Then n=p(s(n))=p(0)=0.
Hence s(0)=s(n)=0. By the recursion principle there is now a unique function
g:N—> Q such that the following diagram commutes.

1[—0—> N —S . N
\ g lg
Q —_— )
This implies:
T = =1
= g(s(0))
= ¢(0)
= L.

Since we know that T holds we get L. Le., we have shown that
VnelN (s(n)=0 - 1).

(iii)) Assume that for some XN we have OeX and Vn(neX-s(n)eX). By the
recursion principle there is a unique (epi-) arrow g: N—>X that makes the following
diagram commute.
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192, N—S . N

N ){g ;{g

If we compose it with the embedding i:X >> N, we again get a commuting diagram.

=

7t

2 e K s

=2

The recursion principle now tells us that ieg is the identity on N. Hence g:IN—X is
also mono. Therefore X=N. And so YXSN [0€X A Vn(neX->s(n)eX)=>X=NI.
O

We need the recursion principle to add all kind of useful notions to the language of
type theory, such as addition and multiplication on natural numbers, finite sums:
2.0¢i¢n@j and finite products Mg ¢na;. For example:

1.6.4 Lemma. In typed intuitionistic set theory with natural numbers there exists a
unique Z:N—> ((N—>N)—> N) such that

@ 2(0)(f)=f(0)

i) Z(n+DE)=Z(n)(F)+f(n+1)

With help of natural numbers one can construct a type FinSeq(X) containing all
finite sequences of elements of a given set X. We will represent a finite sequence
ag,-..,an~-1 by a function N —> XLI1 together with a number n indicating the length of
the sequence. On input O, 1,..., {n-1), n,... the function will give output ag, ..., an-
1, ¥, ¥,...

1.6.5 Definition. Let X be a set.
(i) FinSeq(X)={(n,f): Nx(N—>XU1)| Vm<nf(m)eX ~Vm2nf(mlel}.
(i) We define concatenation on FinSeq(X) as:
o:FinSeq(X)xFinSeq(X)—> FinSeq(X): ((n,f),(m,g)) > (n+m,f.g), where
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f(k)  ifksn

fog:lN-)XLlﬂ:kH{g(k_n) F o

(Note that we have this definition by cases, because the axioms of Peano imply that
equality of natural numbers is decidable.)
(iii) The empty sequence, of course, is £:=(0,IN —=>XLI1:n> #).

Even if we don't have a natural number type around, there still is a form of
induction possible. With every diagram of the form

f

1—2 A >A
(such diagrams are called Peano-structures in [Barr and Wells]) corresponds a
principle of, let us say, <A,f,a>-induction.

Define M=N{XcAlaeX A f(X)SX}. Then aeM and f(M)SM, and therefore
M=f(M)u{a}. Observe that M is the smallest fixed point of the operation
P(A)—= P(A):X—f(X)u{a}. From this follows:

1.6.6 Lemma (principle of <A,f,a>-induction) Let A,a,f and M be as above, then
VBEM (aeB A VheM[beB-f(b)eB]-B=M).

]

The following result belongs to the folklore of topos theory (cf. [Johnstone 77]),
but we are able to give a direct and constructive proof of the type theoretic
companion of the categorical version for which only an indirect, categorical proof
seems to exist by [Johnstone 77].

1.6.7 Theorem. (Mikkelsen, cf. [Johnstone 77].) Let E be a topos and let mon(E)
be the subcategory of monoids in E. Then E has a natural number object N if and
only if the forgetful functor U:mon(E)—>E has a left adjoint F.

1.6.8 Theorem.; In the type theory H there is a type satisfying the axioms of Peano
if and only if there are free monoids in H, i.e., if for each type A and each subtype
B:PA there is a type C and monoid <FBePC,-eFBxFB — FB,eeFB> and function
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ng:B—>FB such that for any monoid <M.»,e> and function f:B —> M there is a
unique monoid morphism g: FB—> M such that the following diagram commutes:
Ns
B————FB

9

T trwrnns

Proof of theorem 1.6.8. (only if) Assume <N, 0,s> satisfies Peano's axioms. Let A
be a type of H. Let FA be the type FinSeq(A) of all finite sequences of elements of
A. If for a monoid <M,e,e> there is a function ¢§:A—> M, then ¢ can be uniquely
extended to

£ ifn=0
$‘FA*”:‘"*"’H{zomtb(f(i)) otherwise
From a meta point of view this construction gives us the left adjoint of the forgetful
functor.,
(if) Assume free monoids exist. Consider the free monoid<F 1,0, &> generated by 1,
where F1 are the words based on alphabet {%},  is concatenation and ¢ denotes the
empty word. Of course, F1 together with 0:1—>F1:% ¢ and s:F1—>F1:
WH>We % ought to be a natural number type, such that for any Peano structure
A,af in E we have the following diagram:

A—— A
f (diagram I)

The idea of this part of the proof is to construct the following monoid<M,m,a> in A
without mentioning natural numbers: {a,f(a), (a), ..} with unit a and multiplication
fh(a)efM(a)= fN*M(a). Then one has to invoke the universal property of the free
monoid F1.

Define M=N{XS AlaeXA VbeX f(b)eX}. The construction of m:MxM—>M is more
involved. The idea is to approximate m by functions on growing domains, first on
{a}, then on {a,f(a)}, {a,f(a),f(f(a))} and so on.

Let us call a relation REMxMxM good if
IXEMIAM: XXX M (aeX A
dbeX (FXu{a}=Xu{f(b)}) A
R=graph(m) A
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Ve, deX (m(c,d)=m(d,c))A

VceX (m(a,c)=c) A

Yc,d,eeX [m(d,e)eXam(c,d)eX->m(c,m(d,e))=m(m(c,d),e)] ~
Ve, deX [f(d)eX—m(c,f(d))=f(m(c,d)) ] A

Vc,d,eeX [f(d)eXAf(e)eX-[mlc,f(d))=f(e)=m(c,d)=e]]).

Note that {(a,a,a)} is a good graph. From good graphs we can construct others.

Define ()gy;: P(MXMxM)— P(MxMxM):R— R u{(f(c),f(d),f(f(e)))|(c,d,e)eR}
u{(c,f(d),f(e))|(c,d,e)eR}
u{(f(c),d,f(e))|(c,d,e)eR}.

Now we continue with the construction, skipping the proofs of a number of claims,
until we have reached the end of the construction.

Claim (a): If REMxMxM is a good graph, then so is Rgyy.

Define B=={RSMxMxM|R is good}. Then <B,ext,{(a,a,a)}> is a Peano-structure
for which we have a principle of induction on
Approx=N{ZCB|{(a,a,a)}eZ ~EXt(Z)C3}.

Claim (b): VR,SeApprox (RES+SCSR).
Finally we define G:=U{REMxMxM|ReApprox}.

Claim (c): Vc,deM 3leeM (c,d,e)€G.

It follows from the definition of G and the axiom of unique choice that G is the
good graph of a function m:MxM—>M. Hence <M,m,a> is a monoid, and we can
construct the following diagram:

— A

(diagram II)

Since s00:1—>F1 is the insertion of the generator * into F1 we get a unique
monoid morphism g:F1—>M such that gosoO=foa. Hence g(#)=f(a). Clearly also
go0=a.

For weF1 it holds that g(s(w)) = g(wx*)
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= m(g(w),g(*))
m(g(w),f(a)
f(m(g(w),a)
= f(g(w)).

And so we see that gos=fog. That is, diagram II commutes. The composition
fog:F 1—> A is the required missing arrow h in the diagram L. Uniqueness of h is
trivial, suppose there is another k:F1—> A that makes diagram I commute. If we
perform the same monoid construction on Ank(F1), instead of A, we get the same
M. Hence K factors through i. It follows that k is identical to h.

Thus we see that <F1,e,¢e> is a natural number type, provided we have proved the
claims (a), (b) and (c).

Proof of claim (a). Suppose RSMxMxM is good. Then there is XM and beX such
that {a}uf(X)=Xu{f(b)}, and there is m: XxX—> M such that R=graph(m). Clearly,
Rext 18 represented by a function mgyy: Xy XXext —> M, where Xext= XU{f(b)}, and
Mgyt is defined as follows:

(c,d)>m(c,d) for ceX and deX
(f(b),c)=>f(m(b,c)) for ceX

(c,f(b))> f(m(c,b)) forceX
(f(b),F (b)) F(f(m(b,b)))

Mext: XextXXext — M:

Then {a}uf(Xgyy) = {a}Uf(XU{f(b)})
{aluf (X)u{f(f(b))}
Xu{f(b)yu{f(f(b))}
XextU{F(E(B)}.

Itis straightforward to check the other properties of goodness for Rext:

Proof of claim (b). This follows with a double <B,ext, {(a,a,a)}>-induction.
Clearly, for {(a,a,a)} we have
VSeApprox [{(a,a,a)}=SvSE{(a,a,a)}].
So assume for ReB we know already
VSeApprox (RES+SCR).
Then for S={(a,a,a)} we have Ry, {(a,3,a)}v{(a,a,@)} SRy;.
If S=Tgyt for TeApprox we have RETVTCR, hence Rgy S5+ SESReyt-
If we apply induction we obtain
VSeAPProxX (Rey €SV SESRyyt).
And so, with a second appeal to induction we get
VR,SeApprox (RESvSER).
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Proof of claim (c). A proof with double <A,f,a>-induction will show
Vc,deM3eeM (c,d,e)eG. Let c=d=a. Then (a,a,a)eG as {(a,a,a)}eApprox.

Let c=a, and assume for deM we have (c,d,e)eG for some eeM. Then there is
good ReApprox such that (c,d,e)eR. Let m:XxX—> M be the representing function
of R, then m(c,d)=e, hence mg, (f(c),d)=F(m(c,d))=f(e). Le., (f(c),d.f(e))eRgyt,
which is another good graph in Approx. Hence (f(c),d,f(e))eG.

Assume now that for ceM we have proved that for all deM there is an eeM such that
(c,d,e)eG. In a similar fashion as in the former step one proves that the same is true
for f(c).

Uniqueness follows from claim (b). Assume (¢c,d,e)eG and (c,d,e")eG. That is for
some R and R’ we have (c,d,e)eR and (c,d,e')eR'. As RER' or R'CR it follows that
(c,d,e")eR or (c,d,e)eR’. In both cases we get e=e".

Proof of theorem 1.6.7.

(=) If E has a natural number object, then in the internal language Lg of the topos
we have a type for natural numbers with which we can perform the free monoid
construction on any type of L, i.e., any object of E. By an appeal to the slogan
"description holds in a topos” (1.5.8.ii) we see that the interpretation of the subtype
constructed by the free monoid construction is a free monoid in the topos E.

(«) If B is an object of E and FB the corresponding free monoid in E, then also in
the internal type theory of the topos the type FB is the free monoid corresponding to
B. In the internal logic F1 is the natural number type. Again with an appeal to
"description holds in a topos” we get that F1 is a natural number object in the topos
E.

O
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Chapter 2

Truth Values,
Topologies and Sheaves

In this and later chapters we work inside some type theory H in a rather informal
way. The proofs we will give are presented in a loose set-theory-like formalism, but
can be formalized entirely in the rigid language of type theory.

We will give an entirely internal treatment of a number of crucial notions from
elementary topos theory: Lawvere-Tierney topologies on the type of truth values Q,
Grothendieck topologies on ), dense and closed subtypes and sheaves. Most
results belong to topos theory, and, for instance, can be found in [Fourman and
Scott].

The internal treatment of Grothendieck topologies appears to be new, but is implicit
in [Johnstone 77]. The Grothendieck topologies on () form themselves a complete
Heyting algebra whose operations (join, meet and implication) can be naturally and
explicitly described. A corollary of this result is the well-known fact that the type of
Lawvere-Tierney topologies on Q is a complete Heyting algebra.

Internal proofs do not necessarily follow the same strategy as the external
categorical proofs. As an example we present an internal proof of the otherwise
well-known fact that Q) jis a sheaf.

2.1 The object of truth values

In type theory Q) is the object of truth values. The (higher order) properties of Q)
reflect the (higher order) propositional fragment of its type theory. On () we have a
lattice structure: take - as partial order < on Q, A~ as finite meet and
V:iP(Q)—> Q:2>(Jwes 0) as arbitrary join.

One easily proves that Q) is complete lattice satisfying the infinite distributive law:

OAVI=V{woAd|deZ}, forall we) and ScO.

In general such lattices are called complete Heyting algebras. Note that logical
implication - now has a double function in the complete Heyting algebra O: it
serves both as order relation and lattice implication.
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The completeness of Q) can be shown in two ways:

(1) in higher order propositional calculus

(if) a intuitionistic set theoretic way, via the isomorphism of Q) with P1, given by
the following functions:

F-QO—=2Plo—=>{*xel|w}
and
G:P1— Q:R— %eR.

<P1,&,n,U> is easily seen to be complete Heyting algebra. Clearly for 2€ Q) we
have

G(U{F(0)C1]weZ}) = *eU{F(0)S1]lweZ} = Jues *eF(0) = Joel .

The prime example in classical mathematics of a complete Heyting algebra is the set
of opens of a topological space. For a continuous map f:X—>Y between topological
spaces it holds that the inverse image f~1: 0(Y)— O(X) preserves finite meets and
arbitrary supremas.

Thus, one is led to the idea that a good notion of morphism between complete
Heyting algebras is a ~,V-preserving function. The category of complete Heyting
algebras and ~,V-preserving functions is called the category of frames; its dual is
called the category of locales (cf. [Johnstone 82)).

Related to the continuous map f:X—Y is also another ~,V-preserving function
fs: O(X)—> O(Y): U int((F(UC))€), which can seen as the right adjoint of f~1. The
combination fyf~1:0(Y)~> O(Y) has a number of interesting properties (these
properties are well known, for instance, one can find details in [Fourman and
Scott]).

For U,V opens in Y one has:
) fef-lY)=Y
(i) UCSf f-IWU)
(1) fuf - WUI=F,f~1U)
(iv) faf-IUNVI=F 4 f-1(UINF4F-1(V)

In the history of topos theory it has turned out that the notion of an endofunction
from a complete Heyting algebra in itself satisfying these four properties is very
fruitful. For instance, the reflective subcategories of a topos are in one-one
correspondence with the such endofunctions on its object of truthvalues.

In the literature there exist different names for these functions. In the context of
toposes they are usually called topologies. Working with complete Heyting
algebra’s [Fourman and Scott] give them the name J-operators. In the general
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context of locales [Johnstone 82] names them nuclei, whereas [J oyal and Tierney]
call them local operators.

The name topology is motivated by the observation that every closure operation
J:PX—> PX satisfying the four properties determines a topology on X.

It is one of the surprising impacts of topos theory on logic that from this notion of
topology an important tool -associated sheaf functor- can be built, which provides a
uniform approach to all kind of important forcing technics and translations in logic.
Well-known forcing technics in logic correspond with associated sheaf functors in
particular toposes (cf. [Tierney]).

On the level of type theory the associated sheaf functor relates to Friedman and
Godel translations. This will be the subject of chapter 6. In this chapter we will give

a systematic type theoretical treatment of topologies and associated sheaf construc-
tions.

Notationally we will treat elements of the type Q—> Q as unary modal operators on
Q, that bind stronger than any other logical connective.

2.2 Topologies

2.2.1 Definition A (Lawvere-Tierney) topology on Q is a (internal) function
10— Q such that

@) jT=7
(i) VoeeQ jjo=ju
(i) V1,026Q j(01A02)=(jo1A jo2)

Or, equivalently, the following diagrams commute:

1—Q Qw0 QxQ—"*0
\lj \11 ijj 11
Q Q Qx Q—=—=>0

® (ii) (iii)

2.2.2 Examples.
The following are topologies (for more examples see [Fourman and Scott]):
1) d:Q—>0:e> e (the minimal topology)
(i) jmax:Q—>Q:0H> T (the maximal topology)
(i) == Q—>Q:0H> --w (the double negation topology)
(iv) jp:Q—=>0:0>pvoe for peQ (the closed topology, e.g. cf. [Johnstone 77])
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(V) P:Q—=>Q:0>p-w for peQ (the open topology, e.g. cf. [Johnstone 77])

In the context of the topos of Kripke models on a partial order P of possible worlds
it makes sense to read ——¢ as "whatever happens in the future we will always keep
the possibility to prove ¢." Note, that this is stronger than "¢ ought to happen" and
weaker than "it is possible that ¢ happens,” which are much studied modal
operators in modal logic. Lawvere has suggested a geometric reading of jo: "it is
locally the case that ¢ holds."

The next lemma describes the interaction of topologies with logical connectives.

2.2.3 Lemma.

) VYVoeQ (0-jo)

(i) Vo026 [[(01202)-(jo1-joo)]
(i) Vo1,026Q [(jo1=jos)e (01 jor)]
(iv) YVoeQ (mju-j-0)

(V) V01,026Q [(jorvjor)=jerv0s)]
(vi) V$:AQ[jVaeA d(a)- VaeA jo(a)]
(vii) V¢:AQ[JaeA jd(a)—jIacA ¢(a)]

For some topologies a property stronger than (ii) holds:

(Vi) V©1,02€6Q [=~(01202) 0 (a~w > ==05)]
(ix) Vonwen [Ple1m02) o (Poi=jPwo)]

(x) The following are equivalent
(@ jL-1
(b) VoeeQ (mjoe j-n)
€ VYVoeQ (joo--0)

Proof.

Straightforward. For instance, an informal proof of (i) is: suppose for ve) we
have that  holds. But then w=T, and so jo= jT=T. Hence jo holds. Thus we
have shown w—jo for we.

Or, a bit more formally in the style of a natural deduction argument:
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'3 T
T 0->T  jT=T T
0=T T
jo
0= jo
VoeQ(o-jo)

O

There are equivalent formulations of the notion ‘topology’, one that says that a
topology is increasing, idempotent and order preserving, and two others that are
closely related to the definition of Grothendieck topology, that we will introduce in
(2.2.7).

Note, that because - is both the order ¢ and the implication = of the complete
Heyting algebra 0, the following two expressions for a complete Heyting algebra

V01,0260 (01802) - (jo1$jo o)
V01,0260 (012 02)<(jo1= juso)

are both interpreted in Q) by

V©1,02€Q (012 02) > (jo1- joo).

2.2.4 Lemma. The following are equivalent for a function a—->a:
@ jQ—0Q isatopology

(i) j:Q— O satisfies the conditions for a closure / local operator on () (cf.
[Joyal and Tierney]):

(a) YoeQ v-jo

(b) YueQ jjo-jo

© Yo,02eQ (01~ 02)>(jo- jug)

(iii) J:Q—> Q satisfies the internal conditions for a Grothendieck topology:
@ jT=T
(©) YVoieQ (jo1-» Vo6 Q0= jos)=jos])

(iv) j:Q—> Q satisfies conditions related to the notion of Gabriel-Grothendieck
topology:

® jT=T

(8) V0ieQ (ju1- YVo2eQ (01 j(01Aw2))= jos])
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Proof. (i)= (ii) has already been proved in the preceding lemma (2.2.3).

(ii)= (iii) We only have to show (). Assume jo1 and 01— jo, for v, w2€0.
Then joi—»jjo2 by (c) and so jo1-jws by (b). Hence we get joo. Ergo (e)
holds.

(iii)=> (iv) We prove (g). First we note that (e) together with the equivalence of (a)
and (d) implies (b). Assume for w1 Q) such that jw1, and assume for woeQ) that
©1=j(o1Aa®2) holds. Then jwi-jjlwiawso) by (e). Hence, we can conclude
J(w1A®2). Again applying (e) we derive joi. And so,we see that (g) follows from

(1ii).

(iv)= (ii) First (a) follows by (f). Again, (g) and the fact (a)& (f) imply (b).
Remains (c) which can be derived from (g) as follows. Assume w->w2 and jwq for
w0, 02€0. If oy holds then we get w5 and thus A wo. Hence 0= j(w1Aaw2), and
we conclude joo by (g).

(i)= (i) The only interesting case to show is that for 01,2 in 3 we have
JwiAv2) o (joiajur).

() Since for i=1,2 w1 w2->0; we get jlw1Aa®2) > joi. Hence
J(wAw2)>(jorajws).

(«) This requires more work. Suppose we have shown:

(h) Voi,02eQ [j(01202)-(jo1- jo)].

With help of (h) we can prove («).

For w,02€Q we argue: wa—(01-(01A02)) and (b) imply
jo2= (o> (0An2)).

So, joiAjwo implies
joiajlo»(01A02)).

Then (h) gives us j(w)Aw2). Therefore
(joiAjo2)=j(w1A®s).

It remains to prove (h) from (ii). For w;,02€Q) we know
(012 02)=(joi—>jws)

by (¢). Hence by common intuitionistic propositional logic:
jorr((o»w2)->jul).

Again by application of (c) we get
jos (jlopo)=jjus),

and so we have
(o= 02)-(jo1»jo))

by logic and (b). And so we conclude (h).
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Define the type TOP={j:Q—>Qlj is a Lawvere-Tierney topology}. We have
seen that Q) is a locale. In classical mathematics as well as in intuitionistic
mathematics it is well-known that the set of topologies on a locale forms a locale
(cf. [Dowker and Papert], [Fourman and Scott], [Johnstone 82], or [Joyal and
Tierney].) We define cHa operations on TOP as follows, slightly different from
[Johnstone 82] and [Fourman and Scott]:

@ Jisja=VeeQ jlosjro
i) T=jma:0>T
(i) L=idn:or o
(iv) Ajel ji= 0P Yiel jio
(V) Viel ji= 0> V]eTOP [(Viel jisj)—jol, or A{jeTOP| Viel j2ji}
(VD) ji=jo=0F> VoeQ [(0-0)-(jio>jr0)]

We observe the following useful equivalence
[Viel j°<jil o VjeTOP [( Viel jisp)~jol
that we can prove as follows:

(&) Assume for we() that Viel jo<ji. Suppose for jeTOP that Viel Ji¢j. Then we
have to prove jo. Now j9<j; implies in particular that je(jw)gji(jw), that is
(0= jw)-ji(jo). Hence Viel ji(jo). The assumption Viel ji<j can be rewritten as
VoeQ Viel [ji(o)-j(o)]. Thus we get j(jw), and so jo.

(-) It is easy to see that for all iel ji(w) gives Viel jo<ji, ie.,

Viel VoeQl [(0>0)->ji(o)].
Now, suppose ji(w) and assume (w-o) for iel and ©,c€Q . Then (jijw = jio)
follows, and so we get jio by modus ponens.

2.2.5 Theorem. The type TOP of Lawvere-Tierney topologies on Q, is a locale.

Proof. Either check one of the afore mentioned references or give a direct proof.
The latter is rather simple compared with the more general case that is treated in the
references: the topologies on an arbitrary locale Q) form a cHa. In our particular case
of the object of truth values matters simplify. The difficult part is always to prove
that the following part of the infinite distributive law:
(JaViel §i) € Viel (jaji).
We argue as follows:
(jAaViel ji)®) > (joAVig jiw)
- joA Viel jogj;
- Viel (joajosj)
- Viel (joAVoeQ [(0-0)-jio])
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- Viel VoeQ (joal(wo0)>jicD
- Viel VoeQ [(w>a)>(joAjio)]
- Viel Voe) [(0—»0)>(jajd(a)]
- Viel jos(jAji)
- Viel (jAaji) (@)

We can interpret this result in elementary toposes. Let E be a topos with arbitrary
disjoint unions of 1, and HE the corresponding type theory. In Hg we can prove that
TOP is a locale. Externally this means for E that there is an object TOP together
with some morphisms that is a locale in E. The global elements (morphisms from
1—>TOP) of the object TOP correspond with the Lawvere-Tierney topologies of
the topos E. Hence we get as corollary:

2.2.6 Corollary. The Lawvere-Tierney topologies of an elementary topos with
arbitrary disjoint unions of 1 (that is, in particular, the Lawvere-Tiemey topologies
of any topos over Sets) form a locale.

Proof. The arbitrary disjoint unions are needed to get an internal copy of an external
given set | as an [-indexed disjoint union of 1.
0

The notion of Grothendieck topology is related to the Lawvere-Tierney topologies.

Grothendieck topologies on a category C are usually introduced pointwise: for each
object U a set of covering sieves is specified, such that some conditions are fulfilled
(see for instance cf. [Johnstone 77]). In the topos SetsC°P this gives rise to
corresponding Lawvere-Tierney topologies on Q. And the definition of the latter
can be internalized in the general case of elementary toposes. But then there exist an
internal definition of the notion of Grothendieck topology: a subobject J of Q
classified by a topology j: O —> Q. Or equivalently, such a subobject J ought to
satisfy the conditions:

1) TeJ
(i) VYornw2eQ [(ojavg)edeo (wiedawred)]
(i) Ve [wedo (wed)el].

However, the interpretation (cf. [Goldblatt] or [Johnstone 77]) of these conditions
in the topos SetsC°P bears no prima facie resemblance to the usual definition of a
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Grothendieck topology. It can be proven to be equivalent with ths standard
definition. However, it is more natural to take another equivalent formulation of
Lawvere-Tierney topology, of which the corresponding subobject without much
calculations satisfies conditions that interpreted in SetsC°P immediately give the
usual definition of Grothendieck topology.

2.2.7 Definition. A Grothendieck topology on Q is a subobject JS Q, such that
(i) Ted
(i) Voied Vo2eQ [(012(026J))>(02eJd)]

from this it follows that

(i) Vo,e2e0 [(0»02)-(0ied->0ed)].
(v) Vone2ed [(oia02)ede(0iedanreld)].

2.2.8 Lemma. For j;Q—> 0O and J€Q, such that J=={weQ | jo} is the subtype of
() characterized by j, the following are equivalent:

@ jQ—>Q is Lawvere-Tierney topology,

(i) J<Q is a Grothendieck topology.

Proof.
Trivial. The properties of (2.2.7) are equivalent to (2.2.4.iii) by writing weJ
instead of jw.

0

For sake of completeness we mention another class of subobjects of Q that
frequently occurs in literature, cf. [Fourman and Scott], [Johnstone 82] and [Joyal
and Tierney].
Given a topology j:Q— Q, the {veQ | w= jo} is a quotient or sublocale of Q) (cf.
[Fourman and Scott] or [Joyal and Tierney]. In [Joyal and Tierney] one finds a
characterization of such quotients of the object of truth values O
quotients of O correspond with subsets Q€ Q such that

@i TeQ

(i) Vo060 [(01€QAw26Q)3(01A00)eQ].
(i) Yo1eQVo2eQ (01— wo)edl.
Again there is a one-one correspondence between quotients and Lawvere-Tierney
topologies. Note that this correspondence is order reversing.

Now consider the type 6TOP={JSQ|J is a Grothendieck topology}.
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Define:
(1) Jisda=Jdi1€ds
(il) Jiade=dinds
(i) Vigdi=N{JeGTOP| Viel JjsJ}
@iv) J1=2Jo=V{JeGTOP[JAJ15J5}
(V) Jtop=Q
(Vi) Jpottom=1{T}.

2.2.9 Theorem. The type GTOP of Grothendieck topologies on () is a locale.

Proof. Either one gives a direct proof, or one shows that the morphisms
(=)=G6TOP—=TOP:UP>(Q—Q:0H> wed)
(=)y=TOP—>GTOP: j—=>{weQ | T=jw}
are inverses to each other, and preserve the lattice structure, whence GTOP is a
locale because TOP is one, cf. (2.2.5).

o

As a corollary we will derive that dense topologies (cf. [Johnstone 82]) also form a
locale .

2.2.10 Definition.
(i) A Lawvere-Tierney topology j: QO — Q is dense if jL=1.
(i) A Grothendieck topology is dense if =(LeJ).

Hence a Lawvere-Tierney topology is dense if and only if the corresponding
Grothendieck topology is dense.
Note also that j: Q —> () is dense if and only if js——, i.e., VoeQ jo-==o0.
It is easy to see that arbitrary meets of inhabited families of dense topologies are
dense. Similar, the join in TOP of an inhabited family (ji)ie| of dense topologies is
again dense:
VietJd (L) = Vigjo<ji

= Viel VoeQl(L-0)-ji(o)]

- Vi VoeQ ji(o)

= Viel Ji(L)

- Viel L

- 1. (I is inhabited)
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If we have a Grothendieck topology J in the topos SetsC* then:
SetLP=J is dense
if and only if
J contains no empty covers as a Grothendieck topology on C
(for a definition of a Grothendieck topology on C, cf. p. 13 in [Johnstone 77]).

2.2.11 Corollary. Let DTOP and DGTOP be the subtypes of respectively TOP and
GTOP containing the dense topologies. Then:
(-)j and (=) restrict to locale isomorphisms between DTOP and DGTOP.

Proof.
Only the definition of the locale operations on DTOP is tricky. Note that -~ is top
element of DTOP.

TEO— 00— -

1E0=20:0F0 (=0A-=0)

Ny 50— Q109> 2me Al fio

Vi §i:0= Q:0F> a0 AV, jio
One can perform the necessary calculations to show that DTOP is a complete
Heyting algebra.
Or note that the function d: TOP—> TOP defined by

d(): Q=00 ~=0Ajo
is a multiplicative operator (i.e., d(ji~j2)=d(j;) ~d(j2)) on the complete Heyting
algebra TOP, and the fixed points of d are precisely the dense topologies of DTOP,
and so we get by lemma (2.13) of [Fourman and Scott] that DTOP is a complete
Heyting algebra.

O

Grothendieck topologies provide another way of understanding open topologies (cf.
(2.2.2). Open topologies can be characterized as Lawvere-Tierney topologies such
that the corresponding Grothendieck topology contains a smallest element. This old
result of Tierney gets a trivial constructive proof.

2.2.12 Lemma. (Tierney, cf. [Johnstone 77]).
(i) The following are equivalent for a topology j: Q— Q:
(@) IpeQ Vel ((jpajo)=>(p-w))
(b) IpeQ) j=jp
(i1) The following are equivalent for a Grothendieck topology J:
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(c) AlpedVoed (p-w)
(d) FperJI=(jP)y

Proof. We prove (ii). First observe that () y={weQ | fo}={weQ|p->o}
(c)=(d). Assume there exist a unique peJ such that for all weJ we have p—-®. Then
JS(P)y. If we have we(jP)y, then p—w. But peJ, so weJ. Hence (d) holds.
(d)=(c). Assume (d) holds, that is we have some pe) such that J={we Ip—~w}.
Then trivially IpeJ VweJ (p—w). Uniqueness follows immediately: if we have
p,qeJ such that Veed (p»w) and Voed (=), then per q, i.e., p=q. Hence we
have (c).

O

In the language of type theory it is easy to describe the smallest Grothendieck
topology Jp containing a certain subobject D& Q). For a categorical construction see
for instance [Johnstone 77].

2.2.13 Definition.
(i) For a subobject D of Q) define
Jo=N{JSQI|J is a Grothendieck topology A DSJ}.
(ii) For a function k: O —> Q) define
kKQ=Q:0>[VjeTOP ksj-jw)l

2.2.14 Lemma.
(@) Jp is the smallest Grothendieck topology containing D, for all DS Q).
(i) jk is the smallest Lawvere-Tierney topology larger than k, for all k: ) —> Q).

Proof. Trivial.

2.3 Sheaves and related notions

We now give a number of useful definitions related to the concept of sheaf. We
formulate the definitions in type theory, in contrast to the usual categorical way with
diagrams of functions. It is not difficult to prove in intuitionistic type theory that
these two formulations are equivalent. All of this is more or less explicit in
[Fourman and Scott], the difference lies in the formal system we use. Fourman and
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Scott use a higher order logic with an existence predicate E and description operator
R

2.3.1 Definition. Let A be a type, m:B>> A a mono and j: Q — Q a Lawvere-
Tierney topology.
() The j-closure Bi of B in A is the subtype {acA| jabeB (m(b)=a)}
@) B is (j-)closed if Bi=A.
(i) m:B>> A is (j-)dense if VaeA jabeB (m(b)=a).
(iv) Ais (j-)separated if Va,beA [j(a=b)-a=b].
(V) Aisa(j-)sheaf if VXEA [jIlacAaeX - JlacA j(aeX)].

2.3.2 Lemma. Let A be atype and B a subtype of A.
(i) Blis the subobject of A classified by jedgca,
where dpca: A= Q:a> (aeB).
(ii) B is closed if and only if m:B—>Bi s an iso.
(iii) B is dense if and only if Bi=A.
(iv) A is separated if and only if for any dense mono m:B > C and any
f,g:C— A it holds that whenever fm=gm then f=g.
(v) A is asheaf if and only if for any dense mono m:B >>C and any f:B—A
there is a unique g: C—> A such that gm=f.

Proof.
(i) {aeAljodppcal(a)=T} = {acAlj(IbeB m(b)=a)=T}
= {aeAlj3beB m(b)=a}
= Bi.

(i) m:B—>Blisaniso < VaeBiabeBm(b)=a
& VaeA (jabeBm(b)=a-3beB m(b)=a)

(ii) Bil=A ¢ VaeA (aeBieacA)
© VaeAl(jdbeB m(b)=a)eacA]
& VaeA j3beB m(b)=a.

(iv) (=) Suppose A is separated. Consider an arbitrary dense mono m:B > C
and arbitrary functions f,g:C—> A. Suppose fm=gm.

For an a€A it now holds that: f(m(a))=g(m(a)), and since B is dense in C we get
j(f(a)=g(a)). Hence, using separatedness of A we get f(a)=g(a). Thus f=g.

(¢) Suppose for any dense mono m:B>> C and any f,g:C—> A it holds that
whenever fm=gm then f=g. And suppose for a,beA we have ja=b. Then the mono
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m:{a}<> {a,b} is dense. Now consider the morphisms f:{a,b}—> A:c+>¢ and
g:{a,b} —> A:cr>a. Since m(f(a))=a=m(g(a)) we get mf=mg and by assumption
f=g. But then a=g(b)=f(b)=b. Thus A is separated.

(v) (=) Suppose A is a sheaf, For each dense mono m:B > C and each function
f:B—> A, we have to show the unique existence of a function g:C —> A such that
gm=f,

First we prove existence. Define G:={(c,a)eCxA [j3beB (m(b)=cAf(b)=a)}.

For ceC consider X={a€A| 3beB (m(b)=cAf(b)=a)}. Since jI!xeA xeX and A is
a sheaf, we get 3!xeA jxeX. Thus we see VceC JlacA (c,a)eG. Now apply the
axiom of unique choice to get g:C—> A.

Next, to prove unicity it suffices to show that the sheaf A is separated. This is easy:
suppose for a,be A we have ja=b. Consider X={a,b}. Clearly jI!xe A xeX. Hence
JxeA jxeX. Therefor a=b.

(«) Suppose for any dense mono m: B >> C and any f:B— A there is a
unique g: C—> A such that gem=f. Let XS A be such that jalxe A xeX.
Clearly B={YSA| 3lyeA (yeY AX=Y)} is a dense subset of C={X}.
With an appeal to the axiom of unique choice we get a function f:B—> A:{a}>a.
By the assumption we obtain g:C—> A. Since jXeB we get jg(X)eX.
Hence, whenever jilaeA aeX holds, we get JacA jaeXx.

It remains to show the uniqueness of a in A with the property jaeX. It suffices to
show that A is separated. To see this, consider for a,beA with ja=b the dense
mono m:{a} > {a,b} together with f:{a}—> A:ar>a. Define g:{a,b} —> A:cF>¢ and
h:{a,b}—> A:c—>a. Clearly gem=f=hom. By the assumption it follows that g=h
and hence a=h.

O

As an illustration we will present a constructive set theoretical proof of the well
known fact in topos theory that for a topos E and topology j: O — Q) in E the object
1, the equalizer of idg and j, is a j-sheaf in E. In [Freyd 72] and [Johnstone 77]
one finds categorical proofs, that essentially are calculations with closure
operations.

2.3.3 Lemma. Qj={0eQ|o=jo} is a j-sheaf.
Proof.

Let XS ). Assume we have a unique element ¢eQ j such that ¢ €X. Define
y=(TeX). Then the following formulas are equivalent: ¢, (¢=T), TeX and .




truth values, topologies and sheaves 37

Hence y=¢. So, Jlwe() joeX— wyeX. Hence, jlweQj weX = j(yeX). However
J(yeX) implies j((TeX)eX) and also JoeQ)j j(weX). Such an o has to be unique,
for suppose we have jwjeX and jooeX, then j(w1=w5) by (*). Hence, joi=jwo,
ie., 01=02.

We have shown that jAlweQjweX->3lweQ; j(weX).

and can that conclude Q; is a sheaf.

The next lemma warns us that in general the object Q is not a j-sheaf.

2.3.4 Lemma. The following are equivalent for arbitrary topology j:Q— O:
(1) Qisa j-sheaf
(ii) Q is j-separated

(i) Voed (jo-w)

iv) Q=Q;
(v) ido=j.

Proof.

(1)=(ii) is trivial.

(i) = (iii) Assume that Q) is j-separated. Then for all we() we have jo=T->0=T,
lLe., jo-o.

(iii)= (i) is trivial, since the definition of j-sheaf trivializes under the assumption
that Ve (jo-w).

(iv) and (v) are just other ways of expressing (iii).

The following lemma will be useful.

2.3.5 Lemma. A closed subset of a sheaf is again a sheaf.

Proof. Let B be a closed subset of the sheaf A. Suppose for XS B that j3lxeB xeX.
Then also j3lxe A xeX. It follows from the fact that A is a sheaf that there is a
unique X€A such that jxeX. Hence jxeB, because XSB. The assumption that B is
closed now implies xeB. Le., 3IxeB jxeX. Therefor B is a sheaf.

0

2.3.6 Corollary. Let A be a sheaf.
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Then Q A is isomorphic with {XSA[X is a j-sheaf}.

Proof.
o = (AT}
{f:A=>QlVaeAf(aeQy
{f: A= Q1 jof = f}
{BcAljaeB e aeB}
{BCAIB is j-closed}

{BSAIB is a j-sheaf}.

R

R

2.3.7 Theorem. Let A be any type.
Then QO A is a sheaf.

Proof. By the previous lemma we know that Q i is isomorphic with {XSA|X is a
j-sheaf}. Now let Y€ Q ;A and assume j3XeQ A XeY. We have to prove
31Xe Q) A jXeY in order to conclude that O {\ is a sheaf. Define

X*¥={xc Al jIXeY xeX}.
Clearly, if there is a unique X in O i such that XeY then X=X*, using the J-
closedness of X. Hence from the assumption j3IXeQ i XeY we can conclude
jX*eY.
That is, we have shown JIXe O A JXeY, as desired.
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Chapter 3

Singletons and
Associated Sheaf Functors

In this section we will present systematically twelve different ways to construct
associated sheaves for a fixed topology j: Q— Q. Our descriptions of the
constructions will be of a type theoretical nature and will encompass the well known
categorical constructions of associated sheaf functors that occur in literature.

Recall that the associated (j-)sheaf for a type A is a (-)sheaf LA together with a
function na: A—> LA such that for each type B and function f: A—> B there is a
unique function g:L A—> B such that fena =g. In diagram:

A—ﬂA_>L_A

B

Two main expositions of topos theory, [Johnstone 77] and [Barr & Wells], present
three different categorical methods to construct associated sheaves.

(i) The simplest construction is the one of Lawvere-Tierney (cf. [Gray], [Freyd],
or [Johnstone 77]): construct LA as the closure of the image of A in (A via the
function { }:A— Q A:a> {a},

(ii) Grothendieck's two-step construction has been extended by [Johnstone 77]
from the context of Grothendieck toposes to elementary toposes.

(iii) The method of [Barr & Wells] consists of the application of one step of the
Grothendieck construction to A/, where axb e j(a=b) for a,beA.

Internal descriptions of the associated sheaf functor have lingered in the folklore of
topos theory. This is - as far as we know - the first systematic internal treatment of
the various constructions of associated sheaves. As a result we obtain some
syntactic variations of these constructions.

(i) [Veit] has given an early, mixed internal - external account of the Lawvere-
Tierney construction.

(i) In the masters thesis of [De Vries] one finds an internal account of an
associated sheaf construction following the Grothendieck construction.
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(iii) [Rosolini] presents an entirely internal one step construction, at first sight
unrelated to both Lawvere-Tierney's and Grothendieck's approach.

(iv) [Dupont & Loiseau] is a very recent example of an almost internal account of
the three categorical constructions. With help of the internal logic they give uniform
descriptions of the constructions, to prove that their constructions are well designed
they mimic the categorical proofs mixing logical and categorical arguments. Their
treatment could benefit from the Fourman-Scott use of the topology as a modal
operator.

3.1 Various notions of singleton

The crucial device in type theory to describe the associated sheaf functors with is the
notion of singleton. In classical mathematics the concept of a singleton subset of A
is well-known:

SCA iscalled a singleton if IlacA a€S.
In intuitionistic mathematics [Lifschitz] and [van Dalen] have introduced an
intuitionistic weakening of this idea for, respectively, the type N of natural numbers
and the type R of Dedekind reals:

ScAiscalled a =—-singleton of A if =—-3lacA aeS for Ae{N,R}.
Since both N and R are ~--separated, an equivalent definition is for Ae{N,R}

SEA is a ~—-singleton of A if ~—3a€A a€S A Va,beA (acS beS—a=h) .

In classical logic there are several equivalent ways of defining singleton, for
instance: a subset SCA is a singleton if

(i) JacAaeS A Va,beA (aeSAbeS—a=h)
(i) JaeAVbeA [(beS—a=b)A(a=b-beS)]

In type theory with a modal operator each logical symbol gives rise to its own
family of variations (logical implication going upwards):
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- jy

T

j(d-oy) IxeA jd VxeA jb

/ N\ | |

j(jo-y)  doy IxeA ¢ jVYxeA d

\ / f [

jo-oy jIxeA ¢ VxeA ¢

It follows that in type theory there is a multitude of singleton notions. It will turn
out to be essential in the construction of the associated sheaf functors, that for a
given notion of singleton we can construct a singleton S, containing a given acA.
From the constructive point of view there are strong and weak forms of contain-
ment. Possible candidates for S, are {a}, {a}i={beAlj(a=b)} and N{SSAIS is a
singleton containing a}. The weakest notion of containing at most one element is
containing locally at most one element, i.e., Va,beA (aeS AbeS— ja=h)). Hence
we will require that S, contains locally at most one element. This requirement
implies that S,< {a}l. We will now systematically list all variations. From the
resulting list with variations we will discard the notions of singleton for which
neither {a}, nor {a}J is a singleton. Taking care of equivalent notions we will end up
with the final list in definition 3.1.3. The impatient reader is advised to go
immediately to (3.1.3).

First we will consider formulas related to 3Ja€A aeS A Va,beA (aeS AbeS—a=h).
This results in the following complete list of possible candidates for the notion of
locally inhabited singleton:

(1) jdaeAaeS A Va,beA (jaeSAj(beS)—»a=h)
(2) jdaeAaeS A jVa,beA (jaeSAjbeS)—»a=h)
(3) jdaeAaeS A Va,beA j(jaeS A jbeS)->a=h)
(4) jlaecAaeS A Va,beA (aeSAjbeS)-a=h)
(5) jdaeAaeS A jVa,beA (aeSj(beS)»a=b)
(6) jlacAaeS A Va,beA j(aeS A j(heS)-a=h)
(7) jdacAaeS A Va,beA (aeSAbeS—a=h)
(8) jlaeAaeS A jVa,beA (aeSAbeS—a=b)
(9) jlaeAaeS A Va,beA j(aeSabeS—a=h)
(10) jlaeAaeS A Va,beA (aeSAbeS—ja=h))

Notation: we will denote by (n)-singletons A subsets of A satisfying the nth
condition.
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Note the vertical linear logical dependence; (1)-(2)-... .

For the first six notions there is no singleton S, of that kind containing a given
element a€A. For example: for (1)-singletons the existence of such Sj's would
imply that the type A is separated, which, of course, does not need to be the case.
This follows from the next lemma.

3.1.1 Lemma.
(i) VaeA3IS,cA[aeSaAS, is a (n)-singleton]
& Va,beA (jla=b)—a=h), for ne{l,4}
(i) VaeAIS,cA[aeSaAS, is a (n)-singleton]
© YaeA jVbeA (jla=b)—a=b), forne{2,5}
(iii) VaeA3S;cAlaeSaAS, is a (n)-singleton]
& Ya,beA j(jla=b)-a=b), for ne{3,6}.

Proof. (i) (=) Assume j(a=b) for a,beA. Then acS, and j(beS),. When S, were a
(1)-singleton or a (4)-singleton, this would imply a=bh.

Hence Va,beA (jla=b)—a=h).

(=) Va,beA (j(a=b)-sa=b) implies that for all ac A the subset {a} is a (1)-
singleton.

(ii) and (iii) are similarly proven.

Before we will treat the case
JacAVbeA [(beS—»a=b) A(a=b—heS)]

in full generality, we first proceed with the singleton notions related to
JaeAVheA (beS e a=b).

Again we consider only notions implying local inhabitedness.

(11) jdaeAVbeA (beSe jla=h))
(12) jJaeA jVbeA (beS e j(a=b))
(13) jIaeAVbeA j(beS o j(a=h))
(14) jlaeAVbeA (j(beS)ea=h)
(15) j3aeA jVbeA (j(beS)ea=b)
(16) jdaeAVbeA j(j(beS)ea=h)
(17) j3aeAVbeA (beSea=bh)
(18) jdaeA jVheA (beSea=h)
(19) jdacAVbeA j(beSea=b)
(20) jlacAVDbeA (j(beS)e ja=h))
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Note that (8)=(17), (9)=(19), (10)=(20),
(11)=(12), (14)=(15), (17)=(18) because j3x j¢ & jIx ¢,
4)=(14), (5)=(15) and (6)=(16)
(11)=(14), (12)=(15) and (13)=(16).
(1D)=(12)=(13)=(20)
(14)=(15)=>(16)=(20)
(A7)=(18)=(19)=(20)

.c3.3.1.2 Lemma.;
(i) VaeA3IS,cAlaeSy;A5; is a (n)-singleton]
« VaeAjVvbeA (j(a=b)—oa=bh), for ne{14,15}
(i) VaeA3IS,SA[aeSaaS, is a (n)-singleton]
« Va,beA j(j(a=h)-a=b), for ne{16}.

Proof. (ii) (<) Va,beA j(j(a=b)->a=b) implies that {a} is a (16)-singleton.
() If for ae A there is S,S A such that both a€S, and S, is a (n)-singleton, then we
can conclude successively

JAbeAVceA j(jceSzeb=0),

jAbeAljb=aA VceA j(ja=ceb=0)],

JVceA j(ja=ceo a=c).
We have shown that

YaeAjVceA j(ja=cea=c),
which is equivalent to

VaeAVbeA j(jla=b)—a=bh).

Hence we can discard the (n)-singletons with 14<n<16.

Finally we only list all variations on JaeA VbeA [(beS—a=b)A(a=b-beS)] for
which either {a} or {a}J are singletons. We group them in blocks of five items.

(21) j3aeAVbeA [(j(beS)»a=b)A(jla=b)-beS)]

(22) jIaeAVbeA [(j(beS)»a=b)Aj(j(a=b)—>beS)]

(23) jlaeAVbeA [(j(beS)->a=b) A(a=b—beS)]

(24) jdacAVbeA [(j(beS)—a=b) A jla=bobeS)]

(25) jdacAVbeA [(j(beS)=a=b) Ala=b->j(beS)] (& 14)

Since (14) does not satisfy VaecA3IS,CA [ae€SaA 5, is a (n)-singleton] we
discard all.
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(26) jdacAVbeA [j(j(beS)—»a=b)A(jla=b)-beS)]

27) j3acAVbeA [j(j(beS)»a=b) A j(jla=b)—beS)]

(28) jJaeAVbeAl[j(j(beS)»a=b)A(a=b—beS)]

(29) jlaeAVbeAlj(j(beS)—»a=b)A jla=b-beS)]

(30) jdacAVbeA[j(j(beS)»a=b)Al(a=b-jbeS))] (& 16)

Since (16) does not satisfy VaeA3IS,C A [a€SaAS5, is a (n)-singleton] we
discard all.

(31) jlaeAVbeA [(beS—sa=b)A(j(a=b)-beS)] discard
(32) jdacAVbeA [(beS—»a=b)A j(j(a=b)—beS)] discard
(33) jdaeAVbeA[(beS—sa=b)A(a=h-beS)] (& 8)
(34) jlacAVbeA [(beS—»a=h)Ajla=b-beS)]

(35) jlaeAVheA [(heS—a=b) A(a=b- j(heS))]

(36) jdacAVbeA [j(beS—a=b)A(jla=b)-beS)] discard
(37) j3acAVbeA [j(beS—a=b)Aj(jla=b)-beS)] discard
(38) jlaeAVbeA[j(beS—a=b)A(a=b—-beS)]

(39) jIaeAVbeA[jbeS—sa=b)ja=b-beS)] (& 19)
(40) jlaeAVbeA [j(beS—a=b)A(a=b-j(beS))]

(41) j3acAVbeA[(beS—ja=b)) A(j(a=b)-beS)] (& 11)
(42) jdacAVbeAl(beS—ja=b))Aj(jla=b)-beS)] (& 13)
(43) jlaeAVbeA [(beS- j(a=h)) A(a=b-obeS)]
(44) jIacA VbeA [(beS—j(a=b)) A jla=b—beS)]
(45) jdacAVbeA[(beS—ja=b))Ala=b-j(beS))] (& 20)

After discarding all notions for which neither {a} nor {a}J is a singleton and taking
care of the equivalent notions we end up with the following definition:

3.1.3 Definition. Let A be a type. A (n)-singleton of A (where n is the number of
the line) is a subtype S of A such that
(7) jdaeAaeS A VaheA (aeSAbeS—a=h)
(8) jdaeAaeS A jVa,beA (aeSAbeS—a=b)
(9) jJaeAaeS A VaheA j(acSAbeS—a=b)
(10) jJacAaeS A Va,beA (aeS AbeS- jla=h))
(11) jdaeAVbeA (beSe j(a=h))
(13) jdaeAVbeA j(beS e jla=b))
(34) jJaeAVbeA[(beS—a=b)Ajla=b-beS)]
(35) jdaeAVbeA [(beS—a=b)A(a=b- j(beS))]
(38) jlaeAVbeA [j(beS—»a=b)A(a=b-beS)]
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(40) jIacAVheA [j(beS—sa=b)(a=b-sjbeS))]
43 jdaeAVbeA [(beS— j(a=b)) A(a=b-beS)]
(44) JjdaeAVheA [(beS- j(a=h)) A ja=b-beS)]

with the following pattern of provable dependency (the two quadrangles correspond
to the two classes of singletons distinguished in lemma 3. 1.4):

é R
35

N\

< I«_ .
/

_ s y

38
7 — 8
34

NN

3.1.4 Lemma. Let a be an element of type A.
(i) {a}is a (n)-singleton for ne{7,8,38,34,35,9,43,40,44,10}.
(i) {a}is a (n)-singleton for ne{10,13,11}

Proof,

(1), (ii) It suffices to show for an element a of a type A that {a} is a (7)-singleton of
A and {a}iis a (11)-singleton of A. Which is trivial.
(W]

3.1.5 Definition.
For a type A we define an equivalence relation depending on the topology:
a~b = j(a=b) fora,beA.

3.1.6 Lemma.
For each type A it holds that A/~ is separated.
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Proof. Suppose for equivalence classes S,T€A /~ it holds that jS=T. This means
that for representatives a and b of respectively S and T we have ja~b, i.e., jjta=b)
and so j(a=b). But then we get aab, and so S=[al=[b]=T.

u]

Following [van Dalen] we could define for (n)-singletons a number of other

equivalence relations related to a+. After all, for (n)-singletons S,T of A we have
ST jS=Te jVREA (XeES & XeT).

This formulation invites us to a whole spectrum of other equivalences. We will not

pursue this possibility.

Let us finally remark that in the case of a topology that commutes with the
implication, like the double negation topology ——:Q—>Q and topologies of the
form jP: Q—> Q:wH>p-w there are only three rewritings of ¢ —»y: jo->y, d>yand
¢—jw. As a consequence there are less notions of (n)-singletons for such
topologies.

3.2 The generalized Grothendieck construction.

We will now describe constructions that produce sheaves from types.
Given a type A, the construction of A*, i.., one step of the Grothendieck
construction proceeds as follows (cf. [Johnstone 77], page 85):
(@) A ={SCA|VXyeA (xeSAyeS->x=y)},
(i) A is the closure of the image of A in A via { }: A—> A:a> {al,
(i) A*=A/~.

[Johnstone 77] obtains A* via an appropriate internal colimit. If we describe A
internally we get

A ={SeAljIacA S={a}}
={SCA|jJacAaeS A VX, YEA (XES AYESsX=Y)}
={SCAIS is a (7)-singleton of A}.

We will generalize this construction to arbitrary (n)-singletons:

3.2.1 Definition. The generalized Grothendieck construction.
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Let A be a type.
(1) For all (n)-singleton notions define:
A*n={SEAIS is a (n)-singleton},;~
(ii) For (n)-singleton notions with ne{11,13}define:
EAn:=A—>A+:aH [{a}],
(iii) For (n)-singleton notions with 10<n<13 define:
ean=A—> A*:a> [{a}],
(iv) Finally, for any (n)-singleton notions define:
YARA™ A* ' =EAnoEAp.

If it is clear which notion of singleton we use, we will drop the subscripts n.

We will show that for all notions of (n)-singleton of definition (3.1.3) the
generalized Grothendieck construction applied to a type A results in an associated
sheaf,

3.2.2 Theorem.; For any notion of (n)-singleton and all types A it holds that:
(i) A* is separated for any n.

(i) If A is separated, then A* is a sheaf.

(iii) If A is sheaf, then A* is isomorphic to A.

(iv) A**is asheaf.

Proof.

(i) Apply lemma (3.1.4) to A. Note that this does not depend on the chosen
notion of (n)-singleton.

(i) Suppose A is separated. In order to show that A* is a sheaf we suppose that
for XE A* we have jAI1SeA* SeX.
Define T={xeA| 3[S]eX 3S€[S]xeS}.
For each notion of (n)-singleton we claim that :

(a) Tisa(n)-singleton of A,

(b) jITIeX,

(©) jRieX A jJR2EX > Ri=Ro.
From this claim follows 31SeA* jSeX, which enables us to conclude that A* is a
sheaf.

Proof of (a). We can not give a uniform proof for all (n)-singletons that T is a (n)-
singleton. It is easy to show separately that T is a (11)-singleton if one started the
construction out with (11)-singletons. Idem for n=13. The other cases can be
proved in one big sweep. We show for ne{11,13} that T is a (7)-singleton of A,
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so that we can conclude that T is a (n)-singleton. We split this proof in two parts,
first we prove the existential clause, then the unicity clause for T to be a (7)-
singleton.
In order to show the existential part it suffices to prove that

AISeA* SeX —» jlacAaeT.
Assume there is a unique [S]eA* such that [S]eX. Let the (n)-singleton S be a
representative in [S]. Then for T holds jIxe A xeT, since a€S implies aeT and S is
a (n)-singleton implies jIxe A xeS.
To prove unicity supposs that aeT and beT. Then [{a}]eX and [{b}]eX in case
ne{11,13}. Hence by the initial assumption j3!1SeA* SeX we get j[{a}]=[{b}], and
so jta=b). Using singletons of the form {a}J the same argument applies for
ne{11,13}. Hence j(a=b) for arbitrary n. A is separated, therefore a=b.
We conclude that Va,beA (jaeT A jobeT—oa=b) for T.

Proof of (b).

In order to prove (b) it is sufficient to prove that 31SeA* SeX — [T]eX. So, let us
assume again that the (n)-singleton S is a representative of the unique [S] in A*.
From the definition of T we get SCT. If aeT, and also aeS'e[S] for some singleton
S'. But Ta+{a}~S’ for ne{11,13}, and T={a}i~S' in case ne{11,13}. Both imply
S&T.

Proof of (c). Trivial: if the equivalence classes [R1] and [R2] are members of XS A*,
then by our initial assumption j3ISeA* SeX we get jIRil=[R2]. By (a) we already
know that A* is separated whence [Ril=[R>].

(End proof of (ii))

(iii) Let A be a sheaf.

For ne{11,13} we will prove that eo: A—> A*:aF> [{a}] is an isomorphism.

Assume for a,beA that ea(a)=ea(b). Then [{a}]=[{b}], and j{a}={b}. Hence
j(a=b). Since sheaves are separated, we get a=b. Thus we see that € A is a mono.
Let S be a representative of an element [S] in A*. S is a (n)-singleton. Hence
together with the separatedness of A we get j3!xeA* xeS. It follows from the sheaf
property of A that there is a unique a€ A such that jaeS. Hence {a}~S, and so
tA(a)=[S]. Thus we have shown that ¢ 4 is epic.

For ne{11,13} one proves similarly that eo: A—> A*:aF> [{a}i] is an isomorphism.

(iv) It follows from the previous results that for each type A and all notions of

singleton of definition (1.3.3) that A** is a sheaf.,
0

3.2.3 Theorem. For each notion of (n)-singleton and all types A it holds that:
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YA:A—> A** is universal among functions from A into sheaves.
This means that for each sheaf B and function f: A—> B there is a unique function
g:A**—> B such that the following diagram commutes:

f ig
B

Proof.

It is sufficient to consider only the case ne {7,10,11}. If for these three notions of
singleton we have the required universal property, then for a arbitrary type A the
three corresponding sheaves (A**)7, (A**)19 and (A**)11 must be isomorphic. As
the sheaves for the other notions are squeezed in between, they are also isomorphic
to, say, (A**)10.

To prove the universality of vy p it suffices to show the universality of ¢o among
morphisms into a sheaf.
Consider a sheaf B and function f: A—>B.
For ne{7,10,11} we define T={f(a)eB | ea(a)=S5} for any element S in (A*)p,.
This T is again a (n)-singleton of B. Therefor, since B is a sheaf, we have a unique
¢lement bseB such that jbeT.
Now define g: A*—> B:SH>bs. By the construction we get VaeA f(a)=g(ca(a)).
This function g is unique with respect to this property, for suppose we have also
h:A*—B such that f=heea. Let S be a representative of an element [S] in A*. For
aeS we clearly have ea(a)=[S], and hence h([S])=h(ea(a))=g(c a(a))=g([S]).
Since S is a singleton we have only j3acA aeS. Now we get Jh(ISD=g(ISD.
However B is a sheaf, whence separated. We get h([S])=g([S]). Hence h=g.

a

3.3 The Lawvere-Tierney construction.

Lawvere-Tierney's construction (cf. [Gray], [Johnstone 77] or [Freyd 72]) takes
the closure of the image of A in ) jA via the function { }:A— Q) :ar>{a})). Now
recall that Q jA={B SAIB is j-closed} (cf. proof of (2.3.6). If we formulate this in
type theory we get via lemma (2.3.2):

{SCA|S=Si~jIacA S={a}i}
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But for S A we have that
jdaeA S={a}io jlaeA VbeA (beS o j(a=b))

Thus we see that Lawvere-Tierney's construction is based on our notion of (11)-
singleton.

3.3.1 Definition. The Lawvere-Tierney construction .

For each type A define (cf. exercise (3.4) in [Johnstone 77D):
(i) MA={ScA|3JaeA S={a}i} (={SCA|S5=SirTacA S={a}i})
(i) LA={SCSA|S=SIAS is a (1) ~singleton}.

(i) na=A—>LA:a+> [{a}i].

3.3.2 Theorem. For all types A it holds that:

(i) MA is separated, and { }J: A—> MA is universal among functions from A into
separated types, i.e., for each separated type B and function f: A—>B there is a
unique function g:MA—> B such that the following diagram commutes:

{}!
AL+ MA
B

(i) LA is a sheaf, and na: A— LA is universal among functions from A into
sheaves, i.e., for each sheaf B and function f: A—> B there is a unique function
9:LA—>B such that the following diagram commutes:

A_nA_> L;A
f ig
B

Proof.

(i) For S,TeMA suppose jS=T. Then for some a,beA we have S={ceAlja=c}
and T={ceA|ljb=c}. By assumption j(beS) and jaeT, i.e., jla=h). But this
implies that S=T. Hence MA is separated.

Next, let f: A—>B be a function into a separated type. If SeMA, then there is aeA
such that S={ceA|ja=c}. Consider f(a). If for some be A we also have
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S={ceAl jb=c}, then j(a=b). Hence, jf(a)=f(b), and by separatedness of B it
follows that f(a)=f(b). Thus we see that 6={(S,d)eMAXB | JaeS f(a)=d} is the
graph of some function, let us say g:MA—> A, Clearly, this g:MA —B is the only
function such that for ae A we have f(a)=g({a}J).

(i) First we show that LA is separated. So let S,T €L A such that j5=T. Since S
and T are j-closed we can argue as follows:
j5=T - jVaeA (aeSeaceT)

- VaeA (jaeS e jaeT)

- VaeA(aeSeaeT)

- S5=T.
Hence LA is separated.
Secondly, to prove that LA is a sheaf, suppose for XS LA that j3AIRelL A ReX.
Define S:={aeA| jna(a)eX}. We will show S is the unique element in LA such that
jSeX. Assume for a moment that that there is a unique R in LA such that ReX. Then
there is a€A such that R={ceA | ja=c}. Hence, JR={a}. Therefore jna(a)eX, and
JR=S. Now we have shown that 3!ReLA ReX implies jSeX, and so
JA'ReLA ReX - 3IReLA jReX.
Unicity is also simple:

JAIRELAReX - jVR,SeLA[R,SeX—»R=5]
- VR,5€eLA[R,SeX-jR=5]
- VR,5€LA[R,SeX->R=5]

Thirdly, to prove the universality of n, it suffices to show because of the first part
of the theorem that for each separated type B and each f:MA—> B there is a unique
function g:LA—>B such that the following diagram commutes:

MA—“—» LA

\9

Define G={(S5,b)eLAXB|3TeS f(T)=b}. Suppose R,Te€S. Then jR=T, and
Jf(R)=F(T). Since the sheaf B is separated we get f(R)=F(T). Thus G is the graph
of function g:LA—>B such that ge[]=f. Suppose for h:LA—>B we also have
he[ ]=f. Let SeMA be a representative of [S] in LA. Then g([S])=f(S)=h([S]).
Le., h=g.

[0 o I

m]

3.4 The generalized Lawvere-Tierney construction.
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In the PhD thesis of [Rosolini] one finds the following construction for associated
sheaves, that according to Rosolini belongs to anonymous folklore:

Q(A)={SES Al VX,yeS [XeSAyeS—>jx=y] A jIXEAXES}/A.

We recognize it as the single step of the Grothendieck construction performed with
(10)-singletons. At first sight it may seem unrelated to the Lawvere-Tierney
construction. Observe however that LA:=(A*)y;, because for (11)-singletons it
holds that jS=S5J, and so:

{SCAIS=SIAS is a (I-singleton}={SCSA|S is a (1)-singleton},x.

If we then prove as above that LA is a sheaf, then it is a property of the
Grothendieck construction that (A*)y; is isomorphic to (A**);. Therefore LA is an
associated sheaf to A as it inherits the universal properties of (A**);;.

So the Lawvere-Tierney-construction can be described as a single step of the
Grothendieck construction performed with (11)-singletons.

Thus we are led to the following definition:

3.4.1 Definition. The generalized Lawvere-Tierney construction.
For (n)-singletons with ne{10,11,13} define for each type A:
Rn(A)={SCA|S is a (n)-singleton},~.

3.4.2 Theorem. For all (n)-singleton notions with ne{10,11,13} and all types A
it holds that Ry(A) is a sheaf isomorphic to L(A).

Proof. One can prove this in different ways. One is to show that Ry, is a sheaf.
Another is to observe that L(A)=Ryi(A)SRy;i( A)SRy(A). Now order to show that
for each ne {10,11,13} Ry(A) are sheaves isomorphic to L(A), it suffices to prove
that Ry(A) is isomorphic to L(A):
Define for every type A:

rERx(A) = L(A):[S]+> {aeAl{a}i~S}

Ir:LCA)—> Ry (A): SH [S]
It is straightforward to check that r1and Ir are well-defined and each others inverse.

o

3.5 The Barr-Wells variant.
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[Barr & Wells] construct associated sheaves in a one step process:
(i) given a type A, construct B==A/~ (where a~be j(a=b))
(i) let C be the closure of B in P(B) via { }:B— P(B)

(iii) finally, BW(A):=C,n (where ST jS=T).

If we reformulate this in type theory we get the following:

BW(A) =={SEA/%”3TEA/~{T}=S}/~
={SCA/~|jI1TeA;~ TS}~
={SCA,~IS is (8)-singleton of A;~}/~.

3.5.1 Definition. The generalized Barr-Wells construction.
For any notion of (n)-singletons define for each type A:
(1) BWn(A)={SSA/~IS is (n)-singleton of A,a}/n,
(i) yhna=A—>BWn(A):a [{[{a}]}].

This definition is only seemingly generalized: on a separated type like A, the
notions of (n)-singleton are all identical.

3.5.2 Lemma. BW(A) and L(A) are isomorphic for any type A.
Proof. For each type A define:
bwr:BW(A)—>L(A):[S]+> {acA][aleS}
row:L(A)—>BW(A):[S1—>[{[ale A« |a€S}]

It is straightforward to show that these functions are each others inverses.
O

We will denote with L any of the constructions that do give associated sheaves.

3.6 Preservation properties of L
We will end this chapter with a type theoretical proof that the associated sheaf

construction preserves (external) finite limits and exponents.

3.6.1 Theorem.
(i) All subobjects of 1 are sheaves.
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(i) For each sheaf A there is exactly one function A—> 1.
(iii) If P is the pullback of f: A—>B and g:C —> B, then LP is the pullback of
Lf:LA—LB and Lg:LC—LB.

Proof.
(1) is straightforward and (ii) follows from (i).

(iii) The pullback P of f:A—>B and g:C—>B is {<a,c>€ AXC |f(a)=g(¢c)} (up
to isomorphism). Similarly, the type Q:={<S,T>eLAXLC| (Lf)(S)=(Lg)(T)} is the
pullback of Lf:LA—>LB and Lg:LC—>LB. One easily checks that Q is isomorphic
with LP.

m}
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Chapter 4

Algebraic Theories
and
Subalgebra Classifiers

In this chapter we will work with internal finitary algebraic theories. Given a topos
E one can consider the category E of T -algebras in E. In the case E =Sets
Johnstone has syntactically characterized the (possibly infinitary) algebraic theories
T such that the variety of T-algebras Setst contains a subobject classifier (cf.
[Johnstone 85] and [Johnstone a]). For E=SA(H) of sheaves over a locale H

[Borceux and van den Bossche] constructed for commutative finitary algebras T an
object Q in SA(H) that acts as an subobject classifier for SA( H)y with respect to a
certain class of characteristic functions, although Q1 itself does not need to be a T-
algebra.

Given any algebraic theory T we will define a class of characteristic functions with
codomain Q such that 1—> Q1 acts as a subobject classifier for T -algebras even if
Q1 and 1 are no T-algebras themselves. A better name for such a phenomenon is
subalgebra classifier. For commutative theories we show that our notion of
characteristic morphism and the definition of characteristic morphism as used by
Borceux and van den Bossche come down to the same.

We will present this within the constructive setting of type theory. Hence our results
apply to any arbitrary elementary topos E.

4.1 Internal finitary algebras

Let T be some (finitely presented) finitary algebraic theory, that is the language
corresponding with the algebraic theory T has one type, a (finite) set of function
symbols of finite arity, and a (finite) set of equations of T. Given a topos E we
define E 1 to be the subcategory of models in E of T. It is an old result of [Lesaffre]
that there exist a free functor E—>E (cf. [Johnstone 77]). With respect to toposes
this is the external way of looking at algebras.
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One can also approach the notion of algebraic theory internally in the style of
universal algebra (cf. e.g. [Jacobson]). Suppose we work inside a type theory H
containing the axioms of Peano.

4.1.1 Definition The data in H that define an internal algebra T consist of two
things:

() A type F of function symbols, together with a morphism &:F— N that
assigns an arity to each function in F. Starting from this type, we can construct an
type LANG(F,8) containing all well-formed terms and formulas of the first order
language of T. Details of this construction resemble the construction of free
monoids (1.3.8) and require the presence of a natural number object.

(i) A subtype AXof LANG(F,$) containing the equational axioms the algebra T
has to satisfy.

With this information it is possible to state internally that a T-algebra, is a pair

<A,F >, where A isan type, and F A a type containing the algebraic operations on
A.

4.1.2 Free algebras

Let T be some finitary algebraic theory. We will construct the free algebra on an
arbitrary type X in two steps. First we construct the type WFy of well formed
words of elements of X and the operation symbols of the algebra (cf. for instance
[Jacobson]). Then we take quotients dictated by the equational axioms of the
algebra.

The first part of this task is unproblematic, though somewhat tedious to write out in
full detail. The second part is of a bit more interest. With each element o of AxX
there corresponds a congruence relation Roc on WF . If we are able to define the
smallest congruence R S WFyxWFy containing all these Reg, then we can define
the free universal T-algebra generated by X to be the quotient Fy=(WFx)/R. This
smallest congruence R can be constructed by similar methods as in (1.6.5):

(1) define Sp=U{R | xeAx}, this is a reflexive and symmetric relation.
(i) for SSWFyxWFy, define
S*={(V, W) EWFyxWFy| JueWFy(Vv,u)€S A (u,W)eS}
(ili)) R=UN{Z¢c P(WFyxWFy)|S0€eZ AVSeZ[S is a relation on FWyxlAa
VSeZStes).
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It is straightforward to see that F Wy /R has the universal property which identifies
it up to isomorphism as a free universal algebra on X.

Note that in the above construction of free algebra we did not use the condition that
the algebraic theory is finitely presented, so for free we get a generalization of the
result of [Lesaffre], provided that we can internalize an external finitary algebraic
theory in a topos. This is not difficult, as long as the topos has sufficiently many
coproducts of 1: from the externally given object and morphisms plus the
knowledge of the domains of the functions we can construct an internal pair <F,8>
carrying essentially the same information provided that the topos E one works in
has coproducts of 1 of sufficient cardinality.

4.1.4 Notations.
(i) A<B denotes that A is a subalgebra of the algebra B.

(ii) Let Fn denote the free algebra generated by n elements, e.g., {%,..., %p}.

(iif) The free algebra generated by a subset {%€1|w} of 1, for we), will be
denoted by F(1lw),and the free algebra generated by the empty set, F(11.L)
denoted as F@.

(iv) With an element a of an algebra A corresponds an unary algebraic operation
F1— A:vi-> v[%:=a] (in short v(a))

Similarly with a word w in Fn corresponds an unary operation
F1—=Fn:v v(w).

We will denote word and corresponding operation by the same letter w.

Hence for weFn and REFn we can use the notation w-1(R):
w-I(R)={veF1|v(w)eR]}.

(v) There are several equivalent ways of defining the join of an indexed set of
subalgebras (Ayie; of a given algebra C. The first one is a formulation that does not
make use of natural numbers:

(@) g A=N{BCC]B is an algebra A Viel AjcB}
(b) Z2ic)Aj={weC| IneN AveFn Jay,...,aneVic] Aiw=VI*:=ay,..., ¥ pn=2an]}

Clearly Zlig)Ai€Z2jc)Aj, since £2i¢ A contains all the A, and 22, A is an
subalgebra of C. On the other hand if we have WEZ2;c A then w is of the form
V[*y=ay,..., %p=ap] for a finite number of elements ay,...,an in Ui Aj. (Note that we
make use of the fact that we work with finitary algebras.) Now w is an element of
any B containing all A;. Hence weZli|A;. It follows that Shg) Aj=32¢|Ai. From
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now on we will use the notation Zj¢| A for the join of the algebras A,;.

(vi) Consider the canonical injections ¢;:F1—> Fn:w > w[ %= *il. Let Aq,...,Ap
be subalgebras of F1. Define Aj%i={w(*)eF{%;}|weA;} for 1sisn. Then we
denote the join ZigicnAj*iin Fn by A(@... @A,

(vii) We will sometimes make a distinction between operators, the basic functions
of the algebraic theory, and operations, the compound functions, that can be build
from the operators.

4.2 A generalized type of truth values

We will need a type of algebraic truth values to define a notion of topology in this
algebraic context. Recall that Q is isomorphic with the type of subtypes of 1. We
replace 1 by the free algebra F 1 generated by 1 and consider subalgebras instead of
subtypes.

4.2.1 Definition.
Qr={AcF1]|A is a subalgebra of F1}

In order to compare Q with Q- we define e: Q) —> Q: 0> F(110). It is tempting
to think that this is an embedding. The degenerate algebra that consists of one

constant ¢ and one axiom x=c provides a counterexample, because then we have
F(1lw)=F(1)=1 for all we).

It is natural to ask whether Q¢ has the following three desirable properties.

(i) Is O acomplete Heyting algebra?

@) Is Q an (T-)algebra?
(iii) Is 1—> Q1: %> F1 a subalgebra classifier for algebras, even if Q1 itself is
perhaps not an algebra (remember [Borceux and van den Bossche])?

[Johnstone a] provides us with the tools to tackle the last of these questions. He

imposes also the following structure on Q:

4.2.2 Definition. For an operator p of T define:
p:Q={weF1|w(p)eFO0}=F1, if p is a constant
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p:(QT)n—>QT:=(A],...,An)l—>{W|W(p(*h...,*n))E@mgnAi} (=p~UD¢icnA), cf.
(4.1.4)), if p is n-ary, n>1.

Even if we do not know that Q y is a T-algebra we can still check that QT acts as a
subalgebra classifier with respect to the right class of characteristic morphisms.
[Borceux and van den Bossche] have defined another class of characteristic
morphisms, with respect to which Q¢ acts as a subalgebra classifier when the
algebraic theory T satisfies an extra commutativity condition. With help of the extra
structure on Qg provided by [Johnstone a] we will define a class of characteristic

morphisms such that Q  behaves as a subobject classifier for any algebraic theory
T.

4.2.3 Definition. Let A be an algebra.
A function $:A—>0 1 is called characteristic if
(i) for any neN, all n-ary algebraic operators p and all ay,...,aneA
p(d(ay),...,d(ap)) S d(p(ay,...,ap))
(i) *ed(u(@)eul*)ed(a) forall unary operators u and all a€A,

4.2.4 Theorem.

(i) There is a one-one correspondence between subalgebras m:B>> A and
characteristic functions A—> Q.

() Q7 together with T:1—>F1: %> Q- acts as subalgebra classifier with
respect to characteristic functions into Q. That is, for each T-monomorphism
m:B >—> A there is one and only one characteristic function b: A—> Qg such that the
following diagram is a pullback:

Bl
1
L

Moreover, the pullback preserves the correspondence of (i) between subalgebras
and characteristic functions.

c_m_,aA
¢

_._T._>QT

}———»Fﬂ

Proof.
(1) Let m: B>> A be a monomorphism.
Define ¢g: A—> Q1 by ar>{weF1]3IbeB w(a)=m(b)}. ¢ is well-defined, as
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each ¢g(a) is a subalgebra of F1. We will show that this $p is a characteristic
function.

First, for p an n-ary operator and for ay,...,an€A suppose that

wep(dpg(ay),...,pglap)).
That is

W(p(¥ky,..., %)) €@ cicnd s (). (recall definition of @ in 4.1.4.iv)
Hence w(p(31,...,%p)) can be written as u(Vi(# o (1)),..., Vn(¥ oc(n))), Where ueFn, o
is a permutation on {1,...,n} and vie $g(a;) for 1<i<n. For each a; there is a b;eB such
that m(b;)=vi(a;). If we substitute aj for #;, then we get

W(p(ay,...,an)) = ulvi(ag(p),.--,Vnlae(n))
umbecny),....mb o n)))

= mUbe(1),--,boc(m)))-

Since Ulbo(1y,...,bexn)) €B we get wedg(p(ay,...,an)).

Secondly, for all unary operators u and all ac A,
*edppg(u(a)) o 3IheB m(b)=u(a)
© u(*)edp(a).

Thus we see that ¢g: A—> Q1 is a characteristic function.

Next let §: A—> Q1 be a characteristic function.
Define By={beAl d(b)=F(1)}. We will show that By is a subalgebra of A.
It is trivial to see that By contains all constants.
For by,....bneB¢ and n-ary algebraic operator p on A it holds that
F1 = p(F1,..,F1)

= p(d(by),..., (b))

< d(plby,...bp))

c F1.
It follows that ¢(p(by,...,br))=F1. Thus we see that p(by, -.bn)€B . Hence B, is an
algebra.

We check that B ¢ g and o > Bd> are each others inverse by the following
calculations:

¢(B¢)(a) = {weF(1)| IbeA ¢(b)=F(1)Aw(a)=b}
{weF(1) ] d(w(a))=F(1)}
{weF(1) | *ed(w(a))}
{weF (1) |wed(a)} (4.2.3.ii)
= ¢(a).

And similar: B(¢g) = {acAlopg(a)=F(1)}

= {aeA|IbeB a=m(b)}
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~ B

(i) Existence and the pullback property follow from the relationship of m:B>> A
and ¢p. The uniqueness of ¢ among the characteristic morphisms follows from the
properties of characteristic functions:

Suppose we have a characteristic morphism f: A—> Q 1 that classifies B> A. Then
VaeAldg(b)=Flof(b)=F1]
For weF 1 we can argue
wedpb) & *edg(wib))
o ¢p(wi(b))=F1
& f(w(b))=F1
& *ef(w(b))
< wef(b).
Hence, we see that f=¢g.

In [Borceux and van den Bossche] the foregoing theorem is proved for a restricted
class of algebras and a different class of characteristic functions. However, if we
put the restriction on the algebras, we can show that our characteristic functions
satisfy the conditions of Borceux and van den Bossche.

4.2.5 Theorem. For algebraic theories such that unary operations commute with
operators of arbitrary arity, a function §: A—> Q t is characteristic if and only if
$:A—> Q- satisfies the conditions of [Borceux and van den Bossche]:
(1) =*edu(a))eul*)ed(a) forall unary operators u and all acA
(i) forall neN, all n-ary algebraic operators p and all aj,...,apeA
d(adn..nd(a,)Sdp(ay,...,ap).

Proof. First we make two claims.

Claims.
(@) for Ay,...,AneQ and p an n-ary operator we have:
AiN..NARS{WEFTIp(W((),..., W(H,)) EDycicnAil.
(b) for a function :A—=>Q satisfying conditions (i) and (ii) of the theorem, we
have
d(@dn..nd(a,)cdulay,..,a,)
for all neN, all ueFn and all ay,...,apeA.
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The proof of the claims is not difficult: (i) is trivial and (ii) follows by an easy
induction on the structure of u.

Now, if ¢: A—> QT is a characteristic function, then, assuming that unary
operations commute with n-ary operators, §: A— Q1 satisfies the conditions @)
and (ii) of the theorem. We show (ii).
For all ay,...,a,€A and p an n-ary operator we have

d(adn..nd(@,) < {WeF1lp(w(y),...,W(#p))SBcicnd (@)} (claim a)

= {WeF1{w(p(¥y,..., %)) S®¢icnd (ai)}

p(d(ay),...,d(ay))
¢ (p(ay,...,an)).

n i

Next, we assume that ¢: A—> Q 1 satisfies conditions (i) and (ii) of the theorem.
Suppose we have wep(d(ay),...,d(ap)) for ay,...,ax€A and p an n-ary operator. We
will show that wed(p(ay,...,ap)).
WEpP(d(ay),...,d(an)) - wp(,,..., %) eDcicnd (a))
- p(W(H1),...,W(Hp))E@(icnd (ay)
Hence p(w(#1),...,w(#p)) is of the form UV o (1)), Vn(¥ o (ny)) Where ueFn,
is some permutation on {1,...,n} and v;e $(a;) for all 1<isn.
By condition (ii) we obtain that % € (vi(a(i))) for all 1gign. It follows that
*€Nciand (Vilan(p)). Applying the condition (i) together with claim (b) we get
*ePp(Uvi(ag(n),.... Valaecmy)))
However:
*€h(U(vi(ag (). Vn(ax(m)))) = *ed(p(W(ay),...,w(ap))
- *ed(w(p(ay,...,ap)))
- webd(play,...,ap)).
Thus we can conclude that wed(p(ay,...,ap)).
All together we have shown that ¢ is characteristic function.

4.2.6 Definition.
An algebraic theory T is called sufficiently unary if for any n-ary algebraic operation
weFn there is an algebraic operation q of, say, arity m, together with two m-tuples
of unary operators t; and operations vj (1<jsm) and a function :{1,...,m}—{1,...,n}
such that the following equations hold:

AVIW (X, X, , VWX, X0 D) = WK Y. X))

Viw (X1, Xn) =ti(Xe(jy) - (1€jsm).

The notion of sufficiently unary enables us to generalize definition (4.2.2) to
arbitrary n-ary operators. We have borrowed the name sufficiently unary from
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[Johnstone 85], where it was used for a related syntactic condition.

4.2.7 Lemma. (implicit in [Johnstone a])
For a sufficiently unary algebraic theory T we have that
VneN [n21- VweFnVA;,...,AneQ 1 VueF 1
(Uew(Ay,...,Ap) e u(W (..., ) e®nAi].

Proof.
For weFn, Aj,...,AneQt and ueF 1, we will show by induction to the structure of
the word w that

UEW(AL,...,Ap) @ U(W(ky,..., %)) €@icicnAj
for any weFn.
If w is a algebraic operation of T then by definition (4.2.3) uew(A;,...,Ap) if and
only if u(w(y,..., %)) €DicicnAi.
So we need only to consider the case W(k1,..., %n)=p(r1(31,..., %), ...,rk(¥1,..., %))
with induction hypotheses

VueF 1 [uerj(Ay,...,Ap) @ ulrj(sy,..., %n)) €DigienA for (1< j<k).

(=) Assume first uew(A;,...,Ap). We can rewrite this assumption as:
uep(ri(Ay....Ap,....rk(Ay..., Ap))
and further
u(p(ky,..., ¥k ) E@gickri(AL.... An).
Hence, there are veFk, a permutation o on {1,...,k} and vieri(Ay,...,Ay) for 18isk
such that
U(p(Heq,..., ¥ )=V o (1)), VR (F o (1))
By induction hypothesis vierj(Ay,...,Ap) implies vi(ri(%#1,..., %)) €®icinAi.
And so we get
upri(e%),...,rCie %)) =v(VI(ro ) (€ %)), V(P o () (6 %)) €DpcicnAi,
where %% denotes the sequence %1,..., %y,
Therefore:

U(wW(eq,..., %)) =UP(Poc ) (1,0, %), o P o () (€ 1,enn, ¥ 0) D) ED1gicn A

(«) Secondly assume u(w(#j,...,%,))€®1cicnAi.
Hence, by rewriting we get

U(p(ri(ey,..., %p),...,r(dq,..., %)) ) eDicichAi
Now it follows from the sufficient unarity of T applied to u(p(y;,...,yx)) that there is
an algebraic operation q of, say, arity m, together with two m-tuples of unary
algebraic operators tj and algebraic operations v; (1<jSm) and a function
oc:{1,...m}—>{1,... k} such that the following equations hold:

up(yq,.... YI=A(Vup((yy,..., YKo, VUP (Y 1., YK))

tiyo(p=vuplyy,...yk)  (1<jgm).
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Substituting rj(%1,...,%y) for y;jin these equations we get:
tiroc(jy (..., #n)=Viup(ri(y,..., %p),..., T (% 1,..., %p)).
Since all ro(j)(%#y,..., %p) belong to @gicnAj we get by induction hypothesis
tiroc(p (..., %n)€@igicnAj for 1<jsm.
And so we get
U(p(ri(sese),...,rg(H %)) = qviup(%),..., Vinup (k %))
= QU rocn(F %), ... 5l o m) (3 %))
where %% denotes the sequence *j,...,%p,.
Since the latter term is an element of @gjemrj(Ay,...,An) We get
u(p(riCy,..., %n),..., Pk, %#0)))E@igjemn j(AL,..., Ap)
Therefore by definition (4.2.2)
uep(ritAy,..., An,.., k(AL AR))
or
UeEW(AY,...,Apn).

The converse can be proved without any restriction on the algebraic theory T.

4.2.8 Lemma.
For any function ¢: A —> Q1 of the form ar> {weF1|w(a)eB} for some
subalgebra BES A, it holds that
p(d(ay,...,d(an)) S d(p(ay,...,apn))
for any ay,...ane A and algebraic operator p.

Proof.
Suppose we have
wep(d(ay),...,d(ap))
then
W(p(¥ky,..., %)) €@qcicnd (a;).
Hence w(p(#1,..., %)) can be written as U(vi(% «(1)),...,Vn(J¥ oc(n))), where ueFn, o
is a permutation on {1,...,n} and vied(ay ) for 1gi<n. For each a; it follows that
Vilax(i))€B. If we substitute aj for %;, then we get
W(p(ay,...,ap)) = ulvi(@ag .-, Vnl@m))
Since u(vi(an(n),...,Vnlax(m)))€B we get wed(p(ay,...,an)).

It seems natural to require for algebraic theories the property:
W(k)eAow(%)eADB.
In general this can not be deduced. We need the following restriction on algebraic
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theories:

4.2.11 Definition.; (cf. [Johnstone al)
An algebraic theory T is strongly-nonconstant if, whenever we have an equation of
the form

Wk, ) =V0ky,..., %p),
where nmeN, weFm and veF(n), then m=n,
that is, the left hand side and the right hand side of equations contain the same
generators.

4.2.12 Lemma. If T is an strongly-nonconstant theory, then for all n,meN, weFn,
At Ansm€Q 1 and all ueF1 it holds that:
Wk 1,.. %) eDicicmAi W(1,... %) €®icicm+nAi.

Proof. (=) is trivial.
So, assume for n,meN, weFn, Al Anem€Q 1 and ueF 1 that
Wk, %) €D gicmenA
Then by definition of the join @ we can find veF(m+n), vieF 1 for 1<i<m+n such
that
WO, ¥ ) =VVI(E), ..., Vimen( % men)).
The assumption strongly constant now implies that m=n. Hence we get:
W(31,... %) E@1cicmAi

4.2.13 Lemma. If T is a strictly unary and strongly-nonconstant algebraic theory
then Q  with the operations of (4.2.2) is a T-algebra.

Proof.
To show that the definition (4.2.2) does turn O T into an algebra, we have to check
that all equations of T are satisfied for QT.
Let wiXt,..., Xk, Y1 Ym)=V(Y1,....Ym,Z1...., Zp) be such an equation, in which we have
listed all variables at both sides.
Then uew(Ay,...Axsm) © U(W (1., #* g em)) €2 1cick+ mA 4.2.7)
© UW(EY,., * ) ES (gickem+ nAi 4.2.10)
g U(V(*kﬂ,...,*k+m+n))€2]gigk+m+nAi (equation)
© UVOHEY,.., % men) ) ES 1 Gieme nAk+i (4.2.10)
o Uev(Ay,...,Ap), 4.2.7)
and hence W(A,...,Ap)=v(A;,...,Ap), where the Ajrange over Q.
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We will prove the following version of theorem (1.3) in [Johnstone al:

4.2.14 Theorem.
For a finitary algebraic theory T, the following are equivalent:

() for all maps ¢: A—> Q1 of the form aF> {weF1|w(a)eB} for some
subalgebra BEA, it holds for any nelN, peFn and all aj,...,an€A that:
d(p(ay,...,an))Sp(d(ay),...,d(ap)).

(i) the type of subalgebras of any algebra is a complete Heyting algebra,
(iil) T is a sufficiently unary algebraic theory.

If T is a strongly-nonconstant, finitary algebraic theory then the foregoing state-
ments are equivalent to:

(iv) T:1—>Qy:*H>F1is a morphism of T-algebras and a subobject classifier for
T -algebras.

Proof.
()= (ii) Consider the type of subalgebras of a type A defined as

Sub(A)={BEA|B is a subalgebra of A}.
With the definition of join we already have that <Sub(A), S, A,S> is an complete
join-semilattice. It will follow that <Sub(A), c,FO,N,A,Z> is an complete Heyting
algebra if we can show the infinite distributive schema BnZieiAi=Zic1 (BnA;) holds
for subalgebras of A, or, equivalently, if we can define = A: Sub(A)—> Sub(A)
with the property DEB=>C if and only if DNB&C for all B,C,DeSub(A).
Define for B,CeSub(A):

B=>aC={acAldg(a)Sdc(a)}.
This can be rewritten as (see proof of (4.2.4)):

B=>aC={aeA| VweF1 [w(a)eB-w(a)eC]}

In order to show that B=> A C is a subalgebra of A, let p be an algebraic operation of
T, and suppose ay,...,an€B=> AC. Then for each a; we have
dpadcdcla
Hence for weF1 we can argue
wedp(p(ay,...,ap)) - wepldg(ap,...,d5(a)
- wep(dclap,...,dclap))
- wedc(p(ay,...,ap)). (4.2.8)
Thus we see that p(ay,...,an)eB= AC.
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Next assume for B,C,DeSub(A) we have that DSB=C. Now for aeD it holds that
aeB=>AC & VweF1[w(a)eB-w(a)eC]
~ aeB—saeC
So we get DnBEC.
If, on the other hand, we have DnB&C for B,C,DeSub(A), suppose aeD and waeB
for weF 1. Then waeD, and thus waeDnB. And so waeC. Hence aeB= AC.

()= (iii) We copy Johnstone's elegant little proof:
Given an operation peFn, let ASFn be the subalgebra generated by p, and let B;
(1<i<n) be the subalgebra generated by ;.

Then peAnZL, Bj, and by hypothesis we have peZL] (AnB;).

That is p may be obtained by applying some term (q, say) to a family of
terms in Ul_;(AnB;).

But AnBj consists of terms up(j,...,%p) of the form v(#;), where u,v are unary.
Hence (iii) holds.

(iv)=>(ii) Trivial,

Finally, we assume that T is a strongly-nonconstant algebraic theory in order to
prove the remaining implication.

(iii)= (iv) By (4.2.11) we get that Q1 is a T-algebra. It is trivial to see that
1~{F1} is a subalgebra of Qr and T:1—> Q1:% > F1 is a morphism of T-
algebras.

The subobject classifying properties follow from (4.2.6).

Clearly, if a function ¢: A—> Q1 is of the form aH> {weF1|w(a)eB} for some
subalgebra BE A, that is, ¢ is a characteristic function, then by lemma (4.2.10) ¢
satisfies
p(d(ay),...,d(ap)) S d(p(ay,...,an))
for any nelN, peFn and all ay,...,aneA. Hence ¢ is morphism, if we can also prove
d(p(ay,...,an))Sp(d(ay),..., o (ap)).
As in proof of proposition (2.4) of [Johnstone a]. Suppose wed(p(ay,...,an)), then
wp(ay,...,an)€eB.
Now consider wp(#1,...,%p). Since T is supposed to be strictly unary, there is an
algebraic operation q of, say, arity m, together with two m-tuples of unary operators
tj and operations v; (1< j$m) and a function «:{1,...,m}—>{1,...,n} such that the
following equations hold:
A(ViWp (..., %n),..., VmWpP( 3 1,..., %)) =wWp(¥1,..., %p)
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ViWP(k . dep)=tj( % o () (1€j<m).
We see that

vjwp(ay,...,an)eB,
and therefore by (4.2.7) that

tiedlan ).
Putting everything together we get

WP (e ,..., %)=t (% o (1)),..., b (¥ o (m)) ) EPcin® (@7)).

Hence we can conclude
wep(d(ay),...,d(ay)).
Thus we have shown that d(p(ay,...,apn))Sp(d(ay),..., 0 (ap)).

68
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Chapter 5

Topologies,
Sheaves and Localizations
for some Algebraic Theories

Borceux, Kelly, Veit and Van den Bossche have studied the relationships between
localizations, universal closure operations, Gabriel-Grothendieck topologies and
Lawvere-Tierney topologies in all sorts of categories (cf. [Borceux], [Borceux and
Veit (86 and 88)], [Borceux and Kelly] and [Borceux and Van den Bossche]).
Roughly summarizing, typical results obtained are:

(1) universal closure operations are in 1-1 correspondence with both Gabriel-
Grothendieck topologies and Lawvere-Tierney topologies

(i) each localization induces a universal closure operation, and the 1-1
correspondence exists only if the category satisfies some condition

(iii) Lawvere-Tierney topologies, Gabriel-Grothendieck topologies and
localizations each form a locale.

The techniques used provide a uniform approach to notions of localization in
seemingly unrelated areas as topos theory and ring or module theory.

Let T be some finitary algebraic theory in a topos E. We will reason internally in
some type theory with a natural number object. We will start with the
correspondence between universal closure operations and topologies in the style of
Lawvere-Tierney and Grothendieck.

3.1 Universal closure operations and topologies on QT

We start with the definition of a closure operation. When described in type theory, it
is a kind of meta process that given an algebra returns a closure operation on the
type of subalgebras of the given algebra. Taking the closure of {F1}<> Q7 is the
standard construction to produce the corresponding Grothendieck topology on Q) .
Given something like a Grothendieck topology JS Q T, we suggest

Q= O1:RH {weF1|{w1(R)eJ}
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as the generalization of the earlier correspondence in chapter 2 between Grothen-
dieck topologies and Lawvere-Tierney topologies. This makes sense because we
know that Q is a subalgebra classifier (cf. 4.2.4). With the notion of Lawvere-
Tierney topology, that we get by this analogy on Q T, we can complete the circle:
given a topology j: Qt—> Q1 we define a closure operation on algebras by mapping
a subalgebra B <= A to the subalgebra classified jod:A— Q1 (c.f. notations of
theorem 4.2.4). We will show that there is a bijection between the resulting notions.

Let us start with universal closure operations. We take the usual definition, as one
defines them on any category with pullbacks, cf. [Johnstone 77].

S.1.1 Definition. A universal closure operation on T-algebras is defined by
specifying for each algebra A a closure operation ()¢ on the type Subalg(A) of
subalgebras of A in such as way that the closure operation commutes with pullback
along morphisms.
More specifically, for each algebra A we have a function
( ) Subalg(A) —> Subalg(A),

such that for any R and S subalgebras of A the following holds:

(i) RgRd

(i) R<¢S-»RCcksel
(iii) (ReNHcl=Rd
(iv) (F~I(R)'=f-1(R) for any T-morphism B—> A,

We proceed immediately with the definition of Gabriel-Grothendieck topologies, as
Borceux calls them.

5.1.2 Definition. (cf. [Borceux and Veit 86])

A Gabriel-Grothendieck topology is a subset JE Q ,
(a) FleJ

(b) VReJ VSeQr [(VYWeR wl(S)ed)»SeJ]
(€) VS51..8hed VWEFN W I(S1®..85,,)ed

The following conditions can be derived from (a,b,c):
(d) VReJ VRS SeJ
(e) VR,5eQt(RnS)eJo (ReJASe)]
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Observe how this definition generalizes the previous notion of Grothendieck
topology (cf. 2.2.7). The new definition collapses to the old one in the restricted
case of a degenerate algebra, i.e., an algebra without constants and axioms simply
because then F1=1 and Qr=0Q. A subalgebra REF1 corresponds with subobject
11w of 1 and weR becomes w=T.
One should also note a formal resemblance. This observation allows us to see that
we get an equivalent definition if we replace (b) by (g), defined as:

(g) YReJ VSeQr [(YweR w-I(RnS)ed)-SeJl.
For clearly (d,e)= (g), and as also the combination (a,b,c.g)= (e,f) and (f,g)=>(d)
we have (a,b,c,g)= (d).

The above definition of Gabriel-Grothendieck topology is taken from [Borceux and
Veit 86], who have stated it in the context of the topos Sets.

The following definition of Lawvere-Tierney topology is inevitable if one wants to
establish an 1-1 correspondence between Lawvere-Tierney topologies and Gabriel-
Grothendieck topologies. Recall the notation (4.1.4.iv): if weFn, then we denote by
w also the function FI—>Fn: v—>v(w).

5.1.3 Definition.

A morphism j: Q1—> Qr is called a (generalized) Lawvere-Tierney topology if
(a) jF1=F1

(b) VReQT jjR=jR

(©) VR,5eQT j(RnS)=jRnjS

(d) VS51..50eQ T VWEFN [(jSi=F1A...AjSp=F 1)-jw N (S1®...05)=F1]
or equivalently to (d)

(d') VS1..5p€Q1 VWEFN [j(Sin...nSp)=F 1-jw~1(51®...®S,)=F1].

The following can be derived (use R€S & RNS=R):
() VR,5eQt[RSS—jRcjS]

The following condition (f) seems too strong: it implies (d), but we could not
establish the converse, that is (a,b,c,d)-(a,b,c.f):
() VS1.5neQTVWeFn:jw (51@..05,)=w1(j$1®...®jS).

5.1.4 Examples.

(1) Of course we have the trivial Lawvere-Tierney topologies: the identity
Kig: Q1 —> Q- and the constant topology k¢: Qp—> Qq:RH>F1 like in the case for
topologies on Q).
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(ii) There are natural connections between Lawvere-Tierney topologies on Q
and Lawvere-Tierney topologies on Q:

5.14.1 Lemma. Let a topology j: 3 —> () be given. Then the following are Lawvere-
Tierney topologies on Q:

@ kj=Qr—=>Qq:RH{weF1|jweR},

(ii) kj2==0'r_> Qr:R>{weF1] j*¥eR}UFQ.

Proof. (1) is easy.
(ii) This k jo' 1 —> Q1 isindeed a Lawvere-Tierney topology. The first and third
property, preservation of T and A, are trivial, the second follows by a calculation:
kiki,(R) = kj,({weF 1] j*eR}UF @)
= {weF1|j*e{weF1]|j*eRIUFA}UFQ
{weF1ljj*eR}uFQ
= {weF1|j%eR}UFQ
= kj,(R).
For 51...54eQ 1 and weFn suppose kJ2S1—F11A /\k Sn—Fﬂ Note that k S F1
is equivalent to % e{weF1| j*eS}uF@. Similarly in order to prove
S 1(51®...85,)=F1
it suffices to prove that
(jRew 1(S1®...8S,))v *eF @
If from the assumption follows % €F @, then we are done. So let us consider the
case that j*€S; for Ii<n. If we assume the stronger asssumption that % €S; for
1<i<n. Then
$1®...®S,=Fn.
And so
wI(51®...®5,)=F1.
Now if we apply the j-operator to the last, too strong assumption, we weaken the
last assumption to the first, and so we derive the desired localized conclusion from
the our earlier weaker assumption.

5.14.2 Lemma. Let a Lawvere-Tierney topology k: Q¢ —> Q¢ be given.
Then jk=Q—>Q: 0> *ek[{WeF(1)| 0}UF @] is a topology on Q.

Proof. The only interesting case is to show that ji jxw - jxw, forall weQ.
Solet we). It suffices to show that

ki{weF(1) | jyoluF 2] < kl{weF(1)|w}uF @1,
i.e., by kek=k it is sufficient to show that

{weF(1) | *eki{weF(1)|o}UFBIIUFR € k[{weF(1)]|w}uF@],
i.e., it is sufficient to show that
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if *ek[{weF(1)|w}uF @] then wek[{weF(1) lo}uF@l.
Which is trivial.
u]

5.14.3 Lemma. For a topology k: Q1 — Q1 there there is a topology j:Q— Q) such
that k=k; if and only if k=kjk‘

Proof. (&) Trivial.

(=>)Ifk=kj for some j: Q> Q. Then for ReQT.

Then for ReQ wehave k(R) = {weF(1)]j(weR)}

{weF (1) | *ek[{veF(1)|weR}UFZ 1}
{weF (1) | *ek;[{veF (1) |weR}UF @1}
{weF(1)| j*el{veF(1)]weR}UF 2 I}
{weF(1)] j(weRv %eF @)}
{weF(1)| jweR}

kj(R)

= k(R).

m]

(iii) [Borceux and Van den Bossche 84] have given in the context of classical logic
an example of a Lawvere-Tierney topology for the theory of abelian groups. We
adopt it to our constructive setting. Then F(1)=2Z and QT is the set of subgroups
of <Z,+>. Subsets of the form {0}u{nm[meZ A w} (or in short notation: nZlw) are
subgroup of Z for each neN and we Q). Each subgroup AS Z is generated by such
subgroups, as A=<nZIneA>,c . As a consequence Q)  is far from isomorphic to
N as it is in the classical case.
An algebraic Lawvere-Tierney topology in this setting is the following:

kp: Qr—=>Qp:R=>{meZ| IneN p'meR}
for each prime peN, and where p"m is interpreted as a sum of p" terms m.
It is straightforward to check that this is a topology on Q.

We will now proceed to establish the bijection between the three afore mentioned
notions: universal closure operations, Gabriel-Grothendieck topologies and
Lawvere-Tierney topologies.

5.1.5 Lemma.
(1) If we are given a closure operation ( )¢! on algebras, then J={R<F1|R¢l=F 1}
is a Gabriel-Grothendieck topology.
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(i) If JSQr is a Gabriel-Grothendieck topology, then if for any algebra A we
define for R<A that
ReU={beA| dr(b)eJ},
we have defined a universal closure operation.
(iii) There is a one-one correspondence between universal closure operations and
Gabriel-Grothendieck topologies.

Proof.
(i) We will prove the three properties of Gabriel-Grothendieck topologies for J.
We argue for subalgebras of F1:
(@) F1<(F1)CIKF1 by (5.1.1.1), hence FleJg,
(b) For R=J¢; and S<F1, assume that for all weR we have w1(S)edq. Now we
can argue as follows:
wl(S)edg = (WI(5))Cl=F1
- wl(S)=F1 (5.1.1.iv)
- weSsd
Hence we get from the assumption that we get R$S¢l. And so F1=R¢l¢5¢clcl=5cI¢F {

(b) For Sy,...,SpeJd¢! observe that in order to show that
VYweFn w-1(5®...®S,)eJe!
it suffices to show that
Fn=(51®...®S5,)¢!,
because
VWEeFn wi($18...85p)ed! & YweFn (W (51®...85,))¢\=F1
« YweFn w(51®..8S,)¢=F1
© VweFn we(S5@...85,)¢!
© Fn=(51D...85,)¢!
So, provided we know that (S1€1®...®S,t<(S@®...®S,)¢!, we are done, for then
we can argue that

St SpeJE = Si=F1A..ASyfl=F1
- Fn=S¢13...®S5,c1(51®...®S,)C'<Fn
- Fn=(519...@5,)°¢l.
This proviso is easy, as it suffices to show that SSI®RCIK(S@®R)C!. But any
WeSCI@R is of the form v(s,r) with veF 2, seS¢! and reR¢!. Because S<S®R we
get SCIK(S®R)®, and similar for R. Thus we see that s,re(S®R)¢! and hence
We(S®R)¢l,

(i) Let JS QT be a Gabriel-Grothendieck topology. Consider the subalgebras
R,S of an arbitrary algebra A.

(a) R<RCW, since for aeR we have ¢g(a)=F1led.

(b) Assume R<S. Then for all acA we have ¢r(a)<ds(a). Hence if beRCY then
dr(b)ed and so by (5.1.2.e) we get ds(b)e, i.e., beSEV. Therefor REULSE,
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(c) We need only to show that (RJ)CUgREU, for which it suffices to prove that
YaeA [¢ pey(@led—dr(aledl.

This follows from (5.1.2.b), if we can show that:
VYWED c1(a) wl(dr(a))ed.

Which is trivial, since
WEe el (@) = w(a)eRey
= ¢r(w(a))ed
- w-l(pr(a))ed.
(d) For f:B—> A and R<A we argue
((F-DRNV = {beBI¢f-1(R)(b)eJ}
= {beB|{weF1|w(b)ef-1(R)}eJ}
{beB{weF1|f(w(b))eR}eJ}
{beB | dR(F(b))eJ}
{beB|f(b)eRCU}
= f-I(RcL)

(iii) If we start with a Gabriel-Grothendieck topology J we get
J {R<F1|RU=F1}
{R<F1l{weF1]|dr(W)eJ}=F1}
{R<F1| dr*)ed}
= {R<F1l{weF1|weR}eJ}
= {R<F1]|ReJ}
= J.
If, on the other hand, we begin with a universal closure operation, we get for R<A:
Ry = {aeAldp(aledy}
= {aeAl(dpr(a))'=F1}

cly

= {aeAl(@ W(R))'=F1} (4.1.4.ii1)
= {aeAla~i(R)=F1}

= {aecA|aeR¢l}

= Rel,

We made use of the little trick of (4.1.4) that an element acA defines a morphism
denoted with the same letter a:F1—> A:wH>w(a), and the trivial observation that
dr(a)={weF1|w(a)eR}=a"1(R).
a

5.1.6 Definition,
(i) GG6-TOP={JeQTlJ is a GG~topology}
() LT-TOP={jQr—>QTljis LT-topology}.
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Note that there is not something like a type containing universal closure operations.
In the setting of a topos universal closure operations correspond to the global
elements of the above two types of topologies. The notion universal closure
operation is an essentially external notion, that we can treat via meta type theoretic
terms only.

5.1.7 Theorem.
There exists an bijection between the types 6G-TOP and LT-TOP.

Proof. We employ similar constructions as in (2.2.8) and (5.1.4). Define
J(LT-TOP—GG-TOP: j=>{ReQ 1! jR=F1}
JO:GG-TOP=LT-TOP:JIP [QT—=> Q1:R— {weF1|w-TReJ},

We have to check that

(@) J¢yand j¢) are well-defined,
(b) J¢yand j() are each others inverse.

Ad (a).
First for jeLT-TOP we show that J j satisfies the properties of a Gabriel-
Grothendieck topology.
(@) jF1=F1 & F1e{ReQ|jR=F1}
o FleJ;
(b) For 31...5n€Jjand weFn we have jSi=F1 for I<ign, hence we get
w-1(51®..@5,)=F1
by (5.1.3.¢), i.e.,
w“(Sl(-B...@BSn)er
and therefor
W'I(S1@...@5n)EJJ‘.
(c) For ReJj,SeQr assume thatVweR w1(S)eJ;.
Note: VweR wl(S)ed; & VweR jw-1(S)=F1
& VweRw-I(jS)=F1
& VYWeR #ew~1(jS)
< VweRwejs
< RCjS
- jREjjS
o jREjS
From jR=F1 and jRcjS follows jS=F1 hence SeJ;. That is we have shown
(5.1.2.¢).

All together we may conclude that J; is a Gabriel-Grothendieck topology.

Secondly, for JeGG-TOP we show that j, is a Lawvere-Tierney topology.
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(@) R < {weF1lw-ReJ} (for w-IR=F1 if weR)
= {weF1|w-ReJ}

JuR)
(b') We need only to show that j,(jy(R)<j (R), for which it suffices to prove that

vweF1 [w-1(jy(R))eJ-»w-1(R)eJ].
This follows from (5.1.2.b), if we can show that:

Vvew~1(j4(R)) v-itw-1(R))ed.
Which is trivial, since

vew l(ju(R)) - v(w)ejy(R)

- (VW) (R)eJ
- v-I(w~!(R))ed.

(¢") For R,SeQ T we reason as follows:

wejy(RnS) w~I(RnS)eJ
wI(R)nw~1(S)eJ
wl(R)eJAW~1(S)ed (5.1.2.e)
WEjJ(R)AWE]j (S)
Wejy(RINjy(S).
(d") Assume for Sy...5,€Q 1 such that Ju(S=F1 (1<i<n).
Then it holds that % ~1(S;)eJ, or simply SieJ for (1<i<n). Now for weFn it follows
that w=1(51®...®S,,) eJ.
Hence jy(w=1($1®...©S,))=F1 by (5.2.1.b).

UREOROR

Ad (b).
For jeLT-TOP and ReQy we have

j(Jj)(R) = {weF1lw™(R)eJ;}

= {weF1|lw-I(R)e{ReQ | jR=F1}}

{weF1|jw-Y(R)=F1}
{weF1]*ejw-1(R)}
{weF1|*ew1j(R)}
= {weF1|wejR}
= jR.

And for JeGG~TOP we have

J(jd) = {ReQtljy(R)=F1}
{ReQrl{weFt1iw-1(R)eJ}=F1}
{ReQ ! *e{weF1|w-1(R)eJ}}
{ReQtl*"R)eJ}
{ReQt|IReJ}
J.
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5.1.8 Corollary
There is a 1-1 correspondence between the global elements of {j: Q1—> Q1 j is
Lawvere-Tierney topology}, the global elements of {JSQT—>Q 1l is a
Gabriel-Grothendieck topology} in a topos E and the universal closure operations
on subcategory of algebras in E.

O

5.2 Commutative and Semi-commutative algebras

In theorem (4.2.5) we encountered algebras in which unary operations commute
with all operators of arbitrary arity of the algebraic theory. [Linton] considered
algebras in which all operations commute with each other.

5.2.1 Definition. Let T be an algebraic theory.

() T is called semi-commutative if unary algebraic operations commute with n-
ary algebraic operators, that is, if equations of the following kind are implied by the
equational axioms of the theory T:

P(W(XD),...,W(Xpn) =W(p(X{,...,Xn))
where p is an n-ary operator and W a unary operation in F1.

(i) T is called commutative if operations of arbitrary arity commute with each
other, that is, if equations of the following kind are implied by the equational
axioms of the theory T:

VIWEK L X1m) s s WD e Xnm) ) =WV X1, X1 s VK000 X))
where veFn is an n-ary operation and weFm is an m-ary operation in F1.

It follows that if T is a semi-commutative algebraic theory, then unary algebraic
operations commute with operations of arbitrary arity.

Under the stronger condition of semi-commutativity the definitions of Lawvere-
Tierney topology and Gabriel-Grothendieck can be weakened. Note that the basic
notion of universal closure can not be weakened in a similar way.

5.2.2 Theorem. Let T be a semi-commutative theory.
@ Q1> Qr isaLawvere-Tierney topology, if and only if j satisfies:
(a) jF1=F1
(b) YReQT jjR=jR
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© VR,SeQr j(RnS)=jRnjs
d) VReQt VF:F1—F1 jf-1(R)=F1(jR).

(i) JeQr is a Gabriel-Grothendieck topology, if and only if J satisfies:
(a) F1leJ
(b) VReJ VSeQT [(VWeR w1(S)ed)-»SeJ]
() VSed VweF1 w-1(S)ed

The following conditions can be derived from (i)(a,b,c):
(d) VReJVR—>SSeJ
(&) VR,5eQT[(RnS)eJo (ReJASe)]
() VReJ VSeQTU(VI:QT QT f-(RNS)ed)-SeJ]

Proof.
(i) (Only if) is trivial. For (if), we give a similar proof as in [Borceux and Veit
86]. It suffice to show that we can derive
V31..5h€Q T VWEFN [(jS1=FlA..AjSh=F 1) jw~(S5®...®S5)=F 1]
from (i) (a,b,c,d) under the assumption of semi-commutativity.
Assume for S1...S,eQ 1 and weFn that JS1=F1A...AjSy=F1.
Consider w=1(51®...@5,).
wl(518..85,) = {veF1|v(w)eS®..®S,}
{veF11w(v(#1),...v(#,))eS51®...DS,}
{veF1|veS ... AVES,}
NigignSi
Hence F1c N1cicnJSi€ JN1icnSiS jW1(S1®... S, ) SF 1.
Therefore jw=1(S1®...®S,)=F1.
(ii) A similar arguments applies.

U U n

5.3 Sheaves for a Gabriel-Grothendieck topology

In this section and the following a generalization of the Grothendieck associated
sheaf constructions will be presented for commutative T-algebras with respect to a
Gabriel-Grothendieck topology on the subobject classifier Q.

Needed for this algebraic approach is a generalized formulation of the notions
involved apt for this particular situation: singleton, separated, closed, dense, sheaf
etc. The general definitions should collapses to the usual meaning in case of the
trivial algebra without symbols and defining axioms. Note that in case of the trivial




topologies, sheaves and localizations for some algebraic theories 80

algebra F1 is isomorphic to 1 and hence Q  is isomorphic to Q). A Gabriel-
Grothendieck topology on Q) trivializes to a Grothendieck topology on Q).

The usual classical notion of singleton on A is a subset of A containing exactly one
element. Equivalently, but from a different perspective it is a morphism 1—>A. In
the intuitionistic setting of chapter 3 we have seen a large family of singleton
notions. Let us focus on what is called a vii-singleton, that is a subset SC A such
that:

(i) VYXyeA (XeSAyeS—x=y)

(i) j3IxeA xeS.
Observe that vii-singletons are in one-one correspondence to functions 11o—> A for
truth values weJj. In the present set up the subalgebras of F1 have taken over the
role of truth values. An element aeA defines a morphism F1—>A:wH>w(a). So
the counterpart of a function 11w —> A with weJ j 18 now a morphism R —> A with
Red.

5.3.1 Definition. Let J: QO —> QT be a Gabriel-Grothendieck topology.

(i) A singleton on A is just a morphism S—> A, where SeJ.

(i) Let f.R—>Aand g:S—> A be singletons on A. Then we define f ~q if
VWeRNS f(w)=g(w).

From now on we suppose a Gabriel Grothendieck topology JES QT to be given.
The usual definitions of dense morphism, separated object and sheaf can be
generalized to the present algebraic context.

5.3.2 Definition.
A monomorphism m:B > A is called dense if VF:F1—>A f~1(B)eJ.

The following lemma contains some useful properties of dense morphisms.

5.3.3 Lemma.

(i) A subalgebra S>> F1 is dense if and only if SeJ.

(ii) The pullback of a dense morphism is again dense.
(iii) The monomorphisms ¢:C>>B and h:B > A are dense if and only if the
composite gof is dense.

Proof.
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(i) If Sed, then J3=F1. Consider f:F1—F1,
Since jf=1(3) = f~1(js)
= f1l(Fp)
1 Fn,
we get f-1(S)ed. Thus, S>>F1 is a dense morphism. The reverse is trivial.
(i) Let A>>B be a dense morphism. Consider the pullback along f:C—>B. In
order to prove that f~1(A)>=>C is dense, we consider a morphism ¢g:F1—> C and
take another pullback:

g1 (A) >—>F1
pb g
J J
f1(A)>—sB
pb f

Y y
Ad>———B

As both squares are pullbacks, also the outer rectangle is a pullback.

Hence g=1f-1(A)=(fg)~1(A)ed. By (5.1.2.b) it follows that f~1(A)— C is dense.
(iii) (only if) Let g:C—>B and h:B— A be dense morphisms. We have to show
that for each f:F1—> A the subalgebra f=1(C) is an element of J.

Let k:F1—f~1(B) be a morphism and consider the following diagram constructed
by taking successive pullbacks as indicated in the squares of the diagram,

k=11 (C) >——>F1

pb k

£ (CY)r—>f"1(B)>—>F1

T

Note that by construction m:f=1(C)—>f ~IB)isa genuine embedding.

Now h:B>> A is dense implies f~1(B)eJ. And 9:C>>> B is dense implies with
help of the second item of this lemma that k=1r=1(C)) >>F1 is also dense. But by
the first item of this lemma this means that k=I¢e=1(C)yed.

Hence k=1(t=1B)nf~1(C))=k~1(F~1(C))eJ.

It finally follows by (5.1.2.b) that f~1(C)ed.

(if) Suppose goh:C>>B > A is a dense morphism. Then for all f:F1—>A we
have f=1(C)ed. Since £~1(C)cf~1(B) we get f~1(B)ed by (5.1.2.c). Therefore

h:B— A is dense.
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Next, consider k:F1—>B, and hok:F1—> A. Then k=1C)=(hk)=1(C)ed, ie.
9:B—> A is dense as well.
|

5.3.4 Definition.
(iii) An algebra A is J-separated if Vf,g:F1—> A VReJ [fIR=gIR - f=g].
(iv) An algebra A is a J-sheaf if VReJVF:R— AdlgF1—>A grR=f.

Observe that if the algebraic theory T is empty, i.e, when there are no functions and
axioms, then an algebra is just a type like all others, and our new notions reduce to
the old ones. The construction of the associated sheaf a la Johnstone can now
proceed along similar lines as in chapter 3.

5.4 Associated sheaves i la Grothendieck.

We will now give the internal account of a Grothendieck construction for algebras
along the lines set out in [Borceux and Van den Bossche 84]. Note, as Jaap
Vermeulen pointed out to me, that only the very first step of the construction
depends on the full commutativity of the algebraic theory. Elsewhere in the
construction and proofs semi-commutativity suffices.

[Borceux and Van den Bossche 84] constructed associated sheaves with respect to a
given Gabriel-Grothendieck topology in the special case of commutative algebras in
toposes of sheaves sA(H) on a complete Heyting algebra H. Our internal description
of the construction works for any elementary topos and circumvents the special
properties of that particular topos which obscured their construction.

5.4.1 Definition.

(D) AA={f:S—SAI|f is a singleton on A}/a.

(i) A:A—AA is the function that maps aeA to the equivalence class of
singletons represented by F1—=>A:w- w(a).

Note. For sheaves over a frame H this definition is exactly the internal content of
the external notion of [Borceux and Van den Bossche 84] pointwise defined by:

MW= T hom(S,A), for ueH
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5.4.2 Lemma. Let A be an commutative algebra.
(i) AAisan algebra
(i) A:A—>AA is a morphism.

Proof. (i) Let p: AD—> A be an algebraic operator. We define Ap:(AAYP— A A by
defining its behavior on representatives: Ap maps (gy,....gn)€(AA)P to the singleton
represented by
Nigigndom(gi —> A:w > p(gy(w), ..., gn(W)),
where gj,...,gn are representatives of respectively gy, ..., gn.
This definition is independent of representatives. Ap: Nigigndom(gi) — A should be
an morphism as well.
Now for q an m-ary operator, and V1.....Vm€N1gigndom(g;), we have
a(Ap(vp,..., Apfvy)) = a(p(g1(v1), ..., an(VD)),....p(G1(Vm), ... G (Vir)))
= p(q(g;(w),...,gl(vm)),...,q(gn(vl),...,gn(vm)))
P(GI(A(VY,...v)), e, G (A(VY,....Vi)))
= Ap(q(vy,...vp))
The second equation is of the form
APV e Vind,ee, PVt ey Vinn)) = PVt s, VinDse o, A0VIY, o, Vi)
and therefor depends on the commutativity of T. Similarly the third equation is an
instance of semi-commutativity.
Finally to check that that A A indeed is an algebra easy.

(i) Let v be a n-ary algebraic operation. We have to show that the following
diagram commutes:

A —7‘—-» (AA)

A

A———— \A

A

Let ay,...,apneA. Since Aov(ay,..ap) is represented by FI—=>A:wP w(v(ay,..,ap))

and v(A(ay),..,A(ap)) is represented by FI—=>A:wHv(w(ay),..w(ap)), the

commuting of the diagram follows immediately from the assumption of the lemma.
O

The next lemma will be helpful in the proof that AAA is a sheaf.
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5.4.3 Lemma. Let A be an algebra such that unary operators on A commute with
each other and let f:F1—>AA be a morphism. Then f % :R—>A represents

f(*)eAA if and only if Aof 4 =fIR.

Proof. (only if) Let fy4:R—> A represent f(*) and let veR. We will show
Aof 4 (V)=F(v). Observe that Aof 4 (v) is represented by FI1—= A:w w(f 4 (V).
Hence R—>A:wH> W(f4(v)) is also a representative of Aof 4 (v). However
F(v)=Ff(v(*))=vf(+) and hence f(v) is represented by R—> A: w > V(f 5 (W)). By
semi-commutativity we get V5 (W) =F 3 (V(W))=Ff 4 W(V))=WF 4 (v). This implies
that the two representatives coincide above ReJ. Hence Aof # (V)=F(v).

(if) f(+) is represented by R—>A:WH>f4 (W). Also Aof 4 (%) is represented by
FIA: W W(fy (%)), But W(fy (%)) = fy(W(k)) = fae (W), so f(%)is
represented by fy.

m]

5.4.4 Lemma. Let A be an algebra such that unary operators on A commute with
each other. If A is J-separated, then A: A—>AA is a dense morphism.
Proof. It follows from the separatedness of A that A:A—>AA is a monomorphism.

Let f:F1—> AA be some morphism and let f4:R—>A be a representative of ()
in AA. Set f~I(A) = {weF1]JacA A(a)=f(w)}. Consider the following diagram:

-
k)
L3
i

¢

f(A)—>F1

]

The innersquare is a pullback as A:A—> AA is a mono. Because of lemma 5.4.3 the
outersquare commutes, hence R>>f~1(A). Since ReJ we get f~1(A)ed.
O

5.4.5 Theorem. Let A be an algebra such that unary operators on A commute
with each other. Then AA is separated.
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Proof. Let f,g:F1—>AA be such that for some ReJ we have fIR=gIR. If we are
able to prove that f(%)=g(%) then f=g follows easily. So it suffices to prove that
representatives of (%) and g(*) are ~-equivalent.

Let fy and g4 represent respectively f(%) and g(s%). For simplicity assume that
the domains of fy and gy are equal to R. If not so, restrict the following
argument to Ry=Rndom(fy)ndom(gy) which belongs to J.

Let K={WEeR|f4(W)=gy (W)} be the equalizer of fy and 0% In order to show
that fy ~ gy it suffices to prove that Ked, or by lemma (5.3.3) to prove that
K> F1 is dense. That is, for all :F1—>R we have to show that 1-1(K)ed.
Consider the following diagram:

1Ky, F1
j pb Jl
K C » R C > F1

I

A—0 A

A

Because of lemma (5.4.3) we have Af g l=fri=gri=Agsl

It follows from (5.4.3) that If 4 ~1g.

Hence there is SeJ such that If 4 S=lg4I'S. Now SnRedJ.

By construction of the equalizer K we get the factorization of SAR <> F 1—> R by
k:K<>R.

Using the pullback property we find that SnRg1-1(K). Hence 1"I(k)eJ, and we
are done.

[m]

5.4.6 Theorem. Let A be an algebra such that unary operators on A commute with
each other. Then

(i) if Ais a separated algebra, then AA is a sheaf,

(ii) AAA is a sheaf.

Proof. (ii) is a trivial consequence of part (i) and theorem (5.4.5).

(i) Let ReJ and let f:R—AA be a morphism. If we are able to construct a
morphism g:F1—>AA such that glR=f, then it follows from the separatedness of
AA that g is the only one such. The following diagram illustrates the construction:
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wilsC _, F1

b
w P W

\

A
sC__ , R

r
h s f\

Y 4
A >T>AA<._DF11
g

Let S be the pullback of f and A.Le., S={weR| JacA A(a)=f(w)}. Because A
is dense (lemma 5.4.4) and the preservation of density by pullbacks (lemma 5.3.3)
we get Sed.
To construct g it suffices to give the value of gon %, as g(w) =gw(*)=wg(*)
for weR. We define g(%) to be the equivalence class represented by fIS.
Recall that a word weR defines a morphism F1—>R:v> w[#*=v], that we also
denote by w. We take the pullback w=1(S)={veF1]|w(v)eS}. Also w1(S)eJ as
w=1(5) is the pullback of a dense morphism. By lemma (5.4.3) we see that
f(w)eR is represented by woh:w~1(S)—>5— A. Similarly we get that gr(w) =
g(w) = gw(*) = wg(*) is represented by woh:S—> A— A, where again by
abuse of notation w: A—> A is the morphism aF>w[#:=al. If we consider finally
a word vew~1(S) we see that hw(v)=wh(v). Hence wh:5—>A and hw:w-
1(5)—= A coincide on w~1(S)eJ. Therefore gr{w)=f(w), and so we get gr=f, as
desired.

o

5.4.7 Theorem. Let A and B be semi-commutative algebras and B a sheaf. Let
f: A—>B be a morphism. Then f factors uniquely through A:A— 1A,

Proof. Let A, B and f: A—B be as assumed in the theorem. We have to construct
9:AA—> B such that the following diagram commutes.

>
[>
o>
>

/
00 @mcmnnan.
[le]
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Let k:R<> A be a representative for some arbitrary equivalence class KeAA. Then
RedJ. Because of the assumption that B a sheaf is, there is a unique mg:F1—B
such that the following diagram commutes:

RC_,F1
k\‘A

3
~

4
W yennnnnn

Now we define g:AA—>B:K>my (). This definition is independent of the choice
of representative k. We have goA(a) = g(A(a)) = ME1— A:wH w(a)(#) =f(a)
for aeA. Unicity of g follows from the unicity of my.

o

5.4.8 Theorem. If A be sheaf, then A:A—>AA is an isomorphism.

Proof. Let A be a sheaf. Hence, it is separated and therefore A:A—>AA is a
monomorphism. Remains to prove that A:A—>AA is an epimorphism. Let K be an
equivalence class in AA with representative k:R—> A for some ReJ. A is a sheaf,
hence k extends uniquely to F1—> A by the previous lemma (5.4.7). But then
ACI(*))=K. And so we see that A is an epimorphism.

O

5.4.9 Theorem. For a commutative algebraic theory, the above construction
preserves products and equalizers of algebras.

Proof. Let A,B be algebras and let AxB be their (usual) product. We will show
that the algebra A AXAB is isomorphic with the algebra A(AxB).

Let us start with an element <T,g>eAAXAB. And let f:R—> A and g:S—A be
representatives of respectively feAA and geAB.

Then the function RnS —> AxB:w > <f (w),g(w)> is representative of an element of
ACAXB).

The other way round, if we have an element heA(AxB) then we extract from a
representative h:R—> AxB of i the obvious functions f:R — A: w17 1(h(w)) and
9:R— A:wk> r2(h(w)) with corresponding equivalence classes FeAA and geAB.
And so we get an element <F,g>eAAXAB.

It is easy to see that this describes two morphisms between A AXAB and A(AxB)
that are each others inverse.

For equalizers a similar argument works.
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If we can summarize the above construction, for A,B be algebras and f: A-—>B a
morphism we defined:

() AA={S—AIS is a J-singleton of A}/~

(ii) kf::AA%AB:[g:S%A]H[S—)A:wa(g(W))]
(i) LyA=A(AA)

(iv) vyaA=A—=>AA e [F1IDA:wH w(a)]

(V) n=vracvarA—LA.

And we have proved for it the following:

5.4.10 Corollary. If T is an commutative algebraic theory, then for an algebra A
we have

(i) AAisaJ-separated algebra,

(i) if A is J-separated, then AA is a sheaf,
(iii) if A is a J-sheaf, then AA is isomorphic with A.

If we have an internal algebraic theory T in a topos E, then we can look at the
category Er of T-algebras in E. For a subobject J € Q 1 that is a Gabriel-
Grothendieck topology we can also consider the category sAy(ET) of J-sheaves in
E.

5.4.11 Theorem. In the case of a commutative algebra T it holds that
(1) Ly:Ex—>sAy(E) is left exact left adjoint of the inclusion i: SAET)>ET
corresponding to the Gabriel-Grothendieck topology J.
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Chapter 6

Generalized Godel-translations

It is an old result of Godel that classical first order arithmetic can be embedded in
intuitionistic arithmetic via a so-called negative translation (cf. [Gddel] and the
accompanying annotation by Troelstra in the same volume.) Similar translations
have been made for other systems as well: second order Heyting arithmetic, type
theory (not to be confused with the - let us say - topos type theory of this thesis)
and set theory (cf. [Friedman], Troelstra's annotation in [Godel], [Leivant] and
[Troelstra and van Dalen])).

Two facts from topos theory hint at a generalization of Gédel's negative translation
for type theories:

(i) toposes are in a natural sense nothing but type theories (cf. for instance
[Lambek and Scott])

(i) in each topos E a boolean topos Sh__E is included via the geometric
morphism L, _:SA__E—>E determined by the double negation topology (cf. for
instance [Johnstone 77]).

So, we want a translation (-)8:L,,—>L,, fora type theory H with language Ly, such
that:

H+Principle of Excluded Middle - ¢ & H 6.

together with a semantical proof in the following style:

"=" Assume H p< 6. Using completeness, there is a topos E modelling H and
invalidating $©. Construct Sf__E. If SA__E models H and invalidates ¢
we can conclude H+PEM < ¢.

“«<=" In the presence of PEM the G-translation trivializes to the identity on L.

We have to take care of three steps in the proof of *=";

(i) Given an interpretation = of H in E we have to define an interpretation k=
of H in SAE, that will satisfy:

(i) Epo = SA_ _Ep__ o,
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(i) EEH = SA__Ee=__H.

To define an interpretation of a language in a topos, it suffices to indicate how the
basic types and the functions have to be interpreted.

With respect to types it is easy to make the first step. A basic type A that in E is
interpreted by [A] will be interpreted in .S‘ﬁj!E by its sheafification [LA]. It follows
that, for example, a type Ax[B] with basic types A and B will then be interpreted in
SKHE by [AlxO j - Careis needed for functions when domain or codomain are no
basic types.

The observation that SﬁjIE is a subcategory of E, can be made more precise by a
translation (=)j of L ShE in Lg with the property

SﬁjIEI=¢ & Ee¢l

Although for the topos theorist this translation may seem to go in the wrong
direction, there are important instances where the topos of sheaves is well-known,
in contrast to the base topos one started off from, see for example [Hyland 82]'s
effective topos.

Now the second step can be taken. If we j-translate the just constructed
interpretation of H in SH{E we get the first extension of the Godel-translation for an
arbitrary Lawvere Tierney topology j. In case of the double negation topology this
is a generalization of the original Gédel-translation to higher-order type theories. In
case of open and closed topologies:

PO 0-p-0
PO=20:0-pv 0

we get generalizations of the Friedman-translations (cf. [Friedman]). Such an
observation has been made for intuitionistic predicate logic by [de Jongh].

The last step can only be made for type theories H that satisfy H — HG, that is, type
theories H that proves its own Gédel translation HG. For example, in the case of
higher-order Heyting arithmetic HHA - HHAG will be a logical reformulation of
the categorical preservation of a natural number object by a left exact functor like the
associated sheaf functor (cf. [Freyd], [Johnstone 77]). Other examples we will
discuss are geometric theories (Joyal and Reyes, cf. [Johnstone 77] and [Makkai
and Reyes] and existential fixed point logic (cf. [Blass] and [Blass and Gurevich]).
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Note that there is no need to work with axiom schemes because the intuitionistic
higher-order logics we work with have an object of truth values over which we
quantify. That means that we only need to investigate properties like ¢+~ $6 for
formulas and not for schemes, as in [Friedman] and [Leivant].

The G-translation constructed by the foregoing recipe enjoys the pleasant property
that it translates € and = by € and =, and preserves the extensionality of €, i.e., the
relationship Vx,ye[Al(x=y e VzeAlzex e zey]) for any type A. The penalty is
that the types are translated into subtypes of types of a higher complexity.

We will end this chapter with another Gédel-translation. This g-translation can be
seen as the G-translation followed by a further translation. In contrast to the G-
translation it has the good property that the types are preserved, and the bad
property that the translation of the predicates = and € becomes complicated.

By now we have promised to introduce three translations (respectively called j, G
and g). We will begin this chapter with the j-translation from SﬁjIE into E.

6.1 Translating from Sf;E into E

For a topos E and topology j: Q— Q in E we will translate types and terms of the
canonical language of SAE into types and terms of the canonical language L of E.
Let us denote by [1J the canonical interpretation of L ShE in SAE to be
distinguished from the canonical interpretation [] of L in E.

The basic types of L SkE are also basic objects in Lg. Power types are constructed
differently. Inside Slile the power P(A) of a basic type A is just the type of
subtypes of A, but from the point of view of E, it is O i, the type of j-closed
subtypes (cf. (2.3.5-6)) of A. This can be generalized to arbitrary types:

6.1.1 Definition.

Define by induction on the type A of Lg a (sub)type A jin Lg:
(@) Aj=A, for basic types

() (Q)=PN=0={veQ|jo}={weQ]o=ju}

(iii) (PA)j=Q;Al={BCA;IB is j-closed}

(iv) (AxB )j=AjXBj
W) (BA)j =B Al
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For example, compare the types P(AxPB) and (P(AXPB)) j- They are equal to
B
respectively QAXQB anq O ijQ i-

6.1.2 Lemma. For each type A of L ShE We have [Ali=[A i1

Proof. Trivial induction on the structure of the type.

6.1.3 Definition. For types A in Lg built up from basic types that are sheaves, we
define ea: A< A together with da: A—> A j by induction on A:
() ea:Aj> A=idp for basic sheaf types and 1
(ii) en: i 000
(i) eqa:QAI>OABHB
@iv) Baxs: AXB <> AxB:<a,b> > <eal(a),eg(b)>
v) EBA:BjAj‘—-)BA:fHdBOfOEA.

and

(vi) da:A—DA j=ida for basic sheaf types and 1
(vii) da: Q= Qe jo

(viii) dQA:QA%QJ-AJ':BQAHn"Lj{dA(b)eAjIbeB}
(ix) dAxB:AxB-éijBj:<a,b>H<dA(a).dB(b)>

(x) dBA:BAL—)BjAj:fHdBOfOEA.

Note that e and da is well-defined. We check (iif) and (viii) for example.
Ad (iii). Observe that if BerAJ', that is B CAj But since AjSA we get BCA, ie.
BeQA.
Ad (viii). Observe that A jis a sheaf, whenever A is a type built up from basic types
that are sheaves. Then {da(b)eA jlbeB} is a subtype of the sheaf Aj. For this Ajwe
have an isomorphism n: A i~ Lj(Aj) (cf. (2.4)). Hence
Li{da(b)eA;l beB}CA;
and so r]"Lj{dA(b)eAj IbeB} is a subsheaf of Aj, which implies (cf. (2.3.6)) that
n'le{dA(b)EAj |beB}eQ A,

6.1.4 Lemma.; For types A in Lg built up from basic types that are sheaves we
have that dpce equal to idp, i.e., A is a retract.

Proof. By induction, for example for Be Q) s
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doacenA(B) = n-lL{da(bleA;lea(b)eB}
n7ILj{da(b)eAIbeB}

= n“LjB
= B.
Or, for feBjAl:
dpAcepa(f) = dpa@pefoda)
= dpgoegofedacep
= idgefeida
=f

We have now built the machinery necessary to define a translation of terms of L SHE
in terms of L. It suffices to define the translation on the kernel of L ShE- The
translation is remarkable simple. For, all the basic elements of L SHE? sorts and
function symbols, already occur as basic symbols in Lg.

6.1.5 Definition. The j-translation tieLg of a term tel SAE is obtained by
simultaneously replacing every subterm in tel SKE of the form {x:A| ¢} by the term
{X:AlXGAjAd)j} in Lg.

We can now calculate the translation of terms of the full language L ShiE in LE.

6.1.6 Lemma.
Let ¢,y be formulas in L ShiE* Then in the canonical type theory HE of the topos E
the following holds:
@) TieT

(i) (dApie(@iayd)

(i) (¢->y)ie (pi-yd)

iv) (boewie(dloyd

(V) (VX:Ad)e Vi: A (xeAj— )

(vi) Lieji (e L in case of a dense topology)
(vii) (=~$)e(pi-jL) (e =0l in case of a dense topology)
(viii) (d~vy)ie j(divyd)

(%) (Ix:A Mo jIx:A (xeAjad))

Proof.
@ T o <k=%>]
> F=>
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(@) Ayl o (§y>=<T,T5)]
o <Ol yb=<T,T>

(i) -yl o (pAyp=)
o diayizgl
“ (d)j-—npj)

V) Doy o (b-oyay-e)i
o ((b.'i—)q;j,\qrj—-)d)j)
o (diey))

V) (VXA & ({x:Ald}={x:A|T}i
o {x:AIxeAj—>¢J'}={x:A|xeAj—>T}
o {(XAlxeA ¢} ={x:AIT}
© Vx:A(xeAj—>¢J)

(V) Ll 6 (YeeQ (o=T))i

© YVoeQ (0eQj»o=T)

o VoeQ jo

«* jVoeQo

© jL (e L incase of a dense topology)
(=*) Substitute Ve o.
(«*) Apply (2.2.3.vi).

(Vi) (=0)e (9> L) (i jL) (e -dJin case of a dense topology)

(viii) (dvy)i & (Yoen (= 0)Aly>0)o0))]
© VoeQ [0eQ (s 0)A(yis)-»0))]
o Yoed ((§I> jo) A (yi= j0) = jo))
o* VoeQ (¢Isw)A(yis0)» )

(=*) Substitute VoeQ (I @) Alyis )= 0)),

and apply the fact that $is Vee ((pI-» ) A(yi>0)-0)) together with the

corresponding fact for i,

(ix) (IXAP) o (VoeQ [VXeA (§-6) »o])i
© VoeQ [0eQ»(VxeA [XeA > ($is0) -]
o Voe [VxeA (xeAj~ (dI-jo) ) jol

94
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¥ jVoeQ [VxeA (xeAj=(dimo))-o]
o jVoeQ [VXeA (XeAjAd)-0)) »o]
o jACA (XEAjADD)

(=*) Substitute VoeQ [VXeA (xeAj—(dise))-o],
and note that (XeAj-(¢I- Vo eQ [ VXeA (XeAj~ (di=w) )»o]).

6.1.7 Theorem. Lett be a term of L ShE> then we have the following commuting
diagram in the topos E:

(2]

__....).<_>B

]

A.
l!
AJ—_’ BJ

OItI

o O

o |

where B is the type of the term t, and 1A is the product of the types of the free
variables in the term t.

Proof. By induction on the complexity of t. It suffices to prove the theorem for t in
the kernel of LgpE.
@ [xilxee = myor:TTADI>STIA; - A
= eo W ITADI= (A= A
= eolxI}

(i) [f(t)ilxee = [f(ti)Ixeoe

[fle[tilxee

Iflees[t]} (by induction hypothesis)

eoIIf]I-i°|Ii_:]x (f is a function symbol between basic types, i.e.
ee[f(t)];, sheaves)

(i) [(t=s)ilxoe [ti=silxee

<|[tj]|x,ﬂ$j]|x>o|[=]]oe

* <|[t]]lx,|[$.]]lx>090|[=]].|
<|[tj]|xoe,|[sj]|xo_e>o|[=]|.i
<e°|It]Ixj.E°|[$]I§(>°|[=]|j (induction hypothesis)
ee<[tIy),[sk>el=1

ee[t=sI;,
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(=*) Equality on an object A in a topos is defined as the map =: AXA—> Q) that
classifies the monomorphism <ida,ida>: A>> AxA. Hence in the topos E equality
on Aj is the map =j AXAj— Qj classified by <idagidap: A= AjxAj. In the
following diagram we see that the innersquare is a pullback, and hence also the
outersquare. It follows that equality on A jin E factors through the equality on A jin
SKiE followed by e:Q j— Q.

Al qu"dA) A w Al

|

ﬂ)-T“.Qj

NQ

From the pullback property of the classifying diagram of =: AXA—> O we get the
desired:

AXA ——— )

|

A xA—— 0,
=]

(iv) [(tes)ilyee = [tiesilyoe
= evo<[tily,[sily>oe
= evo<[[tj]xo¢,[sj]xo¢>
eve<eo[til,eo |[_3j]]31(> (induction hypothesis)
evjoeo<|[t]I§.l[s]I§(>_
=* poevje<[tlx,[sI}>
= eoftes]y

(=*) needs motivation: why does the following diagram commute in E?

AxQ——

Q
|

i

j A
j [®)

A —_—
Bv;

o]

A ev

b

Recall that e is a genuine embedding. For an element (x,B) of (AX(A; = Q) we
have evee(x,B) = ev(x,B)
= X€B (B is j-closed, hence xeB « jxeB, i.e., (xeBleQj
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= e(xeB)
= eoevj(x,B).

v) [zx)iIxee = eve<sry, wy>oe
= BVo<eolTyBoTry>
= Ev°e°<ﬂz,ﬂx>

BOBVjo<IT 4, TTy>

ee[z()I

(vi) The last case we have to prove is [{x: A | §}i]oe=ee[{x:A| $11J. Assume for
simplicity that ¢ contains only x: A and y:B as free variables and recall that the
interpretation [{x: Al $}15:B—> QA of the type {x: A1} is defined as the transpose
of [¢(x,y)]a B:AXB— Q.

Because exponentials are preserved by the associated sheaf functor, we get that
from the point of view of E the morphism [{x: A | $}1ig:Bi—> (Qj—> Aj), which is
the interpretation of {x:Al®} in S RiE, is constructed as the transpose of
[d(x,y)1ia B:A jXBj— Q. Hence we can apply the induction hypothesis to the
following diagram:

Ax ——8Y

ev
—g(l)/
e e
AxB (2)
: Al a
i ev;j i
e ) !

A’ xQ

(3 /
N

D= idax[{x: AlxeAj~ i}

Q)= IIXEAj/\ dI(x, )1 axB

(3) =idaX[{x: Al $}1g

(4) = [o(x,y)axs
The induction hypothesis e[ (x,y)liaxs=[6i(x,y)] a5 € implies that the square
with sides (e,2,e,4) commutes. Moreover we know that the square (e,ev,e,evj)
commutes. Taking in consideration the definitions of (1) and (3) we get that the
diagram (e,1,e,3) commutes. Hence we get [{x:A | §}iJoe=eo[{x: A| o}

O

where

With help of this j-translation we can express in a topos E what it means that a
formula ¢ is satisfied in the subcategory SAE of sheaves in E:
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6.1.8 Corollary. Let ¢ be a closed formula in L ShiE (i.e. there are no free variables
in ¢). Then E=¢J if and only if SHEE$.

Proof. Observe the following easy facts:
(i) for a closed formula ¢ the diagram of theorem 6.1.7 reduces to

I
1 [$-] a
MNTE

Q;

(i) T=idgeT=eqoT=Tjeeq.

We apply (6.1.8) to get a simple proof for the following theorem of Lawvere and
Tierney in topos theory (cf. (5.17) in [Johnstone 77]):

6.1.9 Corollary. For each topos E it holds that S/_,_E is a boolean topos (i.e.,
Sh__EEV0eQ ov -0, cf. [Johnstone 77])

Proof. Because of (6.1.8) we have that
Sh-_EEV0e (0v-0) & Ex(Voed (0v-0))—"

& EEVoeQ_ . ~~(ov-0)
@ EEVoeQ a=(a-0v-0)
& E=Voe (DA ==0)
® EEVoe -1
< E=T.

The latter formula holds.

As another corollary of (6.1.8) we present a another, simple proof for the inverse of
(6.1.9) that occurs as a lemma in [Blass and Scedrov]:

6.1.10 Lemma. Let j be a dense topology in a topos E. If SHKE is a boolean topos,
then j=--.
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Proof. Assume for a topos E and a topology j in E that SAiE is a boolean topos.
Then by (6.1.8) we get
EE(V0eQ (0v -w)),

i.e.,
EFVoeQjjlov(o-jL)).
Hence
EEVoeeQj(jov(e-jL)).

Now we argue internally in E. The assumption j<-- implies j.L ¢ L. So, if we also
suppose that —=-® holds, then
Jovie=j1L)) - j(jov-e)
= j(jov(m0A-=0))
- j(jov1)
- j(jo)
- jo
Hence —-w-»jo, which implies —-=jin E.

6.2 The generalized Gidel-translation

The essence of the G-translation (cf. def. 6.2.7) is a translation of types. When the
types are changed, it is natural that also the translation of functions and sets has to
be considered. This is all that needs to be translated. The characteristic Godel-
translation of the logical connectives will follow naturally from the translation of the
definitions of the connectives.
In proposition calculus we have an easy example of the way the G-translation
operates in the case of the double negation topology.
Recall, that ¢y can be redefined in second order propositional calculus by
VoeQ([$—»o A y->w]->0). According to our recipe of the G-translation we will
replace the type Q) by Q __, ie., by {weQ | o==-0}. The resulting formula is
equivalent to —~=(¢~ ), which is the original Kolmogorow's translation of the
disjunction (cf. [Troelstra and van Dalen 88]):
VOeQ ([420 Ay=0]-0) © VoeQ ([¢2-=0 Ay aa0]->m-0)

o VoeQ ([0 Ay=0]ls==-0)

o 2aVeeQ (026 A y>0l-0)

o a=(hvy).
© * is one of the cases where double negation shift is acceptable from the
intuitionistic point of view. The implication »* follows by substitution of the truth
value YoeQ ([d»o A yool-n),ie. dvyfor 0. We get

[ Dy A (Y= (dvy))]-> ==y y).

Hence ——(¢\y) follows by modus ponens as [($—(d~y)) A (y— (D~ y)] is true.
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6.2.1 Definition. For each type A of Lg we define a type AS of Lg by induction on
A
(i) AS=LA, for a basic type A,
(@ QS=q; _
A o
(iii) (P#\)G::Qi = {BSAS|B is j-closed},
(iv) (AxB)6=AGxBG,
(v) (BA)G=(BG)A®,
For each type A of Lg we define a type AL of L by induction on A:
(vi) Al=LA, for a basic type A,
(Vll) QL:=Q,
(vii) (PA)L=QAY,
(ix) (AxB)L=ALxBL,
(x) (BAL=(BL)AL,

By induction on the structure of the type, one easily sees that
() ABbisa j-sheaf for each type A of LE,
() e, :AScyAL

(i) Ab=(AL)

After these preliminary steps we can define the G-translation.

6.2.2 Definition.
The G-translation tSeLy of a term t in the kernel of Ly is obtained inductively by
replacing
(i) xG=xL where xL is a fresh variable of type AL, where A is the type of X,
(i) fé=Lf, for function symbols f:A—>B,
(i) {x:Al$}C={x:AL|xeAG A6}

We will now calculate the G-translation in Ly of terms of the full language L.

6.2.3 Corollary. Let ¢,y be formulas in L.
Then the following holds in H:
@ TSeoT
(i) (DAy)Co ($SAyS)
(i) (¢->y)6e($CGy6)
(iv) (b y)e (9o ys)
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(V) (VX:A$)Co Vx:AL (xeAG—¢6)
(vi) 166 jL (oL incase of a dense topology)
(Vi) (~$)8e($6-j1) (¢ =46 in case of a dense topology)
(viii) (pvy)Ce j(§O\ y6)
(ix) (3Ix:A$)660 jIx:AL (xeAGA6)

Proof. As in (6.1.6).

6.2.4 Definition.
Let H be some type theory. If = is an interpretation of H in a topos E, then an
interpretation k= of H in SHE is defined by:

1) [Al j=LIA] for basic types A in H,

@) [fl;:[Al;— [Bl; by dgroLlflee, |:AG>>LA—LB—BE,

6.2.5 Lemma. Let = be an interpretation of a type theory H in a topos E. Then for
all closed formulas ¢ (i.e. formulas with no free variables) of H we have:
EE=¢% & SﬁjIE Eijd.

Proof.
If we apply the j-translation to the interpretation k= jof ¢ in SﬁjIE we get $6. We get
the lemma as a corollary of (6.1.8).

o

6.2.6 Definition.

(1) A formula ¢ is proper if the types of its free variables are inhabited.

(i) A type theory H is proper if all its defining axioms are proper.
(iii) A type theory H is G-preservable if Hu{j}~¢6 for all axioms ¢ of H, where
Hu{j} is the type theory of H extended with one extra function symbol j: QO — O
satisfying the three axioms of a Lawvere-Tierney topology.

Proper formulas have the property that ¢ & Vx: A ¢, if X is one of the free variables
of ¢. So, whenever we have a proper formula we may suppose that it is a closed
formula. Likewise for a proper type theory we may assume that all its axioms are
closed.

The notion G-preservable is the syntactic counterpart of the semantical notion being
preserved by the associated sheaf functor. The preservability of Heyting arithmetic
will be among the examples, that we will present in section (6.4).
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6.2.7 Theorem.
A proper type theory H is G-preservable, if and only if for all toposes E it holds that
E = H implies SAE = jH. The interpretation j of Hu{j} in SAE is obtained from
the interpretation k= of H in E by interpreting

(i) a basic type A by its sheafification L[A] in SAE,

(ii) a function symbol f: A—>B by its sheafification L[f]:LA—> LB
(iii) interpreting j by the identity on O j

Proof. (cf. [de Vries 84])

(if) Assume for a proper type theory H holds that for all toposes E we have that
E = Hu{j} implies SAE = jH. Secondly, assume that H is not G-preservable. Then
there is an axiom ¢ such that Hu{j}4$ €. By completeness there is a topos E with a
topology j:QQ—> Q in E, such that E = H and E g ¢ 6. The G-translation of ¢
corresponds by construction exactly with the j-translation of the interpretation = jof
Ly in SKE. By (6.2.5) we have that SAE ;. It follows from the first assumption
that SAE k& jH. But by soundness we have SHE ;6. Contradiction.

Thus H is G-preservable.

(only if) Assume H is a proper, G-preservable type theory, and assume that for a
topos E we have E = H. From both assumptions we get E & HE. And so SAE k= jH.
|

Let PEM denote the Principle of Excluded Middle ¥ weQ (o~ -w). Classically as
well as intuitionistically it is equivalent to the principle Vo€ (==~w—w). The latter
may seem surprising if one recalls that in intuitionistic propositional calculus
Awv =A is not implied by ~=A-A (cf. for instance [Dummett]). Let PEM j denote
the principle YoeQ (jo—w). It is easy to see that for open and closed topologies
we have

PEM: =VoeeQl(pvo)-»wl=-p

Jp

and

PEMp=VoeQl(p=w)->wl=p.
Observe that if we have an interpretation & of a typetheory Hu{j} in the topos E,
then SAE =;PEM j» for a very trivial reason: j is interpreted by the identity on O j-
Hence PEM; trivializes to the tautology YoeQ(w-a).

6.2.8 Notation.
In the case of the double negation topology we write ¢~ instead of $6.
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Observe (cf. 6.2.3) that our translation ¢~ resembles the usual Godel translations,
but not quite! For example consider HA, Heyting's arithmetic. Our translation
changes the type of the variables. For instance the translation will replace N by its
sheafification L__(N). The g-translation that we will define in section (6.5) will
resemble the original Gdel-translation more closely in this aspect.

Finally, we can now give the semantical proof we aimed for in the introduction of
this chapter. In its form it resembles a general theorem of [Friedman] for theories in
many-sorted intuitionistic logic without identity.

6.2.9 Theorem. (A Godel-Friedman Theorem for type theories)
(1) For any proper j-preservable type theory H we have
HU{j}- 46 H+PEM; ¢,
@) If Hu{j}—¢C& H+ PEMj+¢ for a proper type theory H, then H is j-pre-
servable.

Proof.

() Assume for a j-preservable type theory H that Hu{ j1+96. Then certainly
Hu{ j}+ PEM;i- 8. Since PEMji- 6 > $6 we get HU{j}+PEM 6.
In the other direction assume that Hu{j}+PEM jr¢. Because H is j-preservable we
get SA{E=H. But we know already that SHhiEE jPEM;. Hence by soundness

SHE=¢. Applying (6.2.5) we get E=¢6. By an appeal to completeness we get
Hu{j}—¢6.

(i) Assume H is a proper type theory such that Hu{j}+$6 & Hu{j}+PEMj¢.
And suppose that H is not j-preservable. Then for some axiom ¢ of H we have
Hu{j}$6. By completeness there is a topos E such that E = Hu{j} and E = ¢I.
Then also E = Hu{j}. Thus SAE &= jH and SAE = ¢. Because ShiE is a model for
Hu{j}+PEM; we get HU{j}+PEM j¥¥¢. Contradiction with the initial assumption.
Therefore Hu{j}+HS, i.e., H is j-preservable.

m|

6.2.10 Corollary. (A Gédel-Friedman Theorem for type theories)
(1) For any proper ——-preservable type theory H we have Hi-¢~— < H+PEM b,
(i) If for a proper type theory H we have (H-¢~~ & H+PEM¢) then H is ——-
preservable.

Proof. Note that for any type theory H we have H-Hu{ -~} and apply (6.2.9)
m|
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Observe that in case of the open and closed topologies (2.2.2) for a truth value P,
our G-translation results in higher-order extensions of well-known Friedman
translations (cf. [Friedman] and [de Jongh]), but note again the difference in the
treatment of types:

The open Friedman translation, (notation (-)P) for a topology jP: Q= Q:
o> (p~o) satisfying
@ TPeT
() (DAY (PPAyYP)
(iii) ($->y)Pes (PoyP)
iv) (bey)lPo(PPoyP)
V) (Vx:AdlPo Vx:AL (xe AP—¢P)
(vi) LPe-p
(vi)) (=9)Pe ($P-(p>.L)) (e =P in case of a dense topology)
(viii) (v y)Pe [p->(HPvyP)]
(x) (IxAd)Pe [p-Ix: AL (XeAPAP)]

The closed Friedman translation, (notation ( -)p), for a topology j,: QO — Q:
o> (pvw) satisfying
@) TperT

(iif) (@-y)pe (Gp—yp)

iv) (bey)pe(dpe ¥p)

(V) (VxAd)po Vx:AL (xeAp—dp)

(vi) Lpep
(Vi) (=0)pe> (dp->p)
(Vﬁi) ((bvlF)pH [pv((bpvl;rp)]

(x) (I:Ad)pe [pv IAL (xeApadp)]
The following corollary is related to results in [de J ongh] and [Visser 81 or 82, cf.
(6.3.1)] for intuitionistic predicate calculus.

6.2.15 Corollary,
(i) For proper formulas ¢ and p we have FPP o (p—¢) and o, o ( =p—¢)
(i) For proper formulas ¢ and p we have ~$—P & dp.

Proof. Application of (6.2.9) on an empty theory H plus the observation the for any
type theory H it holds that H-Hu{ jp}u{jP}. As follows:
@) +¢P © PEMjp+¢
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< pH¢
© p->9, likewise for the closed topology jp.
(i) HOP & -pro
€ F¢p, hence ¢ ~P & ¢,
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6.3 G-Preservable formulas

In order to apply Godel-Friedman theorem (6.2.9) to type theories it is useful to
characterize syntactically formulas that are preserved by the G-translation. In this
section we will consider a fixed type theory H without function types.

We start with some preliminary definitions and lemmas that will relate types and
terms with the correspondent G-translation of these types and terms.

6.3.1 Definition. For each type A of Lg we define a function na: A—> AS of Lg by
induction on A:
(i) na(a)={a}j, if A is a basic type,
(i) nale)=jo,if A=Q,
(iil) nrcj(B)={ncb)eCE|beB}, if A=[C],
@iv) nexc((b,c))=(ng(b),nc(c)), if A=BxC.

It is straightforward to verify that n  1s well-defined.

6.3.2 Lemma.
(i) For any function symbol f: A—> B it holds that VaeA ng(f(a))=fE(na(a)).
(ii) For any type A it holds that YaeA VXe[Al (naaeX)=(na(@lena](X)).

Proof. (i) For f:A—B and aeA we have:
ngef(a) = {f(a)}i
{f(a)Ina(@=nata)}i
= fGona(a).
(ii) For aeA and Xe[A] we have that
na@ena(X)) = na(ale{na(x)eAG|xeX}
= jaeX
= nNnlaeX).

6.3.3 Lemma. For all types A it holds that Yx€A® jayeA n(y)=x.

Proof. By induction on A.




generalized Godel-translations 107

() If A is a basic type, then if xe A6=LA then X is a Lawvere-singleton, and
hence jayeA (n(y)={y}i=x).

(i) If Ais Q, then n(x)=jx=xeQ, if xeQ6=0;.

(iii) Suppose A is of the form [B], and Xe[B]S. Define Y:={beB | n(b)eX}. We
will show X=n(Y). Suppose xeX. Then by induction hypothesis we have
jdyeB n(y)=x. Hence xe{ceB® lj3beBIn(b)=can(b)eXl}=n(Y). Hence XSn(Y).
On the other hand if xen(Y) then jAbeBIn(b)=xAn(b)eX]. Hence jxeX. But
Xe[B]S is j-stable, i.e., we get xeX. Therefore n(y)=X.
(iv) If A=BXC, then for x=(b,c)eB6xC6E we apply the induction hypothesis to b
and c.

O

After these preliminaries we can proceed.We will consider the following classes of
formulae:

6.3.4 Definition.
@) Pres={¢elylHu{jir VxeAld(x)-» 6 [xC=n(x)]]}
() Crea={¢eLylHuU{ji YxeAldC[xC=n(x)]-d(x)]} (G-creating formulas)
(i) Stab={¢eLy|Hu{j}- VYxeAG[jd6(x)-$E(x)]}
@iv) Isol={¢eLy|Hu{j} VxeA[d)G[xG:=r](x)]—>j¢(x)]} (G-isolating formulas)

In the context of the double negation topology [Leivant] and [Troelstra and van
Dalen 88] use the terminology spreading and wiping for G-preservable, respectively
G-creating,.

We will just write $6(n(x)) instead of $6[xG:= n(x)] if no confusion can arise. Free
variables will often be suppressed, i.e., we will write ¢ for $(x).

For many intuitionistic logic (1<k<w) [Leivant] and [Troelstra and van Dalen 88]
has systematically given a related classification of schema's instead of formulas
with respect to the double negation translation. [Visser 81] has considered related
classes of formulas for Friedman translations on HA, although he did not strive for
a complete characterization.

We will show in the next section (6.4) that G-preservable extends the notion of
geometric formula used in topos theory.
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6.3.5 Stability Lemma. Any closed formula ¢ of Ly is G-stable.

Proof. The idea is to push j as deep as possible inside the formula $6, until it gets
absorbed at the atomic level. It is left behind only in front of the disjunction and the
existential quantifier.

0

For the benefit of the following lemmata, we introduce some terminology:
the basic terms of a type theory: a basic term is either a variable, or a function
symbol followed by a basic term.

6.3.6 Creation Lemma,
(i) TeCrea,
(i) .LeCrea, provided j is dense,
(iii) if ¢,yeCreathen (py)eCrea,
(iv) if ¢,yeCreathen (§vy)eCrea,
(v) if ¢eCreathen (VxeA d)eCrea,
(vi) if pePres and yeCrea then (§-»y)eCrea,
(vii) if ¢ePres and jis dense then (~$)eCrea,
(viii) (t=s)eCrea, if t,s are basic terms of separated and basic type.

Proof,
(i), (i), (iii) and (iv) follow trivially from (6.2.3).

(v) Suppose ¢peCrea and (VxeA $)6. Then in particular ¢ 6(n(x)), hence, by
assumption ¢(x), and so VxeA ¢. Therefore ( VxeA d)eCrea.

(vi) Assume ¢ePres and yeCrea and suppose (¢—y)6 holds. Then ¢ -G,
Hence if ¢ holds, we conclude ¢6, then w6 and finally y, using the assumptions.
So we have shown (§»y)8—(dp—y). Therefore (d>y)eCrea.

(vii) Trivial by (vi) and (ii).

(viii) Suppose (t(x)=s(x))6[x®=n(x)]. Then t&(n(x))=s5(n(x)), and so by
lemma (6.3.2) and the fact that s,t are basic terms we get n(t(x))=n(s(x)). The
type of s and t is basic and separated, hence {t(x)}i={s(x)}], and jt(x)=s(x).
Therefore (t=s)eCrea.

O
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6.3.7 Isolation Lemma.
() Telsol,

(i) .Lelsol,
(i) if ¢,yelsol then ¢ Ayelsol,
(iv) if §,yelsol then dvyelsol,
(v) if ¢elsol and jo— ¢ then (VxeA $lelsol,
(vi) if elsol then (IxeA d)elsol,

(vii) if dePres and jis dense then —delsol,

(viii) (t=s)elsol, if t,s are basic terms which type is basic,
(ix) (teX)elsol, ift is a basic term and X a variable.
(x) Creat&lsol.

Proof.
@), (i), (i) follow trivially from (6.2.3).

(iv) Suppose ¢,yelsol and (¢ y)E. Then j($6+ y6). Hence by assumption we
get j(jo~ jy), which implies j(¢y). Therefore (dvylelsol

(v) Suppose ¢elsol and (VxeA ¢)6. Then in particular VxeA $6(n(x)), hence,
by assumption VxeA jo(x), and by the second assumption VxeA ¢(x). Therefore
(VXeA d)elsol.

(vi) Suppose ¢elsol and (IxeA ¢)6. Then j3xeAC ¢6. Hence by (6.3.3) we get
j3xeA $8(n(x)). By assumption follows jIxeA jo, and so jAxeA ¢. Therefore
(3IxeA d)elsol.

(vii) Suppose ¢ePres and assume (=916, i.e., =($6) under the assumption that j
is dense. Then if ¢ holds, we get $6 and so L. Hence =¢. Therefore (=d)elsol.

(viii) Suppose (E(x)=5(x))®[xC:=n(x)]. Then tG(M(x))=s6(n(x)), and so by
lemma (6.3.2) and the fact that s,t are basic terms we get n(t(x))=n(s(x)). The
type of s and t is basic, jt(x)=s(x). Therefore (t=s)e!sol.

(ix) Apply (6.3.2).
(x) Clearly if $eCrea, then $6 implies ¢, and hence also —#. Therefore delsol.

0

6.3.8 Preservation Lemma.
(i) TePres,
(i) LePres,
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(i) if ¢,yePres then  nyePres,
(iv) if ¢,yePres then v yePres,
(v) if dePres then (VxeA ¢)ePres,
(vi) if pePres then (IxeA d)ePres,
(vii) if ¢elsol and yePres then d—->yePres,
(viii) if ¢elsol then —~pePres,
(ix) if't,s are basic terms then (t=s)ePres,
(x) iftis a basic term and X is a variable then (teX)ePres.

Proof.
(i), (i), (iii) and (iv) follow trivially from (6.2.3).

(v) Suppose ¢ePres and VxeA ¢. Then ¢(x). Hence ¢56(n(x)) by assumption,
and so VxeA $6(n(x)). However we must prove YXeAG ¢G(X). For XeAG we
have jaxe A n(x)=X by lemma (6.3.3). Hence j®G(X), and so by (6.3.5) we get
¢6(X) and VXeAG §6(X). Therefore (VxeA §)ePres.

(vi) Assume pePres and 3xeA ¢. Then jo(a) for some acA. Hence j®C(n(a)),
and jIXeAS $6(X), i.e., (IXe A $)6. Thus (IxeA d)ePres.

(vii) Assume ¢elsol and ywePres. Suppose -y and $6. Then we get jo, hence
Jw, and so jy©, which equals y©. Thus we see that $6-y6, and therefore
(¢p—>y)ePres.

(viii) Apply (i) and (vii).

(ix) Suppose t(x)=s(x). Then N(t(x))=n(s(x)), and so because t,s are basic
terms we get t8(n(x))=s8(n(x)) by lemma (6.3.2). So (t(x)=5(x))ePre.

(x) Apply (6.3.2).

6.3.9 Corollary. (extending [Visser 81]) Consider some type theory H.
(i) for ¢elsol nPres we have 6o jb,
(i) if HElsol and dePres, then H-¢ = HG—¢ G,

(iii) if HSlsolnPres and ¢elsoln Pres, then H~=-¢ = Hr ¢,

(iv) if HClsolnPres and ¢elsoln Pres, then H--~¢—6¢ = H ¢\ —¢.

Proof,
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(i) Assume $elsol nPres. If 6 holds then we have j¢ because pelsol. And if jd
is the case, then we get j¢© and ¢S, because pePres.

(i) Assume HgclIsol, dePres and H¢. Now if we assume that HS holds, we
can conclude that we have jy for any weH. Hence j§ holds. And so j¢& and ¢ 6
follow. Therefore HE ¢ 6.

(i) Assume HE<lsolnPres, delsolnPres and H---¢. Let F be the Friedman
translation with respect to ¢.

Then H ~ HF (HcPres)
F (==b)F (by (iii))
= (0F0)-0 (by definition of F)
= ((bvd)=d)-d (by @)
)

(iv) Assume HESlsolnPres, ¢elsolnPres and Hr--¢->¢. Let F be the
Friedman translation with respect to —¢.

Then H +~ HF (Hc Pres)
F (==¢-)F (by (iii))
F [(OF»=¢)—>—p]-¢F (by definition of F)
F [(dv=d)o=d)> 0] (v =d) (by (@)
ol (bv—ld).

One should observe the verbatim similarity with the proofs by [Visser 81] for HA.
A careful inspection of the definition of his classes A, 3 and A of formulas of HA
reveals that they are well-chosen subsets of |solnPres, in order to satisfy the
conditions of (6.3.9).

Another application of the preservation and creation lemmas is the following
theorem:

6.3.10 Theorem. Let H be a —~-preservable type theory, and ¢ a —~—-creating
formula. Then H—¢ & H+PEM¢.

Proof. Suppose H+PEM ¢ and assume for a topos E that E=H. Then E=Hu{j},

and so SA__Ek__H. Thus by soundness SA__Ek__¢. Hence Ex¢6 It follows by

the creating property of ¢ that E=¢. So by an appeal to completeness we get H-4¢.
m
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6.4 G-Preservable theories.

The three lemmata of the last section concerning the preservation, creation and
stability of formulas under the G-translation with respect to a certain geometric
modality j are useful tools in showing that a particular type theory is G-preservable.

6.4.1 Theorem. Consider HAH, higher-order Heyting arithmetic.
(i) HAH is G-preservable,
(ii) for any formula ¢ of HAH we have HAHK ¢ ~— & HAH+PEM o,
(iii) natural number objects in toposes are preserved by associated sheaf functors.

Proof.

(1) Checking that the following axioms are G-preservable is straightforward with
the previous preservation and isolation lemma:

P1 Vnm:N (s(n)=s(m)->n=m)
P2 Vn:N (O=s(n)-1)
Py VX:[N][0eXA Vn:N(neX-s(n)eX)— VxeN xeX].

(i) Apply (6.2.9).

(iii) Suppose <N,0,s> is a natural number object in the topos E, and j: Q—> Q is
some Lawvere-Tiemey topology in E. If we apply the associated sheaf functor to
<N,0,s> we get the triple <LN,L0,Ls> in SAJE. Because <N, 0,s> is a natural
number object in the topos E, we have an interpretation = of HAH in E. Observe
that the interpretation corresponding to <LN,LO,Ls> is just = j as in the proof of
(6.2.7). It follows from the G-preservability of HAH that E= HAHS. It follows
from the previous remark on E j and (6.1.8) that SAE = jHAH. Therefore
<LN,LO,Ls> is the natural number object in SA;E.
g

Recall the following definition (cf. e.g. [Johnstone 77]).

6.4.2 Definition. Let H be some type theory

(1) The set Posy of positive formulas of H contains T, .L and equality applied to
basic terms which type is a basic type or a product of basic types, and is closed
under ~,v and 3.
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(ii) A geomerric formula of H is a formula ¢ of the form
VX1€AL.. VRneAR Ly w5l
containing no free variables, where ¥1, yo€Posy.

6.4.3 Lemma.
Any geometric formula of a type theory H is G-preservable.

Proof. Observe that Posg S solnPres.

Note that our present set up of type theory does not contain relation symbols as
primitives as in [Johnstone 77], we consider only function symbols as primitives.
This omission is not serious. A relation symbol can be interpreted as a function
symbol accompanied by an axiom expressing its monotonicity. Such axioms are G-
preservable.

Lemma (6.4.3) implies that our notion of a G-preservable theory extends the well-
known notion of a geometric theory. The extension is useful, for instance to derive
the above result, which otherwise could not have been proved by this method, as
Peano's axioms are not geometric. Note however that one important aspect of
geometric formulas is not preserved by our G-preservable formulas, namely
preservation by the inverse image of arbitrary geometric morphisms, not only the
associated sheaf functors. It is an open question whether G-preservable formulas are
preserved by left exact, inverse image functors.

Our final example of G-preservable theories will be the class of existential fixed
point logics of Blass and Gurevich (cf. [Blass] and [Blass and Gurevich)).

6.4.4 Definition.
(i) The fragment Oy of a type theory H contains
(@) 4,T and formulas of the form t=s, where t and s are basic terms
(b) formulas of the form teP, where t is a basic term which is basic or a
product of basic types, and P a variable
and is closed under
(¢) disjunction, conjunction and existential quantification over basic types or
products of basic types,
(d) construction of second order formulas of the form
LET P(x)«-8 THEN ¢ defined as VP:[A]( VX:A(G-XeP)—=¢), (we
will say that P is bounded by the LET P(x)...THEN... construction)




type theoretical topics in topos theory 114

(i) The fragment EF Py consists of all formulas VXi€A]... VXneA (d>y), where
¢ and y are formulas of Oy in which no second order variable occurs that is not
bounded by a LET constructor.

6.4.5 Lemma. Let H be a type theory. Then the formulas in EFPy are G-
preservable.

Proof. Easy proof by induction, using the lemmas in (6.3). E.g., in order to show
that
VP:[AN(VX: A(8->%xeP)— )
is G-preservable, it suffices to show that § and ¢ are G-preservable which is given
by the induction hypothesis.
O

6.5 A second Gédel-translation preserving types

We will define a variant of the Godel-translation, that leaves types in tact, but then
distorts = and €. It is extensionality we have to worry about in this business... We
will use this translation in the next chapter 7. In order to keep the inductive proofs
simple, we will only consider type theory without explicit function types.

6.5.1 Definition.
The g-translation t9e¢Ly of a term t in the kernel of Ly is obtained inductively by
replacing
@) (t=9)C=n(t9=n(s9)
(i) (tes)®=n(t9en(s9)
(iii) (0)6=jw, for v:Q
(iv) (F(£))6=F(t9) for function symbols f: A—>B

6.5.2 Theorem.
(i) For all terms t in the kernel of Ly we have n(t9(x))=t%(n(x))
(ii) For all formulas ¢ in the kernel of Ly we have $9(x) & $G(n(x))

Proof.

(i) By induction on the term t in kernel type theory (cf. 1.1.2). There are only
four cases of interest

@ nl(s=)90x)) = [n(s9(x))=n(tI(x))]
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[sC(n(x))=tE(n(x))]
(s=t)6(n(x))

() nUx:Al¢}9 n{x:Al 9

{nx): AL} o9}

{x:AL1jaye Aln(y)=xA $9(y) 1}

{x: ALl jAye Aln(y)=xA jd9(y)1}

{x:AL1jIye Aln(y)=xA0S(M(yN1}

{x: AL jAye Aln(y)=xA06(x)1}
{x:AlL|xeAS A ¢6} (6.3.3)
{x:A|$}6

(©) n((set)d(x)) = [n(s9(x)Ien(tI(x)]
= [s8(n(x))etC(n(x))]
(set)C(n(x))

@ N n(fFtIx)))
FE(n(tIx))) (6.3.2)
fE(tG(n(x)))

(F(t(y)))C[yC=n(x)]

(i) From (i) follows j$9(x) e $6(n(x)). As for the G-translation we have jd9e 09
(ctf. 6.3.5).

a]

6.5.3 Corollary.
@ TeT

() (DAy)9e (d9Ay9)

(i) (§->y)% (§9-y9)

(iv) (beoy)ie (ddeyd)

V) (VX:Ad)e VXA $9

(vi) 196 jL (e 1 in case of a dense topology)
(vi)) (=9)9e($9->jL) (o =d9in case of a dense topology)
(viii) (dvy)9e j(hp9vy9)

(x) (A D)o jIx:A ¢9

Proof.

Almost similar as (6.1.6). For instance:

(1) TY9=<H=4>9=[n(%)=n(%)]=T

(x) (XA P9 & (VoeQ [VxeA (d-0) -9
o YVoeQ [VxeA (§9-jo)-jo]
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¥ VoeQ [VxeA ($9-jw))-jol
© JV0eQ [VXeA (¢9-jo) »jol

© JY0eQ [VXeA (49 jo)-jol

o JAA Y

(—=*) Substitute VoeQ) [VxeA (§9-jw))-jol,
and realize that $9- VweQ [ VxeA (b9 0))-owl.

6.6 On the relation between [A] and [A]G

By induction on type A we define a predicate "X is j-stable" What is the relation
between A, AL and A6? We know already that AG is a subtype of AL via the
embedding eaL: A6—> AL, We will construct a subtype of A isomorphic to A if A
is a powertype. We will need a notion of stable set introduced by Myhill (cf.
[Myhill]). The next lemma (6.6.2) will be needed in chapter 7. As in the previous
section we will consider in this section type theories without explicit function types.

6.6.1 Definition. By induction on type A we define a predicate "X is j-stable" for
XCA:
(1) Ais a basic type:
Xis j-stable=T
(i) AisQ:
X is j-stable= VXeQ [jxeX—xeX] A VxeX O=jo
(iii) Ais [B]:
X is j-stable= Vxe[B][jxeX—xeX] A VXeX (X is j-stable)
(iv) Ais BxC:
Xis j-stable= VxeBXC[jxeX—+>xeX] A V<X, y>eX [x is j-stable A
y is j-stable].

6.6.2 Lemma. {Xe[A]|X is j-stable} is isomorphic to [A]® for any type A.

Proof. By induction on A:
(@) If Ais abasic type then

{Xe[AllX is j-stable} = {Xe[AllX is j=closed}
~ {YELAIY is j-closed}
= [A]C

The isomorphism # needs some explanation, define
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p:{YCLAIY is j-closed} = {Xe[A]IX is J-closed}:YH>{x:A| j3SeY xeS},
and
q:{Xe[AllX is j-closed}—{YCSLA]Y is j=closed} :XH>n(X).
p and q are well-defined.
Now, if X A and X is j-closed, then P(a(X))={xeA|jASen(X) xeS}=X. And if
YSLA andY is j-closed, then
a(p(Y)) = n(p(Y))
= {TSAIT=TiAjIxep(Y) {x}i=T}
{TCAIT=TIAjIxeAljIS€Y XES A {x}=T]}
{TSAIT=TiAjIxeALj{XxH=T AjTeY]}
{TCAIJTEYAT=TIAjIxeA{x}i=T}
{TeLA|jTeY}
{TeLAITeY}
=Y.
Therefore p and q are inverse of each other.
(b) If Ais O, then
{Xe[Q1IX is j-stable} = {Xe[Q]|X is J=closed A VxeX o=jo}
{XelQ;lIX is j-closed}
= [Q]6

(¢) If Ais[Bl, then
{Xel[BIlIX is j-stable} =
= {Xel[B]ll VxeA[jxeX-»xeX]A VxeX (x is j-stable)}
~ {Xc{xe[BlIx is j-stable}X is j-closed}
= [X<I[BI®[X is j-closed}
= [[B]]G
(d) If AisBxC, then
{Xe[BxCI|X is j-stable} =
= {Xe[BxC]IX is j=closed A V<x,y>eX [x is j-stableay is j-stable]}
~ {XS(BXC)G|X is j-closed}
= [BxC]®
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Chapter 7

Classical real numbers
from an intuitionistic point of view

If we are working inside a type theory with natural numbers there are real numbers
to construct. Let us focus on real numbers constructed by Dedekind cuts. In the
constructive context there is a great variety of definitions: Dedekind reals,
Dedekind-MacNeille reals (cf. [Johnstone 77], [Troelstra 80] and [Troelstra and
van Dalen 88]), Troelstra's extended reals, Troelstra's classical reals (cf. [Troelstra
80] and [Troelstra and van Dalen 88]), Staples reals (cf. [Staples], [Troelstra 82]
and [Troelstra and van Dalen 88]), van Dalen's singleton reals (cf. [van Dalen],
[Troelstra 82] and [Troelstra and van Dalen 88]). All these different real number
objects can be seen as linguistic variations of the standard definition (in the case of
the singleton reals this true up to an isomorphism) obtained by scattering the double
negation all over the standard definition.

We will give a systematic and general treatment of all these definitions using an
arbitrary modal operator j instead of ——-. We distin guish three different methods to
construct Dedekind-real-like number objects:

(1) Take the usual definition, and vary it by putting a modal operator j on some
places.

(i) Take an Dedekind-real-like number object and apply the associated sheaf
construction to it.
(iif) Take a linguistic reformulation, and apply the generalized Godel translation to
1t.

In the context of toposes these methods of constructing Dedekind eals can be
explained in categorical terms.
Let E be a topos with a natural number object.

(i) The interpretation of the linguistic reformulations gives us different real
number objects in E.

(i) We can apply the associated sheaf construction to the objects of (i) to obtain a
new set of objects that are sensible extensions of Dedekind real numbers.
(iii) If E has natural numbers, then the topos of j-sheaves has natural numbers as
well. Hence in SAE too we can interpret the linguistic reformulations of natural
numbers. Using the G-translation we can describe these objects of SAE in terms of
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the natural numbers of the base topos E. In this way we obtain a third class of real
number objects in E.

Dedekind reals can defined with help of left cuts of the rationals. Since have not yet
constructed the rationals, we first will indicate how to construct the integers and
rationals from the natural numbers. By usual induction methods we enrich the
natural numbers with addition and multiplication. Then we define a predicate
int: INXN1— Q by

A

3<n,m>eNxN <n,m>ez
z—>
V<ny,mp>,<ng,ma>€z ni+n=m+mo

and a predicate rat: [NXNxN]—> Q by

d<n,m,>eNxNxN<n,m,>er
r= < A

V<ny,mylp,<n2,ma,12>€r ni(la+ D+na(li+ D=mi(la+ ) +mo(ly+1)
This gives us our familiar objects

Z={ze[NxN]1|int(z)}
and
Q={re[NxNxN1|rat(r)}.

7.1 Linguistic variations on Dedekind real numbers

We give a list of predicates for subsets W& Q that we will use in the definitions of
left cut for the various real number objects.

7.1.1 Definition.

(i) Bj=jdreQrew A jar'eQ -r'ew (Boundedness)
() Ly=VrreQlra'>jreWs -r'ew)l (Locatedness)
(i) Mj=Vr,r'eQ[r<'>(jreW-rew)] (Monotonicity)
(iv) Oj=VreW jar'ewrsr (Openness)
(v) Sj=VreQ(jreW-rew) (Stability)

Remark,

(i) L-M;, provided jis dense (cf. 7.1.3.i)
(ii) B-B;, L-Ljand 0-0;
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(iii) Mj—»Mand Sj—=3
(iv) In case of a dense topology ( jo—==-0 forall weQ, cf. (2.2.9)) M__-»M jr

Notation. We will omit the subscript j if we want the use the predicates without a
modal operator, and we replace j by ~— whenever we use the predicates with a
double negation operator.

7.1.2 Definition.
Variations on L and M:

(i) R={WcQ|BALAO} Dedekind reals
(ii) RLM={WQQIBALJAMJ’/\O}
(i) Re={WcQ|BAM__~O} MacNeille reals, extended reals
@iv) IR”={W§QIBAMJ-AO}
(v) R*={WcQ|BAMAO} Staples reals
Weakening of B:

(vi) RBLM={WQQIBJALjAMjAO}
(vii) IRBe={WSQIBjAM_._.AO}
(viii) RBM={WQQIBjAMjAO}
Finally:
(ix) Ree={WcQ|B__AM__AO} Troelstra's classical reals

Remark.

(i) R={WcQIBALAO} isidentical with {WEQIBALAMAO}, as L-M.

(i) Because M__-L__ we see that RLM and RM are identical with R® in case of
the double negation topology.

7.1.3 Lemma. The various objects of Dedekind real number objects are related
according to the following picture (an embedding marked with a d means that the
embedding exists only if the topology j happens to be dense):

Re®

b
IRBLMC__, RBECLRBM
L UL L

G, R™MC, R®Ce, R"C_, R*

C
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Proof.
The embeddings REReSR* and RECR®® are easy to verify (cf. [Troelstra 80].)

() RCcRLM: it suffices to prove that L—M j under the assumption that j is dense.
For WeR and r<r' in Q assume jr'ewW. Locatedness of W tells us that
reWs -r'eW. But -r'eW and jr'eW imply that ji, and hence by density of j we
get L. So we can conclude reW. And we have shown M;

(i) RLMcRe: it suffice to show that L j~AMM .

Hence for WeRLM and r<r' in Q assume —-r'eW. Thus j(=-r'eW). Define r":=
(r+r')/2. Then r<r"<r’, and so by L we get j(r"eW~ -r'eW). Hence jriew. If we
apply M;j we get reW. Thus we see that M_._. holds for WeRLM,
(i) RecRM:if jis dense then M__-sM j» as we remarked above.
(iv) RMcR*, trivial as M;j-M.
(v) RLMcRBLM RecRBe and RMcRBM are trivial, since B j-B.
(vi) RBLMgRBe: similar as (i).
(vii) RBBCRBM: verbatim the same as (iii).
(viii) RBecRee: if jis dense then Bj—»B.-.

7.1.4 Lemma.
(1) RBMand all its subobjects have a J-stable equality.
(i) Re®®and all its subobjects have a ~-—-stable equality.

Proof. The proof of the (i) is an easy generalization of [Troelstra 80]'s proof that
R®®€ has a ——-stable equality:

(i) Assume that jV=W for V,WeRBM. We will show VreQ (reV e rew). Hence
suppose reV for some reQ. Then by O there exists an r'>r such that r'e V. So from
the assumption jV=W we can conclude Jr'eW. Therefore by M jwe getrew.

Thus we have shown VreQ (re V-reW). The converse is similar. Hence V=W,

(ii) Substitute —= for J

7.1.5 Lemma. RSRM if and only if jis dense.

Proof. "only if" cf. (7.1.3.0).
"if" Assume RERLM. We map Q into R via the assignment [-]:r—> {r'eQ|r'<r}.
Now [0]l=[1] - VreQ(r<0er<)
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= (00 0<DA(KO KD

- =0<1A=KKO

-~ 0=1
by trichotomy of Q.
Hence O0=16[0]=[1]. But 0=1e 1. So, if we have j.L, then we get jo=1.
Applying j-stability of equality of RLM (7.1.4) we conclude O=1 and so we find L.
Therefore j is dense.

& |

7.1.6 Theorem. The object R®€ is a ~—-sheaf,

Proof.
For XS R®® assume
-~-3WeReeWeX.
We define
V={reQ| ar'>r --3IWeXr'ew}.
In order to conclude that R®€ is a ~—-sheaf we have to show that
(i) VeRee
(i) =-VeX
(iii) if =-WeX holds for WeRe®, then V=W.

Proof of (i). We have to prove B_,_, M__, and O for V.
(B_-) Observe that
I'WeRee wWeX
implies
-=3dreQ reV,
or, equivalently,
--3reQ Ar'>r IWeXr'ew.
by application of B, , to the unique WeR®® in X.
Hence we conclude that from the assumption
--3JlWeReeWeX
follows
—~=3reQ reV, and similarly ~-~3reQ -reV.

(M--) Forr<r'in Q assume ——r'eV. Put r"=(r'-r)/2. Then
~=3r">r" -=3IWeXr'ew

and so we get
==3r">r" IWeXr'ewW

and
==3WeXar>r"r'eWw.
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By monotonicity it follows now that ~~3WeXr"eW, ie., reV. Therefore M_ _.
holds for V.

(0) ForreV thereis r'>r such that ~—~3IWeXr'eW. Put again r*=(r'-r)/2. Then
by monotonicity of W we get =—~3IWeXr"eW, and we have r*>r such that r"eV.
Therefore O holds for V.

Proof of (ii) Suppose WeR®® is the unique element in X. Then we claim that W=V.
Hence —--3IWeRee WeX implies —=-{V}=X

Proof of (iii). From (ii) follows: if for some WeRe® it holds that -~—WeX, then
—=-V=W. Hence since equality of R®€ is ~--stable (cf. 7.1.4) we get that --WeX
implies V=W for WeRee,

a

7.1.7 Lemma. (cf. [Troelstra 80])
R* is a quotient of RM. In particular R* is a quotient of R®,

Proof.
For W Q define

(i) Wj:={I‘EQ|jl‘€W}

(i) int(W)={reQlIr'eQ[r'>0AVr eQ (Ir-r*|<r' - r'ew)]}.
Then ~ defined by VAW e int(Vi)=int(WJ) is an equivalence relation on RM, and
RM/~ is isomorphic with R*. Hint: show that WA~U{VeRM|VAW} and
U{VeRM|VaW}eR* for all WeRM.

]

This spectrum of Dedekind reals appears to be inexhaustible: one can also weaken
openness. The first isomorphism theorem will tell us that this does not result in new
real number objects.

7.1.8 Definition.

(lX) RBL0={WQQ|BjALjA0jASj} (={WQQIBjALj/\Mj/\OjASj})
x) RBOE={WQQIBjAM_._.AOj/\Sj} (={WQQ|BjAM_,_.AMjA0jASj})
(xi) R*BMO={WEQ|BJAMAOJASj} (={WEQ|BjAMjA0jA5j})
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This definition generalizes [Troelstra 80]'s definition of the real number object lRfe.
Troelstra proved that lR?e is bijective to R®€. For our generalizations we have
similar bijections.

7.1.9 Definition.
(i) int:RBMO— RBM=\w>{reQ| Ir'>rr'ew}
(ii) (-):RBM—RBMO=Wi>{req]jrew}

7.1.10 First isomorphism theorem. Let j be a dense topology.
(@ int:RBMO— RBM ang (-)i: RBM—> RBMO are each others inverse,
(ii) int and (-)J restrict to inverses on RBOe and RBe,

(iii) int and (-)irestrict to inverses on RBLO and RBLM,

Proof.

(1) The proof splits in three obvious parts. First we will show that int is well-
defined, then we prove that ()] is well-defined, and finally we establish that (-)i
and int are are each others inverse.

First part. int: RBMO— RBM i5 well-defined.
Let WeRBMO, We have to show that BjAM;jA O holds for int(W), for then
int(W)eRBM

(Bp OlJimplies rew- jreint(w). Hence 0j also implies that jIreQ reint(W)
follows from jare@rew. Since Oj and B j hold for WeRBMO we conclude
j3req reint(w).

On the other hand note that —reint(W)e Vr'>r —r'eW. Hence =reint(W)
follows from MA -reW. A similar introduction of j enables us to conclude that
jdreQ -reW implies jAreQ -reint(W). Now, as M and B hold for weRBMO
we conclude jIreQ -reint(w).

Thus B holds for int(W).

(Mj) Letr<r'. Clearly r'eint(W)—>r'eWarew. So, if we assume jr'eint(W),
we obtain jr'eW and jreW. Then we have reint(Ww) by S;.
Hence M; holds for int(W).

(O) Let reint(W). Le., we have an r*>r such that r*ew. Consider
r'=(r+r")/2. Then r<r'<r”, and so r'eW by M. We get that r'eint(W). It
follows that O holds for int(W).

Second part. (-)i: RBM— RBMO ig well-defined.
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Let WeRBM. We have to prove that BjAMAO;jAS; hold for Wi in order to
conclude WieRBMO,

(By) Clearly jareQreW - jareq jrew. Similarly jare@ -rew implies that
JareQ j(-~reW). Using the density of j we get jareQ -jreW. Since B holds
for WeRBM we see that B j holds for Wi

(M) Letr<r, and assume r'eWi, ie., jr'eW. Then reW by M and so reW|.
Thus M holds for Wi.

(0) Letrewiie., jreW. We get jar'>rr'eW by 0, as O holds for W. Hence
Jar>r jr'eW, and so jar>rr'eW. Therefore 0 holds for Wi.

(Sj) The idempotency of j trivially implies that S; holds for Wi.

Third part. int and (-)J are each others inverse.
For WeRBMO we have must show that (int(W))i={req| jar>rriewWl=w.
It follows easily from O j that W (int(W))J. Thus (int(W))icW remains to be
proved. M implies 3r'>rr'eW-reW. Hence Jar>rr'eW- jreW. Assuming
that j3r'>r r'eW holds for reQ we see that Sjand M together imply reWw.
Whence (int(W))icw.,

For WeRBM we have to prove that int(Wi)={req | 3r'sr jr'ewWl=Ww. As above
it follows easily from O that W Cint(Wi). And the reverse follows from M;.

(i) Let WeRBO®e,_ If we show that M.~ holds for int(W) then int restricts to a
mapping from RBOe o RBe,
So let r<r’, and assume ——r'eint(W), that is ——=3r">r" r'eWw. Since M_,_, implies
that M holds for W in RBOe we get Ar"2r'r"eW - r'eW. Hence after suitable
adding j and —- we obtain —-r'eW, using the assumption and S j- Now by M_,
we get reW and (r+r*)/2eW. Therefore reint(W). Le., M__ holds for int(W).

Let WeRBe. If we show that M., holds for Wi then (-)J restricts to a mapping from
RBe tp RBOe,

Let again r<r, and assume —-r'eWj, i.e., = jr'eW. Hence by density of j we get
—-r'eW, but then reW by M_,_.. And so jreW and reWi. That is M_- holds for
Wi,

(i) Let WeRBLO, If we show that L j holds for int(W) then int restricts to a
mapping from RBLO (o RBLM,
Letr<r'. Then j(reW~ —=r'eW). Now rew implies jar">rr"eW by 0j And -r'ew
implies Vr*>r -=r"eW by L j and the density of j, i.e., =3r">rr"eW. Hence, putting
things together we can conclude j(jreint(W)~ —r'eint(w)).
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Therefore j(reint(W)~ -r'eint(W)). And so, L j holds for int(W).

Let WeRBLM. If we show that L j holds for W1 then (-) restricts to a mapping from
RBLM to RBLO, Let r<r’, then as above we get j(reWw -r'eW). Hence
j(jreW~ j-r'eW). Which implies j(reWiv -r'eWl) using that j is dense. There-
fore L j holds for Wi.

o

7.2 Dedekind reals extended by singletons

Van Dalen used a -~ --singleton construction to obtain an extension RS of the
Dedekind reals R. R* turned out to be isomorphic with a subobject of the classical
reals Re® of Troelstra. RS is neither equal to R nor to Ree, but RS={xeR¢e|

--XeR} See [van Dalen 80] and [Troelstra 82] for a detailed treatment of RS.

Van Dalen's R® consists of (vii)-singletons of R for the double negation topology
subject to local equality (i.e., two singletons S,T are considered to be equal if
—=5=T). This construction can be recognized as an internal version of a single step
of the Johnstone-Grothendieck construction with (vii)-singletons. Since the type of
Dedekind reals R is —~--separated, the execution on R of already a single step of the
Johnstone-Grothendieck construction results in a —--sheaf (cf. chapter 3).

In this section we will use the Lawvere construction L for a dense topology
:Q— Q. Tt follows from the results in chapter 3 and (7.1.4) that LR is isomorphic
to RS,

If we compare the definitions of the types of integers and rationals, respectively
Z={ze[NxN]lint(z)} and Q={re[NxNxN]|rat(r)}, with the definition of Dede-
kind reals, R={We[Q]|W is a left cut}, we observe that the three definitions are
of the form {xe[A]l ¢}.

7.2.1 Lemma. Let A be a type.
Then L{xe[A]l¢} is isomorphic to {xe[Al|x is j-closedAjb}.

Proof. The proof is essentially an application of (2.3.7), (3.2.2.iii) and the
discussion in (3.4): for any A the type O ] is a sheaf, hence L O i wo? via the
following two inverses:

L7055 (xeA| jIRe[A] xeReS}
and

O >LARP (RYL
With help of these isomorphisms we calculate: |
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{Sc{xelAll$}IS is j-closedAjIxe[Al(d AS={x}])}
{yelAlly is j-closedajIxe[Al(p A{y}i={x})}

= {ye[Ally is j-closedAjIxe[Al( Ajx=y)}
{xe[Allx is j-closed jo}

L{xe[Alld}

R

7.2.2 Corollary. For a dense topology j we have:

(i) L(R)=L(RLM)=RBLO~RBLM

(i) L(Re)=RBOexRBe

(iii) L(RM)=L(R*)=RBMO~RBM,
In particular for the double negation topology and van Dalen's singleton
construction it holds that:

(iv) RSa~{WeRee|~-WeR}={WeRe®elL__}

(v) (Re)s~Ree

(vi) (R*)ssaRee,

Proof. Recall that W is j-closed is abbreviated by S;. Observe that:
@) Sj/\j(BAL/\O)=BjALj/\Oj/\Sj:j(BALjAMjAO)ASj

(ii) Sj/\j(BAM_._./\O)=BjAM_,._,/\0jASj

(iii) Sj/\j(BAMj/\O)=Bj/\MAOjASj=j(B/\M/\O)ASj
Application of (7.1.10) gives the isomorphisms.

(iv) RS =~ {WelQ]IB,_AL__AO_._AS__}
{Welal]] BooaAL _AM__AO__AS__}

R

{welQlIB__AL__AM__A0O} (just as in 7.1.10 iii)
= {WeReel--WeR}
= {WeRe®e|L__}
(v) (R®)S =~ {WE[Q]IB_._.AM_._.AO_._,AS_._.}
= RB-—--—-E
~ |Ree (7.1.10)
(vi) (R*¥)ss ~ L(R*) (3.3)
~ {WelQlIBL_AM__~O__~S__} (Troelstra’s RS° )
~ {Wel[Q]IB_._AM_._A0O} (7.1.10)
= Ree

7.3 Dedekind reals obtained by Godel translations
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From the classical definition of a Dedekind cut Troelstra deduced the definition of
the intuitionistic real number object R ?e by application of a double negation
translation. Via a natural simplification Troelstra showed that lR‘,ae is isomorphic to
Ree,

We can generalize this approach using the G-translation for arbitrary geometric
modality j.

Let E be some topos with a natural number object (for instance the free topos
corresponding to the type theory we are working in). Associated sheaf functors
preserve natural number objects, hence we have natural number objects in the sheaf
toposes SAE and Sh_._E. Thus we can construct real number objects in the sheaf
toposes in exactly the same way as we construct them in E. So in SHE we can
construct R, R® and R*. Note that in case of the boolean topos SA_._E all three
constructions result in the same object of Dedekind reals R.

In this section we will show by an application of the Jj-translation of L fE N LE
that the objects R, R® and R* in Sﬁle are isomorphic to the objects IRBLF%, RBe and
RBM in E. In particular the object of Dedekind real numbers in the topos SA__E is
isomorphic to the object of classical reals Re€ in E. This supports the slogan that the
appropriate candidate for classical continuum from the intuitionistic point of view is
the type of classical real numbers.

Hence from the point of view of SAE the objects LN and RBLM are just N and R.
Although the object LR lives inside SHE, it plays no natural rdle.

What happens if we G-translate the definition of R? A first answer is provided by
the following lemma.

7.3.1 Lemma.; RS consists of subtypes W< QS satisfying
(1) W is j-closed,

(i) jIR€QSReW A jIR'€QS -R'eW

(i) VR,R'eQ[R<R'-j(ReEW~ =R'eW)]

(iv) VReW jaR'eWR'>R

What we really want, is a description of RS in terms of Q instead of Q6. In category
theory there seems to be a simple answer. Find a suitable construction of Q in terms
of limits and colimits. Since limits and colimits are preserved by the associated
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shesaf functors it follows that Q6 is isomorphic to LQ. It is instructive to give a
syntactic proof of this phenomenon.

7.3.2 Lemma.; The constructions of Z and Q are preserved by associated sheaf
functors based on a dense topology j: 2 —> Q, in other words, Z6 and Q6 are
isomorphic to L Z, respectively LQ.

Proof.
Z6 = {Re[NxN]|int(R)}6
= {Re[LNXLN]IR is j-closedAint6(R)}
~ {Re[NxN]IR is j-closedAint&(n(R))} (6.5.2)
= {Re[NxXN]IR is j-closedAint9(R)} (6.5.2)
= {Re[NxN]IR is j-closed j(int(R))}
~ LZ (7.2.2)

Likewise, one can show that Q62 Q

Note, however, that in this proof {Re[NxN1|R is Jj=closed j(int(R))} is the most
illuminating description of Z6. Similarly {Re[NXNxN]IR is j=closed A j(rat(R))}
is the clear description for Q6. The appeal to (6.5.2) is crucial to derive this result.
If we apply the same trick to RS we get the following theorem:

7.3.3 Theorem. If the Gédel-translation (~)6 is based on a dense topology
:Q—Q, then R6~RBLM, (Re)6aRBe and (R *)6aRBM.

Proof.
R6 = {wcaS|w is j=closedA(BALAO)G(W)}
~ {(WeQlW is j=closedA(BALAD)S(q(W))} (6.5.2)
= {(WEQ|(BALAO)IW)ASI(W)}
= {WQQI(BjALjAOj)(W)ASJ'(W)}
= RBLO
~ RBLM (7.1.10)
(R®)® = {WcQS|W is j-closeda(BAM__~0)6(W)}

~ {(WeQ|W is j-closeda(BAM__A0)5(q(W))} (6.5.2)
{WeQl(BAM__A0)I(W)ASI(W)}
{WQQI(Bj/\M_._./\Oj)(W)ASj(W)}

RBOe

RBe, (7.1.10)

R
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(R*)® = {WcS|W is j-closedA(BAMAO)E(W)}

{WealW is j-closedA(BAMAO)G(q(W))} (6.5.2)
{WeQl(BAMAO)IW)ASIW)}
{WQQI(Bj/\M/\Oj)(W)ASj(W)}

RBMO

RBM, (7.1.10)

]

R

R
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