
Pure Type Systems with Corecursion on Streams
From Finite to Infinitary Normalisation

Paula Severi
Department of Computer Science, University of

Leicester, UK
ps56@mcs.le.ac.uk

Fer-Jan de Vries
Department of Computer Science, University of

Leicester, UK
fdv1@mcs.le.ac.uk

Abstract
In this paper, we use types for ensuring that programs involving
streams are well-behaved. We extend pure type systems with a type
constructor for streams, a modal operator next and a fixed point
operator for expressing corecursion. This extension is called Pure
Type Systems with Corecursion (CoPTS). The typed lambda calcu-
lus for reactive programs defined by Krishnaswami and Benton can
be obtained as a CoPTS. CoPTS’s allow us to study a wide range
of typed lambda calculi extended with corecursion using only one
framework. In particular, we study this extension for the calculus of
constructions which is the underlying formal language of Coq. We
use the machinery of infinitary rewriting and formalize the idea of
well-behaved programs using the concept of infinitary normaliza-
tion. We study the properties of infinitary weak and strong normal-
ization for CoPTS’s. The set of finite and infinite terms is defined
as a metric completion. We shed new light on the meaning of the
modal operator by connecting the modality with the depth used to
define the metric. This connection is the key to the proofs of infini-
tary weak and strong normalization.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

General Terms term1, term2

Keywords Typed lambda calculus, recursion, streams, infinitary
normalisation

1. Introduction
In this paper, we are interested in using types to ensure that pro-
grams involving streams defined by recursive equations are well-
behaved. As an example, we consider streams in Haskell. The pro-
gram zeros defined by the following corecursive equation:

zeros = 0:zeros

is well-behaved because the run-time system yields a value which
is a potentially infinite normal form:

0 : (0 : (0 : (. . .)))

The following programs are not well-behaved because they do not
produce any output.

[Copyright notice will appear here once ’preprint’ option is removed.]

omega = omega
omegaprime = tail (0: omegaprime)
e = filter (\x-> (x>0)) zeros

The last one does not produce the empty list but it loops as
the other two. Intuitively, the above programmes are “badly be-
haved”. The idea of badly behaved programmes is formalized in
infinitary rewriting through the concept of infinitary normalization
[28, 29, 32]. We say that a programme is infinitary normalizing if
it has either a finite or an infinite normal form. None of the above
three examples are infinitary normalizing. A typed lambda calcu-
lus satisfies the property of infinitary (weak) normalization if all
typable terms are infinitary normalizing. Unfortunately, the typed
lambda calculus underlying Haskell is not infinitary normalizing
since it allows us to type the above terms which are not infinitary
normalizing.

omega :: a
omegaprime :: [Integer]
e :: [Integer]

The proof assistant Coq disallows badly behaved programs by us-
ing the so-called guardedness condition for corecusive definitions,
i.e. the recursive calls should be guarded by constructors [10, 22].
For example, this condition allows us to type programs on streams
such as:

interleave xs ys = (head xs):
(interleave ys (tail xs))

Programs defined using the guardedness condition are infinitary
normalizing. However, the guardedness condition has its limita-
tions. When constructing proofs in Coq, the guardedness condition
can only be verified when the pretended proof has been completed
[21]. It is also quite strong and forbids to type well-behaved pro-
grams like the following one.

zerosprime = 0: (interleave zerosprime zerosprime)

The typed lambda calculus of reactive programs defined by Kr-
ishnaswami and Benton can type zerosprime [36]. This system is
the simply typed lambda calculus extended with corecursion on
streams. In this paper, we extend the typed lambda calculus of reac-
tive programs to the calculus of constructions which is a subset of
the underlying formal language for Coq [12]. This extension will
allow us to write other forms of abstractions:

1. Polymorphic functions such as map and zip.

2. Type constructors such as the following one (written in Haskell
notation):

type DoubleFun a = [a] -> [a] -> [a]

1 2012/3/11

3. Properties on streams and their proofs, using the Curry Howard
isomorphism [13, 15, 25]. For example, we can have a constant

EqStr : ΠX:set.(Stream X)→ (Stream X)→ prop

to represent equality between streams.

To give a more general presentation, we consider pure type sys-
tems (PTS’s) [2, 5, 49]. Pure type systems are a framework to de-
fine several existing typed lambda calculi à la Church in a uniform
way 1. In particular, this includes systems with dependent types and
an infinite type hierarchy such as the extended calculus of construc-
tion (also a subset of the underlying formal language of Coq) [41].
We define Pure Type Systems with Corecursion (CoPTS’s) by first
extending the set of pseudoterms of a PTS with:

1. The type for streams (StreamA) with the constructor cons and
the destructors head and tail.

2. The next modal type (•A), the constructor ◦ and a destructor
await.

3. The fixed point operator to express corecursion which is de-
noted by cofix.

The judgements of a CoPTS are written as Γ ` a:iA where i
is an index representing time. A term of type (•A) represents ‘the
information that is going to be displayed later in the future’.

CoPTS’s allow us to study a wide range of typed lambda cal-
culi extended with corecursion using only one framework. We will
prove infinitary weak normalization for CoPTS’s in a general way
that does not depend on the type system. To be more precise,
we give conditions on the PTS that ensure that the corresponding
CoPTS is infinitary weakly normalizing. This general result applies
to the extended calculus of constructions. We also study the prop-
erty of infinitary strong normalization. Infinitary strong normaliza-
tion is the analogon of strong normalization in the finitary setting.
To prove these results, we use the machinery of infinitary rewriting
[28, 29, 32].

What do the infinite normal forms of typable terms look like?

To describe the infinite normal forms of the typable terms, we
define a set C∞ of finite and infinite terms as a metric completion
using an appropriate metric. This metric uses a notion of depth
where the depth of b in argument positions in (cons a b) and (◦b)
is counted one deeper than the depth of the terms (cons a b) and
(◦b) themselves. As a result, the set C∞ is strictly included in
any of the sets of finite and infinite terms defined for infinitary
term rewriting systems, infinitary lambda calculus and infinitary
combinatory reduction systems [28, 29, 32].

To prove infinitary weak normalization, we need to find a strat-
egy of reduction that finds an infinite normal form.

What is an infinitary normalizing strategy?

Unlike finite lambda calculus, the leftmost strategy is not infini-
tary normalizing. In the example,

zeross = zeros: zeross

the leftmost strategy does not lead to the infinite normal form in
ω-steps 2. We follow an infinitary normalizing strategy that reaches
the normal form in ω-steps which is a variation of the depth-first

1 By typing à la Church, we mean that abstractions are of the form λx:A.b,
i.e. the variable in the abstraction is provided with an explicit type declara-
tion.
2 In the infinitary lambda calculus, the situation is actually worse: there are
terms that do not have any leftmost redex at all. These terms are of the form
((. . .)P2)P1, called infinite left spines.

(cons (cons 0 ·) ·)

(cons 0 ·) (cons (cons 0 ·) ·)

... (cons 0 ·) ...

...

Figure 1. The infinite normal form of zeross represented as a tree

leftmost strategy. Figure 1 shows a tree representation of the infinite
normal form of zeross that respects our notion of depth. The tree is
finitely branched. The first line is at depth 0 and it should be printed
first, the second line is at depth 1 and it should be printed second,
and so on.

We shed new light on the meaning of the modal operator by con-
necting it with the depth used to define our metric. The connection
between the modal operator and the depth is the key to the proofs
of infinitary weak and strong normalization. A programming lan-
guage will never be able to display the whole infinite normal form
0 : (0 : (0 : (. . .))) but it will display only its truncation at certain
depth n (an approximant):

0 : (0 : . . . (0 : ⊥) . . .))

The modal operator (•A) represents the information that will ap-
pear later in the computation which is also the information that
appears deeper in the infinite normal form.

The connection between the modality and the depth is formal-
ized as follows.

If x:i(•A) ` b:iB then all occurrences of x in b occur at
depth (strictly) greater than 0.

Similarly,

If x:i+1A ` b:iB then all occurrences of x in b occur at
depth (strictly) greater than 0.

For typing (cofix x:A.b), we require that x:i+1A ` b:iA. This
means that the variable x in (cofix x:A.b) occurs in b at depth
(strictly) greater than 0. In other words, the truncation of b at depth
1 contains no occurrences of x. Let’s examine what happens during
the computation. Let→γ be the reduction that unfolds fixed points:

(cofix x:A.b)→γ b[x := (cofix x:A.b)]

After contracting the fixed point, we have that the truncation of
b[x := (cofix x:A.b)] at depth 1 does not contain any residuals of
the contracted redex. As an example, we consider the programme
zeros which is expressed in our syntax as follows.

zeros = (cofix xs:(Stream Nat).xs)

The γ-redex occurs at depth 0 in zeros. We perform one γ-
reduction step:

zeros →γ (cons 0 zeros)

In the future (after contracting the γ-redex), the γ-redex oc-
curs at depth 1. The truncation of (cons 0 zeros) at depth 1
which is (cons 0 ⊥) represents the information that has been dis-
played so far. The truncated subterm zeros which is at depth 1 in
(cons 0 zeros) represents the information that will appear later
which also appears deeper.

This paper is organized as follows. Section 2 gives an overview
of PTS’s. Section 3 defines the notion of CoPTS’s. Section 4 shows

2 2012/3/11

some basic properties, the most important one concerns βσ-strong
normalization. Section 5 defines the set C∞ of finite and infinite
terms as metric completion of the set of finite terms. Section 6
studies infinitary weak normalization. Section 7 studies infinitary
strong normalization. Section 8 draws some conclusions and ex-
plains related work. Section 9 gives some plan for future work.

2. Preliminaries on Pure Type Systems
In this section, we recall the notion of pure type system (PTS)
[2]. They were introduced independently by Berardi and Terlouw
[5, 49] as a way of generalizing the systems of the λ-cube [2].
Pure type systems consists of only seven typing rules parametrized
by a certain specification. There are only two rules which are
parametric: the axiom and the product rule. By instantiating the
parameters, we can describe a large class of typed lambda calculi
such as the the extended calculus of constructions [41] and even
inconsistent systems [23]. The word pure stands for the fact that
there is only one type constructor and only one reduction, namely
Π and β.

We recall the definition of specification. The specification fixes
the parameters in the definition of pure type system.

Definition 2.1 (Specification). A specification is a triple S =
(S,A,R) such that

1. S is a set of symbols called sorts,
2. A ⊆ S × S called set of axioms,
3. R ⊆ S × S × S called set of rules.

We will need the notion of single sorted specification to ensure
unicity of types (Theorem 4.6) and the well-definedness of the
encoding in λω (Definition 4.9).

Definition 2.2 (Single Sorted Specification). We say that a specifi-
cation is single sorted if

1. If (s1, s2) and (s1, s
′
2) are in A then s2 = s′2.

2. If (s1, s2, s3) and (s1, s2, s
′
3) are inR then s3 = s′3.

Types and terms are defined in the same set T .

Definition 2.3 (Pseudoterms). The set TS (or T for short) of
pseudoterms is defined as follows.

T ::= V | S | (λV:T .T) | (T T) | (ΠV:T .T)

Sorts are denoted by s, s′, . . ., variables by x, y, . . . and pseu-
doterms by capital A,B, . . . and also by lower case a, b, The
set fv(A) of free variables of A is defined in the usual way and
A→ B is an abbreviation for Π x:A.B if x 6∈ fv(B).

Definition 2.4 (β-Reduction). We define β-reduction as usual:

(λx:A.b) a → b[x := a] (β)

The relation→β is defined as the smallest relations on pseudoterms
that are closed under the β-rule and under contexts.

In the following section, we will define other notions of reduc-
tions such as σ and γ. We introduce the following notation which
works for all of them.

Notation 2.5. Let ρ be a notion of reduction.

1. M →ρ N denotes a one step reduction from M to N ;
2. M →→ρ N denotes a finite reduction from M to N ;
3. M =ρ N denotes conversion.

A pseudocontext is a finite ordered sequence of type declara-
tions: Γ = x1:A1, x2:A2, . . . xn:An where xi are all different vari-
ables and Ai are pseudoterms for all 1 ≤ i ≤ n.

(axiom) ` s1:s2 if (s1, s2) ∈ A

(start) Γ ` A:s
Γ, x:A ` x:A

x Γ-fresh

(weak)
Γ ` A:s Γ ` b:B

Γ, x:A ` b:B x Γ-fresh

(prod)
Γ ` A:s1 Γ, x:A ` B:s2

Γ ` (Πx:A.B):s3
(s1, s2, s3) ∈ R

(abs)
Γ, x:A ` b:B Γ ` (Πx:A.B):s

Γ ` (λx:A.b):(Πx:A.B)

(app)
Γ ` b:(Πx:A.B) Γ ` a:A

Γ ` (b a):B[x := a]

(β-conv)
Γ ` a:A Γ ` A′:s

Γ ` a:A′
A=βA

′

Figure 2. Pure Type Systems

Definition 2.6 (Pure Type System). A Pure Type System (PTS)
denoted by λ(S) is given by the judgement Γ `S a : A (or just
Γ ` a : A) and defined by the typing rules of Figure 2.

Notation 2.7. The rule (s1, s2) is an abbreviation for (s1, s2, s2).

Example 2.8 (Systems of the λ-cube). The systems of the λ-cube
are obtained from the following set of sorts and axioms [2].

S = {type, kind} A = {(type, kind)}

The possibilities for (s1, s2) ∈ R for s1, s2 ∈ {type, kind} are the
following ones and each one allows us to represent different type of
functions:

(type, type) for terms depending on terms (functions),
(kind, type) for terms depending on types (polymorphic func-

tions),
(type, kind) for types depending on terms (dependent types),
(kind, kind) for types depending on types (type constructors).

The systems of the λ-cube consist of eight type systems. They all
contain the rule (type, type). The smallest set gives rise to the
simply typed lambda calculus and the biggest one to the calculus of
constructions, [12]. We show the specification of only four of these
systems which will be used later.

The simply typed lambda calculus λ→ is obtained from the
specification S→ defined by the common sets S andA given above
for the systems of the λ-cube and the following set of rules:

R = {(type, type)}

The second order lambda calculus [23, 46] is the pure type system
λ2 obtained from the following set of rules:

R = {(type, type), (kind, type)}

The pure type system λω corresponds to Fω of [23] and is obtained
from the following set of rules:

R = {(type, type), (kind, type), (kind, kind)}

The calculus of constructions [12] is obtained from the specifica-
tion C which consists of the sets S, A defined above and the fol-
lowing set of rules:

R = {(type, type), (kind, type), (type, kind), (kind, kind)}

Example 2.9 (Extended Calculus of Constructions as a PTS). The
extended calculus of constructions [41] is obtained from the speci-

3 2012/3/11

fication EC defined as follows:

S = {typen | n ∈ N}
A = {(typen, typen+1) | n ∈ N}
R = {(typen, type0, type0) | n ∈ N}∪

{(typen, typem, typek) | m > 0&max(n,m) ≤ k}}

We see that λ(EC) contains λ(C) by identifying type0 with
type and type1 with kind.

Example 2.10 (Inconsistent Pure Type Systems). The system λV
is given by the following specification (called λ∗ in [2]).

S = {type} A = {(type, type)} R = {(type, type)}

This system is inconsistent in the sense that all types are in-
habited [2, 23]. For examples where the circularity type:type
is not necessary to derive inconsistency, see [2, Example 5.2.4].
In any inconsistent logical pure type system, a looping combi-
nator can be derived from any term of type ⊥ = Πx:type.x
[11]. The paper [19] shows that Curry’s and Turing’s fixed
point combinators Y = λf.(λx.f(xx))(λx.f(xx)) and Θ =
(λxf.f(xxf))(λxf.f(xxf) cannot be typed in λV .

Definition 2.11 (Term and Context). Let S be a specification.

1. A (typable) term is a pseudoterm a such that Γ ` a:A for some
Γ and A.

2. A (legal) context is a pseudocontext Γ such that Γ ` a:A for
some a and A.

In the following definition, we consider an arbitrary reduction ρ.
In later sections, we will define other notions of reductions besides
β.

Definition 2.12 (Weak and Strong Normalization). Let ρ be a
notion of reduction.

1. We say that a pseudoterm a is weakly ρ-normalizing if there
exists a pseudoterm b in ρ-normal form such that a→→ρ b.

2. We say that a pseudoterm a is strongly ρ-normalizing if all ρ-
reduction sequences starting from a are finite.

Definition 2.13 (Weakly and Strongly Normalizing PTS). We say
that λ(S) is strongly (weakly) β-normalizing if for all Γ ` a:A we
have that a and A are strongly (weakly) β-normalizing.

Notation 2.14. 1. λ(S) |= ρ-WN if λ(S) is weakly ρ-normalizing.
2. λ(S) |= ρ-SN if λ(S) is strongly ρ-normalizing.

Obviously, λ(S) |= ρ-SN implies λ(S) |= ρ-WN. The follow-
ing result is proved in [41].

Theorem 2.15 (Strong Normalization of λ(EC)). We have that
λ(EC) |= β-SN.

The following result is proved in [2, Proposition 5.2.31]. We use
the abbreviation ⊥ = Πx:type.x.

Theorem 2.16 (Inconsistent implies not normalizing). Let λ(S)
be a PTS extending λ2. Suppose Γ ` a:⊥. Then, a is not weakly
β-normalizing. Hence, λ(S) 6|= β-WN.

As a consequence of the previous theorem, the inconsistent pure
type system λV from Example 2.10 is not weakly normalizing.

3. Pure Type Systems with Corecursion
In this section, we define the notion of pure type system with
corecursion (CoPTS). The set T of pseudoterms is extended to
include the type constructor (Stream A) for streams of type A,
the modal type •A next and a fixed point operator (cofix x:A.a)
for expressing corecursion.

Definition 3.1 (Pseudoterms with Streams and Corecursion). The
set CS (or C for short) is defined by the following grammar.

C ::= V | S | (λV:C.C) | (C C) | (ΠV:C.C)
•C | ◦C | (await C) |
(Stream C) | (cons C C) | (hd C) | (tl C) |
(cofix V:C.C)

We introduce two notions of reductions apart from β: σ for
computing the head and tail of a stream and γ for unfolding fixed
points.

Definition 3.2 (σ and γ-Reductions). We define the following re-
duction rules:

(await (◦a)) → a (σ)

(hd (cons a b)) → a (σ)

(tl (cons a b)) → b (σ)

(cofix x:A.b) → b[x := (cofix x:A.b)] (γ)

The relations →σ , →γ are defined as the smallest relations on
pseudoterms that are closed under the respective rules and under
contexts. The relation→βσγ is the union of→β ,→σ and→γ .

Judgements of CoPTS’s are of the form Γ ` a :i A where i is
an index representing “time”. A pseudocontext

Γ = x1:i1A1, x2:i2A2, . . . xn:inAn

for a CoPTS is a finite ordered sequence of type declarations where
xi are all different variables and Ai are pseudoterms in C for all
1 ≤ i ≤ n.

We extend the typing rules of pure type systems for our ex-
tended set C of pseudoterms. Recall that S→ is the specification for
the simply typed lambda calculus defined in Example 2.8.

Definition 3.3 (Pure Type System with Corecursion). Let S be a
specification extending S→. A Pure Type System with Corecursion
on Streams (CoPTS) denoted by λco(S) is given by the judgement
Γ `coS a :i A (or just Γ ` a:iA) for i ∈ N and defined by the typing
rules of Figure 3.

Example 3.4 (Typed λ-calculus of Reactive Programs as a CoPTS).
Krishnaswami and Benton’s typed lambda calculus presented in
[36] can be obtained as a CoPTS using the specification of the
simply typed lambda calculus given in Example 2.8. This system
will be denoted as λco

→.

Remark 3.5 (Alternative Typing Rules for cofix using Modality).
As in [36, 37], we add a constant cofix that represents the fixed
point combinator. Our typing rule for (cofix) in Figure 3 is similar
to the one presented in [37]. In this version of the rule, the variable
x needs to have type A using the index i + 1. There is another
version of the rule that uses modality •A and it is as follows.

(cofix’) Γ, x:i•A ` b:iA Γ ` A:itype
Γ ` cofix′ x:•A.b:iA

The typing rules (cofix) and (cofix’) are equivalent. The rule
(cofix) allows us to derive (cofix′) by defining cofix′ x:•A.b =
cofix y:A.b[x := (◦y)]. Conversely, we can set cofix y:A.b =
cofix′ x:•A.b[y := (await x)] and hence both systems are equiva-
lent. It is also easy to see that the typing rule for cofix’ is equivalent
to adding a type declaration of the form cofix′′ :i (•A→ A)→ A
for all i as in [36].

In spite of the fact that the rules (cofix) and (cofix’) are equiv-
alent, we prefer the rule (cofix) to (cofix’). The terms that will be
shown later in our examples are typed using (cofix) and we see that
in these examples the modality is not necessary. If we had defined
the type system using the rule (cofix’), our programmes would have

4 2012/3/11

(axiom) ` s1:is2 if (s1, s2) ∈ A

(start) Γ ` A:is j ≥ i
Γ, x:iA ` x:jA

x Γ-fresh

(weak)
Γ ` A:is Γ ` b:jB

Γ, x:iA ` b:jB x Γ-fresh

(prod)
Γ ` A:is1 Γ, x:iA ` B:is2

Γ ` (Πx:A.B):is3
(s1, s2, s3) ∈ R

(abs)
Γ, x:iA ` b:iB Γ ` (Πx:A.B):is

Γ ` (λx:A.b):i(Πx:A.B)

(app)
Γ ` b:i(Πx:A.B) Γ ` a:iA

Γ ` (b a):iB[x := a]

(βσγ-conv)
Γ ` a:iA Γ ` A′:is

Γ ` a:iA
′ A=βσγA

′

(mod)
Γ ` A:itype
Γ ` •A:itype

(•I)
Γ ` a:i+1A
Γ ` ◦a:i•A

(•E)
Γ ` a:i•A

Γ ` (await a):i+1A

(stream)
Γ ` A:itype

Γ ` (Stream A):itype

(cons)
Γ ` a:iA Γ ` b:i+1(Stream A)

Γ ` (cons a b):i(Stream A)

(hd)
Γ ` a:i(Stream A)

Γ ` (hd a):iA

(tl) Γ ` a:i(Stream A)
Γ ` (tl a):i+1(Stream A)

(cofix)
Γ, x:i+1A ` b:iA Γ ` A:itype

Γ ` (cofix x:A.b):iA

Figure 3. Pure Type Systems with Corecursion on Streams

been burdened with modalities. For example, let’s write the exam-
ple of zeros given in the introduction using cofix’.

zeros′′ = (cofix′ xs:•(Stream Nat).(cons 0 (await xs)))

The explicit type given for xs contains • and the recursive call
needs to use await. None of this is necessary when zeros is written
using cofix (see Example 3.6). This means that depending on the
applications we may be able to remove the rules for modalities
from our system. We include the modality to encompass the type
system of reactive programs as a CoPTS [36] (examples where
modalities are necessary can be found in [36–38]). Nakano’s type
system has modalities without indices but it makes use of subtyping
and recursive types [44]. In our current formulation, the indices
cannot be removed. But this does not matter, because the indices are
hidden to the programmer as they are handled by the type checker.

We will formalize the Haskell programmes given in the intro-
duction in our setting and show that the well-behaved ones are ty-
pable and the badly behaved ones are not. We define a context ΓNat

containing the following type declarations:

Nat :i type
0 :i Nat

suc :i Nat→ Nat
+ :i Nat→ Nat→ Nat
∗ :i Nat→ Nat→ Nat

Bool :i type
< :i Nat→ Nat→ Bool
if :i Bool→ (Stream Nat)→ (Stream Nat)

For the sake of the example, adding those constants to the context
suffices. However, for a real programming language, we should
add these constants to the syntax with the respective reduction and
typing rules.

Example 3.6 (Terms typable in λco
→). Define the following:

FunSNat = (Stream Nat)→ (Stream Nat)→ (Stream Nat)

zeros = (cofix xs:(Stream Nat).(cons 0 xs))

interleave = cofix f : FunSNat.
λxs : (Stream Nat).
λys : (Stream Nat).

(cons (hd xs) (f ys (tl xs)))

sumlist = cofix f :FunSNat.
λxs:(Stream Nat).
λys:(Stream Nat).

cons (+ (hd xs) (hd ys))
(f (tl xs) (tl ys))

merge = cofix f :FunSNat.
λxs:(Stream Nat).
λys:(Stream Nat).

if (hd xs) < (hd ys) then
(cons (hd xs) (f (tl xs) ys))

elseif (hd xs) < (hd ys) then
(cons (hd ys) (f xs (tl ys)))

else
(cons (hd xs) (f (tl xs) (tl ys)))

We have that all the above terms can be typed in λco
→.

ΓNat ` zeros :i (Stream Nat)

ΓNat ` interleave :i FunSNat

ΓNat ` sumlist :i FunSNat

ΓNat ` merge :i FunSNat

Example 3.7 (CoPTS’s beyond λco
→). Going beyond λco

→ we can
type polymorphic functions, type constructors and prove properties
on streams using the Curry-Howard isomorphism. The polymor-
phic map function:

map = λX:type.
λY :type.
λg:X → Y.

cofix f :(Stream X)→ (Stream Y).
λxs : (Stream X).
(cons (g (hd xs)) (f (tl xs)))

can be typed in λco2, i.e.

` map:iΠX:type.ΠY :type.
(X → Y)→
(Stream X)→ (Stream Y)

We can also write type constructors such as:

DoubleFun = λX:type.
(Stream X)→ (Stream X)→ (Stream X)

5 2012/3/11

which can be typed in λcoω as follows.

` DoubleFun :i type→ type

In λco(C), we can write and prove properties on streams. For ex-
ample, we can have a constant EqStr to represent equality between
streams.

ΓNat,EqStr:iΠX:type.(Stream X)→ (Stream X)→ type

` EqStr Nat zeros zeros′:itype

Example 3.8 (CoPTS’s type more than Coq). The proof assistant
Coq ensures that corecursive definitions are well-defined by means
of the the guardedness condition, i.e. the recursive calls should be
guarded by constructors [10, 22]. The following programmes are
not accepted by Coq. Let mapn = map Nat Nat.

zeros′ = (cofix xs:(Stream Nat).)
(cons 0 (interleave xs xs)

fib = cofix xs:(Stream Nat).
(cons 1 (cons 1 (sumlist xs (tl xs))))

hamming = cofix h:(Stream Nat).
cons 1

(merge
(mapn (λx:Nat.2 ∗ x) h)
(merge

(mapn(λx:Nat.3 ∗ x) h)
(mapn (λx:Nat.5 ∗ x) h)))

They can all be typed in λco2 as follows.

ΓNat ` zeros′ :i Nat

ΓNat ` fib :i Nat

ΓNat ` hamming :i Nat

Example 3.9 (The Undesirables). The badly behaved programmes
shown in the introduction can be written in our syntax as follows.

Ω = (cofix x:A.x)

Ωtail = (cofix xs:A.(tl xs))

Ω′ = (cofix xs:A.(tl (cons 0 xs)))

Ω′′ = (cofix x:A.(await (◦x)))

E = filter Nat (λxs:(Stream Nat).x > 0) zeros)

where the function filter is defined as follows:

filter = λX : type.λP : X → Bool.
cofix f :(Stream X)→ (Stream X).
λxs:(Stream X).

if (P (hd xs)) then
(cons (hd xs) (f (tl xs)))

else
(f (tl xs))

None of the above terms are typable in any CoPTS. More formally,
we have that the following holds for all A and i:

A :i type 6` Ω :i A A :i type 6` Ωtail :i A

A :i type 6` Ω′ :i A A :i type 6` Ω′ :i A

ΓNat 6` filter ::i A ΓNat 6` E ::i A

The terms Ω,Ωtail and filter are not typable because the depth of
the variable for the fixed point operator happens to be at depth 0
(Theorem 7.6). The terms Ω′ and Ω′′ are not typable because they
σ-reduce to Ω which is not typable (Theorem 4.5). The term E is
not typable because it has a subterm which is not typable.

Remark 3.10 (Why is the fixed point called cofix and not fix?). A
basic primitive recursive function such as + defined as follows:

+ = (λx : Nat.
cofixf :(Nat→ Nat).
λy : Nat.

case y is 0 then x
is (succ z) then succ (f z)

It is not typable because the variable f occurs at depth 0 (see
Theorem 7.6). We think that the solution to this problem is to have
two different fixed points, one for expressing recursion on inductive
data types and the other one for corecursion on coinductive data
types as in [20–22].

We define auxiliary type systems that will be used later in the
proof of infinitary normalization.

Definition 3.11 (Pure Type System with Corecursion up to n). Let
S be a specification extending S→ and n ∈ N. A Pure Type System
with Corecursion on Streams up to n (CoPTSn) denoted by λco

n (S)
is given by the judgement Γ `nS a :i A (or just Γ `n a:iA) for
i ∈ N and defined by replacing the rule (cofix) from the typing
rules of Figure 3 by the following one:

(cofixn)
Γ, x:i+1A `n b:iA Γ `n A:itype

Γ `n (cofix x:A.b):iA
i ≥ n

4. Basic Properties
In this section we prove some basic properties on CoPTSn’s. which
apply to CoPTS’s as well since we have that Γ ` a:iA iff Γ `0
a:iA.

Theorem 4.1 (Confluence). (T ,→→βσγ) is confluent.

Proof. This follows from [35, Corollary 13.6] (see also [33]) by
observing that (T ,→→βσγ) is an orthogonal combinatory reduction
system.

Theorem 4.2 (σ-strong normalization). Let a ∈ C. Then, a is
strongly σ-normalizing.

Proof. Observe that the number of symbols decrease in each σ-
reduction step.

The notation Γ+k means that we add k to the index of every
hypothesis in Γ.

Theorem 4.3 (Time Adjustment). If Γ,Γ′ `n a:iA then
Γ,Γ′+k `n a:i+kA.

The above theorem is proved by induction on the derivation.

Lemma 4.4 (Substitution). If Γ `n a:iA and Γ, x:iA,Γ
′ `n b:jB

then Γ,Γ′[x := a] `n b[x := a]:jB[x := a].

Proof. This lemma follows by induction on the derivation using
Theorem 4.3 for the case of the (start)-rule.

Theorem 4.5 (Subject Reduction). Let a →→βσγ a
′. If Γ `n a:iA

then Γ `n a′:iA.

Proof. We extend the reduction to contexts Γ→βσγ Γ′ by allowing
to reduce the types in Γ. We have to prove the following two
statements simultaneously:

1. If Γ `n a:iA and a→→βσγ a
′ then Γ `n a′:iA.

2. If Γ `n a:iA and Γ→→βσγ Γ′ then Γ′ `n a:iA.

We use Lemma 4.4, Theorem 4.3 and the analogous of Generation
Lemma [2, Lemma 5.2.13] adapted to the typing rules for CoPTS’s

6 2012/3/11

Theorem 4.6 (Uniqueness of Types). Let S be single sorted. If
Γ `n a:iA and Γ `n a:iA

′ then A =βσγ A
′.

The proof of the above theorem is similar to [2, Lemma 5.2.21].

Definition 4.7 (Strongly Normalizing CoPTS). Let ρ be a notion
of reduction. We say that λco

n (S) is strongly ρ-normalizing if for all
Γ `n a:iA, we have that a and A are strongly ρ-normalizing.

Notation 4.8. λco
n (S) |= ρ-SN if λco

n (S) is strongly ρ-normalizing.

We use the following abbreviations:

⊥ = Πα:type.α
S = λα:type.Πβ:type.(α→ β → β)→ β

We consider the context Γ0 defined as z1:⊥ where z1 is a fresh
variable.

Definition 4.9 (Encoding in λω). Let Γ `n d:iD. We define {d}
by induction on d.

{x} = x
{s} = s

{Πx:A.B} = Πx:{A}.{B}
{λx:A.b} = λx:{A}.{b}
{(a b)} = ({a} {b})
{•A} = {A}
{◦a} = {a}

{(await a)} = {a}
{(Stream A)} = S {A}
{(cons a b)} = λβ:type.λf :A0 → β → β.

f {a} ({b} β f)
{(hd a)} = {a} A0 (λx:A0λy:A0.x)
{(tl a)} = {a}(S A0) (λx:(S A0)λy: (S A0).y)

{(cofix x:A.b)} = (λx:{A}.{b}) (z1 {A})
When d is either (cons a b), (tl a) or (hd a), we define the type
A0 as the β-normal form (if it exists) of {A} where A is a type
satisfying in each one of those cases:

Γ `n (cons a b):i(Stream A)

Γ `n (tl a):i(Stream A)

Γ `n (hd a):iA

The map {} is extended to contexts in the obvious way.

{x1:i1A1, . . . , xn:inAn} = x1:i1{A1}, . . . , xn:in{An}
Theorem 4.10. Let S be singly sorted and λ(S) be strongly β-
normalizing. If Γ `nS d :i D then {Γ}, {d}, {D} are well defined
and Γ0, {Γ} `S {d} : {D}.

Proof. This follows by induction on the structure of the term using
Generation Lemma. We show the case d = (cons a b). Suppose
Γ `n (cons a b):i(Stream A) and Γ `n (cons a b):(Stream A′).
It follows from Theorem 4.6 that A =βσγ A

′. By Theorem 4.11,
we have that {A} =β {A′}. We have that Γ `n a : A and
Γ `n a :i A

′. By Induction Hypothesis, {Γ} `n {a} : {A}
and {Γ} `n {a} : {A′}. Since λ(S) is strongly β-normalizing,
A0 from Definition 4.9 is uniquely determined since the β-normal
forms of A and A′ are the same. Hence, {d} is well defined.

The following statements are not difficult to prove.

Theorem 4.11. 1. If a→β a
′ then {a} →β {a′}.

2. If a →σ a′ then {a} →=
β {a′}, i.e. either {a} →β {a′} or

{a}={a′}.
Theorem 4.12 (Preservation of Strong Normalization without Con-
tracting Fixpoints). Let S be single sorted such that λ(S) extends
λω. If λ(S) |= β-SN then λco

n (S) |= βσ-SN.

Proof. Suppose Γ ` a :i A. By Theorem 4.10, we have that {a} is
typable in λ(S) and hence, it is β-strongly normalizing. We prove
that a is strongly βσ-normalizing by contradiction. Suppose that a
is not strongly βσ-normalizing. That is, suppose there exists an infi-
nite βσ-reduction sequence starting from a. Observe that the num-
ber of β-reduction steps in this sequence must be infinite because
σ is strongly normalizing (Theorem 4.2). Hence, the sequence is of
the form:

a = a0 →→σ a1 →β a2 →→σ a3 →β a4 →→σ a5 →β a6 . . .

By Theorem 4.11, we have that:

{a} = {a0} →→β {a1} →β {a2} →→β {a3} →β {a4} →→β . . .

which contradicts the fact that {a} is β-strongly normalizing.

Corollary 4.13. λco(EC) and all the systems of the λ-cube ex-
tended with corecursion are strongly βσ-normalizing.

Proof. It follows from Theorems 2.15 and 4.12, that λco(EC) is
strongly βσ-normalizing. All the systems of the λ-cube extended
with corecursion are strongly βσ-normalizing because they are all
included in λco(EC).

Remark 4.14. The previous theorem is about βσ-reduction and
does not mention γ for the reason , that CoPTS’s can not be γ-
normalizing, as terms containing a fixed point may have an infinite
γ-reduction.

5. Infinite Pseudoterms
The program fib of Example 3.8 is not finitary but infinitary nor-
malizing, i.e. the normal form of fib is an infinite term of the form

(cons 1 (cons 1 (cons 2 (cons 3 (cons 5 . . .)))))

What do the infinite normal forms of typable terms look
like? We cannot type (cofix x:A.f x) but we can type the term
(cofix x:A.f (◦x)) as follows.

A :i type, f :i •A→ A ` (cofix x:A.f (◦x)) :i A

To describe the infinite normal forms of the typable terms, we de-
fine a set C∞ of finite and infinite terms as a metric completion
using an appropriate metric. We do not use any of the existing met-
rics defined in the literature for infinitary term rewriting systems,
infinitary lambda calculus or infinitary combinatory reduction sys-
tems [28, 29, 32]. This is because we want to connect the modal
operator, the level n of a CoPTSn and the index i in Γ ` a:iA to
the depth (Theorems 6.4 and 7.6). This connection is used in the
proofs on infinitary weak and strong normalization.

Definition 5.1 (Subterm at position p). Let p be a sequence of 0’s
and 1’s. The subterm at position p, denoted as a|p, is defined by
induction as follows.

a|ε = a
(Πx:A.B)|0.p = A|p (Πx:A.B)|1.p = B|p

λx:A.b|0.p = A|p λx:A.b|1.p = b|p
(a b)|0.p = a|p (a b)|1.p = b|p
(•A)|0.p = A|p
(◦a)|0.p = a|n

((await a))|0.p = a|p
(Stream A)|0.p = A|p

(cons a b)|0.p = a|p (cons a b)|1.p = b|p
(hd a)|0.p = a|p
(tl a)|0.p = a|p

(cofix x:A.b)|0.p = A|p (cofix x:A.b)|1.p = b|p

7 2012/3/11

(cons 1 ·)

(cons 1 ·)

(cons 2 ·)

(cons 3 ·)

...

Figure 4. The term partialfib represented as a tree

Let partialfib = (cons 1 (cons 1 (cons 2 (cons 3 (cons 5 fib)))))
be the result of unfolding fib three times. The subterm of partialfib
at position 1.1.1 is (cons 3 (cons 5 fib)).

Let p, q be two positions. We define p < q if there exists a
position r such that q = p.r.

Definition 5.2 (Depth). The depth of a subterm b of a is the number
of subterms of a at positions q < p such that a|q is either of the
form (cons c d) or (◦c).

For example, the depth of (cons 3 (cons 5 fib)) in partialfib is
three. Figure 4 illustrates our notion of depth by drawing the term
as a finitely branched tree.

We need to define the notion of truncations. The result of a
truncation is a pseudoterm that may contain a special constant ⊥.

Definition 5.3 (Truncation). The truncation of a at depth n is
denoted by an and it is defined as the result of replacing the
subterms of a at depth n by ⊥. Equivalently, it can be defined by
induction as follows.

a0 = ⊥
xn+1 = x
sn+1 = s

Πx:A.Bn+1 = Πx:An+1.Bn+1

λx:A.bn+1 = λx:An+1.bn+1

(b a)n+1 = (an+1 bn+1)
(•A)n+1 = •An+1

(◦a)n+1 = ◦an
((await a))n+1 = (await an+1)
(Stream A)n+1 = (Stream An+1)

(cons a b)n+1 = (cons an+1 bn)
(hd a)n+1 = (hd an+1)
(tl a)n+1 = (tl an+1)

(cofix x:A.b)n+1 = (cofix x:An+1.bn+1)

For example, the truncation of partialfib at depth three is

(cons 1 (cons 1 (cons 2 ⊥)))

Definition 5.4 (Metric). We define a metric d : C × C⊥ → [0, 1]
as follows: d(a, b) = 0, if a = b and d(a, b) = 2−m, where
m = max{an = bn | n ∈ Nat}.

Note that (C, d) is an ultrametric space.

Definition 5.5 (Set of Finite and Infinite Pseudoterms). C∞ is the
metric completion of (C, d).

It should be noted that restricted to the subset of lambda terms
in C the metric d is in fact the discrete metric. The above definition
excludes many infinite terms.

Example 5.6 (Infinite Pseudoterms in C∞). The following are
infinite pseudoterms belonging to C∞:

(cons 0 (cons 0 . . .)) ◦(◦(◦ . . .))
(cons 0 (tl (cons 0 (tl . . .)))) (await (◦(await (◦ . . .))))

The set C∞ is strictly included in any of the sets of finite
and infinite terms defined for infinitary term rewriting systems,
infinitary lambda calculus and infinitary combinatory reduction
systems [28, 29, 32]. This is shown in the following example:

Example 5.7 (What is not in C∞?). The following “terms” do not
belong to C∞.

(f (f . . .))

λx1.λx2.λx3. . . .

(((. . .)x3)x2)x1

(tl (tl (tl . . .)))

(await (await (await . . .)))

The first three terms are characteristic examples of respectively a
Böhm tree, Lévy Longo and Berarducci tree [1, 3, 6, 28, 39, 40].
These terms belong to three increasingly larger Cauchy comple-
tions of the set of finite lambda terms. These three completion can
be constructed by using the ’001’ metric, the ’101’ metric and the
’111’metric respectively. The first completion using the ’001’ met-
ric, which is a subset of the completion obtained with the ’101’
metric, which in turn is contained in the Cauchy completion made
with the ’111’ metric. Each of these ’xyz’ completions is closed un-
der ’xyz’-strongly converging reduction [28, 29].

The last two terms belong to the metric completions defined
for infinitary term rewriting and infinitary combinatory reduction
systems [28, 32].

Notation 5.8 (Reduction at depth n). We denote a n→ρ b if the
contracted ρ-redex is at depth n.

Definition 5.9 (Strongly Converging Reductions). A strongly con-
vergent ρ-reduction sequence of length α (an ordinal) is a sequence
{aβ | β ≤ α} of terms in C∞, such that

1. aβ →ρ aβ+1 for all β < α,
2. aλ = limβ<λ aβ for every limit ordinal λ ≤ α.
3. limi→λ di = ∞ where di is the depth of the redex contracted

at ai →ρ ai+1.

Notation 5.10 (Strongly convergent reduction). a →→→ρ b denotes
a strongly converging reduction from a to b.

By construction, the collection of finite and pseudoterms C∞ is
closed under strongly converging reduction.

Example 5.11 (Strongly Converging Reductions). We have that
zeros →→→γ (cons 0 (cons 0 (cons 0 . . .))) via the following
strongly convergent reduction of length ω (we indicate the depth
of the contracted redex in the superscipt of the rewrite arrows):

zeros
0→γ (cons 0 zeros)
1→γ (cons 0 (cons 0 zeros))
2→γ (cons 0 (cons 0 (cons 0 zeros)))
3→γ . . .

...
(cons 0 (cons 0 (cons 0 . . .)))

Let nfzeros = (cons 0 (cons 0 (cons 0 . . .))) be the infinite
normal form of zeros. We show an example of a reduction sequence

8 2012/3/11

(cons (hd xs) ·)

(cons (hd (tl xs)) ·)

...

Figure 5. Infinite normal form of (map Nat Nat id xs) as a tree

of length ω2.

zeross →→→γ (cons nfzeros zeross)
→→→γ (cons nfzeros (cons nfzeros zeross)
→→→γ . . .
...

(cons nfzeros (cons nfzeros (. . .))

As we mentioned in the introduction, there exists a strongly con-
verging reduction sequence of length ω from zeross to the infinite
normal form by following a depth-first-leftmost strategy.

Example 5.12 (Non-strongly Converging Reductions). The follow-
ing infinite reduction sequences are not strongly convergent:

Ω
0→γ Ω

0→γ Ω
0→γ . . .

Ωtail
0→γ (tl Ωtail)

0→γ (tl (tl Ωtail))
0→γ . . .

(cofix x:A.f x)
0→γ f (cofix x:A.f x)
0→γ f (f (cofix x:A.f x))
0→γ . . .

6. Infinitary Weak Normalization
In this section, we introduce the concept of infinitary weakly nor-
malizing typing system. We prove that a CoPTS is infinitary weakly
βσγ-normalizing provided that the original PTS is β-strongly nor-
malizing. Proving infinitary weak normalization poses several dif-
ficulties:

1. Contracting γ-redexes can create βσ-redexes.

2. Contracting βσ-redexes may decrease the depth of any subterm.

We overcame these difficulties by using the auxiliary system `n.

Definition 6.1 (Infinitary Weak Normalization). Let ρ be a notion
of reduction. We say that a is infinitary weakly ρ-normalizing if
there exists a ρ-normal form b such that a→→→ρ b.

The undesirable terms (see Example 3.9) are not infinitary
weakly βσγ-normalizing. The term (mapNat Nat id xs) is weakly
βσγ-normalizing. Its normal form is depiced as a tree in Figure 5.
Our tree representation reflects the notion of depth.

Definition 6.2 (Infinitary Weak Normalizing CoPTS). We say that
λco(S) is infinitary weakly ρ-normalizing if for all a ∈ C such that
Γ ` a :i A, we have that a is infinitary weakly ρ-normalizing.

Notation 6.3. λco(S) |= ρ-WN∞ if λco(S) is infinitary weakly
ρ-normalizing

In the next theorem, we relate the n of a CoPTSn with the
truncation at depth n.

Theorem 6.4 (Truncation at depth n of a term in CoPTSn). Let
n ≥ i. If Γ `n a:iA then an−i is in γ-normal form, i.e. an−i does
not have fixed points.

Proof. We prove it simmultaneously with the statement: if x:jB is
in Γ then Bn−j is in γ-normal form.

We define a function that contracts all cofix occurrences of a
pseudoterm just once.

Definition 6.5. We define dae by induction on a.

dxe = x
dse = s

dΠx:A.be = Πx:dAe.dbe
dλx:A.be = λx:dAe.dbe
d(a b)e = (dae dbe)
d•Ae = •dAe
d◦ae = ◦dae

d(await a)e = (await dae)
d(Stream A)e = (Stream dAe)
d(cons a b)e = (cons dae dbe)
d(hd a)e = (hd dae)
d(tl a)e = (tl dae)

d(cofix x:A.b)e = dbe[x := (cofix x:dAe.dbe)]

The map de is extended to contexts in the obvious way.

dx1 :i1 A1, . . . , xn :in Ane = x1 :i1 dA1e, . . . , xn :in dAne
Note that a→→γ dae.

Theorem 6.6. Let Γ `n a:iA. Then dΓe `n+1 dae:idAe.

Proof. This is proved by induction on the derivation. We show the
key case:

(cofixn)
Γ, x:i+1A `n b:iA Γ `n A:itype

Γ `n (cofix x:A.b):iA
i ≥ n

By Induction Hypothesis,

dΓe, x:i+1dAe `n+1 dbe:idAe (1)
dΓe `n+1 dAe:itype (2)

From the above rule, we know that i ≥ n. However, we cannot
apply cofixn+1 unless i ≥ n + 1. The trick is to apply Time
Adjustment (Theorem 4.3) to (1) and (2).

dΓe, x:i+2dAe `n+1 dbe:i+1dAe
dΓe `n+1 dAe:i+1type

Since i+ 1 ≥ n+ 1, we can apply (cofixn+1) and obtain:

dΓe `n+1 (cofix x:dAe.dbe):i+1dAe (3)

It follows from Substitution Lemma (Lemma 4.4), (1) and (3) that

dΓe `n+1 dbe[x := (cofix x:dAe.dbe)]:idAe
Since d(cofix x:A.b)e = dbe[x := (cofix x:dAe.dbe)], we are
done.

Theorem 6.7 (Infinitary Weak βσγ-Normalization). Let S be
singly sorted such that λ(S) extends λω. If λ(S) |= β-SN then
λco(S) |= βσγ-WN∞. Moreover, the infinitary weak βσγ-normal
forms are obtained in ω-steps.

Proof. Suppose Γ ` a :i A. Hence, Γ `0 a :i A. We show that
there exists a normalizing strategy starting from a. We construct a
reduction sequence of following form:

a = a0 →→γ a
′
0 →→βσ a1 →→γ a

′
1 →→βσ a2 . . . (4)

We define a′0 as da0e. By Theorem 6.6, we have that dΓe `1 a′0 :i
dAe. We define a1 as the βσ-normal form of a′0 which exists by
Theorem 4.12. By Theorem 4.5, dΓe `1 a1 :i dAe. We repeat this

9 2012/3/11

process for each n. The reduction sequence (4) has the following
form:

a = a0 →→βσγ a1 →→βσγ a2 →→βσγ . . . (5)
where for all n there exist Γn and An such that Γn `n an :i An.
By Theorem 6.4, we have that (an)n is in βσγ-normal form
for all n ≥ i. From i onwards, the sequence of truncations
a0i , a

1
i+1, a

2
i+2, . . . is increasing (with respect to the subterm rela-

tion). It is clear that the reduction sequence (5) is strongly converg-
ing. Its limit aω exists and it is in infinite βσγ-normal form.

Corollary 6.8. λco(EC) and all the systems of the λ-cube ex-
tended with corecursion are infinitary weakly βσγ-normalizing.

Proof. It follows from Theorems 2.15 and 6.7, that λco(EC) is
infinitary weakly βσγ-normalizing. Since all the systems of the λ-
cube extended with corecursion are included in λco(EC), we can
conclude infinitary weakly βσγ-normalization for all of them.

7. Infinitary Strong Normalization
In this section, we connect the index and the modality with the
depth. We also define the concept of infinitary strong normalization
and prove that CoPTS’s are strongly γ-normalizing.

Definition 7.1 (Infinitary Strong Normalization). Let ρ be a notion
of reduction. We say that a is infinitary strongly ρ-normalizing if
we have that all ρ-reduction sequences starting from a are strongly
convergent.

For example, the term (λx:A.zeros)Ω is infinitary weakly βσγ-
normalizing but it is not infinitary strongly βσγ-normalizing.

Definition 7.2 (Infinitary Strongly Normalizing CoPTS). Let ρ be
a notion of reduction. We say that λco(S) is infinitary strongly ρ-
normalizing if for all a ∈ C such that Γ `co a :i A we have that a
is strongly ρ-normalizing.

Notation 7.3. λco(S) |= ρ-SN∞ if λco(S) is infinitary strongly
ρ-normalizing

Note that λco(S) |= ρ-SN∞ implies λco(S) |= ρ-WN∞.

Theorem 7.4 (Depth of Variables). Let Γ, x:iA,Γ
′ ` b:jB. Then

the depth of all occurrences of x in b is greater than i− j if i > j.

Proof. We have to prove it simmultaneosuly with the statement: if
Γ, x:iA,Γ

′ ` b:jB and y:kC ∈ Γ′ then all occurrences of x in C
occur at depth greater than i− k if i > k.

Corollary 7.5 (Depth of x of type (•A)). If Γ, x:i(•A) ` b:iB
then the depth of all occurrences of x in b is greater than 0.

Corollary 7.6 (Depth of x in cofix). If Γ ` (cofix x:A.b):iA then
the depth of all occurrences of x in b is greater than 0.

As a consequence of Theorem 7.4, we have that if a fixed point
occurs in a typable term at depth n then it will occur at depth n+ 1
after its contraction. Let cardfixn(a) be the number of fixed points
of a at depth n.

Theorem 7.7 (Strong Normalization of γ-reduction at depth n).
Let Γ ` a:iA.

1. If a m→γ b and m ≥ n then cardfixn(a) > cardfixn(b).
2. Any reduction sequence of n→γ steps is finite.

Proof. The first statement is proved by induction on the struc-
ture of a using Corollary 7.6. The second one follows by ab-
surd. Suppose there is an infinite reduction sequence starting from
a = a0

n→γ a1
n→γ a2 From the first part, we would have

an infinite decreasing sequence of natural numbers cardfix(a0) >
cardfix(a1) > . . . This is a contradiction. This means that this re-
duction sequence has to be finite.

Theorem 7.8 (Infinitary Strong γ-normalization). We have that
λco(S) |= γ-SN∞.

Proof. Suppose there is an infinite reduction sequence starting from
a = a0 →γ a1 →γ a2 . . . with an infinite number of steps at
depth 0. By Theorem 7.7, the number of steps at depth 0 in that
sequence should be finite. Hence, there exists ak such that from
ak onwards, all reduction steps contract redexes at depth greater
than 1. We repeat the process for n = 1 and then for each depth
n observing that the number of fixed points of a term at depth n
decreases if we only contract redexes at depth greater or equal than
n.

8. Conclusions and Related Work
Our normalization result (Theorem 6.7) says that the terms typable
in a CoPTS have a possible infinite normal form that is an element
of the set C∞. Restricted to lambda terms, the equality relation
induced by βσγ-normal form —two terms are equivalent iff they
have the same infinite normal form — is a strict subrelation of the
equality relations induced the notions of Böhm, Lévy Longo and
Berarducci trees.

Comparision with other typed lambda calculi. Nakano defines
a typed lambda calculus with modality, subtyping and recursive
types where Curry’s and Turing’s fixed point combinators Y and
Θ can be typed and both have type (•A→ A)→ A [44]. Nakano
proves that all typable terms have a Böhm tree without ⊥ which
amounts to saying that they have an infinite β-normal form in the
infinitary lambda calculus with the ‘001’ metric of [29]. Nakano’s
type system can type terms that CoPTS’s cannot type (their infinite
normal forms do not belong to C∞). For example, it can type Yf
whose infinite normal form is the following:

(f (f . . .))

and also Y(λxy.yx) is typable using the recursive type µX.(•X →
B)→ B whose infinite normal form is the following:

(λy1.y1(λy2.y2(λy3.y3 . . .)))

Krishnaswami and Benton’s typed lambda calculus of reactive
programs use an equational theory instead of reduction [36]. Corol-
lary 4.13 generalizes and strengthens in several directions the result
in [36] where only weak normalization is proved for the fragment
of λco

→ without fixed points.
Krishnaswami, Benton and Hoffman show another variant of

λco
→ with linearity in [38]. They define a notion of reduction and

show that all typable terms reduce to some value. Values are essen-
tially abstractions meaning that this result is somewhat similar to
weak head normalization.

Giménez studies an extension of the calculus of constructions
with inductive and coinductive types [21]. A type constructor Â is
introduced that resembles a modal operator. The meaning of this
operator is not the same as •A. While •A can be understood as the
information displayed in the future, Â represents the set of terms
that are guarded by constructors.

Borghuis studies modal pure type systems (MPTS’s) in [9].
CoPTS’s are essentially MPTS’s with fixed points and streams but
without the double negation axiom. The contexts for MPTS’s look a
bit different because they group together type declarations with the
same index Γn,Γn−1, . . . ,Γ0 where Γi = {x1:iA1, . . . , xn:iAn}.
Judgements in a MPTS can only infer types at time 0.

10 2012/3/11

Other approaches to corecursion. Hutton and Jaskelioff studies
the example of zeros′′ and proposes a methodology that ensures
that the fixed point of a function on streams is well defined [26]. On
one hand, while they propose a methodology that each particular
case has to be treated on its own way, the approach with typing
treats all programs in “a uniform way” and could be automatized.
On the other hand, Hutton and Jaskelioff can include functions such
as zeros′′′ that CoPTS’s cannot type.

zeros′′′ = (cofix xs:(Stream Nat).)
(cons 0 (interleave xs (tl xs)))

The infinite normal form of zeros′′′ is

(cons 0 (cons 0 (cons 0 . . .)))

Endrullis et al and Zantema et al use term rewriting systems to
ensure the well-definedness of corecursive equations [16, 54]. The
set of finite and infinite terms is defined as a map (or labelled
tree) from positions to symbols. This set is equivalent to the ones
defined in [28] as a metric completion and includes terms such as
(tl (tl (tl . . .))). The notion of productivity is defined as weak
normalization but excluding terms that do not contain constructors
such as the one shown above.

O’Connor implemented the fixed point operator cofix′′ of type
(•A→ A)→ A in Haskell.

Techniques to prove normalization. In order to prove preserva-
tion of strong normalization without contracting fixed points (The-
orem 4.12), we use a translation from λco(S) into λω. The tech-
nique using translations has been used before in the literature. For
example, in [24] to prove that λ→ |= β-SN implies λP |= β-
SN , or in [18] to prove that λω |= β-SN implies λC |= β-SN.
To get preservation of strong normalization, the translation usually
has to preserve reduction in a way that one step is mapped into
one or more steps. In our case, the translation can cancel σ-steps.
In spite of this, we can prove preservation of strong normalization
using the fact that σ is strongly normalizing on untyped terms.
A similar technique has been used to prove λS |= β-SN implies
λδ(S) |= βδ-SN where λδ(S) is the extension of λ(S) with defi-
nitions where the translation can cancel δ-steps [48].

In order to prove infinitary weak normalization we used an
auxiliary system `n (and the unfolding dae). This technique is used
in [37] to prove that all typable terms have an m-normal form for a
calculus based on λco

→ with linearity. The notion of m-normal form
is defined in [37] in terms of the auxiliary system `n. This does not
ensure yet that typable terms are well-behaved.

9. Future Work
It will be interesting to define a Böhm model for corecursion on
streams by interpreting terms as infinite normal forms [6, 27].
However, to ensure that the model is well defined, we need to
prove infinitary confluence besides infinitary weak normalization.
The problem is that →→→βσγ is not confluent on untypable terms.
We construct some counter-examples from the σ-rules which are
hypercollapsing, i.e. they are of the form C[x]→ x [28, 29].

Example 9.1 (Failure of Confluence). We have that

Ω′
σ

����� γ

** **UUUUUUUUUU

Ω (tl (cons 0 (tl (cons 0 . . .))))

cannot be joined. The terms Ω and (tl (cons 0 (tl (cons 0 . . .))))
can only reduce to themselves. Similarly,

Ω′′
σ

����� γ

))))SSSSSSSS

Ω await(◦(await(◦(. . .))))

The terms Ω and await(◦(await(◦(. . .)))) can only reduce to them-
selves.

Ketema and Simonsen prove confluence up to hypercollapsing
terms for orthogonal infinitary combinatory reduction systems [32].
However, we cannot apply their result. This is because C∞ is
strictly included in their syntax and their confluence result may give
us a common reduct which is outside our syntax

We have proved that λco(S) is infinitary strongly γ-normalizing.
However, it remains open to prove it for βσγ.

Once we have a Böhm Model for corecursion on streams, we
would like to find a way of integrating the syntactic model of Böhm
trees which is an ultrametric space with the model of ultrametric
spaces [7, 36] and the topos of trees [8]. The notion of contractive
function should correspond to the notion of head normal form in
the Böhm model.

In this paper we have considered only streams which is one
particular coinductive data type. It will be interesting to consider
a general form of coinductive data type in the spirit of Coq and the
Calculus of Inductive Constructions [20–22, 53]. This will allow us
to capture other notions of infinite data apart from streams such as
infinite trees or equality between infinite objects .

As mentioned in Remark 3.10, in order to write primitive recur-
sive functions we need to distinguish between data and coinductive
data types and have two different fixed point operators. Recursive
definitions on inductive data types in Coq are typed using another
guardedness condition [22]. Roughly speaking, this condition con-
strains the arguments of a recursive call to be the pattern variables.
It will be interesting to substitute this guardness condition for a
typing rule as well.

The metrics considered for infinitary rewriting are smaller than
ours [28, 29, 32]. It will be interesting to study infinitary extensions
of term rewriting and combinatory reduction systems with different
metrics. This will help us on the study of confluence and normal-
ization for a calculus with a general form of coinductive data type.

Since type checking and type inference for pure type systems
is decidable provided the system is weakly normalizing [50] we
should be able to prove decidability for normalizing CoPTS’s.

A variant of pure type systems, called domain-free pure type
systems, λ-abstractions λx.b do not have annotated type is studied
in [4]. It will be interesting to study the extension with corecursion
of the domain-free pure type systems. This has the advantage of
being closer to programming languages such as Haskell. Though,
it also has disadvantages because we loose decidability of type
inference when we move to second order polymorphic lambda
calculus [52]. For this, we should also consider other variants of
systems where second order quantifications are restricted as in
[14, 43].

We have not added η-reduction because, as it is well-known,
confluence of βη on untypable terms with annotated types does not
hold. The counterexample due to Nederpelt is λx:A.(λy:B.y)x
for A 6= B [45]. A general confluence proof for weakly βη-
normalizing PTS’s is proved in [17]. It should be possible to adapt
this proof to CoPTS’s.

Acknowledgments
We would like to acknowledge Alexander Kurz, Tadeusz Litak
and Daniela Petrişan for discussing the papers by Krishnaswami

11 2012/3/11

and Benton with us. We would also like to thank Neelakantan
Krishnaswami for a helpful email exchange.

References
[1] S. Abramsky and C.-H. L. Ong. Full abstraction in the lazy lambda

calculus. Inform. and Comput., 105(2):159–267, 1993. ISSN 0890-
5401.

[2] H. Barendregt. Lambda calculi with types. In S. Abramsky, D. Gab-
bay, and T. Maibaum, editors, Handbook of Logic in Computer Sci-
ence, volume 2, pages 118–310. Oxford University Press, 1992.

[3] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics.
North-Holland, Amsterdam, Revised edition, 1984. ISBN 0-444-
86748-1; 0-444-87508-5.

[4] G. Barthe and M. H. Sørensen. Domain-free pure type systems. J.
Funct. Program., 10(5):417–452, 2000.

[5] S. Berardi. Type Dependency and Constructive Mathematics. PhD
thesis, Carnegie Mellon University and Universitá di Torino, 1990.

[6] A. Berarducci. Infinite λ-calculus and non-sensible models. In Logic
and algebra (Pontignano, 1994), pages 339–377. Dekker, New York,
1996.

[7] L. Birkedal, J. Schwinghammer, and K. Støvring. A metric model
of lambda calculus with guarded recursion. Presented at FICS 2010,
2010.

[8] L. Birkedal, R. E. Møgelberg, J. Schwinghammer, and K. Støvring.
First steps in synthetic guarded domain theory: Step-indexing in the
topos of trees. In LICS, pages 55–64, 2011.

[9] T. Borghuis. Modal pure type systems. Journal of Logic, Language
and Information, 7(3):265–296, 1998.

[10] T. Coquand. Infinite objects in type theory. In TYPES, pages 62–78,
1993.

[11] T. Coquand and H. Herbelin. A - translation and looping combinators
in pure type systems. J. Funct. Program., 4(1):77–88, 1994.

[12] T. Coquand and G. P. Huet. The calculus of constructions. Inf.
Comput., 76(2/3):95–120, 1988.

[13] H. B. Curry and R. Feys. Combinatory Logic, volume I. North
Holland, 1958.

[14] L. Damas and R. Milner. Principal type-schemes for functional pro-
grams. In POPL, pages 207–212, 1982.

[15] N. G. de Bruijn. A survey of the AUTOMATH project. In J. R. Hindley
and J. Seldin, editors, To H.B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism. Academic Press, 1980.

[16] J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J. W. Klop.
Productivity of stream definitions. Theor. Comput. Sci., 411(4-5):765–
782, 2010.

[17] H. Geuvers. The Church-Rosser property for beta-eta-reduction in
typed lambda-calculi. In LICS, pages 453–460, 1992.

[18] H. Geuvers and M.-J. Nederhof. Modular proof of strong normal-
ization for the calculus of constructions. J. Funct. Program., 1(2):
155–189, 1991.

[19] H. Geuvers and J. Verkoelen. On fixed points and looping combinators
in type theory. note, 2009.

[20] E. Giménez. A Calculus of Infinite constructions and its applications
to the verification of communicating systems. PhD thesis, Ecole
Normale Supérieure de Lyon, 1996.

[21] E. Giménez. Structural recursive definitions in type theory. In ICALP,
pages 397–408, 1998.

[22] E. Giménez and P. Casterán. A tutorial on [co-]inductive types in coq.
Technical report, Inria, 1998.

[23] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures
dans l’aritmétique d’ordre supérieur. PhD thesis, Université Paris VII,
1972.

[24] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
In LICS, pages 192–204, 1987.

[25] W. A. Howard. The formulae-as-types notion of construction. In J. R.
Hindley and J. Seldin, editors, To H.B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism. Academic Press, 1980.

[26] G. Hutton and M. Jaskelioff. Representing Contractive Functions on
Streams. Submitted to the Journal of Functional Programming, 2011.

[27] R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. Infinitary
lambda calculi and Böhm models. In RTA, pages 257–270, 1995.

[28] R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. Transfinite
reductions in orthogonal term rewriting systems. Inf. Comput., 119(1):
18–38, 1995.

[29] R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. Infinitary
lambda calculus. Theor. Comput. Sci., 175(1):93–125, 1997.

[32] J. Ketema and J. G. Simonsen. Infinitary combinatory reduction
systems. Inf. Comput., 209(6):893–926, 2011.

[33] J. W. Klop. Combinatory Reduction Systems. PhD thesis, Rijkuniver-
siteit Utrecht, 1980.

[35] J. W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory
reduction systems: Introduction and survey. Theor. Comput. Sci., 121
(1&2):279–308, 1993.

[36] N. R. Krishnaswami and N. Benton. Ultrametric semantics of reactive
programs. In LICS, pages 257–266, 2011.

[37] N. R. Krishnaswami and N. Benton. A semantic model for graphical
user interfaces. In ICFP, pages 45–57, 2011.

[38] N. R. Krishnaswami, N. Benton, and J. Hoffmann. Higher-order
functional reactive programming in bounded space. In POPL, pages
45–58, 2012.

[39] J.-J. Lévy. An algebraic interpretation of the λβK-calculus, and an
application of a labelled λ-calculus. Theoretical Computer Science, 2
(1):97–114, 1976.

[40] G. Longo. Set-theoretical models of λ-calculus: theories, expansions,
isomorphisms. Ann. Pure Appl. Logic, 24(2):153–188, 1983. ISSN
0168-0072.

[41] Z. Luo. ECC, an Extended Calculus of Constructions. In Proceedings
of LICS’89, IEEE, pages 386–395. IEEE Computer Society Press,
1989.

[43] R. Milner. A theory of type polymorphism in programming. J.
Comput. Syst. Sci., 17(3):348–375, 1978.

[44] H. Nakano. A modality for recursion. In LICS, pages 255–266, 2000.
[45] R. P. Nederpelt. Strong Normalization in a typed lambda calcu-

lus. PhD thesis, Technische Universiteit Eindhoven, The Netherlands,
1973.

[46] J. C. Reynolds. Towards a theory of type structure. In Symposium on
Programming, pages 408–423, 1974.

[48] P. Severi and E. Poll. Pure type systems with definitions. In LFCS,
pages 316–328, 1994.

[49] J. Terlouw. Een nadere bewijstheoretische analyse van GSTT’s.
Manuscript, 1989.

[50] L. S. van Benthem Jutting. Typing in pure type systems. Inf. Comput.,
105(1):30–41, 1993.

[52] J. B. Wells. Typability and type-checking in the second-order lambda-
calculus are equivalent and undecidable. In LICS, pages 176–185,
1994.

[53] B. Werner. Une théorie des constructions inductives. PhD thesis,
Université Paris VII, 1994.

[54] H. Zantema and M. Raffelsieper. Proving productivity in infinite data
structures. In RTA, pages 401–416, 2010.

12 2012/3/11

