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ABSTRACT
In this paper we motivate a new approach to analyse the
computational complexity of solution concepts and player-
based properties, as well as other properties of coalitional
games. This approach is based on the idea to abstract away
from detailed game representations to analyse games via
standard complexity proofs, towards a more abstract ap-
proach, where games are analysed by focusing on influential
characteristics of related games. The core of this structure-
centered perspective on coalitional games is to determine
and systematically analyse promising characteristics, so that
they can be used later to analyse games of a similar type.
This may be particularly interesting in a well-restricted class
of games, like in the context of networks. To give a first ex-
ample of this approach, we concentrate on a specific type of
game, namely graph-based games. In the course of our anal-
ysis we will provide various results for shortest path games,
results also interesting for their own sake.

Categories and Subject Descriptors
F.1.3 [Theory of Computation]: Computation by Ab-
stract Devices—Complexity Measures and Classes

General Terms
Coalitional Games, Solution Concepts, Computational Com-
plexity

Keywords
Shortest Path Games, Graph-based Games, characteristic-
based Analysis

1. INTRODUCTION
Over the last few years a series of papers [1, 2, 3, 5, 6,

12, 15, 21, 24] has been published that analyse the compu-
tational complexity of solution concepts applied to differ-
ent types of coalitional games, as well as the complexity to
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determine various other properties of those games. How-
ever, the coalitional games that have been analysed so far
were studied in isolation from each other. For instance,
results for remotely related classes of games, like graph-
based games, have not been systematically compared with
respect to their characteristics, computational complexity
of different problems or their expressive power. If we are
exclusively interested in a specific type of coalitional game,
this is certainly adequate, whereas a one-by-one analysis of
complexity-theoretic problems is rather impractical when we
want to analyse a wider range of remotely related coalitional
games. Another scenario, where it would be interesting to
abstract away from specific game details and concentrate on
characteristics of games, is to design or optimize coalitional
games in a modular way by adding or removing characteris-
tics, which are known to uniformly effect certain properties
or complexity results for a particular type of game. This
would omit the tedious process of having to repetitively re-
prove various game properties and complexity results for
different configurations in the design process of a game.

To tackle this issue, we want to motivate a new approach,
which is based on structural properties (characteristics) in-
stead of precise game details. The basic idea is that once
promising characteristics, shared by related types of coali-
tional games, have been determined and systematically anal-
ysed with respect to their general influence on computational
complexity, expressive power, etc., they could then later be
used to analyse games of a similar type. This would for
example allow someone to estimate the computational com-
plexity for certain solution concepts applied to games of this
type, or to obtain an idea of game properties, like the ex-
pressive power of games or their succinctness. So, informally
it can be seen as an additional layer to capture intuitions in
relation with structural properties of particular games and
their effect on complexity results of these games, or as a
best-practice approach to generate coalitional games with
particular properties.

To be clear at this point and to omit any confusion or
misconception, the actual aim of such an approach is not
to give standard complexity theoretic proofs, because this
cannot be formally achieved by such a characteristic-based
approach, but to give indications about characteristics and
their computational effects on coalitional games, which fit
into a certain pattern. It is therefore more a heuristic-based
view, which we think is quite similar in nature to the idea
of pattern-based design in programming or pattern-based
learning in chess.

The rest of this paper is organised as follows. In Sec-



tion 2, we give more details regarding the new approach and
motivate a test setting, a particular graph-based coalitional
game. In Section 3, we present basic properties and concepts
in cooperative game theory. In the next section, we intro-
duce a basic variant of a shortest path game, which serves as
a prototype to easily introduce new variants afterwards. We
determine a list of characteristics to be analysed, and de-
fine several variants of shortest path games based on these.
Then, in Section 5, we determine the computational com-
plexity of various problems for different variants of shortest
path games. Based on these results, we analyse in Section
6 how different characteristics of shortest path games influ-
ence the computational complexity of solution concepts or
player-based properties. We conclude with Section 7.

2. COMPLEXITY VIA GAME CHARACTER-
ISTICS

In this section, we introduce and motivate the idea to anal-
yse the computational complexity of solution concepts and
player-based properties of coalitional games via characteris-
tics of games, and compare this with the standard approach
to analyse complexity-theoretic problems in this context.

To omit confusion, the notion “characteristics” as used in
this paper should not be seen as a pure technical notion. Its
main purpose is to broadly refer to properties of graphs, like
for instance directed acyclic graphs and trees, or particular
properties shared by different graph-based games. But, as
indicated later, it can also be seen in a different way, where
“characteristics” are parameters as used in the context of
parametrised complexity. So, expressed rather imprecise,
“characteristics” are ideally properties of games or classes of
games that trigger some inherent computational complexity.

The reader should be aware that this particular idea, namely
to analyse games via characteristics can hardly be described
as entirely novel. It has always been present, maybe not
very distinctive, in the perception of the reasearch commu-
nity, but to our knowledge and surprise never resulted in
a detailed account focusing on the idea and the challenges
involved.

2.1 Approach and Context
We start with the standard technique to analyse coali-

tional games. For a given coalitional game, complexity-
theoretic problems are analysed directly by applying reduc-
tion proofs. Hence, results are obtained, without taking
structural similarities between related games into account.
In some cases, proofs may be reused to a certain degree,
but in a more extensive setting, where various games of re-
motely related type have to be analysed (one-by-one) or in
cases where a coalitional game with special properties has
to be modeled, this strategy can be quite tedious to apply.

This is the point, where complexity via game character-
istics can be quite interesting to consider. The basic idea
behind this perspective is that for a more general class of
coalitional games, like graph-based games, specific struc-
tural characteristics of this type of game, which have to be
identified first, are analysed with respect to their influence
on the computational complexity of particular problems, or
other properties. Hence, the key is to determine if a char-
acteristic influences different, but related types of games,
and their results in a particular (uniform) way. If there is
a strong positive correlation between structural characteris-

tics and the computational complexity of specific problems,
it would be possible to analyse which complexity-theoretic
signature a given coalitional game (of a more general class
of games) might have with respect to a given selection of
complexity-theoretic problems. Of course, this would not
be a proper proof, but more like an estimation of which
kind of results we could expect. As an ultimate step, a stan-
dard complexity theoretic proof would still be necessary to
confirm an “estimated” result.

This is why we want to emphasise at this point that we do
not see this new approach as a substitute, but more like an
amendment for the standard approach. It would offer a new
perspective on problems and could also be useful in partic-
ular problem domains. In a more general sense, it can be
seen as a characteristic-centered view on coalitional games
and their properties to capture or extend structure-based
intuitions. As already indicated above, we think that this
new approach could especially be beneficial to model a spe-
cific type of game with requested properties or to optimise
a given coalitional game.

2.2 Motivating the Approach
After positioning the approach and advertising the possi-

ble benefits, one of the key questions is, if the approach is
feasible. Thus, does it make sense to look for characteristics
of games or sets of characteristics that trigger some inherent
computational behaviour for classes of coalitional games in
a uniform way. Taking into account the heuristic nature of
this approach, a concrete justification may only be given by
carefully analysing various types of coalitional games and
their characteristic-based variants, as well as the solution
concepts and other game-based properties involved. In gen-
eral, it has to be acknowledged that much more reasearch
would have to be conducted in the future to give an entirely
satisfying answer. This is the crux of the problem at hand.
Hence, the main motivation of this paper is to make the
first step by giving a small working example on how to find
characteristics for a certain type of games.

Related to the above question, we have to consider yet
another key question, namely how to effectively determine
promising characteristics, if they exist. For a start, we de-
cided to apply a“brute-force” strategy to extract possible in-
fluential characteristics. Note that there may be other, pos-
sibly more efficient ways to determine and analyse promis-
ing characteristics or to extract intuitions, which will not be
used here, but are nevertheless worthwhile to consider in the
future. We now focus on our working example:

As a first step we decided to concentrate our research on
one restricted type of coalitional game to show that this
approach can be interesting and worthwhile to consider,
at least for restricted types of coalitional games. Due to
the fact that different coalitional games often have quite
different representations and therefore different character-
istics, we focused our research on a specific type of coali-
tional game, namely graph-based games. The reasons why
we have selected this type of coalitional games are the fol-
lowing: Graph-based games are particularly interesting to
solve network-based problems of all sorts, which often occur
in operations research. They offer a manifold of graph-based
characteristics that can be analysed, and several graph-based
games have already been treated in the literature over the
last three years [2, 5, 6, 12].

To analyse the influence of graph-based characteristics on



a working-example we have to focus on a particular type of
graph-based game, which has to be analysed exhaustively
by considering all variations of interesting characteristics
for this type of game. At this point, we have to be sys-
tematic, because only by an extensive analysis of all the
involved factors, we are able to give a meaningful interpre-
tation of the obtained results. We finally decided to fo-
cus on shortest path games, a game which has two inter-
esting variants [17, 29] and which also extends the corpus
of complexity-theoretic results for graph-based games that
have already been treated in the literature [2, 5, 8, 16, 18,
22]. More details about shortest path games, as well as var-
ious complexity-theoretic results are given in Section 4 and
5.

3. BACKGROUND
We now recall some standard concepts from cooperative

game theory [10].

Definition 3.1. A coalitional game with transferable util-
ity (TU-game) is a pair 〈N, v〉, where

• N is the set of players and

• v : 2N → R+
0 is a function that maps each group of

players S ⊆ N to a positive real-valued payoff.

Definition 3.2. A game v is monotonic if for all S, T ⊆
N , S ⊆ T implies v(S) ≤ v(T ).

Definition 3.3. A coalitional game 〈N, v〉 is called a sim-
ple game1 if v(S) ∈ {0, 1} for all S ⊆ N , v(∅) = 0 and
v(N) = 1.

Definition 3.4. A coalition S ⊆ N in a simple game
〈N, v〉 is called a minimal winning coalition if v(S) = 1 and
for every T ⊂ S, v(T ) = 0. We denote by M(v) the set of
minimal winning coalitions of v and by Mi(v) the subset of
M(v) formed by coalitions S ⊆ N such that i ∈ S

Definition 3.5. A player i ∈ N in a simple game2 〈N, v〉
is said to be:

• a null player if v(S) = v(S ∪ {i}) for all S ⊂ N \ {i}

• a dictator if v(S) = 1 iff i ∈ S

• a veto player if v(S) = 1 implies i ∈ S.

We now present various solution concepts. We start with
an important stability concepts, namely the core and then
continue with power indices. But before we can give the
actual definition of the core, we first have to introduce what
is an allocation of a game: An allocation is a function x
from N to R. We denote its i-th component by x(i) or xi
and for a coalition S ⊆ N , we abbreviate

P
i∈S xi by x(S).

An essential type of allocation is an imputation, which is
an allocation that is efficient (x(N) = v(N)) and individual
rational (for all i ∈ N, xi ≥ v(i)). If we now add group
rationality (for all S ⊆ N, x(S) ≥ v(S)) we get the concept
of the core.

1In the literature simple games are sometimes defined as
being monotonic as well.
2The definition of null and veto players can be generalised
for coalitional games.

Definition 3.6. Let 〈N, v〉 be a cooperative game. Then
the core of v is defined as: Core(v) :=
{x ∈ Rn | x is an imputation satisfying group rationality}

Now, we present various power indices, which were origi-
nally proposed in the context of voting, but can also be used
for monotonic games in general (depending on the power in-
dex). In principle, it can be said that a power index allows
a more detailed view on power distributions in voting situ-
ations (or monotonic games) and give insights that are not
obvious at first glance.

Definition 3.7. Given a monotonic game 〈N, v〉, the
Shapley-Shubik index [25] of player i is given by

ϕi(N, v) =

P
S⊆N\{i} |S|!(|N | − |S| − 1)![v(S ∪ {i})− v(S)]

|N |!

Definition 3.8. Given a monotonic game 〈N, v〉, the
Banzhaf index [7] of player i is given by

βi(N, v) =

P
S⊆N\{i}[v(S ∪ {i})− v(S)]

2|N|−1

Definition 3.9. The Deegan-Packel power index [11] of
a player i in the simple game 〈N, v〉 is give by:

pi(N, v) =
1

|M(v)|
X

S∈Mi(v)

1

|S|

Definition 3.10. Given a simple game 〈N, v〉, the Public
Good index (PGI) [19] assigns to each player i ∈ N the real
number:

δi(N, v) =
|Mi(v)|P
j∈N |Mj(v)|

4. SHORTEST PATH GAMES
The class of shortest path games is a type of coalitional

game that has not yet been considered, to our knowledge,
in the context of computational complexity. There are two
different definitions of how to model shortest path problems
in a game-theoretic context, which were introduced by Frag-
nelli, Garcia-Jurado, and Mendez-Naya [17] and Voorneveld
and Grahn [29]. Based on these definitions, we present a
basic variant of a shortest path game, which has very re-
stricted structural properties. This shall give the reader the
flavour of shortest path games and allows us to compare this
type of game with other graph-based games later.

4.1 Value Shortest Path Games (VSPG)
The shortest path games that we consider here are limited

to a finite set of players, where each player owns arcs or
vertices in a finite network. There are costs associated to
the use of each arc or vertex and there are rewards involved
with the transport of an item from the source to the sink
of the network. Then, if a coalition transports goods from
the source to the sink of a graph using a path the coalition
owns, it will receive a specified reward and also incur costs,
namely the costs of the shortest path owned by the coalition.
If the difference between the reward and the cost is positive,
the coalition makes a profit. Otherwise, the coalition can
generate profit zero by simply doing nothing.

Now we present a basic class of shortest path games, called
VSPG, in a more formal way. This variant of a shortest path



game borrows its basic outline from the original definitions of
shortest path games by Fragnelli et al. [17] and Voorneveld
and Grahn [29], where we restricted some properties of the
model to have a more basic version.

Definition 4.1. A shortest path pre-problem Σ is a tu-
ple 〈V,A, So, Si〉, where (V,A) is a directed graph with a
source (So) and a sink (Si). A ⊆ V × V is the set of di-
rected arcs in the network.

Let Σ be a shortest path pre-problem, where the arcs of
the graph 〈V,A〉 are owned by a finite set of players N ac-
cording to a total bijective map o : A → N . Furthermore,
we also have a cost map c that assigns to every arc a ∈ A a
non-negative real number.

Given the simple structure of VSPG, a path owned by
players of coalition S is a sequence (v1, v2, ..., vm) of vertices
such that v1 = So, vm = Si and for each k ∈ {1, ...,m− 1}
the arc (vk, vk+1) is owned by player ik ∈ S. Let P (S)
denote the collection of all paths owned by coalition S. For
any path P we denote the set of corresponding owners by
o(P ).

Suppose that the transportation of a certain good from
the source to the sink of Σ produces an income r and a cost
given by the length of the path that was used. In particular,
the costs associated to a path p = (v1, v2, ..., vm) ∈ P (S) are
defined as the sum of the costs of its arcs:

cost(p) =

m−1X
k=1

c(vk, vk+1)

Note that a coalition S ⊆ N can transport the good only
through paths owned by it and a path P is owned by a
coalition S if o(P ) ⊆ S.

If a coalition S has to find a path from source to sink,
it will choose among its alternatives in P (S) the path with
minimal costs. Define for each S ∈ 2N \ {∅}:

c(S) =


minp∈P (S)cost(p) if P (S) 6= ∅

∞ otherwise

We overloaded c at this point, but it will be obvious from
the context which function is meant. The shortest path can
easily be computed in polynomial time using Dijkstra’s [13]
well-known algorithm. We now introduce the notion of a
shortest path game environment σ, which is any such tuple
〈N,Σ, o, c, r〉.

Definition 4.2. Let σ be a shortest path game environ-
ment, then the shortest path game 〈N, vσ〉 of type VSPG is
given by: For every S ⊆ N

vσ(S) =


r − c(S) if S owns a path in Σ and c(S) < r

0 otherwise
.

Note that the game V SPG defined above has a global re-
ward scheme. This means that a successful coalition S re-
ceives a “global” reward r, whereas an individual reward
scheme is specified as r =

P
i∈S ri, where ri is an individual

reward assigned to each player of the game.

4.2 Characteristics and Variants of Shortest
Path Games

In the following, we propose various characteristics for
graph-based coalitional games in general, as well as more
specific characteristics for shortest path games. For each

characteristic we have two options, which might influence
the expressive power of a graph-based game and also may
have an effect on the computational complexity of solutions
concepts or graph-based properties.

1. Players of graph-based games are attached to the graph’s
arcs or vertices. [OwnArc, OwnVertex]

2. An arc (vertex) in a graph-based game can be owned by
one player, or it can be owned by at least one player.
[Owned1, Owned*]

3. A player in a graph-based game can own one arc (ver-
tex), or at least one arc (vertex). [Own, Own*]

4. The underlying graph of a graph-based game is directed
or acyclic directed.

5. A graph-based game is based on a directed graph or
tree.

6. The source and sink of a shortest path or flow game
are simple vertices or sets of vertices. [ SoSi-Vertex,
SoSi-Set]

7. A shortest path game can have a global reward scheme
or an individual reward scheme. [GRew, IRew]

For our analysis we only considered characteristics (2), (3),
(4), (5) and (7) in a systematic way. A more detailed anal-
ysis and discussion about why the following characteristics
are more interesting than others can be found elsewhere [23].
The characteristics (1) to (5) are applicable to all kind of
graph-based games, whereas characteristic (6) and (7) have
been specifically selected for shortest path games.

For characteristic (4) and (5), we use the label “DAG”
(Tree) to restrict the underlying graph of a game to an
acyclic directed graphs (tree). We furthermore use the nota-
tion M (DAG) (M(Tree)) to indicate that a class of shortest
path game, let’s say M, is considered for inputs restricted to
acyclic directed graphs (trees). For all the other character-
istics we define a label (added in parenthesis), which can
be used to characterize the variants of shortest path games
that we are going to present. There is another important
characteristic, which will not be analysed in the same way,
but is nevertheless important and well used: A shortest path
game can return its value or be converted into a simple game
by introducing a threshold [Val,Thold]. These games are
then called threshold games.

In Table 1 we summarize the variants of shortest path
games that will be analysed in this paper. Note that SPG-
F is the shortest path game introduced by Fragnelli et al.
[17] and SPG-VG the game introduced by Voorneveld and
Grahn [29].

A detailed analysis of the expressive power of the games
involved and how the variants of shortest path games relate
to each other, as well as different variants of various graph-
based games can be found elsewhere [23]. For our account
of computational complexity for shortest path games it is
sufficient to know that all the variants of shortest path games
are monotonic, threshold games are simple and that all non-
threshold games with individual reward scheme have a non
empty core.



Variant Characteristics

VSPG OwnArc,Owned1,Own1,SoSi-Vertex,GRew,Val
VSPG* OwnArc,Owned1,Own*,SoSi-Vertex,GRew,Val
VSPG*+ OwnArc,Owned*,Own*,SoSi-Vertex,GRew,Val
TSPG OwnArc,Owned1,Own1,SoSi-Vertex,GRew,Thold
SPG-F OwnVertex,Owned1,Own*,DAG,SoSi-Set,GRew,Val
XSPG OwnArc,Owned1,Own1,SoSi-Vertex,IRew,Val
XSPG* OwnArc,Owned1,Own*,SoSi-Vertex,IRew,Val
XSPG*+ OwnArc,Owned*,Own*,SoSi-Vertex,IRew,Val
TXSPG OwnArc,Owned1,Own1,SoSi-Vertex,IRew,Thold
SPG-VG OwnArc,Owned*,Own*,DAG,SoSi-Vertex,IRew,Val

Table 1: Variants of Shortest Path Games

5. COMPUTATIONAL COMPLEXITY
In this section, we present various complexity-theoretic

results for player-based properties and solution concepts,
which are applied on variants of shortest path games. All
proofs, as well as some immediate results for threshold vari-
ants of shortest path games (monotonic simple games) or
complexity results for the core can be found in full detail
elsewhere [23]. For later reference and to compare and in-
terpret the results in the next section, an overview of all the
results for shortest path games is given in Table 2.

Due to the multitude of different complexity problems in-
volving various variants of coalitional games and solution
concepts (player-based properties), we present the complex-
ity problems in a parametrised form. This allows us a more
compact representation of the results. For example, we in-
troduce the X-Null-Player decision problem as the gen-
eral null player problem, where X indicates a particular type
of game. Thus, if we want to consider the null player prob-
lem with respect to shortest path games of type VSPG, we
refer to this particular problem as VSPG-Null-Player.

We generally assume that the reader is familiar with stan-
dard complexity theory and omit any further explanation
apart from the slightly more uncommon complexity class,
#P (pronounced “number P” or “sharp P”), which is the
set of counting problems associated with the decision prob-
lems in NP. This complexity class has been introduced by
Valiant [28] and will be used for various results in this sec-
tion. Expressed more formally:

Definition 5.1. #P is the complexity class of all the
functions f : Σ∗ → N such that there exists a non-deterministic
polynomial time Turing machine M and for all inputs x ∈
Σ∗, f(x) is the number of accepting paths of M .

This particular complexity class is used in the context of
various coalitional games, because it often allows a more
precise classification of problems involving power indices.

5.1 Player-based Properties

Definition 5.2. X-Null-Player: Given a game v of
type X and a player ai, test whether ai is a null-player in v.

Lemma 5.3. VSPG-Null-Player
and XSPG-Null-Player are co-NP-complete

Lemma 5.3 is based on the fact that VSPG expresses
all directed connectivity games (see [23]) and a complexity
result from Bachrach and Rosenschein [5], which is about

null-players3 in directed connectivity games. The same re-
sult follows immediately for VSPG*, VSPG*+, TSPG and
TXSPG. Due to the fact that XSPG (XSPG* and XSPG*+)
does not directly express the class of connectivity games, a
standard reduction proof with respect to directed connec-
tivity games has to be applied.

Similar to the case of network flow games [5], we have the
following: if the input is restricted to cases where the graph
is a directed acyclic graph (DAG), we can prove that the
problem is tractable.

Lemma 5.4. VSPG(DAG)-Null-Player, VSPG*(DAG)-
Null-Player, VSPG*+(DAG)-Null-Player, SPG-F-Null-
Player and TSPG(DAG)-Null-Player are in P.

We will concentrate on VSPG(DAG). For the other vari-
ants, the proof can easily be adapted.

Proof. Let vσ be an N -player VSPG in a shortest path
cooperative situation σ. Furthermore, let ai be a player and
e = (u, v) an arc such that o(e) = ai. We assume w.l.o.g
that u 6= So and v 6= Si. We determine the shortest path P1

from So to u and the shortest path P2 from v to Si. This
can be easily done using Dijkstra’s algorithm. We now have
two main cases to consider:

Case 1: If both paths exist, we can define coalition C :=
o(P1)∪ o(P2)∪ o({(u, v)}, which has R := P1 ◦ e ◦ P2 as the
shortest path through e.

Claim 1: P1 and P2 are vertex-disjoint, i.e. they do not
share vertices except So and Si.

Proof (Claim 1): Let’s assume for the sake of a contradic-
tion that this is not the case. So, there is a vertex w that is
contained in both paths. Given that w is a vertex in P1 and
P2, there must be a path from w to u and v to w respec-
tively. Hence, there is a cycle u � v � w � u and therefore
the assumption that the graph is an acyclic directed graph
(DAG) is violated.

Claim 2: There is no path T ∈ P (C) such that cost(T ) <
cost(R). Furthermore it is the case that c(C \ {ai}) =∞.

Proof (Claim 2): By definition of path R, it is clearly
the case that there is no path T ∈ P (C) such that e ∈ T
and cost(T ) < cost(R). Hence, if there should be some
T ∈ P (C) such that cost(T ) < cost(R), then it must be the
case that e /∈ T . So, let’s assume that e /∈ T . We now have
to check if there is another path from So to Si in C. But
given that P1 and P2 are vertex-disjoint (Claim 1), there

3Bachrach and Rosenschein refer to them as dummy-players
in [5].



does not even exist a path T ∈ P (C \ {ai}) from So to Si.
Hence, ∞ = cost(T ) > cost(R) and c(C \ {ai}) =∞.

After having proved the two claims, we have to consider
two sub-cases:

Case 1.1: (c(C) ≥ r). In this case all possible paths P
through arc e automatically have the property c(P ) ≥ r.
Hence, for all these paths P with the corresponding coalition
D = o(P ) ⊆ N we have vσ(D) = 0 and after removing are e,
there is no path anymore and therefore vσ(D \ {ai}) = 0 as
well. But these paths are the only possibility for player ai to
influence the value of the game. So, without participation
in a profitable path, ai must be a null player.

Case 1.2: (c(C) < r). So, vσ(C) = r − c(C) > 0 and by
claim 2 we get vσ(C \ {ai}) = r − c(C \ {ai}) = 0. Hence,
ai is not a null player.

Case 2: If P1 or P2 does not exist, there is no path from
So to Si that includes arc e. Hence, by including ai to a
coalition the value of vσ will not change. The same holds,
when we remove the player. Hence, ai is a null player.

To sum it up: The shortest paths P1and P2 can be com-
puted in polynomial time. Then it has to be checked if both
paths exist (Condition 1) and if this is the case yet another
condition has to be checked, namely if c(C) ≥ r (Condi-
tion 2). By Claim 2 we even know that c(C) = cost(R)
and therefore it is enough to check if cost(R) = cost(P1) +
cost(e) + cost(P2) ≥ r. All this can be done in polynomial
time. Hence, given that we covered all cases, it can be tested
in polynomial time if ai is a null-player in vσ.

The same result holds as well for those variants of shortest
path games with an individual reward scheme.

Lemma 5.5. XSPG(DAG)-Null-Player, XSPG*(DAG)-
Null-Player, XSPG*+(DAG)-Null-Player, SPG-VG-
Null-Player and TXSPG-Null-Player is in P.

Proof. Let vσ be an N -player XSPG in a shortest path
cooperative situation σ and let ai be an arbitrary player.
We now have to consider two cases regarding the individual
reward assigned to player ai:

Case 1: (ri = 0) Under this assumption player ai can
only increase the value of a coalition he joins by offering cost
improvements with respect to path routing, thus offering a
shorter path. The proof is similar to the proof of VSPG:
We first generate coalition C and given that ri = 0, we
have r(C) = r(C \ {ai}). Hence, we have a fixed reward
with respect to the coalitions we are interested in and can
therefore continue as in the proof of VSPG.

Case 2: (ri > 0) We first check if there is a coalition
S ⊆ N such that vσ(S) > 0. This can be easily done by de-
termining the shortest path for the grand coalition N , calcu-
lating the cost of the shortest path and subtracting it from
r(N). If vσ(N) = 0, then we can deduce from the fact that
vσ is monotonic that vσ(S) = 0 for all S ⊆ N , and therefore
ai is clearly a null-player. If this is not the case, then we can
reason as follows: For any coalition S ⊆ N (vσ(S) > 0) con-
taining ai, if we remove ai from the coalition, the coalition’s
value decreases due to the fact that ri is subtracted and
furthermore given that the routing can clearly not be im-
proved with one arc removed, we have vσ(S \{ai}) < vσ(S).
Now, if we assume that there is at least one effective path,
we know that vσ(N) > 0 must hold for the grand coalition
N and therefore by the deduction step above, ai is not a
null-player.

Definition 5.6. X-Veto-Player: Given a game v of
type X and a player ai, test whether ai is a veto player in v.

Proposition 5.7. VSPG-Veto-Player is in P.

The same follows for VSPG*, VSPG*+ and also for XSPG,
XSPG*, XSPG*+ and SPG-VG. Due to the fact that
VSPG*(DAG) and SPG-F are similar (only differ for tags:
SoSi-Set/SoSi-Vertex and OwnVertex/OwnArc) and
by taking into account that these characteristics do not influ-
ence the computational complexity in this case, the following
result holds.

Proposition 5.8. SPG-F-Null-Player
and SPG-F-Veto-Player is in P.

5.2 Power Indices
After determining the computational complexity of VSPG-

Null-Player and XSPG-Null-Player, as well as for var-
ious other variants, we can apply a well-known fact to de-
termine the computational complexity of power indices: To
compute a power index (Shapley-Shubik, Banzhaf, Deegan-
Packel and Public-Good index) for a player is at least as
difficult as testing for a null-player.

Definition 5.9. X-Y-Index: Given a game v of type X
and a player i, compute the Y power index of player i in
game v.

Lemma 5.10. To compute Vspg-Shapley-Shubik-Index
(Xspg-Shapley-Shubik-Index), Vspg-Banzhaf-Index
(Xspg-Banzhaf-Index), Vspg-Deegan-Packel-Index
(Xspg-Deegan-Packel-Index) and Vspg-Public-Good-
Index (Vspg-Public-Good-Index) is intractable.

The same result follows for VSPG*, VSPG*+ and TSPG
(XSPG*, XSPG*+ and TXSPG). We can even prove a
stronger result:

Theorem 5.11. Vspg-Banzhaf-Index
and Xspg-Banzhaf-Index is #P-complete.

To prove this result4 , we reduce the S-T-Connectedness
problem, which was introduced by Valiant [28] as one of the
first problems known to be #P-complete, to our problem.
The detailed definition of the problem is:

Instance: G = 〈V,A〉; s, t ∈ V
Question: Number of subgraphs of G in which there
is a (directed) path from s to t

Proof. We start with #P-hardness: Let’s assume that
we have an instance of S-T-Connectedness, hence a graph
G = 〈V,A〉 and two distinct vertices s, t ∈ V . We first add
another vertex Si to the graph and another arc a′ = (t, Si).
So, we have G′ = 〈V ′, A′〉, where V ′ = V ∪ {Si} and
A′ = A ∪ {a′}. Let So = s. Then we define the set of
players N = {1, 2, ...}, where |N | = |A′| and we assign to
every player exactly one arc. We refer to the player owning
arc a′ as i′. Furthermore, let π : A → N \ {i′} be an arbi-
trary bijective mapping and for any a ∈ A′, we define the
ownership mapping o as follows:

o(a) =


i′ if a = a′

π(a) otherwise
4Note that the proof is for VSPG, but can easily replayed
for XSPG.



We define a cost function that assigns cost 0 to every arc of
G′ and set r := 1. This gives us a shortest path cooperative
situation σ with the corresponding game vσ (VSPG). Note
that this transformation takes only polynomial time. For
convenience we introduce the following notation βi = {S ⊆
N \ {i} | vσ(S ∪{i})− vσ(S) = 1)}, which is a subterm used
in the definition of the Banzhaf index. We now show that
there is a direct correspondence of the following form:

Claim: X ∈ βi′(N, vσ) iff subgraph H of G induced by
o−1(X) 5 is such that there exists a path P in H.

(⇒): Let X ∈ βi′(N, vσ), i.e. by definition X ⊆ N \ {i′},
vσ(X ∪ {i′}) = 1 and vσ(X) = 0. We can now deduce from
vσ(X∪{i′}) = 1 and the definition of VSPG that for v there
is a path from s = So to Si, and therefore also a path from
s to t in the subgraph induced by o−1(X).

(⇐): We assume that H is a subgraph of G, where S ⊆ A
is the set of arcs of H, such that there exists a path in H.
Given that i′ is a veto-player of vσ and i′ /∈ o−1(S) we have
vσ(S) = 0. Furthermore, given that there is a path in S
(from s = So to t), we get a path So to Si by adding a′

to the coalition S. Thus vσ(S ∪ {i′}) = 1, and therefore
S ∈ βi′(N, vσ).

So, we have a bijection between the two sets, and therefore
the cardinality of both sets is equal. Hence, if we were able
to compute the Banzhaf index βi′(N, vσ) for player i′ ∈ N
in polynomial time, we could multiply it with 2N−1 to get
#βi′(N, vσ). This would give us the number of solutions for
the S-T-Connectedness instance, and therefore would lead
to a contradiction, because S-T-Connectedness is #P-
complete. We now continue to prove #P-membership:

The Banzhaf index of player i ∈ N of a shortest path game
(N, vσ) of type VSPG is βi(N, vσ). It is the proportion of
all winning coalitions where i is critical, out of all winning
coalitions that contain i. Let S ⊆ N be any coalition, it can
be checked in polynomial time whether i ∈ S, vσ(S) = 1
and vσ(S \{i}) = 0. The last two conditions are polynomial
by definition of shortest path games (based on Dijkstra’s
algorithm). Hence, it can easily be checked if i ∈ S and if
player i is critical for a coalition S (vσ(S)−vσ(S \{i}) = 1).

Due to the fact that we can construct a deterministic poly-
nomial Turing machine M that tests if a player is critical in
a coalition, as shown above, we can now construct a non-
deterministic Turing machine M ′ that first chooses a coali-
tion, under the conditions that i is in the coalition, non-
deterministically and then tests if i is critical for that coali-
tion. The number of accepting paths of M ′ is the number of
coalitions that contain i where i is critical. Let |N | = n. As
introduced above we denote the number of such accepting
paths of M ′ as #βi(N, vσ). Then the Banzhaf power index

of agent i is βi(N, vσ) = #βi(N,vσ)

2n−1 .

Calculating the numerator #βi(N, vσ) is a #P problem.
Since the denominator is constant (given a domain with
n players), Vspg-Banzhaf-Index is in #P. So, we have
shown that Vspg-Banzhaf-Index is #P-complete.

The same result follows for VSPG*, VSPG*+ and SPG-
F (XSPG*, XSPG*+ and SPG-VG) immediately. This
also holds for TSPG (TXSPG) when we set the thresh-
old to 1. Based on the result for TSPG-Banzhaf-Index
(TXSPG-Banzhaf-Index) and a proposition by Aziz et
al. [2] (Proposition 4.3 and 4.4) we can deduce:

5Normally we speak of a graph being induced by a set of
vertices, but we can also use arcs instead.

Corollary 5.12. TSPG-Shapley-Shubik-Index and
TXSPG-Shapley-Shubik-Index is #P-complete.

5.3 Monotonic Simple Games
Various complexity results follow directly from the fact

that a game is monotonic or simple. These complexity re-
sults are rather straightforward to prove. Henceforth, we
only sketch or even omit some of the proofs.

Proposition 5.13. Let 〈N, v〉 be a monotonic simple game
such that for all coalitions S ⊆ N , v(S) can be computed in
polynomial time and let ai ∈ N . We can determine in poly-
nomial time if ai is a veto-player (dictator) in v.

Using the generalised definition of a veto-player for coali-
tional games, which we indicated above, the proposition can
be generalised to hold for monotonic coalitional games as
well. We now present some complexity problems with re-
spect to the core of simple monotonic games.

Definition 5.14. X-EmptyCore: Given a game v of
type X, test whether Core(v) = ∅

Proposition 5.15. For a monotonic simple game v the
decision problem Empty-Core is in P.

Proof. Due to the fact that a simple game v has a non-
empty core iff v has veto players ([10], Theorem 1.10.6), we
can immediately deduce that the result must hold, since by
Proposition 5.13 we can check for every monotonic simple
game in polynomial time if a player is a veto-player. Hence,
we can determine in polynomial time if there is at least one
veto-player in N by testing all players.

We can even do more, namely compute the elements of
the core in polynomial time for simple monotonic games.

Definition 5.16. X-ElementsCore: Given a game v
of type X, return a set X such that X ⊆ Core(v)

To prove this result we use the following folk theorem: If
there are no veto players in a simple game v, then the core
is empty. Otherwise, let a1, ..., am be the veto players in
v. Then the core is the set of imputations that distribute
the gains over all veto players, and only the veto players:
Core(v) = {〈p1, ..., pm〉 |

Pm
i=1 pi = 1}. Details and a proof

for this theorem can be found in a paper by Bachrach et.
al.[4]. Hence, to compute the core we just have to compute
all veto players. But this can easily be done, because to
check for a veto player is in P.

Definition 5.17. X-CoreMembership: Given a game
v of type X and an allocation x, check whether x ∈ Core(v)

Proposition 5.18. Let v be a monotonic simple game
and x an imputationj. The decision problem CoreMem-
bership is in P.

To obtain this result, we just have to compute all veto-
players and then check if the imputation x fits into the pat-
tern described by the folks theorem above.

Finally, given that TSPG and TXSPG are monotonic sim-
ple games and the value for an arbitrary coalition can be
computed in polynomial time (Dijkstra), the results can be
immediately applied.



5.4 Minimal Winning Coalitions
Minimal winning coalitions are an important kind of coali-

tion. Expressed informally, they can be seen as limit cases
that have maximal power, but minimal effort. Due to their
significance, we were interested in determining the computa-
tional complexity to count the number of minimal winning
coalitions in threshold shortest path game.

We already introduced a formal notion of a minimal win-
ning coalition (see Definition 3.4). We now want to rein-
terpret minimal winning coalitions in the context of TSPG.
This is easily done, because minimal winning coalitions are
exactly all the (simple) paths P (having non repeating ver-
tices) from So to Si such that r− cost(P ) ≥ T , thus all the
profitable paths.

Definition 5.19. X-#MWC: Given a game v of type X,
return the number of minimal winning coalitions of game v.

Theorem 5.20. TSPG-#MWC and TXSPG-#MWC
is #P-complete.

To prove this result, the S-T-Paths6 problem, which was
introduced by Valiant [28], is used. The detailed definition
of the problem is:

Instance: G = 〈V,A〉; s, t ∈ V
Question: Number of paths from s to t that
visit every vertex at most once.

Proof. We first prove #P-hardness: We have an in-
stance of S-T-Paths, hence a graph G = 〈V,A〉 and two
distinct vertices s, t ∈ V . We now define the set of play-
ers N = {1, 2, ...}, where |N | = |A| and we assign to every
player exactly one arc. We also define a cost function that
assigns cost 0 to every arc of G and set r := 1 and T := 1.
So, we have a shortest path game environment σ and the
corresponding game vσ of type TSPG. Note that this trans-
formation takes only polynomial time. Now we have to show
that there is a direct correspondence between the concept of
a minimal winning coalition (MWC) and an s-t-path.

Claim: X is a MWC iff X is a s-t-path
(⇒): Let X be a MWC. Then, as stated previously, X

must be a profitable (simple) path from s to t. Hence, X is
an s-t-path.

(⇐): Let P be an s-t-path. So, we have a (simple) path
from s to t. Given that we assigned a cost of 0 to all arcs,
cost(P ) = 0 and therefore r − c(P ) = 1 − 0 = 1 ≥ T = 1.
Hence, vσ(P ) = 1. Given that P is a path, we have vσ(P ′) =
0 for every P ′ ⊂ P , because r − c(P ′) = 0 < T = 1. Thus,
by definition P is a minimal winning coalition.

Now we prove #P-membership: Let S ⊆ N be any coali-
tion, it can be checked in polynomial time if S is a MWC:

Step 1: We first have to check if there is a shortest path
P from So to Si involving all players in S. This can be done
by applying Dijkstra’s algorithm to determine the shortest
path P in S. Then we have to check if o(P ) = S. Note that
both steps can be done in polynomial time.

Step 2: If this is not the case, S cannot be a MWC. Oth-
erwise we check if the corresponding path P is profitable,
which can be done in polynomial time as well.
6The decision problem heavily relies on the notion of a sim-
ple path (also referred to as self-avoiding walks). For many
similar decision problems, leaving this property out, polyno-
mial time algorithms have been found. The decision problem
applies to both, directed and undirected graphs.

Step 3: If path P is not profitable, then S cannot be a
MWC. Otherwise it must be a MWC, because vσ(S) = 1
and given that it is a path, the reduction of the coalition
by any player T ⊂ S will lead to an interrupted path, and
therefore infinite costs. Hence, vσ(T ) = 0.

Due to the fact that we can construct a deterministic poly-
nomial Turing machine M that tests if a coalition S ⊆ N
is a MWC, as shown above, we can now construct a non-
deterministic Turing machine M ′ that first chooses a coali-
tion S non-deterministically and then tests if S is a MWC.
The number of accepting paths of M ′ is then the num-
ber of MWC. Now, according to the Definition 5.1, TSPG-
#MWC is in #P. So, finally we have that TSPG-#MWC
is #P-complete.

6. INTERPRETATION AND DISCUSSION
In the previous section we obtained various results, which

are summarised in Table 2. The notions and symbols that
we use have the following interpretation:

• Complexity results separated by “|” indicate that we
have two results for different kinds of complexity prob-
lems (e.g. decision, function or counting) or a result
for a restricted class of problems (e.g. DAG or Tree).

• If a field in the table contains “-”, then the property or
solution concept either cannot formally be applied for
this game or a previous results already indicates that
a solution may or may not exist.

• An open problem is indicated by “?”.

• Results for games with global and individual rewards
often coincide. If this is not the case, then we indicate
the difference by “x[y]”, where x is the result for the
global and y for the individual reward scheme.

The obtained results are quite interesting on their own
and more interestingly they also show a remarkable resem-
blance with respect to complexity results for related kinds
of games, like network flow games [20], vertex connectivity
games [6], minimum cost spanning tree games [9] and span-
ning connectivity games [2], as will be commented on later.

As mentioned in Section 2, our main interest is to anal-
yse the influence of different characteristics on the compu-
tational complexity of player-based properties and solution
concepts applied to shortest path games.

As can be seen immediately, the results for games with in-
dividual and global reward scheme, are nearly identical and
only differ for ElementCore. Hence, characteristic (7) has
no influence in our test setting. This is a surprising result,
because we initially expected it to be a strong candidate to
trigger computational behaviour. But apart from (7), also
other characteristics that we considered, i.e. (2) and (3),
have no influence on the computational complexity of power
indices or player-based properties. These results seem rather
disappointing regarding the initial expectations, but there is
more to observe:

• The main reason, why those characteristics have no in-
fluenced for shortest path games is that for basic vari-
ants of shortest path games (e.g. VSPG or XSPG)
the problems are already intractable. In a small case
study (see [23]), we confirmed that various graph-based



Global Reward Scheme (GRew) VSPG/VSPG*/VSPG*+ TSPG SPG-F

Shapley-Shubik-Index NP-hard #P-complete ?
Banzhaf-Index #P-complete #P-complete #P-complete

Deegan-Packel-Index - NP-hard -
Public-Good Index - NP-hard -

Null-Player co-NP-complete | P(DAG) co-NP-complete | P(DAG) P
Veto-Player P P P

Dictator - P -
Minimal Winning Coalition - #P-complete -

EmptyCore ? [-] P ? [-]
CoreMember ? P ?
ElementCore ? [P] P ? [P]

Individual Reward Scheme (IRew) XSPG/XSPG*/XSPG*+ TXSPG SPG-VG

Table 2: Complexity-theoretic results for different variants of shortest path games.

games, which share basic characteristics, have rather
similar (mostly intractable) complexity results. For
our case study we have taken the following coalitional
games (with corresponding results) into account: net-
work flow games [2, 5], vertex connectivity games [6],
minimum cost spanning tree games [8, 22] and span-
ning connectivity games [2]. So, this case study indi-
cates that characteristics, like (2) and (3), as well as
(7) for shortest path games, are in a sense not strong
enough to influence the computational complexity for
those problems that have been considered.

• On the other hand, those characteristics have quite
some influence with respect to the expressive power of
those games. More details about expressive power and
the comparison between different coalitional games,
like flow games, market games, linear production games
can be found elsewhere ([23], Chapter 4).

• From our analysis of shortest path games and the case
study involving other graph-based games, we have an
indication that characteristics (4) and (5), namely DAG
and Tree, have quite some influence with respect to
the computational complexity of power indices and the
determination of player-based properties. Some exam-
ples for various types of graph-based games can be
found in [2, 5, 6, 8, 22].

To sum it up, the results for shortest path games only
supported the advocated characteristic-based perspective to
a limited extend. The working example, which was intro-
duced with the intention to emphasis the key challenge of the
approach, namely the extraction of influential game charac-
teristics, did not live up to the initial expectations. Never-
theless, by taking other graph-based coalitional games into
account, we were able to present some interesting observa-
tions about characteristics and their influence, which can
be useful for further work in this context. Various obser-
vations regarding graph-based games seem to suggest that
there is a general tendency for problems in this context to
be intractable. This indicates that we have to focus on more
influential characteristics of games (graphs) in general, like
reduction to DAG or tree-like structures, etc. Another way
to find such characteristics might be to directly analyse so-
lution concepts and determine which kind of characteristics
of games might ease the computational complexity to deter-
mine these solution concept.

7. CONCLUSION
We proved various standard complexity-theoretic results

for different variants of shortest path games, results which
are interesting in their own right. But more importantly, and
apart from the technical results for shortest path games, we
motivated a new perspective to analyse complexity-theoretic
problems in a game-theoretic context, namely complexity
via characteristics of games. For this reason we presented a
test environment to motivate this approach. We argued why
this new approach is worthwhile to consider and discussed its
benefits and limitations. The results we gained for our test
setting, motivate our abstract approach to analyse problems
for coalitional games only to a limited extent, but this is not
surprising given the nature of the newly proposed perspec-
tive on coalitional games. Nevertheless, independent from
this new perspective, the results showed to a certain extent
that it can be interesting to discuss characteristics of games
and their influence.

To conclude, we think that an analysis via characteristics,
as described in this paper, could be especially interesting in
very refined and restricted domains, like networks (or even
more specific communication networks), where there is a
high similarity between the various cooperative games. This
makes it easier to identify characteristics of games in the first
place and then use them to model networks having certain
computational properties with respect to the application of
solution concepts or the determination of player-based prop-
erties. Of course, many properties of graphs and networks
have been studied in graph theory and some choices of“char-
acteristics” may appear trivial, nevertheless we think that
there is a general lack of characteristic-based studies re-
garding the application of solution concepts to graph-based
games and their computational complexity.

7.1 Related and Future Work
Our analysis of the influence of characteristics is (so far)

limited to “yes-no” properties. But there is another useful
paradigm, which could be rather promising to analyse the
computational complexity of coalitional games and the in-
fluence of various components of their input (with respect to
the problem), namely the application of parametrised com-
plexity [14]. This is particularly interesting in situations
where many interesting complexity problems are intractable,
like for example in the case of coalition formation for coali-
tion resource games. In this context, the paradigm has re-



cently been advocated by Shrot et al. [26, 27] to determine
the parameters of the input that influence the computational
complexity of a problem. By fixing particular parameters of
the input, they showed that various previously intractable
problems are tractable if those parameters are bound. There
seems to be quite some potential in using this paradigm to
obtain more fine-grained results for intractable problems.
Given that structural characteristics, as mentioned above,
and parameters used in parametrised complexity are virtu-
ally the same with respect to the idea to abstract away from
detailed game definitions, we think that it might be inter-
esting to include parameters in our further work.

In general, at this stage of our work, it would be essen-
tial to extend the sample space of results by systematically
analysing the influence of parameters and characteristics for
various games and their complexity-theoretic problems, as
well as to think about efficient strategies to obtain influen-
cial characteristics and parameters.
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