
A Model-Checking Approach for Service
Component Architectures?

João Abreu1, Franco Mazzanti2, José Luiz Fiadeiro1, and Stefania Gnesi2

1Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK

{jpad2,jose}@mcs.le.ac.uk
2Istituto di Scienza e Tecnologie dell’Informazione A. Faedo, CNR

Via G. Moruzzi 1, 56124, Pisa, Italy
{franco.mazzanti,stefania.gnesi}@isti.cnr.it

Abstract. We present a strategy for model-checking the correctness of
service composition. We do so in the context of SRML, a formal mod-
elling framework for service-oriented computing being defined within the
SENSORIA project. We introduce a methodology for encoding patterns
of typical service interaction with UML state machines and present a
strategy for checking SRML specifications of service composition based
on such patterns. For that purpose, we use the action-state branching
time temporal logic UCTL and the model-checker UMC.

1 Specifying service composition with SRML

The SENSORIA Reference Modelling Language (SRML) [?,?] is a domain spe-
cific language for service-oriented architectures, inspired by the Service Compo-
nent Architecture [?]. SRML provides primitives for modelling composite services
whose business logic involves the orchestration of interactions among elementary
components and the invocation of services provided by external parties.

Fig.1 is an example of a service module – the primitive that SRML offers
for modelling service composition. A service module defines a distributed or-
chestration of a set of external services through a configuration of components
and wires. Each of these components, wires and external services is typed by a
specification of the interactions it can engage in or coordinate (in the case of
wires). Components are typed by stateful models of the behaviour of the ac-
tual components that will execute during service delivery. Requires-interfaces,
which represent the interfaces of the external services, are typed by what we
call business protocols — behavioural constraints defined with patterns of the
UCTL temporal logic [?] that need to be matched by the behaviour offered by
the external services. Every service module has a provides-interface that is also
typed by a business protocol advertizing the properties offered by the service at
its interface level — in the example, the provides-interface CR is typed by the
? This work was partially sponsored through the IST-2005-16004 Integrated Project

SENSORIA: Software Engineering for Service-Oriented Overlay Computers

business protocol Customer shown in Fig. 2. Finally, wires are typed by connec-
tors that coordinate the interactions between components and external services
[?]. A service module is said to be correct if the composition of components,
wires and external-services that it specifies entails the properties advertized by
its provides-interface.

Fig. 1. The service module TravelBooking. TravelBooking uses the components BA
and DB plus a set of wires to orchestrate three existing independent services — for
booking a flight, booking a hotel and processing the payment.

Interactions, which have a conversational nature, consist of an asynchronous
exchange of typed events between the parties that compose the service, where
each type of event has a particular meaning from the business point of view (like
requesting, replying, commiting, revoking, etc.). Service modules are interpreted
over a particular type of Doubly Labelled Transition Systems (L2TS) in which
transitions are labelled by the publication, execution and discard of events [?]
— UCTL logic is used to reason about such L2TSs.

2 Specifying service interfaces with SRML

In SRML, the properties that are required from the external services that form
the module, and also the properties that the module provides, are expressed
through a business protocol in two ways: by declaring a set of typed interactions
and by declaring a set of constraints that correlate the events of those inter-
actions. The type that is associated with each interaction defines not only the
set of events the service can engage in as part of that interaction, but also the
conversational protocol that the service follows to engage in those events. The
additional constraints that are specified in the business protocol – the behaviour

BUSINESS PROTOCOL Customer is

 INTERACTIONS
 r&s login

 usr:username, pwd:password
 r&s bookTrip

 from,to:airport,
 out,in:date
 fconf:fcode,
 hconf:hcode,
 amount:moneyvalue
 snd payNotify
 status:boolean
 snd refund
 amount:moneyvalue
 BEHAVIOUR

 initiallyEnabled login?
 login! ∧ login.Reply enables bookTrip?
 bookTrip? ensures payNotify!

 payNotify! ∧ payNotify.status enables bookTrip?
 bookTrip? ensures refund!

 
Fig. 2. The business protocol Customer, which types the provides-interface CR.

– are used to impose further restrictions on that conversation or to correlate
different interactions.

In order to specify behaviour constraints, SRML relies on a set of pre-defined
patterns of behaviour that are encoded by abbreviations of UCTL formulas.
The following table presents the abbreviations that encode three of the most
commonly used patterns, which have been identified in a number of case studies:

initiallyEnabled e A
true{¬e¿}W{e?}true

a enables e

AG[a]¬EF < e¿ > true
 ∧

A[true{¬e?}W{a}true

a ensures e
AG[a]AF [e!]true

 ∧
A[true{¬e!}W{a}true]

The abbreviation “initiallyEnabled e” states that the event e will never be

discarded (until it is actually executed) — this abbreviation is typically used
to define the first interaction to take place during a session with a service. For
instance Customer (shown in Fig. 2), which specifies the provides-interface of
TravelBooking, declares that the request-event login
 is ready to be executed as
soon as a session is created. The abbreviation “a enables e” states that after
a happens the event e will not be discarded and that before a it will never be
executed. In Customer this pattern is used to declared that, after the login is
accepted (but not before), the service will be ready to execute a request to book
a trip. Finally the abbreviation “a ensures e” states that after a happens the
event e will for certain be published, but not before. This abbreviation is used
in Customer to declare that after a request to revoke a booking is executed (but
not before), a refund will be sent.

In the interaction declaration of a business protocol, two-way interactions
can be typed by s&r (send and receive) or r&s (receive and send) to define that

the service being specified engages in the interaction as the requester or as the
supplier, respectively. Each of these two roles, requester and supplier, has a set of
properties associated with it. The following table presents the UCTL encoding
of two of the properties associated with an interaction i of type r&s.

A reply will be published after and only
after the request-event was executed. i
? ensures iB!
A revoke cannot be enabled before the
execution of the commit-event. A[true{¬i>?}W{i�?}true]

3 Encoding service composition with state machines

In order to be able to model-check properties of service behaviour in the context
of SRML in general, and the correctness of service modules in particular, we
need to restrict ourselves to those modules in which state machines are used for
modelling the components, the wires and the behaviour required from external
services. This is because the UMC model-checker [?] takes as input a system
of UML communicating state machines, with which it associates a L2TS that
represents the possible computations of that system — model-checking is then
performed over this L2TS using UCTL logic. Using UML state machines for
defining workflows is quite standard. However, the case of wires and requires-
interfaces is not as simple. In the case of wires, we need to ensure that the SRML
computational model [?] is adhered to in what concerns event propagation and
related phenomena and in the case of requires-interfaces, we need to be able to
represent the patterns discussed in the previous section with state machines.

Encoding requires interfaces A business protocol, which specifies the inter-
face behaviour of a service, defines not one particular service, but a family of
services that can be discovered, ranked and selected [?]. By associating a specific
state machine with a requires-interface we are choosing a canonical model of the
required behaviour.

As discussed in the previous section the specification of a requires-interface
consists of a typed declaration of the interactions that the selected service should
be ready to engage in and a set of behaviour constraints that correlate the events
of those interactions. Our strategy for encoding a requires-interface as a state
machine entails creating a concurrent region for each of the interactions that the
external service is required to be involved in – the interaction-regions – and a
concurrent region for all of the behaviour constraints – the constraint-regions –
except for the constraints defined with the pattern “initiallyEnabled e”: these
are modelled by the instantiation of a state attribute.

The role of each of the interaction regions is to guarantee that the conversa-
tional protocol that is associated with the type of the interaction is respected.
Events of a given interaction are published, executed and discarded exclusively
by the interaction-region that models it. The role of the constraint-regions is to
flag, through the use of special state attributes, when events become enabled

and when events should be published – the evolution of the interaction-regions,
and thus the actual execution, discard and publication of events, is guarded by
the value of those flags. Constraint-regions cooperate with interaction-regions to
guarantee the correlation of events expressed by the behaviour constraints.

Following this methodology, each interaction declaration and each behaviour
constraint encodes part of the final state machine in a compositional way. Associ-
ated with each interaction type and each constraint pattern, there is a particular
statechart structure that encodes it. A complete mapping from interactions types
and behaviour patterns to their associated statechart structure can be found in
[?]. Naturally, the encoding we propose for specifications of requires-interfaces
is defined so that the transition system that is generated for a service module
satisfies the UCTL formulas associated the requires-interfaces of that module.

Encoding wires In SRML, the coordination of interactions, which are declared
locally for each party of the module, is done by the wires. For each wire, there
is a connector that defines an interaction protocol with two roles and binds the
interactions declared in the roles with those of the parties at the two ends of the
wire [?]. With our methodology for encoding wires with UML state machines,
every connector defines a state machine for each interaction. This state machine
is responsible for transmitting the events of that interaction from the sending
party to the receiving co-party. Parties publish events by signalling them in the
state machine that corresponds to the appropriate connector; this state machine
in turn guarantees that these events are delivered by signalling them in the state
machine that is associated with the co-party. The relation between parameter
values that is specified by the interaction protocol of the connector is ensured
operationally by the state machine that encodes that connector – data can be
transformed before being forwarded. The statechart contains a single state and
as many loops as the number of events that the connector has to forward.

4 Model-Checking service modules: the TravelBooking
example

In order to model-check that the composition specified by the module Travel-
Booking provides the properties specified in Customer, we have encoded each of
its external-required interfaces and each of its connectors using the methodology
described in the previous section. Adding the two components that orchestrate
the system, we ended up with a set of fifteen communicating UML state ma-
chines. Because every input source of a UMC model must also be modelled
via an active object, we had to define a machine that initiates the interactions
advertised in the provides-interface Customer, thus modelling a generic client
of the service. Using this system as input to the UMC model-checker, we can
verify if the doubly labelled transition system that is generated — we will refer
to it as T — does satisfy the formulas associated with the provides-interface
Customer, shown in Fig. 2. If T does not satisfy some of these formulas, than
there is something in the module TravelBooking that needs to be corrected.

Having used UMC to model-check TravelBooking, we found out that all the
constraints were satisfied by T except one: “payNotify
! ∧ payNotify.status en-
ables bookTrip>?”. This is because there is a path in T on which the event book-
Trip> is discarded after the event payNotify
 is published with a positive value
for the payNotify.status parameter. This means that the publication of event
payNotify
 with a positive payNotify.status by the service does not guarantee
that the revoke event of interaction payNotify becomes enabled for execution. If
the composition was implemented as it is, it would be possible for a client to ask
for a booking to be revoked and have this request ignored by the service.

After analysing the path of T that leads to the failure of the property, we
understood that the problem is that, because PA interacts directly with the client
through the wire CP, it is possible for the payment notification (represented by
payNotify
) to be received by the client before BA receives the confirmation for
the payment (which is sent via another wire, BP). If the client tries to revoke
the booking immediately, BA will not accept it because it does not yet know
that the payment of the booking has been accepted by PA.

In order to fix this problem we have redesigned the architecture of the module
TravelBooking by removing the wire CP. In the new architecture, PA does not
interact directly with the client anymore. When the payment is executed by PA,
the component BA is notified and is in turn responsible for notifying the client.
Only then can the client choose to revoke the booking.

Acknowledgements

We would like to thank Antónia Lopes and Laura Bocchi for helping us stay on
the right path (and states).

