
Algebraic Semantics of Service Component Modules†

José Luiz Fiadeiro1, Antónia Lopes2 and Laura Bocchi1

1 Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK

{bocchi,jose}@mcs.le.ac.uk

2 Department of Informatics, Faculty of Sciences, University of Lisbon

Campo Grande, 1749-016 Lisboa, PORTUGAL
mal@di.fc.ul.pt

Abstract. We present a notion of module acquired from developing an alge-
braic framework for service-oriented modelling. More specifically, we give an
account of the notion of module that supports the composition model of the
SENSORIA Reference Modelling Language (SRML). The proposed notion is
independent of the logic in which properties are expressed and components are
programmed. Modules in SRML are inspired in concepts proposed for Service
Component Architecture (SCA) and Web Services, as well the modules that
have been proposed for Algebraic Specifications, namely by H. Ehrig and F.
Orejas, among others; they include interfaces for required (imported) and pro-
vided (exported) services, as well as a number of components (body) whose or-
chestrations ensure how given behavioural properties of the provided services
are guaranteed assuming that the requested services satisfy required properties.

1 Introduction

In the emerging service-oriented computing paradigm, services are understood as
autonomous, platform-independent computational entities that can be described, pub-
lished, discovered, and dynamically assembled for developing massively distributed,
interoperable, evolvable systems. In order to cope with the levels of complexity en-
tailed by this paradigm, one needs abstractions through which complex systems can
be understood in terms of compositions of simpler units that capture structures of the
application domain. This is why, within the IST-FET Integrated Project SENSORIA
– Software Engineering for Service-Oriented Overlay Computers – we are developing
an algebraic framework for supporting service-oriented modelling at levels of abstrac-
tion that are closer to the “business domain”.

More precisely, we are defining a suite of languages that support different activi-
ties in service-oriented modelling to be adopted as a reference modelling “language”

† This work was partially supported through the IST-2005-16004 Integrated Project SENSORIA: Software

Engineering for Service-Oriented Overlay Computers, and the Marie-Curie TOK-IAP MTK1-CT-2004-
003169 Leg2Net: From Legacy Systems to Services in the Net.

– SRML – within the SENSORIA project. In this paper, we are concerned with the
“composition language” SRML-P through which service compositions can be mod-
elled in the form of business processes, independently of the hosting middleware and
hardware platforms, and the languages in which services are programmed. The cor-
nerstone of this language is the notion of module through which one can model com-
posite services understood as services whose business logic involves the invocation of
other services.

In our approach, a module captures a business process that interacts with a set of
external services to achieve a certain “goal”. This goal should not be understood as a
“return value” to be achieved by a computation in the traditional sense, but as a
“business interaction” that is offered for other modules to discover and engage with.
Global business goals emerge not from prescribed computations but from the peer-to-
peer, conversational interactions that are established, at run-time, between business
partners. This is why software development in the service-oriented paradigm requires
new abstractions, methods and techniques.

The challenge that we face, and on which we wish to report, is to support this para-
digm with mathematical foundations that allow us to define, in a rigorous and verifi-
able way, (1) the mechanisms through which modules can use externally procured
services to offer services of their own, and (2) the way modules can be assembled into
(sub-)systems that may, if desired, be offered themselves as (composite) modules.
Having this goal in mind, we present in Section 2 a brief overview of the supported
composition model and a summary of the different formal domains involved in it.
Then, in Section 3, we formalise the notion of module as a graph labelled over the
identified formal domains. Section 4 discusses the correctness property of modules
and the notion of system as an assembly of modules. Finally, Section 5 develops the
notion of composition through which composite modules are defined from systems.

2 The Composition Model

Modules in SRML-P are inspired by concepts proposed in Service Component Archi-
tectures (SCA) [10]. The main concern of SCA is to develop a middleware-
independent architectural layer that can provide an open specification “allowing mul-
tiple vendors to implement support for SCA in their development tools and runtimes”.
That is, SCA shares with us the goal of providing a uniform model of service behav-
iour that is independent of the languages and technologies used for programming and
deploying services. However, whereas we focus on the mathematical structures that
support this new architectural model, SCA looks “downstream” in the abstraction
hierarchy and offers specific support for a variety of component implementation and
interface types such as BPEL processes with WSDL interfaces, and Java classes with
corresponding interfaces.

Given the complementarities of both approaches, we decided to stay as close as
possible to the terminology and methodology of SCA. This is why in SRML-P we
adopt the following formal domains when characterising the new architectural ele-

ments: business roles that type SCA components, business protocols that type SCA
external interfaces (both entry points and required services), and interaction protocols
that type SCA internal wires.

Service components do not provide any business logic: the units of business logic
are modules that use such components to provide services when they are intercon-
nected with a number of other parties offering a number of required services. In a
SRML-P module, both the provided services and those required from other parties are
modelled as external interfaces, or interfaces for short. Each such interface specifies
a stateful interaction (business protocol) between a service component and the corre-
sponding party; that is, SRML-P supports both “syntactic” and “behavioural” inter-
faces.

Figure 1: A SRML-P module; SC–service component; EX-P–(provides) external in-

terface; EX-R–(requires) external interface; IW–internal wire

The service components within a module orchestrate the interactions with the ex-
ternal parties that, in any given configuration, are linked to these interfaces. Like in
SCA, modules are interconnected within systems by linking required external services
of given modules with provided services offered by other modules. Such interconnec-
tions can be performed “just-in-time” once a mechanism is provided through which
modules can be “discovered” and the binding of required with provided external inter-
faces can be effectively supported.

2.1 Business roles

Central to SCA is the notion of component. In SRML-P, a component is a computa-
tional unit that fulfils a given business role, which is modelled in terms of an execu-
tion pattern involving a number of interactions that the component can maintain with
other parties. We refer to the execution pattern as an orchestration element, or or-
chestration for short.

The model provided through the business role is independent of the language in
which the component is programmed and the platform in which it is deployed; it may
be a BPEL process, a Java program, a wrapped-up legacy system, inter alia. The
orchestration is independent of the specific parties that are actually interconnected
with the component in any given run-time configuration; a component is totally inde-
pendent in the sense that it does not invoke services of any specific co-party – it just
offers an interface of two-way interactions in which it can participate.

The primitives that we are adopting in SRML-P for describing business roles have
been presented in [7] and, in more detail, also in [6]; they are defined in terms of
typical event-condition-action rules in which the actions may involve interactions
with other parties. An example is given in the Appendix in terms of a BookingAgent
of a typical TravelBooking composite service. However, given that our focus in this
paper is the notion of module, we do not need to commit to any specific orchestration
language and, therefore, will not discuss the language used in SRML-P any further.
All we need is to assume a set BROL of business roles to be given together with a
number of mappings to other formal domains as detailed further on.

2.2 Signatures

One of the additional formal domains that we need to consider consists of the struc-
tures of interactions through which components can be connected to other architec-
tural elements. These structures capture both classical notions of “syntactic” interface
– i.e. declarations of types of interactions – and the ports through which interconnec-
tions are established. In SRML-P, interactions can be typed according to the fact that
they are synchronous or asynchronous, and one or two-way; parameters can also be
defined for the exchange of data during interactions.

We assume that such structures are organised in a category SIGN, the objects of
which are called signatures. Morphisms of signatures define directional “part-of”
relationships, i.e. a morphism σ:S1→S2 formalises the way a signature (structure of
interactions) S1 is part of S2 up to a possible renaming of the interactions and corre-
sponding parameters. In other words, a morphism captures the way the source is
connected to the target, for instance how a port of a wire is connected to a component.

We assume that every business role defines a signature consisting of the interac-
tions in which any component that fulfils the role can become involved. This is cap-
tured by a mapping signBROL:BROL→SIGN. For instance, in the Appendix, we can
see that the signature of a business role is clearly identified under “interactions”. For
simplicity, we do not give any detail of the categorical properties of signatures in
SRML-P, which are quite straightforward.

We further assume that SIGN is finitely co-complete. This means that we can
compose signatures by computing colimits (amalgamated sums) of finite diagrams;
typically, such diagrams are associated with the definition of complex structures of
signatures, which can result from the way modules are put together as discussed in
Section 4, or the way modules are interconnected as discussed in Section 5.

2.3 Business protocols

Besides components, a module in SRML-P may declare a number of (external) inter-
faces. These provide abstractions (types) of parties that can be interconnected with

the components declared in the module either to provide or request services; this is
what, in SCA, corresponds to “Entry Points” and “External Services”.

External interfaces are specified through business protocols, the set of which we
denote by BUSP. Like business roles, protocols declare the interactions in which the
external entities can be involved as parties; this is captured by a mapping signBUSP:
BUSP→SIGN. The difference with respect to business roles is that, instead of an
orchestration, a business protocol provides a set of properties that model the protocol
that the co-party is expected to adhere to. In the Appendix, we give as an example the
business protocol that corresponds to the FlightAgent. Like for business roles, the
signature of a business protocol in SRML-P is clearly identified under “interactions”.

Business protocols, which model what in SCA corresponds to “external services”,
specify the conversations that the module expects relative to each party. Those that
model what in SCA corresponds to an “entry point”, specify constraints on the inter-
actions that the module supports as a service provider. Examples of such constraints
are the order in which the service expects invocations or deadlines for the user to
commit, but also properties that the client may expect such as pledges on given pa-
rameters of the delivered service. It is the responsibility of the client to adhere to
these protocols, meaning that the provider may not be ready to engage in interactions
that are not according to the specified constraints.

2.4 Interaction protocols

Service components and external interfaces are connected to each other within mod-
ules through internal wires that bind the interactions that both parties declare to sup-
port and coordinate them according to a given interaction protocol. Typically, an
interaction protocol may include routing events and transforming data provided by a
sender to the format expected by a receiver. The examples given in the Appendix are
quite simple: they consist of straight synchronisations at the ports.

Just like business roles and protocols, an interaction protocol is specified in terms
of a number of interactions. However, interaction protocols are somewhat more com-
plex. On the one hand, an interaction protocol declares two disjoint sets of interac-
tions; in SRML-P, this is done under the headings ROLE A and ROLE B. On the other
hand, the properties of the protocol – what we called the interaction glue – are de-
clared in a language defined over the union of the two roles, what we call its signa-
ture. We consider that we have a set IGLU of specifications of interaction glues
together with a map signIGLU:IGLU→SIGN.

In order to model the composition of modules, we also need a way of composing
interaction protocols. For that purpose, we assume that IGLU is itself a co-complete
category whose morphisms σ:G1→G2 capture the way G1 is a sub-protocol of G2,
again up to a possible renaming of the interactions and corresponding parameters.
That is, σ identifies the glue that, within G2, captures the way G1 coordinates the in-
teractions sign(G1) as a part of sign(G2). More precisely, we assume that signIGLU is a
functor that preserves colimits, i.e. that the signature of a composition of protocols is
a composition of their signatures.

2.5 Summary

The relationships between all these different formal domains are summarised in
Figure 2 (categories are represented with a thick line). For simplicity, we use sign as
an abbreviated notation for signBROL, signBUSP and signIGLU.

Figure 2: How the different formal domains relate to each other: BROL–business

roles; BUSP–business protocols; IGLU–interaction glue of protocols; SIGN–signatures

3 Defining modules

As already mentioned, modules are the basic units of composition. They include
external interfaces for required and provided services, and a number of components
whose orchestrations ensure that the properties offered on the provides-interfaces are
guaranteed by the connections established by the wires assuming that the services
requested satisfy the properties declared on the requires-interfaces.

In our formal model, a module is defined as a graph: components and external in-
terfaces are nodes of the graph and internal wires are edges that connect them. This
graph is labelled by a function L : components are labelled with business roles, exter-
nal interfaces with business protocols, and wires with connectors that include the
specification of interaction protocols. An example of the syntax that we use in
SRML-P for defining the graph and labelling function can be found in the Appendix.

Because a wire interconnects two nodes of the module (graph), we need some
means of relating the interaction protocols used by the wire with the specifications
(business roles or protocols) that label the nodes. The connection for a given node n
and interaction protocol P is characterised by a morphism µn that connects one of the
roles (A or B) of P and the signature sign(L (n)) associated with the node. We call a
connector for a wire

!

n
w

" # $ m a structure <µn,πn,G,πm,µm> where G is the interac-
tion glue of the protocol P and the morphisms πn and πm identify the roles of P:

In SRML-P, connections are defined in a tabular form that should be self-
explanatory as illustrated in the Appendix. Some wires may be labelled by more than
one connector because they involve more than one interaction. In such cases, we may
compose the connectors by taking the sum of their protocols. More concretely, if we
have a collection <

!

µ
n

i ,

!

"
n

i ,Gi,

!

"
m

i ,

!

µ
m

i > of connectors labelling a wire n↔m, we can
represent it by the connector <⊕

!

µ
n

i ,⊕

!

"
n

i ,⊕Pi,⊕

!

"
m

i ,⊕

!

µ
m

i > given by the diagram:

The morphisms are given uniquely by the properties of sums in SIGN [5]. This

corresponds to looking at the set of connectors that labels a wire as defining a single
connector, which makes it easier to define and manipulate modules.

Formally, we take a module M to consist of:
• A graph, i.e. a set nodes(M) and a set wires(M) of pairs n↔m of nodes (ele-

ments of nodes(M)).
• A distinguished subset of nodes requires(M)⊆nodes(M).
• At most one distinguished node provides(M)∈nodes(M)\requires(M).
• A labelling function L such that:

o L (provides(M))∈BUSP if provides(M) is defined
o L (n)∈BUSP for every n∈requires(M)
o L (n)∈BROL for every other node n∈nodes(M)
o L (n↔m) is a connector <µn,πn,G,πm,µm>.

A module M for which provides(M) is not defined corresponds to applications that
do not offer any services but still require external services to fulfil their goals. They
can be seen to be “agents” that, when bound to the external services that they require,
execute autonomously in a given configuration as discussed below. Modules that do
provide a service and can be discovered are called service modules. Notice that mod-
ules do not offer services to more than one user. However, multiple sessions may be
allowed – an aspect that we do not address in this paper.

We can expand every wire n↔m into the following labelled directed graph:

That is, we make explicit the protocol and the connections. We denote by ex-

panded(M) the result of expanding all wires in this way. Therefore, in expanded(M)
we have the nodes of M with the same labels – business roles and protocols – and, for
each wire, an additional node labelled with a protocol, two additional nodes (ports)
labelled with the roles of the protocol, and directed edges from the ports labelled with
signature morphisms. For instance, the expanded graph of the module depicted in
Figure 1 has the following structure:

Figure 3: The expanded graph of a module; – business role; – business pro-

tocol; – interaction glue; – signature (role)

4 Semantic correctness

Section 3 defines some criteria that ensure the syntactic correctness of modules,
namely the fact that the endpoints of the connectors in the wires match the labels of
the nodes linked by the wire. In this section, we are concerned by the semantic cor-
rectness of service modules, i.e. the fact that the properties offered in the provides-
interface are ensured by the orchestration of the components and the properties re-
quired of the other external interfaces.

The correctness condition is expressed in terms of logical entailment of properties
of business protocols. The mechanisms that we provide for putting together, inter-
connecting and composing modules is largely independent of this logic. The particu-
lar choice of operators, their semantics and proof-theory are essential for supporting
the modelling of service-based applications, i.e. for the pragmatics of “in-the-small”
issues, but not for the semantics and pragmatics of modules as units of composition,
i.e. for the “in-the-large” issues. What is important is that the logic satisfies some
structural properties that are required for the correctness condition and the notion of
module composition to work well together as explained below. In SRML-P, we use
the temporal logic µUCTL [8] defined over an alphabet of events such that every
interaction declared in a signature gives rise to the following set of events (see [6] for
additional explanations):

interaction The event of initiating interaction.
interaction The reply-event of interaction.
interaction The commit-event of interaction.
interaction The cancel-event of interaction.
interaction The deadline-event of interaction.
interaction The revoke-event of interaction.

As a consequence, we assume that we have available an entailment system (or π-
institution) [5,9] <SIGN,gram,⊢> where gram:SIGN→SET is the grammar functor
that, for every signature Q, generates the language used for describing properties of
the interactions in Q. Notice that, given a signature morphism σ:Q→Q’, gram(σ)
translates properties in the language of Q to the language of Q’. Notice that temporal
logics define institutions [5].

We denote by ⊢Q the entailment system that allows us to reason about properties
in the language of Q. We write S ⊢Qs to indicate that sentence s is entailed by the set
of sentences S. Pairs <Q,S> consisting of a set S of sentences over a signature Q –
usually called theory presentations – can be organised in a category SPEC whose
morphisms capture entailment. We denote by sign the forgetful functor that projects
theories on the underlying signatures.

Given a specification SP=<Q,S> and sets P and Ri of sentences over Q, we also
use the notation

!

P
SP R

N

R
1

M

to indicate that R1∪…∪RN∪S ⊢Q p for every p∈P, i.e. that the properties expressed
by P are guaranteed by SP relying on the fact that the properties expressed in Ri hold.

As discussed in Section 2, the specifications of business roles, business protocols
and interaction protocols carry a semantic meaning. We take this meaning to be de-
fined by mappings specBROL:BROL→SPEC, specBUSP:BUSP→SPEC and specIGLU:
IGLU→SPEC that, when composed with sign:SPEC→SIGN, give us the syntactic
mappings discussed in Section 2.

In the case of business roles, this assumes that we can abstract properties from or-
chestrations, which corresponds to defining an axiomatic semantics of the orchestra-
tion language. In SRML-P, this means a straightforward translation of event-
condition-action rules into µUCTL.

In the case of business and interaction protocols, this mapping is more of a transla-
tion from the language of external specifications to a logic in which one can reason
about the properties of interactions as well as that of orchestrations. In SRML-P, the
operators used in the examples given in the Appendix are translated as follows:

a before b If b holds then a must have been true. AG(b ⊃ Pa)
b exceptif a b can occur iff b and a have never occurred. AG(¬Pa∧H(¬b) ≡ Eb)
a enables b b can occur iff a has already occurred but

not b.
AG(Pa∧H(¬b) ≡ Eb)

a ensures b b will occur after a occurs, but b cannot
occur without a having occurred.

AG(b⊃Pa ∧ a⊃Fb)

We further assume that the mapping specIGLU is in fact a functor, i.e. that the com-
position of interaction protocols preserves properties. This leads to the following
extension of Figure 2:

Figure 4: Relating the specification domain with the other formal domains

The correctness property of service modules relies on the fact that the orchestra-
tions of the business roles and the properties of the interaction protocols guarantee
that the properties of the requires-interfaces entail those ensured by the provides-
interfaces. To express it, we need a means of referring to the fragment of the module
that is concerned with components and wires, what we call the body of the module.
Formally, we define body(M) for a module M as being the diagram of specifications
and signatures that is obtained from expanded(M) by applying the mappings spec to
all the labels (business roles, business protocols and interaction protocols). That is,
we obtain the same graph as that of expanded(M) except that we label the nodes with
the specifications of the business roles and interaction protocols, and the signatures of
the business protocols. For instance, the following picture corresponds to the body-
diagram of the expanded-graph of Figure 3:

Figure 5: The body diagram of a module

We assume that the category SPEC is finitely co-complete and coordinated over
SIGN, which allows us to calculate the colimit (amalgamated sum) of this diagram.
The colimit returns a specification Body(M) and a morphism qn:sign(L (n))→sign(M)
for every node n of expanded(M).

It is helpful to detail the construction of Body(M). Its signature sign(M) is the
colimit (amalgamation) of the diagram of signatures defined by body(M). This signa-

ture contains all the interactions that are involved in the module; the morphisms qn
record in which nodes each interaction is used. The set of axioms of Body(M) con-
sists of the union of the following sets:

• For every node n labelled by a business role W, the translation gram(qn)(SW)
where spec(W)=<sign(W),SW>, i.e. we take the translations of the axioms of
spec(W).

• For every node n labelled by a glue G of an interaction protocol, the transla-
tion gram(qn)(SG) where spec(G)=<sign(G),SG>, i.e. we take the translations
of the axioms of spec(G).

Notice that the business protocols of the external interfaces are not used for calcu-
lating Body(M): only their signatures are used. However, because their signatures are
also involved, we can operate the same kind of translation on every external interface
by using the corresponding signature morphism q:

• We denote by Prov(M) the translation of the specification of the business
protocol of provides(M), i.e. of the provide-interface of M.

• We denote by Reqs1..N(M) the translations of the specifications of the busi-
ness protocols in requires(M), i.e. of the requires-interfaces of M.

Given that all these sets of sentences are now in the language of sign(M), the cor-
rectness property of a service module M can be expressed by:

!

Prov(M)
Body(M) ReqsN (M)

Reqs
1
(M)

M

That is, every property offered in the business protocol of the provides-interface
must be entailed by the body of the module using the properties required in the busi-
ness protocols of the requires-interfaces.

5 Composing modules

In this section, we discuss the mechanisms through which modules can be assembled
to create systems and modules can be created from systems. These mechanisms are
similar to those provided in SCA, i.e. they provide a means of linking requires-
external interfaces of a module with provides-external interfaces of other modules. In
SRML-P, we provide only abstract models of such links, which we call external
wires. That is, we remain independent of the technologies through which interfaces
are bound to parties, which depend on the nature of the parties involved (BPEL proc-
esses, Java programs, databases, inter alia). In summary, external wires carry a
proof-obligation to ensure that the properties offered by the provides-interface are
implied by those declared in the requires-interfaces.

A system is a directed acyclic graph in which nodes are labelled by modules and
edges are labelled with so-called “bindings” or “external wires”. A binding for an
edge n→k between modules Mn and Mk consists of:

• A node r∈requires(Mn), i.e. one of the requires-interfaces of Mn. This node
cannot be used by any other binding. Let this node be labelled with Sr.

• A specification morphism ρ:spec(Sr)→spec(Sp) where Sp is the business pro-
tocol of provides(Mk), i.e. of the provides-interface of Mk.

In other words, bindings connect a requires-interface of one module to the pro-
vides-interface of another module such that the properties of the requires-interface are
implied by the properties of the provides-interface.

Figure 6: An assembly of modules defining a SRML-P system; EW–external wire

SRML-P also supports a way of offering a system as a module, i.e. of turning an
assembly of services into a composite service that can be published and discovered on
its own. The operation that collapses a system into a module internalises the external
wires and forgets the external specifications.

Figure 7: The previous system turned into a module

Formally, a module may be created from every (finite) weakly connected system
by internalising the bindings. The resulting module M is as follows:

• The graph of M is obtained from the sum (disjoint union) of the graphs of all
modules involved in the system by eliminating, for every edge n→k of the
system, the nodes r (requires) of Mn and provides(Mk), and adding, for every
such edge n→k of the system, an edge i↔j between any two nodes i and j
such that i↔r is an edge of Mn and provides(Mk)↔j is an edge of Mk.

• The labels are inherited from the graphs of the modules involved, except for
the new edges i↔j. These are calculated by merging the connectors that la-
bel i↔r and provides(Mk)↔j. The interaction protocol of the new connector
is obtained through the colimit diagram below where m=provides(Mk).

This composition is defined by the following colimit diagram in IGLU:

The rest of the connector is defined by the morphisms µi of i↔r and µj of
provides(Mk)↔j:

• requires(M) consists of the remaining requires-interfaces.
• provides(M) consists of the remaining provides-interface, if one remains.

Notice that the connectivity of the graph implies that at most one provides-
interface can remain.

The colimits calculated in order to obtain the protocol of the new connectors are
expressed over a “diagram” that involves both signatures (those of the external inter-
faces and the ports) and protocols.

For this construction to make sense, we assume that the category IGLU is coordi-
nated over SIGN [5]. This means that we have a canonical way of lifting signatures
to interaction protocols that respects the interactions. In other words, every signature
can be regarded as an interaction protocol through which the “diagram” above defines
a diagram in IGLU, thus allowing for the colimit to be computed.

The following picture depicts the graph involved in the composition considered in
Figure 6:

Figure 8: The graphs involved in a composition; the diagram of interaction protocols

involved in the internalisation of the binding is singled out

The graph obtained from the internalisation of the binding is the one that expands
the module identified in Figure 7:

Figure 9: The expanded graph of the composite module

6 Concluding Remarks and Further Work

In this paper, we have described some of the primitives that are being proposed for
the SENSORIA Reference Modelling Language in order to support building systems
in service-oriented architectures using “technology agnostic” terms. More specifi-
cally, we have focused on the language that supports the underlying composition
model. This is a minimalist language that follows a recent proposal for a Service
Component Architecture [10] that “builds on emerging best practices of removing or
abstracting middleware programming model dependencies from business logic”.
However, whereas the SCA-consortium concentrates on the definition of an open

specification that supports a variety of component implementation and interface types,
and on the deployment, administration and configuration of SCA-based applications,
our goal is to develop a mathematical framework in which service-modelling primi-
tives can be formally defined and application models can be reasoned about.

Our composition model relies on the notion of module, which we adapted from
SCA. Modules can be discovered and bound to other modules at run-time to produce
configurations. We proposed a formal model for module assembly and composition
in line with algebraic notions of component such as [2] and [4]. The former proposes
a notion of component that is similar to what is put forward by SCA but misses the
notion of module as providing services that result from the orchestration of compo-
nents and external services. Its algebraic semantics is based on Interface Automata
[1], which are similar to I/O-automata, defined over operation (method) invocations;
as explained in Section 4 (see also [6]), SRML works over a richer alphabet of events
that capture the kind of stateful interactions typical of services. The latter [4] is based
on more traditional algebraic notions of module [3] and uses graph-based formalisms
to model component behaviour. The underlying algebraic framework is, once again,
similar to the one we use but some research effort needs to be dedicated to bring out
similarities and complementarities.

We are currently developing a notion of configuration for SRML-P as a collection
of components wired together that models a run-time composition of service compo-
nents. A configuration results from having one or more clients using the services
provided by a given module, possibly resulting from a complex system, with no ex-
ternal interfaces, i.e. with all required external interfaces wired-in. It is at the level of
configurations that we address run-time aspects of service composition such as serv-
ice discovery (and service-level agreements), sessions (and dynamic reconfiguration),
as well as notions of persistence.

Acknowledgments

J. Fiadeiro was partially supported by a grant from the Royal Society (UK) while on
study leave from the University of Leicester at the University of Pisa during April and
May 2006. A. Lopes was partially supported by the Foundation for Science and
Technology (FCT, Portugal) during an extended stay at the University of Pisa during
May 2006. We wish to thank the referees for many useful remarks, especially for
pointing us to [2].

References

 1. L. de Alfaro, T. Henzinger (2001) Interface automata. ESEC/SIGSOFT_FSE. ACM Press,
New York, pp 109–120

 2. H. Baumeister, F. Hacklinger, R. Hennicker, A. Knapp, M. Wirsing (2005) A component
model for architectural programming. Electronic Notes in Theoretical Computer Sci-
ence to appear

 3. H. Ehrig, B. Mahr (1990) Fundamentals of Algebraic Specification 2: Module Specifica-
tions and Constraints. EATCS Monographs on Theoretical Computer Science, vol 21.
Springer, Berlin Heidelberg New York

 4. H. Ehrig, F. Orejas, B. Braatz, M. Klein, M. Piirainen (2004) A component framework for
system modeling based on high-level replacement systems. Software Systems Modeling
3:114–135

 5. J. L. Fiadeiro (2004) Categories for Software Engineering. Springer, Berlin Heidelberg
New York

 6. J. L. Fiadeiro, A. Lopes, L. Bocchi (2006) The SENSORIA Reference Modelling Lan-
guage: Primitives for Service Description and Composition. Available from
www.sensoria-ist.eu

 7. J. L. Fiadeiro, A. Lopes, L. Bocchi (2006) A formal approach to service-oriented architec-
ture. In: M. Bravetti, M. Nunez, G. Zavattaro (eds) Web Services and Formal Methods.
LNCS, vol 4184. Springer, Berlin Heidelberg New York, pp 193–213

 8. S. Gnesi, F. Mazzanti (2005) A model checking verification environment for UML State-
charts. In: Proceedings of XLIII Congresso Annuale AICA "Comunita' Virtuale dalla
Ricerca all'Impresa dalla Formazione al Cittadino", University of Udine – AICA (paper
available from fmt.isti.cnr.it)

 9. J. Goguen, R. Burstall (1992) Institutions: abstract model theory for specification and
programming. Journal ACM 39(1):95–146

10. SCA Consortium (2005) Building Systems using a Service Oriented Architecture. White-
paper available from www-128.ibm.com/developerworks/library/specification/ws-sca (ver-
sion 0.9)

– 17 –

Appendix – TravelBooking

In this Appendix, we provide parts of a typical travel-booking process involving a
flight and a hotel agent. The module – TRAVELBOOKING – that defines this composite
service exposes to the environment an interface for booking a flight and a hotel for a
given itinerary and dates. External services are requested in order to offer the service
behaviour that the module declares to provide.

TRAVELBOOKING consists of:
• CR – the external interface of the service provided by the module, of type Cus-

tomer;
• FA – the external interface of a service required for handling the booking of

flights, of type FlightAgent;
• HA – the external interface of a service required for handling the booking of

hotels, of type HotelAgent;
• BA – a component that coordinates the business process, of type BookAgent;
• CB, CF, BF, BH – four internal wires that make explicit the partner relation-

ship between CR and BA, CR and FA, BA and FA, and BA and FA.

MODULE TravelBooking is

COMPONENTS

 BA: BookAgent

PROVIDES

 CR: Customer

REQUIRES

 FA: FlightAgent
 HA: HotelAgent

– 18 –

WIRES

BA

BookAgent BF FA
FlightAgent

s&r bookFlight
  from
 to
 out
 in
  fconf

S1

i1
i2
i3

i4
o1

Straight
I[airport,airport,

date,date]
O[fref]

R1

i1
i2
i3

i4
o1

r&s lockFlight
  from
 to
 out
 in
  fconf

rcv fConfirm
  result

R1

i1
Straight
I[bool]

S1

i1
snd flightAck
  result

[…]

SPECIFICATIONS

BUSINESS ROLE BookAgent is

 INTERACTIONS
 r&s bookTrip
  from,to:airport, out,in:date
  tconf:(fcode,hcode)

 s&r bookFlight
  from,to:airport, out,in:date
  fconf:fcode

 s&r bookHotel
  checkin:date, checkout:date
  hconf:hcode

 snd tAck
  result:bool

 rcv fConfirm
  result:bool

 ORCHESTRATION
local s:[0..6], fconf:fcode, hconf:hcode,
 out,in:date, from,to:airport,
 frep, hrep: boolean

 initialisation s=0
 termination s=3 ∨ (s=6 ∧ today≥out)
 transition TOrder

triggeredBy bookTrip?
guardedBy s=0
effects from’=bookTrip.from
 ∧ to’=bookTrip.to
 ∧ out’=bookTrip.out
 ∧ in’=booktrip.in
 ∧ out’≥today ⊃ s’=1
 ∧ out’<today ⊃ s’=3
sends out’>today ⊃ bookFlight!
 ∧ bookFlight.from=from’
 ∧ bookFlight.to=to’
 ∧ bookFlight.out=out’
 ∧ bookflight.in=in’
 ∧ alertDate!
 ∧ alertDate.Ref=”flight”
 ∧ alertDate.Interval=fresp
 ∧ out’≤today ⊃ bookTrip!
 ∧ bookTrip.Reply=false

State variables for storing
data that may be needed
during the orchestration.

s is used for control flow,
i.e. for encoding an
internal state machine.

The other state variables
are used for storing data
transmitted through the
parameters of interactions.

Property guaranteed for
the initial state.

A request to travel on a
date already passed leads
immediately to a final
state.

today is an external
service that we assume to
be globally available; it
provides the current date.

In response to a request for travelling in a future date, a flight
request is issued and a timeout is set with the duration that the
agent is willing to wait for a reply.

alertDate is also a service that is globally available; it replies when
the duration set-up in the parameter Interval elapses. We use the
parameter Ref to correlate different alerts that are sent.

Property that determines
when the orchestration
has terminated.

If var is a state variable,
var’ denotes its value after
the transition; this expres-
sion can be used in both
“effects” and “sends”.

– 19 –

[…]

BUSINESS PROTOCOL FlightAgent is

 INTERACTIONS
 r&s lockFlight

  from,to:airport, out,in:date
  fconf:fcode

 s&r payRequest
  amount:nat, benef:account,
 bank:servRef
  pay:payData
 snd payAck

  result:bool
 snd payRefund
  amount:nat

 BEHAVIOUR (fref:string)
 lockFlight? exceptif true
 lockFlight! ∧ lockFlight.Reply
 ⊃ alertDate!
 ∧ alertDate.Ref=fref
 ∧ alertDate.Interval≥fval
 lockFlight! ⊃ alertDate?
 ∧ alertDate.Ref=fref
 lockFlight? ensures payRequest!
 payRequest? ∧ payRequest.Reply
 ensures payAck!
 today<lockFlight.out ⊃ (payAck!
 ∧ payAck.result enables lockFlight?)
 lockFlight? ensures payRefund!

 ∧ payRefund.amount
 >payRequest.amount*0.9

INTERACTION PROTOCOL Straight.I(d1,d2,d3,d4)O(d5) is

 ROLE A
 s&r S1

  i1:d1, i2:d2, i3:d3, i4:d4

  o1:d4
 ROLE B

 r&s R1

  i1:d1, i2:d2, i3:d3, i4:d4
  o1:d4

 COORDINATION
 S1 ≡ R1
 S1.i1=R1.i1
 S1.i2=R1.i2
 S1.i3=R1.i3
 S1.i4=R1.i4
 S1.o1=R1.o

In the initial state, FA is
required to be ready to
receive a request for a
flight.

FA is required to request
the payment after receiv-
ing the commit.

FA is required to send
payAck to acknowledge
the reception of a suc-
cessful payment.

FA is required to accept the revoke of a flight booking until the day of
departure and provide a refund of at least 90% of its cost.

The timeout for flight
reservations is at least
fval.

