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Abstract. We develop an abstract operational model for configuration manage-
ment under service-oriented computing. This semantics is based on a graph-based 
representation of the configuration of global computers and an operational model 
of service-oriented dynamic reconfiguration based on a resolution-like mechanism 
similar to concurrent constraint programming. A resolution step involves a goal 
executed by a business activity and a clause that corresponds to a complex  
service. Unification captures service discovery, ranking and selection based on 
SLA-constraint optimisation and interpretations between specifications of conver-
sations expected by the goal and provided by the discovered service. The resol-
vent is a reconfiguration of the original business activity that results from binding 
the goal with the discovered service. 

1   Introduction 

Given the breadth of Ugo Montanari’s interests and expertise, it would not have been 
too difficult to contribute a paper in an area that he has touched. To match the depth 
of his ‘touch’ is, however, a much more difficult challenge. Not many people have 
made such profound contributions to what in computer science we usually call ‘se-
mantics’, i.e. the definition of mathematical structures that explain given computa-
tional phenomena. Something that is particularly difficult in this area is to make sure 
that we do not obfuscate the subject of study. The title of this paper is a quote from 
Jan Moir, a British food critic (it is debatable whether the British know more about 
semantics or overcooked meat): her protest is (quite rightly) directed to sophisticated 
elaborations that end up destroying ingredients that would have deserved a much 
lighter touch. To some of us, Italian cuisine is precisely about simplicity and attention 
to what the products being cooked require to bring the best in them. Not surprisingly, 
Ugo excels in this tradition, and I am very fortunate to have been exposed to his culi-
nary skills as a guest at a most memorable dinner that he cooked in May 2006.  

In this paper, I have tried to pay tribute to Ugo by ‘cooking’ a ‘dish’ using some of 
the ingredients that he has cultivated (and earned fame). I should say immediately that 
this not a ribollita, quite the contrary: it is very much work in progress within the 
SENSORIA project, one of many to which Ugo has contributed during his long ca-
reer. The dish is called “semantics of service-oriented configuration management”. 

Service-oriented computing (SOC) is a new paradigm in which interactions are no 
longer based on the exchange of products with specific parties – what is known as 
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clientship in object-oriented programming – but on the provisioning of services that 
are procured through a process of discovery and negotiation that takes place at run-
time, establishing a service-level agreement between the two parties. While it is rec-
ognised that specialised programming language primitives are needed that address the 
challenges raised by this new paradigm, we are still lacking models that are abstract 
enough to understand the foundations of the paradigm independently of the way ser-
vices are programmed, namely from their current Web manifestation [3].  

In previous papers (e.g. [2,12]), we have reported on the static aspects of SRML, a 
modelling language for service-oriented computing that we are defining within the 
SENSORIA project [20]. More precisely, we have focused on an algebraic approach 
for service description at the higher level of ‘business modelling’, and on techniques 
through which (simple) services can be assembled, at design-time, to create more 
complex services. Our contributions include language primitives for orchestrating 
interactions and a logic for specifying properties of conversations. Both the language 
and the associated logic are ‘technology agnostic’ in the sense that they are based on a 
semantic model that abstracts away from the languages in which services are pro-
grammed and the middleware that supports the coordination of interactions [1,13]. 
They are also expressive enough to accommodate orchestrations programmed in lan-
guages such as BPEL [7]. 

In this paper, we address the run-time aspects that are concerned with the way con-
figurations of global computers change as services are discovered, selected, instanti-
ated and bound to the applications that procured them. Once again, our aim is to  
provide an operational model of service-oriented configuration management that is 
independent of the technologies that provide the middleware infrastructure over 
which services can be deployed, published and discovered. For this purpose, we pro-
pose an approach inspired by (soft) concurrent constraint programming [6,19]: the 
process of reconfiguration is formalised in a resolution-style operational semantics 
that builds on the declarative algebraic semantics of SRML modelling primitives; the 
process of discovery, matching, ranking and selection involves unification/matching 
mechanisms based on c-semiring based techniques for constraint satisfaction and 
optimisation [5]. Familiarity with concurrent constraint programming is not strictly 
required as the analogy is used only for putting in context the different aspects of the 
operational model and its declarative semantics.  

In Section 2, we lay the table by making precise what we mean by a configuration. 
Sections 3 and 4 address the static architectural aspects: how configurations can be 
structured in terms of business activities and services. Sections 5 and 6 address the 
dynamic aspects, i.e. how configurations change as business activities discover and 
bind to services. Throughout the paper, we make use of methods and techniques de-
veloped by Ugo and his colleagues. In Section 7, we say how we would like to con-
tinue doing so. 

2   Configurations of Global Computers 

Graphs are one of the most important commodities for any researcher working in 
computer science, a bit like hot (preferably boiling) water for cooks: they are not so 
much ingredients (i.e. they are not food as such) but enablers or domains over which 
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one can cook a semantics. Ugo has excelled in the development and use of graph-
based techniques. Our paper will also use graphs galore. 

Ugo has been involved in pioneering work on the use of graphs for modelling 
software architectures (e.g. [15]). Because our aim is to develop a semantic domain 
for the way configurations of global computers are redefined as applications execute 
and get bound to other applications that offer required services, we choose to view 
configurations as graphs constituted of components (applications deployed over a 
given execution platform) and wires (interconnections between components over a 
given communication network) in a given state of execution (as in Fig. 1).  

We denote by COMP and WIRE the set of all components and wires, respectively. 
Every component c∈COMP and wire w∈WIRE may be in a number of states (e.g. 
valuations of local state variables), the set of which is denoted by STATEc and 
STATEw, respectively. We denote by STATE the corresponding indexed family of 
sets of states.  The precise nature of these local states is of no particular importance 
for this paper. 

A state configuration SF is defined to consist of: 
• A simple graph G, i.e. a set nodes(SF) and a set edges(SF); each edge e is as-

sociated with one and only one (unordered) pair n↔m of nodes. We take 
nodes(SF)⊆COMP (i.e. nodes are components) and edges(SF)⊆WIRE (i.e. 
edges are wires). 

• A (configuration) state S, i.e. an assignment of a state S(c)∈ STATEc to every 
c∈nodes(SF) and S(w)∈ STATEw to every w∈edges(SF). 

A state configuration <G,S> can change because either the state function S or the 
graph G change. We treat these two kinds of changes separately: a computation step 
(state change) may trigger a reconfiguration step, which needs to complete before the 
next computation step is performed.  

 

Fig. 1. The graph of a state configuration with 12 components and 13 wires 
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Changes to the state result from the computations executed by components and the 
coordination activities performed by the wires that connect them. The computational 
model that we are defining for SRML is explained in detail in [1]; besides providing 
local states for components and wires, configuration states include information on 
which events are pending; state transitions account for the effects of executing events 
on the local states and publication events. Because the configuration model that we 
discuss in this paper is largely independent of the computational one (except for what 
we call internal configuration policies below), we refrain from giving a detailed defi-
nition of that model and restrict ourselves to the aspects that are essential for under-
standing the way computation steps lead to reconfiguration ones. A computation step 
relates two state configurations <G,src>→ <G,trg> by changing the state and keep-
ing the graph invariant; reconfiguration steps, which change the graph but not the 
state, are considered later in the paper. 

3   Services as Architectural Units 

Our goal is to provide a semantics for changes in the configuration of a system, i.e. its 
graph, as resulting from a service-oriented architecture. More precisely, we are going 
to present a semantics for services as the basic units of configuration management. In 
this model, changes in the configuration graph – in the components that are active and 
the wires that connect them – result from the fact that state changes can trigger the 
discovery, ranking and selection of services that give rise to the addition of new com-
ponents and wires that connect them to the rest of the configuration.  

For this purpose, we need an architectural model of services. The basic elements of 
the architectural model of SRML are called modules. Together with some of his col-
leagues, Ugo gave a complete formalisation of the static aspects of this model in [9]. 
In this paper, we recall some of its essential parts and extend it to the dynamic as-
pects, i.e. service discovery and binding.  

In Fig. 2 we present the structure of a module that defines a service provided 
through an interface CR of type Customer for booking a flight and a hotel for a given 
itinerary and dates. The service relies on a component BA of type BookingAgent that 
orchestrates interactions with a service FA of type FlightAgent (for booking flights), a 
service HA of type HotelAgent (for booking hotel rooms), a service PA of type Pay-
Agent (for handling payments), and an external component DB of type UsrDB (that 
stores information about registered users).  

Modules are also defined as graphs. Although we use the same icons for state con-
figurations as for modules, the nodes of modules are not components and the edges 
are not wires: modules involve abstract models, i.e. the labels of the graph are types, 
not instances. The types abstract from the components the business roles that they 
play in the activity performed by the service and, from the wires, the connectors that 
are responsible for coordinating the way the components interact.  

Some of the nodes of a module may consist of interfaces to a pool of shared com-
ponents: this is the case of DB of type UsrDB, i.e. a database of users. Several such 
“uses-interfaces” can be included in a module. Other nodes – PA, HA, and FA – con-
sist of “requires-interfaces” to external services that may need to be discovered for the 
service to fulfil its business goal. This goal is captured in a “provides-interface” – the 
node CR of type Customer.  
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Fig. 2. The structure of a module defining the booking service of a travel agency 

This notion of service module was inspired by concepts proposed in the Service 
Component Architecture (SCA) [21]: they are abstractions of (composite) services 
whose execution involves a number of interactions among coarse-grained components 
that perform tasks according to the underlying business logic, as well as external 
entities that also play a role in the business domain. These external parties are not 
explicitly identified in the module but only implicitly through what we have called 
external-interfaces. External interfaces are more than syntactic declarations: they are 
typed by business protocols – abstract specifications of the conversations in which the 
parties are required to be involved – or by layer protocols in the case of uses-
interfaces – abstract specifications of the remote interactions supported with the ex-
ternal party. Likewise, the components themselves are not explicitly identified in the 
module. Instead, the module includes semantic interfaces – business roles – that 
model the way interactions are orchestrated by the components.  

The operational model that we wish to present for configuration management is in-
dependent of the formalisms used for defining business roles, business protocols, 
layer protocols and connectors. Therefore, we will not discuss these formalisms in the 
paper; we assume instead that we have available sets BROL, BUSP and LAYP of 
specifications of business roles, business protocols and layer protocols, respectively 
(see [12] for an overview of the formalisms used in SRML).  

The difference between business roles and protocols is that components that corre-
spond to the business roles are created and bound to their interfaces when the module 
is instantiated (i.e. when a new session of the service is initiated) whereas the external 
services that correspond to the business protocols are bound to the require interfaces 
at run-time after a process of discovery, ranking and selection triggered according to 
the internal configuration policy of the module.  

The difference with respect to layer protocols is that these bind to shared compo-
nents that persist independently of the activities performed by the services, whereas 
business roles bind to components that are created when the session starts and have no 
persistency beyond that session. Hence, in the case of the TravelBooking service, a 
new instance of BookingAgent is generated for each new session whereas all sessions 
will share the same component that binds to UsrDB (i.e. they all share the same data-
base of users). 
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Connectors, which label wires, are triples <μA,P,μB> where: 
• P is an “interaction protocol.”  Every interaction protocol has two roles roleAP 

and roleBP, and a glue glueP. The glue is a description of the coordination 
mechanisms enforced by the protocol, which we assume to be given in a for-
malism IGLU. 

• μA and μB are ‘attachments’ that connect the roles of the protocol to the entities 
(business roles or protocols) being interconnected. 

Interaction protocols are often just straight connections between ports identifying 
which interactions in roleA correspond to which interactions in roleB. In many cases, 
the interaction glue may include the routing of events, encryption/decryption of mes-
sages, or transforming sent data to the format expected by the receiver. In a connector, 
the interaction protocol is bound to the parties via attachments: these are mappings from 
the roles to the signatures of the parties identifying which interactions of the parties 
perform which roles in the protocol. We use CNCT to designate the set of connectors. 
See [2] for a more detailed account of how connectors are formalised in SRML. In 
software architecture, one can define connectors that involve an arbitrary number of 
roles, but service-oriented architectures involve only interactions between two partners. 

In addition to a graph, a module identifies two important aspects related to the way 
a service can change a configuration:  

• An internal configuration policy (indicated by the symbol ) that identifies 
the triggers of the external service discovery process, and the initialisation and 
termination conditions of the components.  

• An external configuration policy (indicated by the symbol ) that 

consists of the variables and constraints that determine the quality profile to 
which the discovered services need to adhere.  

The configuration policies (both internal and external) are discussed below to-
gether with a formal definition of the notion of module. 

4   Business Configurations 

As already explained, we approach the operational aspects of SOC from the point of 
view of the execution of business processes: our aim is to see state configurations as a 
result of the joint execution of a number of activities that can trigger the discovery 
and binding of external services. In the previous section, we discussed how services 
define architectural units. In this section, we discuss how the configuration itself is 
structured so that these units can be plugged together. This configuration structure is 
given by what we call business activities.   

We take business activities to be characterised, in every configuration, by  

• A sub-configuration, i.e. a subset of the components, and the wires between 
them, that execute as part of the activity. 

• A workflow that implements the “business logic” of the activity.  

For instance, we would like to recognise two activities in Fig. 1 whose sub-
configurations are as depicted in Fig. 3. Intuitively, both correspond to two instances 
of the same business logic (two costumers booking their travel) but at different stages 
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of their workflow: one (launched by LUI) is already connected to a flight and a hotel 
agent (LauF and LauH, respectively) but the other (launched by AUI) is also con-
nected to a (different) flight agent (AntF) still has to find a hotel agent. Both share a 
database DB (of users), which is a persistent component. 

 

Fig. 3. The sub-configurations corresponding to two business activities 

What we are calling ‘business workflow’ is formally captured by typing the sub-
configuration of the activity by what we call an ‘activity module’. For instance, the 
activity module depicted in Fig. 4 types some of the components of the configuration 
depicted in Fig. 1 with business roles and some of its wires with connectors. 

 

Fig. 4. An activity module 
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Activity modules are like service modules except that, instead of a provides-
interface, they include a ‘serves-interface’ through which users can interact with the 
activity. This is the case of AUI of type TravUI – a user interface for travel booking. 
Like uses-interfaces, serves-interfaces are labelled by layer protocols. It is important 
to understand the difference between serves- and provides-interfaces. In the case of 
the provides-interface, the corresponding party is the customer to which the module 
will be bound to provide a service. This customer is the business activity that trig-
gered the discovery of the service, not the top layer user. The latter binds to the 
serves-interface of the activity. Hence, in the case of the business configuration de-
picted in Fig. 3, we can see components – Lau and Ant – that interact with the users of 
the activities through two interfaces (LUI and AUI, respectively). 

In summary, a module M is defined to consist of:  

• A graph graph(M). 
• A distinguished subset of nodes requires(M)⊆nodes(M).  
• A distinguished subset of nodes uses(M)⊆nodes(M).  
• In the case of service modules, a node provides(M)∈ nodes(M) distinct from 

requires(M) and uses(M). 
• In the case of activity modules, a node serves(M)∈ nodes(M) distinct from re-

quires(M) and uses(M). 
• We denote by components(M) the set of nodes(M) that are not provides(M) or 

serves(M), nor in requires(M) or uses(M). 
• We denote by body(M) the (full) sub-graph of graph(M) that consists of com-

ponents(M) and all the edges between them. 
• A labelling function labelM such that  

o labelM(n)∈BROL if n∈components(M)  
o labelM(n)∈BUSP if n∈provides(M)∪requires(M)  
o labelM(n)∈LAYP if n∈serves(M)∪uses(M) 
o labelM(e:n↔m) is a connector <μA,P,μB> such that μA (resp. μB) is an at-

tachment between roleAP and labelM(n) (resp. roleBP and labelM(m)).  
• An internal configuration policy (see below) 
• An external configuration policy (see below) 

Whereas business roles, business protocols, layer protocols and interaction proto-
cols deal with functional aspects of the behaviour of a (complex) service or activity, 
configuration policies address properties of the configuration process itself. This is 
why we focus on them in more detail in this paper. 

The internal configuration policy of a module M concerns the timing of the binding 
of its interfaces and instantiation of its component and wire interfaces: 

• Each requires-node n∈requires(M) has an associated trigger condition trig-
ger(n): this is a condition that is evaluated over the state of the configuration. 
When this condition becomes true as a result of a computation step, the  
process of discovery, selection and binding starts executing, leading to a recon-
figuration step that completes the transition of state configurations. The next 
computation step takes place in the new configuration, i.e. computations  



 What Do Semantics Matter When the Meat Is Overcooked? 571 

resume when the components of the selected service are instantiated and con-
nected to those of the activity.  

• Each component-node n∈components(M) has an initialisation condition init(n) 
that is ensured when the component is instantiated. That is, if we have a com-
putation step <G,src>→<G,trg> followed by a reconfiguration step 
<G,trg>→ <H,trg’>, the state trg’ must coincide with trg on the components 
and wires that are carried over to H as well as ensure that init(n) holds for any 
new node n in H.   

• Each component-node has a second state condition term(n) that determines 
when the component stops executing and interacting with the rest of the com-
ponents of the activity. That is, if a computation step <G,src>→<G,trg> is 
such that term(n) holds of a component n in state trg then n can be removed 
from G in the subsequent reconfiguration step. 

The external policy concerns the way the module relates to external parties: it de-
clares a set of constraints that have to be taken into account during discovery and 
selection. Every constraint involves a set of variables that includes both local parame-
ters of the service being provided and standard configuration parameters selected 
from a fixed set – availability, response time, message reliability, inter alia. These 
standard configuration parameters may apply to the service being provided, or to the 
services that need to be procured externally, or to the wires.  

In SRML, we adopt the framework for constraint satisfaction and optimization de-
fined by Ugo and colleagues in [5], in which constraint systems are defined in terms 
of c-semirings. As explained therein, this framework is quite general and allows us to 
work with constraints of different kinds – both hard and ‘soft’, the latter in many 
grades (fuzzy, weighted, and so on). The c-semiring approach also supports selection 
based on a characterisation of ‘best solution’ supported by multi-dimensional criteria, 
e.g. minimizing the cost of a resource while maximizing the work it supports. See 
[10] for other usages of this approach for service ranking and selection. 

In summary, an external configuration policy consists of:  

• A constraint system cs(M)=〈S,D,V〉 where S is a c-semiring, V is a totally or-
dered set (of configuration variables), and D is a finite set (domain of possible 
elements taken by the variables). 

• A set sla(M) of constraints over cs(M); every constraint consists of a selected 
subset con of variables and a mapping def:D|con|→S that assigns a degree of 
satisfaction to each tuple of values. 

• For every variable in cs(M), an owner – either a node or an edge of M. 

We can now define the notion of business configuration that accounts for the 
coarser business dimension that is overlaid by services on state configurations. We 
presuppose a space A of business activities. We also assume that we have typing 
relations COMP×BROL, COMP×LAYP and WIRE×CNCT through which we can 
tell whether a given component (resp. wire) complies with a given business role or 
layer protocol (resp. connector).  
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A business configuration consists of:  
• A state configuration SF. 
• A partial mapping B that assigns a module B(a) to the activities a∈A that are 

active in SF – the workflow being executed by a in the configuration SF. 
• A mapping C that assigns an homomorphism C(a) of graphs body(B(a))→SF 

to every activity a∈A that is active in SF. This homomorphism types the nodes 
of the activity with business roles or layer protocols – i.e. C(a)(n):labelB(a)(n) 
for every node n – and the edges with connectors – i.e. C(a)(e): labelB(a)(e) for 
every edge e of the body of the activity. 

The homomorphism labels the components and wires of the state configuration 
with the business elements (business roles and the connectors) that they fulfil in the 
activity.  

5   Services as Clauses 

The operational semantics that we wish to put forward for service-oriented reconfigu-
ration is inspired by another of Ugo’s contributions to computer science, this time to 
concurrent constraint programming (CCP) in its ‘soft’ version [6]. More precisely, our 
approach is not CCP sensu stricto: it borrows aspects and techniques from CCP but it 
also adds a few (interesting) new ingredients.  

The analogy starts with the identification of every service module with a ‘clause’:  

  
P 

body(M )
← ⎯ ⎯ ⎯  R1, K, Rn   

where labelM(provides(M))=P and labelM(requires(M))={R1,…,Rn}. In logic pro-
gramming “speak”, the clause states that, to obtain P, one has to find R1,…,Rn and 
execute body(M). The execution of the body corresponds, in a sense, to the computa-
tion that, in the execution of a Horn clause, is performed to provide an ‘answer’ – 
what in logic programming corresponds to a substitution. 

Using this representation, a business activity a is of the form:  

 B(a)
← ⎯ ⎯  R1, K, Rn 

where B(a) is body(B(a)). That is, a business activity corresponds to a goal clause: 
finding R1,…,Rn and providing an answer through the execution of B(a).  

Like in concurrent logic programming (CLP), we are not interested in the “don’t 
know” (“angelic”) non-determinism that results from exploring, through backtrack-
ing, all possible alternative matches to the Ri: if we are not happy with the chosen 
service provider, we cannot go back in time and restart with another provider!  That 
is, we ‘commit’ to the choice of service provider. We deal instead with what is some-
times called “indeterminism” (or “don’t care” non-determinism), which results from 
the existence of a choice of service provider. In CLP, this choice is controlled by the 
‘guard’ assigned to each clause – a sequence of goals that appears before the body of 
the clause, which need to be executed successfully for the clause to be chosen and the 
body to be executed. Among all clauses that have satisfiable guards, one of them is 
chosen and the execution ‘commits’ to it. 
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In CCP [19], one works in a more general setting in which all processes executing 
can interact by means of a shared set of constraints to which they can add new con-
straints (‘tell’) or check if they entail a given constraint (‘ask’). Soft CCP [6] general-
ises these mechanisms even further by working over a c-semiring as used in Section 0 
for external configuration policies: one can then choose among all satisfiable clauses 
that maximise the degree of satisfaction relative to the set of constraints. In our set-
ting, this means that we work instead with clauses of the form:  

  
P 

body(M )
← ⎯ ⎯ ⎯  sla(M) | R1, K, Rn   

where the set sla(M) acts as a ‘soft-guard’.  
As explained later in the paper, when the discovery of a requires-interface Ri of an 

activity  

  B(a)
← ⎯ ⎯ sla(a) | R1, K, Rn  

is triggered, the matching process identifies service modules (clauses) M 

  
P  

body(M )
← ⎯ ⎯ ⎯  sla(M ) |  T1, K, Tm  

and a ‘unifier’-morphism ρ that is an interpretation between Ri
 and P, and makes the 

combination sla(B(a))⊕R,ρsla(M) of the sets of constraints of B(a) and M consistent. 
The selection of the clause (service provider) is made among those that maximise 

the degree of satisfaction of the combined set of constraints. The resolvent is another 
goal clause corresponding to the reconfiguration of the business activity a:  

  ′ B (a) 
← ⎯ ⎯ ⎯  sla'(a) |  R1, K, Ri−1, T1, K, Tm , Ri+1, K, Rn  

where B’(a)=body(B(a)⊕R,ρM) and sla’(a)=contract(sla(B(a))⊕R,ρsla(M)) as defined 
below. That is, B’(a) is the body of the new workflow of the activity a that results 
from the binding with the discovered service and sla’(a) is the contract negotiated 
between a and M, which extends the amalgamated set of constraints of both a and M. 
That is, from the point of view of CCP, new constraints are added to the current set of 
the activity (each activity has its own set of constraints and its execution interferes 
with other activities only through the shared persistent components). 

When a state is reached in which the activity a is an empty clause of the form 

 B(a) 
← ⎯ ⎯ sla(a)  

the resolution process for that activity will have ended, meaning that the activity does 
not need any external services and will continue executing according to the same 
workflow until completion (though one may simplify the configuration by removing 
components as they finish executing). By then, all relevant quality-of-service vari-
ables will have been instantiated according to sla(a). 

However, one may not need to discharge all the requires-interfaces (i.e. bind them 
to service providers). The resolution step does not spawn immediately all the body 
goals in parallel; instead, we wait for the triggers declared for each goal Ti (in the 
example above) to become true in order to launch the corresponding discovery, rank-
ing and selection process. Notice that the evaluation of the triggers will change as 
execution proceeds. This is because the body B(a) of the activity will be executing 
and changing the state over which the triggers are evaluated, and sla(a) will itself 
change as new constraints are added. From the point of view of concurrent program-
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ming, this means that the goals are guarded by their triggers, i.e. they are of the form 
(ask(trigger(ni))→Ri) where ni is the node labelled by Ri and ask(c) checks if condi-
tion c is entailed by the current state and set of constraints.  

Because the state may change, what matters is not so much the consistency of the 
trigger with the current state and sla, but the fact that it may become true in a future 
state. However, contrarily to CCP, we do not take non-satisfiability as failure. As seen 
in Section 0, the internal configuration policy contains a termination condition for 
each component interface that determines when the execution of the instances should 
stop. For any (ask(trigger(ni))→Ri) still outstanding when all components have termi-
nated, the condition trigger(ni) will not be satisfiable in time, which we do not con-
sider to be a failure. Therefore, the components that are delivering the service may 
finish executing their (distributed) workflow without having triggered all the condi-
tions in the service internal configuration policy.  

6   Reconfiguration as Resolution 

In logic programming, different strategies may be adopted for choosing the next query 
to be processed, which in our case means the next service to be discovered. In our 
model, this choice is given by the occurrence of triggers. As mentioned in Section 0, 
every module declares, as part of its internal configuration policy, the triggering con-
ditions that apply to their requires-interfaces. Given a business configuration 
BC=〈<G,S >,B,C 〉 and an activity a, each condition trigger(r) is evaluated over the 
state S. If the condition trigger(R) for a given requires-interface R holds in BC, the 
“unification” process is launched, which should return a service that “best” fits the 
business protocol labelB(a)(R) and the external configuration policy of B(a).  

In our setting, this unification process involves three steps, which we can outline as 
follows:  

• Discovery. This step consists in finding the services – among those that are 
able to guarantee the properties of the business protocol labelB(a)(R) associated 
with R – with which it is possible to reach a service-level agreement.  

• Ranking. For each service M discovered in the previous step, we calculate the 
most favourable service-level agreement that can be achieved – the contract 
that will be established between the two parties if M is selected. This calcula-
tion uses a notion of satisfaction that takes into account the preferences of the 
activity a and the service M.  

• Selection. Select one of the services that maximises the level of satisfaction of-
fered by the corresponding contract. 

We are now going to define each of these steps in more detail, though most of the 
technical aspects need to be consulted in [5] and [13,14]. Consider a business configu-
ration BC=〈 SF,B,C 〉 and let R be a requires-interface of a business activity a such 
that trigger(R) holds in SF. The discovery phase returns all the service modules M 
that satisfy the following properties: 

• There is a specification morphism ρ: labelB(a)(R)→labelM(provides(M)), i.e. 
the behavioural properties offered by the provides interface of the candidate 
service module entail the properties required by the requires-interface of the 
activity up to a suitable translation between the languages of both. 
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• The constraint system cs(M) of the external policy of M is compatible with that 
of cs(B(a)). This means that we can extend the mapping ρ in such a way that, 
for every variable v in cs(B(a)): 

• if owner(v)=R, there exists ρ(v) in cs(M) such that type(v)=type’(ρ(v)) and 
owner’(ρ(v))=provides(M); 

• if owner(v) is a wire i↔R then, for every wire w’ in M of the form pro-
vides(M)↔j, there is a variable ρ(v,w’) in cs(M) s.t. owner’(ρ(v,w’))=w’ and 
type(v)=type’(ρ(v,w’)).  

• The combination sla(B(a))⊕R,ρsla(M) of the sets of constraints of B(a) and M is 
consistent (as defined below). 

Intuitively, compatibility means that each discovered service needs to support the 
properties required by the activity through the business protocol associated with R and 
the negotiation of the configuration parameters associated with R, i.e. those configura-
tion parameters that belong to R or to the wires that connect R to the components of 
the activity module. The first condition (entailment of properties) is handled through 
the logic that is adopted for specifying business protocols (see [12] for a flavour of the 
logic used in SRML). The second condition ensures that is indeed possible to achieve 
a service-level agreement between the activity and the service module. Compatibility 
of the constraint systems of B(a) and M relative to R ensures that they can be com-
bined, which gives rise to another constraint system.  

The combined constraint system cs(B(a))⊕R,ρcs(M) is defined as follows: 

• Its domain D” is the union D∪D’ of the domains of cs(B(a)) and cs(M). 
• Its set of variables V is the disjoint union of cs(B(a)) and cs(M) except for all 

pairs v|ρ(v) and v|ρ(v,w’), which give rise to variables (those involved in the 
negotiation). Notice that, if owner(v) is a wire i↔R, then we may end up with 
several “aliases” v|ρ(v,w’), one for each wire w’ in M of the form pro-
vides(M)↔j. We denote by neg(R,ρ) the set of such variables. 

 

Fig. 5. The elements involved in unification 
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The combined set of constraints sla(B(a))⊕R,ρsla(M) is defined by ‘lifting’ the con-
straints of sla(B(a)) and sla(M) to the new constraint system. 

In order to illustrate these constructions, consider that, at a certain point of the exe-
cution of the workflow of the business activity A_ANT0 in Fig. 5, the condition trigTA 
becomes true and triggers the unification process for TA. For the service module 
TRAVELBOOKING to be discovered, we would need to  

• Establish a specification morphism between TravelAgent (the business proto-
col that types TA) and Customer (the business protocol that types the provides 
interface CR of TRAVELBOOKING) showing that the properties required in Trav-
elAgent are entailed by those of Customer. 

•  Check that the constraint systems of A_ANT0 and TRAVELBOOKING are com-
patible. 

Finally, we can discuss how contracts are established. Together with the set 
neg(R,ρ) of the variables being negotiated (those in the domain of ρ), the set of con-
straints sla(B(a))⊕R,ρsla(M) defines a constraint problem. In the c-semiring frame-
work, the solution of this constraint problem is again a constraint and, hence, it as-
signs a degree of satisfaction to each possible tuple of values for the variables in 
neg(R,ρ). Ranking a discovered service M in our framework consists in finding an 
assignment that maximizes the degree of satisfaction. The constraint that results from 
the negotiation is denoted by contract(B(a)⊕R,ρM). The selected service is one with 
maximal rank.  

It remains to define the new business configuration that results from the process of 
discovery, ranking and selection – what we could call the ‘resolution step’ using the 
analogy with logic programming. This includes the new state configuration that re-
sults from instantiating the selected service over the current configuration and binding 
it to the business activity a that triggered the process, and the typing of the business 
activity with a new module. 

We start by defining the activity module that will type a in the new business con-
figuration. Consider that a service module M is returned by the selection process upon 
the occurrence of trigger(R) where R is a requires-interface of B(a). The binding of R 
with an instance of M involves the assembly of modules B(a) and M, giving rise to a 
new module that corresponds to the new execution plan of a. This new module is the 
composition B(a)⊕R,ρM (depicted in Fig. 6 for A_ANT0 and TRAVELBOOKING) defined 
as follows: 

• The graph of B(a)⊕R,ρM is obtained from the sum (disjoint union) of the graphs 
of B(a) and M by eliminating the nodes R and provides(M), and adding an 
edge i↔j between any two nodes i and j such that i↔R is an edge of B(a) and 
provides(M)↔j is an edge of M. The requires-interfaces are those of B(a), ex-
cept for R, and those of M. Given that provides(M) has been eliminated, there 
are no provides-interfaces; we obtain an activity module B that defines the new 
execution plan of the activity a. 

• The labels of the resulting graph are inherited from the graphs of B(a) and M, 
except for the new edges i↔j that result from the binding of R and provides(M) 
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through  the morphism ρ. These are calculated by composing the connectors that 
label i↔R and provides(M)↔j. This process of composition is detailed in [13]: 
basically, we need to compose the glues of the connectors through the roles that 
have been bound through the signature morphism.  

• The external configuration policy is contract(B(a)⊕R,ρM) and the triggers, ini-
tialisation and termination conditions of the internal configuration policy are 
all inherited from B(a) and M. 

We take this module to provide the reconfigured execution plan of the business ac-
tivity a. We can now define the new state and business configurations that result from 
the discovery and binding processes. The current state configuration is modified as 
follows:  

• New components (nodes) are added to the service layer, which are typed by 
the business roles of components(M). 

• New wires (edges) are added that are typed with the connectors that link to-
gether the new components introduced in the previous step. 

• New wires are added between the new components and the ones that were al-
ready present in the configuration, which are typed by the composed connec-
tors that result from the bindings. 

• New wires are added that bind the new service components to the shared per-
sistent components, which are typed by the layer protocols of uses(M). Notice 
that we do not create new shared persistent components (instances) in this pro-
cess: such components are used, not created by services. 

• The new components and wires are initialised so as to satisfy the internal con-
figuration policy of M. 

The new business configuration B’ is the same as B except for activity a for which 
B’(a) is B(a)⊕R,ρM. The homomorphism is as defined by the typing of nodes and 
wires discussed above.  

 

Fig. 6. A new session of TravelBooking starts and reconfigures the workflow of ANT 
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7   Final Tasting 

We cooked a dish using some of the ingredients that Ugo has given us during his 
career. As any good amateur of Italian cuisine would have done, the chosen ingredi-
ents are of top quality. As for the dish, “provate per credere”… 

We certainly hope not to have ‘overcooked the meat’. In our opinion, widely 
shared within the SENSORIA project, there is a lot of research that needs to be done 
towards a methodological and mathematical characterisation of the service-oriented 
computing paradigm [20]. Our approach differs from other work on Web Services 
(e.g. [3]) and SOC in general (e.g. [21]) in that we address not the middleware archi-
tectural layers or low-level design issues, but what we call the ‘business level’. That 
is, we view SOC as operating over configurations of global computers that are typed 
by business activities, which may need to discover and bind to external services as 
they execute and, therefore, reconfigure their activity.  

This emphasis on the business dimension is well apparent in the semantic model 
that we proposed in the sense that it separates the reconfiguration (business level) 
from the computation dimension (state level). More specifically, our model makes 
only minimal assumptions about the computational aspects that account for state 
changes and interactions, as well as the languages and formalisms that are used for 
specifying the workflows executed by components, the interaction protocols estab-
lished through the wires, and the properties that describe the properties of services. 
The specific formalisms used in the SENSORIA Reference Modelling Language 
(SRML) are presented in [2,12]. Other popular formalisms for modelling (web) ser-
vices are those also adopted for business workflows [17,18], as well different kinds of 
process calculi (e.g. [8,10,16]). However, the workflow-oriented formalisms tend not 
to address dynamic reconfiguration and the process calculi tend not to address it sepa-
rately from computation. As far as we know, SRML is the first service-modelling 
language to separate these two concerns.  

The semantics of the actual reconfiguration operated during a resolution step was 
given based on algebraic, graph-based techniques [13,14]. The notion of configuration 
and module were formalised in terms of graphs and their labelling with different kinds 
of components, connectors, specifications and specification morphisms. In this con-
text, another interesting semantics of the reconfiguration process that we would like to 
explore is the use of graph transformations, for instance as in [9] where the architec-
tural style of SRML has been defined by Ugo and some of his colleagues.  

Another aspect worth investigating is the “interleaving” of the synthesis/resolution 
process with the execution of the activity whose workflow is being synthesised. Hav-
ing offered separate models for these two processes, we intend to investigate how the 
reconfiguration process can be analysed in conjunction with the computations that are 
being performed by components and the coordination mechanisms on the interactions 
performed by the wires. For this purpose, we will rely on calculi (e.g. [16]) and logics 
(e.g. [4]) that are being developed within SENSORIA. Another avenue that we would 
like to explore in this respect is the use of graphs as a computational model, for in-
stance as developed in [11], once more with Ugo’s contribution. 



 What Do Semantics Matter When the Meat Is Overcooked? 579 

Acknowledgments 

The reviewers kindly suggested many improvements and extensions, which unfortu-
nately would not fit in the space available for the paper. Most of the work reported in 
this paper was developed in collaboration with Antónia Lopes, Laura Bocchi, and 
João Abreu. I would like to thank our colleagues in the SENSORIA project for many 
useful discussions on the topics covered in this paper, which includes not only Ugo 
but also many of Ugo’s “children” (and “grandchildren”). This is the last contribution 
to computer science that I would like to thank Ugo for: to have populated the area 
with so many brilliant scientists (though their performance as cooks still needs to be 
properly tested…). 

References  

1. Abreu, J., Fiadeiro, J.: A coordination model for service-oriented interactions. In: Lea, D., 
Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 1–16. Springer,  
Heidelberg (2008) 

2. Abreu, J., Bocchi, L., Fiadeiro, J.L., Lopes, A.: Specifying and composing interaction pro-
tocols for service-oriented system modelling. In: Derrick, J., Vain, J. (eds.) FORTE 2007. 
LNCS, vol. 4574, pp. 358–373. Springer, Heidelberg (2007) 

3. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Springer, Heidelberg 
(2004) 

4. ter Beek, M., Fantechi, A., Gnesi, S., Mazzanti, F.: An action/state-based model checking 
approach for the analysis of communication protocols for Service-Oriented Applications. In: 
Formal Methods for Industrial Critical Systems. LNCS, Springer, Heidelberg (to appear) 

5. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimi-
zation. Journal of the ACM 44(2), 201–236 (1997) 

6. Bistarelli, S., Montanari, U., Rossi, F.: Soft concurrent constraint programming. ACM 
Transactions on Computational Logic 7(3), 563–589 (2006) 

7. Bocchi, L., Hong, Y., Lopes, A., Fiadeiro, J.: From BPEL to SRML: a formal transforma-
tional approach. In: Dumas, M., Heckel, R. (eds.) Web Services and Formal Methods. 
LNCS, vol. 4937, pp. 92–107. Springer, Berlin, Heidelberg, New York (2008) 

8. Boreale, M., et al.: SCC: a service centered calculus. In: Bravetti, M., Núñez, M., Zavat-
taro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 38–57. Springer, Berlin, Heidelberg, 
New York (2006) 

9. Bruni, R., Lluch Lafuente, A., Montanari, U., Tuosto, E.: Service oriented architectural de-
sign. In: Trustworthy Global Computing, Springer, Berlin, Heidelberg, New York (to ap-
pear, 2007) 

10. Buscemi, M., Montanari, U.: CC-Pi: A constraint-based language for specifying service 
level agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 18–32. 
Springer, Berlin, Heidelberg, New York (2007) 

11. Ferrari, G.F., Hirsch, D., Lanese, I., Montanari, U., Tuosto, E.: Synchronised hyperedge 
replacement as a model for service oriented computing. In: de Boer, F.S., Bonsangue, 
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 22–43. 
Springer, Berlin, Heidelberg, New York (2006) 



580 J.L. Fiadeiro 

12. Fiadeiro, J.L., Lopes, A., Bocchi, L.: A formal approach to service-oriented architecture. 
In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 193–
213. Springer, Berlin, Heidelberg, New York (2006) 

13. Fiadeiro, J.L., Lopes, A., Bocchi, L.: Algebraic semantics of service component modules. 
In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 37–55. 
Springer, Berlin, Heidelberg, New York (2007) 

14. Fiadeiro, J.L., Schmitt, V.: Structured co-spans: an algebra of interaction protocols. In: 
Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, 
pp. 194–200. Springer, Berlin, Heidelberg, New York (2007) 

15. Hirsch, D., Montanari, U.: Two graph-based techniques for software architecture recon-
figuration. Electronic Notes in Theoretical Computer Science 51, 177–190 (2001) 

16. Lapadula, A., Pugliese, R., Tiezzi, F.: Calculus for orchestration of web services. In: De 
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer, Berlin, Heidelberg, 
New York (2007) 

17. Ouyang, C., Verbeek, E., van del Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: For-
mal semantics and analysis of control flow in WS-BPEL. Science of Computer Program-
ming 67(2-3), 162–198 (2007) 

18. Reisig, W.: Modeling and analysis techniques for web services and business processes. In: 
Steffen, M., Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535, pp. 243–258. Springer, 
Berlin, Heidelberg, New York (2005) 

19. Saraswat, V.A.: Concurrent Constraint Programming. MIT Press, Cambridge, Massachu-
setts (1993) 

20. SENSORIA consortium (2007),  
http://www.sensoria-ist.eu/files/whitePaper.pdf 

21. The Open Service Oriented Architecture collaboration, http://www.osoa.org 
 


	What Do Semantics Matter When the Meat Is Overcooked?
	Introduction
	Configurations of Global Computers
	Services as Architectural Units
	Business Configurations
	Services as Clauses
	Reconfiguration as Resolution
	Final Tasting
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




