
Consistency of Service Composition

José Luiz Fiadeiro1 and Antónia Lopes2

1Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK

jose@mcs.le.ac.uk
2Faculty of Sciences, University of Lisbon
Campo Grande, 1749–016 Lisboa, Portugal

mal@di.fc.ul.pt

Abstract. We address the problem of ensuring that, when an application execut-
ing a service binds to a service that matches required functional properties, both
the application and the service can work together, i.e., their composition is con-
sistent. Our approach is based on a component algebra for service-oriented com-
puting in which the configurations of applications and of services are modelled
as asynchronous relational nets typed with logical interfaces. The techniques that
we propose allow for the consistency of composition to be guaranteed based on
properties of service orchestrations (implementations) and interfaces that can be
checked at design time, which is essential for supporting the levels of dynamicity
required by run-time service binding.

1 Introduction

In recent years, several proposals have been made to characterise the fundamental struc-
tures that support service-oriented computing (SOC) independently of the specific lan-
guages or platforms that may be adopted to develop or deploy Web services. In this
paper, we contribute to this effort by investigating the problem of ensuring that, when
an application executing a service binds to a service that it requested, the result is con-
sistent, i.e., both the executing service and the service to which it binds can operate to-
gether in the sense that there is a trace that represents an execution of both. In particular,
we show how consistency can be checked based on properties of service orchestrations
(implementations) and interfaces that can be established at design time. Checking for
consistency at discovery time would not be credible because, in SOC, there is no time
for the traditional design-time integration and validation activities as the SOA middle-
ware brokers need to discover and bind services at run time.

In order to formulate a notion of consistency and the conditions under which it can
be ensured in a way that is as general as possible, i.e., independently of any particular or-
chestration model (automata, Petri-nets, and so on), we adopt a fairly generic model of
behaviour based on traces of observable actions as executed by implementations of ser-
vices in what are often called ‘global computers’ — computational infrastructures that
are available globally and support the distributed execution of business applications.
More precisely, we build on the asynchronous, message-oriented model of interaction
that we developed in [10] over which interfaces are defined as temporal logic spec-
ifications. That is, instead of a process-oriented notion of interface (which prevails in

1

most approaches to service orchestration and choreography), we adopt a declarative one
that follows in the tradition of logic-oriented approaches to concurrent and distributed
system design (as also adopted in [8] for component-based design). One advantage of
this approach is that we are able to distinguish between what can be checked at design
time to ensure consistency of binding (based on implementations) and what needs to be
checked at discovery (run) time to ensure compatibility (based on interfaces).

Having this in mind, in Section 2, we introduce some basic definitions around trace-
based models of behaviour and revisit and reformulate, in a more general setting, the
notion of asynchronous relational net (ARN) proposed in [10]. In Section 3, we define
consistency and prove a sufficient condition for the composition of two consistent ARNs
to be consistent, which is based on the notion of safety property. Finally, in Section 4,
we discuss which logics support interfaces for ARNs that implement safety properties
and propose one such logic that is sufficiently expressive for SOC.

Related work. Most formal approaches that have been proposed for either service
choreography or orchestration are process-oriented, for example through automata, la-
belled transition systems or Petri-Nets. In this context, several notions of compatibility
have been studied aimed at ensuring that services are composable. Compatibility in this
context may have several different meanings. For example, [16] addresses the problem
of ensuring that, at service-discovery time, requirements placed by a requester service
are matched by the discovered services — the requirements of the requester are formu-
lated in terms of a graph-based model of a protocol that needs to be simulated by the
BPEL orchestration of any provided service that can be discovered. That is, compati-
bility is checked over implementations. However, one has to assume that the requester
has formulated its requirements in such a way that, once bound to a discovered service
that meets the requirements, its implementation will effectively work together with that
of the provided service in a consistent way — a problem not addressed in that paper.

A different approach is proposed in [6] where compatibility is tested over the in-
terfaces of services (not their implementations), which is simpler and more likely to
be effective because a good interface should hide (complex) information that is not
relevant for compatibility. A limitation of this approach is that it is based on a (syn-
chronous) method-invocation model of interaction: as argued in [13], web-service com-
position languages such BPEL (the Business Process Execution Language [20]) rely
on an (asynchronous) message-passing model, which is more adequate for interactions
that need to run in a loosely-coupled operating environment. An example of an asyn-
chronous framework is the class of automata-based models proposed in [5,7,11], which
is used for addressing a number of questions that arise in choreography, namely the
realisability of conversation protocols among a fixed number of peers in terms of the
local behaviour generated by implementations of the peers. Our interest is instead in
how dependencies on external services that need to be discovered can be reflected in
the interface of a peer and in determining properties of such interfaces that can guaran-
tee that the orchestration of the peer can bind to that of a discovered service in a way
that ensures consistency of the joint behaviour.

In this respect, the notions of interface that are proposed in [6] do not clearly sepa-
rate between interfaces for clients of the service and interfaces for providers of required
external services, i.e., the approach is not formulated in the context of run-time ser-

2

vice discovery and binding. Furthermore, [6] does not propose a model of composition
of implementations (what is called a component algebra in [8]) so one has to assume
that implementations of services with compatible interfaces, when composed, are ‘con-
sistent’. The interface and component algebra that we proposed in [10] makes a clear
distinction between interfaces for services provided and services requested. Our model,
which extends the framework proposed by de Alfaro and Henzinger for component-
based systems [8], is based on an asynchronous version of relational nets adapted to
SCA (the Service Component Architecture [17]) and defines a component algebra that
is is compositional in relation to the binding of required with provided service inter-
faces. The purpose of this paper is precisely to formulate a notion of consistency at
the level of the component algebra through which one can ensure, at design time, that
matching required with provided services at the interface level leads to a consistent
implementation of the composite service when binding the implementations of the re-
quester and the provider services.

2 Asynchronous relational nets

2.1 Trace-based models of behaviour

The processes that execute in SOC are typically reactive and interactive. Their be-
haviour can be observed in terms of the actions that they perform. For simplicity, we use
a linear model, i.e., we observe streams of actions (which we call segments). In order
not to constrain the environment in which processes execute and communicate, we take
traces that capture complete behaviours to be infinite and we allow several actions to
occur ‘simultaneously’, i.e. the granularity of observations may not be so fine that we
can always tell which of two actions occurred first. Observing an empty set of actions
in a trace reflects an execution step during which a process is idle, i.e., a step performed
by the environment without the involvement of the process.

More precisely, given a set A (of actions), a trace λ over A is an element of (2A)
ω ,

i.e., an infinite sequence of sets of actions. We denote by λ(i) the i-th element of λ,
by λi the prefix of λ that ends at λ(i), and by λi the suffix of λ that starts at λ(i). A
segment over A is an element of (2A)

∗, i.e., a finite sequence of sets of actions. We use
π≺λ to mean that the segment π is a prefix of λ. Given A′⊆A, we denote by (π·A′) the
segment obtained by extending π with A′.

Definition 1 (Property and Closure) Let A be an alphabet.

– A property Λ over A is a subset of (2A)
ω .

– Given Λ⊆(2A)
ω , we define Λf = {π∈(2A)

∗
: ∃λ∈Λ(π≺λ)} — the set of prefixes

of traces in Λ, also called the downward closure of Λ.
– Given Λ⊆(2A)

ω , we define Λ̄ = {λ∈(2A)
ω

: ∀π≺λ(π∈Λf)} — the set of traces
whose prefixes are in Λ, also called the closure of Λ.

– A property Λ is said to be closed iff Λ ⊇ Λ̄.

The closure operator is defined according to the Cantor topology on (2A)
ω used in

[1] for characterising safety and liveness properties (see also [4]). In that topology, the
closed sets are the safety properties (and the dense ones are the liveness properties).

3

Functions between sets of actions, which we call alphabet maps, are useful for defin-
ing relationships between individual processes and the networks in which they operate.
Alphabet maps induce translations that preserve and reflect closed properties:

Proposition and Definition 2 (Translation) Let σ:A→B be a function (alphabet map).

– For every λ′∈(2B)ω , we define λ′|σ∈(2A)ω pointwise as λ′|σ(i)=σ−1(λ′(i)).
– For every set Λ⊆(2A)ω , we define σ(Λ) = |σ−1(Λ) = {λ′∈(2B)ω : λ′|σ∈Λ}.
– For every closed property Λ over A, σ(Λ) is a closed property over B.
– For every closed property Λ′ over B, Λ′|σ is a closed property over A.

Notice that every alphabet map σ defines a contravariant translation |σ between
traces by taking the inverse image of the set of actions performed at each step.

2.2 Asynchronous Relational Nets

In this section, we revisit the component algebra proposed in [10] based on the notion
of asynchronous relational net (ARN). The main difference is that, where in [10] we
formalised ARNs in terms of logical specifications, we are now interested in behaviours
(model-theoretic properties) so that we can define and analyse consistency in logic-
independent terms. We revisit specifications in the context of interfaces in Sec. 4.

In an asynchronous communication model, interactions are based on the exchange
of messages that are transmitted through channels. We organise messages in sets that
we call ports: a port is a finite set (of messages). Ports are communication abstractions
that are convenient for organising networks of processes as formalised below.

Every message belonging to a port has an associated polarity: − if it is an outgoing
message (published at the port) and + if it is incoming (delivered at the port). There-
fore, every port M has a partition M− ∪M+. The actions of sending (publishing) or
receiving (being delivered) a message m are denoted by m! and m¡, respectively. In the
literature, one typically findsm? for the latter. In our model, we usem? for the action of
processing the message and m¿ for the action of discarding the message: as discussed
later, processes cannot refuse the delivery of messages but they should be able to discard
them, for example if they arrive outside the protocol expected by the process.

More specifically, if M is a port:

– Given m∈M−, the set of actions associated with m is Am = {m!}.
– Given m∈M+, Am = {m¡,m?,m¿}
– The set of actions associated with M is AM =

⋃
m∈M Am.

A process consists of a finite set γ of mutually disjoint ports — i.e., each message
that a process can exchange belongs to exactly one of its ports — and a non-empty
property Λ over Aγ =

⋃
M∈γ AM defining the behaviour of the process.

Interactions in ARNs are established through channels. A channel consists of a set
M of messages and a non-empty property Λ over the alphabet AM={m!,m¡ :m∈M}.
Channels connect processes through their ports. Given ports M1 and M2 and a channel
〈M,Λ〉, a connection between M1 and M2 via 〈M,Λ〉 consists of a pair of injective
maps µi:M→Mi such that µ−1i (M+

i) = µ−1j (M−j), {i, j}={1, 2}— i.e., a connection

4

establishes a correspondence between the two ports such that any two messages that are
connected have opposite polarities. Each injection µi is called the attachment of M to
Mi. We denote the connection by the triple 〈M1

µ1←−M
µ2−→M2, Λ〉.

Definition 3 (Asynchronous relational net) An asynchronous relational net (ARN) α
consists of:

– A simple finite graph 〈P,C〉 where P is a set of nodes and C is a set of edges. Note
that each edge is an unordered pair {p, q} of nodes.

– A labelling function that assigns a process 〈γp, Λp〉 to every node p and a connec-
tion 〈γc, Λc〉 to every edge c such that:
• If c={p, q} then γc is a pair of attachments 〈Mp

µp←− Mc
µq−→ Mq〉 for some

Mp∈γp and Mq∈γq .
• If γ{p,q}=〈Mp

µp←−M{p,q}
µq−→Mq〉 and γ{p,q′}=〈M ′p µ

′
p←−M{p,q′}

µ′
q′−→M ′q′〉 with

q 6= q′, then Mp 6= M ′p.

We also define the following sets:

– Ap = p.Aγp is the language associated with the node p.
– Aα =

⋃
p∈P Ap is the language associated with α.

– Ac = 〈p. ◦µp, q. ◦µq〉(AMc) is the language associated with γc:〈Mp
µp←−Mc

µq−→Mq〉.
– Λα = {λ∈(2Aα)ω: ∀p∈P (λ|p∈Λp) ∧ ∀c∈C(λ|c∈Λc)}.

We often refer to the ARN through the quadruple 〈P,C, γ, Λ〉 where γ returns the
set of ports of the processes that label the nodes and the pair of attachments of the con-
nections that label the edges, and Λ returns the corresponding properties. The fact that
the graph is simple — undirected, without self-loops or multiple edges — means that all
interactions between two given processes are supported by a single channel and that no
process can interact with itself. The graph is undirected because, as already mentioned,
channels are bidirectional. Furthermore, different channels cannot share ports.

We take the set Λα to define the set of possible traces observed on α — those
traces over the alphabet of the ARN that are projected to traces of all its processes
and channels. The alphabet of Aα is itself the union of the alphabets of the processes
involved translated by prefixing all actions with the node from which they originate.

Notice that nodes and edges denote instances of processes and channels, respec-
tively. Different nodes (resp. edges) can be labelled with the same process (resp. chan-
nel), i.e., processes and channels act as types. This is why it is essential that, in the
ARN, it is possible to trace actions to the instances of processes where they originate
(all the actions of channels are mapped to actions of processes through the attachments
so it is enough to label actions with nodes).

In general, not every port of every process (instance) of an ARN is necessarily
connected to a port of another process. Such ports provide the points through which the
ARN can interact with other ARNs. An interaction-point of an ARN α = 〈P,C, γ, Λ〉
is a pair 〈p,M〉 such that p∈P , M∈γp and there is no edge {p, q}∈C labelled with a
connection that involves M . We denote by Iα the collection of interaction-points of α.

Interaction-points are used in the notion of composition of ARNs [10]:

5

Proposition and Definition 4 (Composition of ARNs) Letα1 = 〈P1, C1, γ1, Λ1〉 and
α2 = 〈P2, C2, γ2, Λ2〉 be ARNs such that P1 and P2 are disjoint, and a family wi =

〈M i
1
µi
1←− M

µi
2−→ M i

2, Ψ
i〉 (i = 1 . . . n) of connections for interaction-points 〈pi1,M i

1〉 of
α1 and 〈pi2,M i

2〉 of α2 such that pi1 6= pj1 if i 6= j and pi2 6= pj2 if i 6= j. The composition

α1

ni=1...n

〈pi1,Mi
1〉,wi,〈pi2,Mi

2〉
α2

is the ARN whose graph is 〈P1 ∪ P2, C1 ∪C2 ∪
⋃
i=1...n{pi1, pi2}〉 and whose labelling

function coincides with that of α1 and α2 on the corresponding subgraphs, and assigns
to the new edges {pi1, pi2} the label wi.

In order to illustrate the notions introduced in the paper, we consider a simplified
bank portal that mediates the interactions between clients and the bank in the context of
different business operations such as the request of a credit. Fig. 1 depicts an ARN with
two interconnected processes that implement this business operation. Process Clerk is
responsible for the interaction with the environment and for making decisions on credit
requests, for which it relies on an external process RiskEvaluator that is able to eval-
uate the risk of the transaction. The graph of this ARN consists of two nodes c:Clerk
and e:RiskEvaluator and an edge {c, e}:wce where:

– Clerk is a process with two ports: Lc and Rc. In port Lc, the process receives mes-
sages creditReq and accept and sends approved, denied and transferDate. Port
Rc has outgoing message getRisk and incoming message riskV alue. The Clerk’s
behaviour is as follows: immediately after the delivery of the first creditReq mes-
sage on port Lc, it publishes getRisk on Rc; then it waits five time units for the
delivery of riskV alue, upon which it either publishes denied or approved (we
abstract from the criteria that it uses for deciding on the credit); if riskV alue does
not arrive by the deadline, Clerk publishes denied on Lc; after sending approved
(if ever), Clerk waits twenty time units for the delivery of accept, upon which it
sends transferDate; all other deliveries of creditReq and accept are discarded.
The property that corresponds to this behaviour is denoted by Λc in Fig. 1.

– RiskEvaluator is a process with a single port (Le) with incoming message request
and outgoing message result. Its behaviour is quite simple: every time request is
delivered, it takes no more than three time units to publish result. The property
that corresponds to this behaviour is denoted by Λe in Fig. 1.

– The port Rc of Clerk is connected with the port Le of RiskEvaluator through
wce:〈Rc µe←− {m,n} µc−→ Le, Λw〉, with µc={m 7→ getRisk, n 7→ riskV alue},
µe={m 7→ request, n 7→ result}. The corresponding channel is reliable: it en-
sures to delivering getRisk, which RiskEvaluator receives as request, and it en-
sures to delivering result, which Clerk receives as riskV alue, both without any
delay. The property that corresponds to this behaviour is denoted by Λw in Fig. 1.

3 Consistency

An important property of ARNs, and the one that justifies this paper, is consistency:

Definition 5 (Consistent ARN) An ARN α is said to be consistent if Λα is not empty.

6

ClerkcreditReq

 Λc

approved
denied

transferDate

RiskEvaluator

Λ w

request

result

getRisk

riskValueaccept

Lc

Rc Le

 Λe

Fig. 1. An example of an ARN with two processes connected through a channel.

Consistency means that the processes, interconnected through the channels, can co-
operate and generate at least a joint trace. Naturally, one cannot expect every ARN to be
consistent as the interference established through the connections may make it impos-
sible for the processes involved to make progress together. Therefore, some important
questions, which this paper attempts to answer, are: How can one check that an ARN
α is consistent without calculating the set Λα? How can one guarantee that the com-
position of two consistent ARNs is consistent based on properties of the ARNs and the
interconnections that can be checked at design time?

In order to answer these questions, we are going to discuss a related property:
the ability to make (finite) progress no matter the segment that the ARN has exe-
cuted, which we call progress-enabledness. We show that, for certain classes of ARNs,
progress-enabledness implies consistency. We also provide sufficient conditions for the
composition of two progress-enabled ARNs to be progress-enabled that can be checked
at design time.

3.1 Progress-enabled ARNs

Consistency is about infinite behaviours, i.e., it concerns the ability of all processes and
channels to generate a full joint trace. However, it does not guarantee that, having en-
gaged in a joint partial trace (finite segment), the processes can proceed: it may happen
that a joint partial trace is not a prefix of a joint (full) trace, which would be undesir-
able as it is not possible for individual processes to anticipate what other processes will
do — as discussed in Sec. 4, interconnections in the context of SOC are established at
run time based on interfaces that capture what processes do, not how they do it. This
is why, in [10], we introduced another useful property of ARNs: that, after any joint
partial trace, a joint step can be performed.

Definition 6 (Progress-enabled ARN) For every ARN α, let

Πα = {π∈2Aα
∗
: ∀p∈P (π|p∈Λfp) ∧ ∀c∈C(π|c∈Λfc)}

We say that α is progress-enabled iff ∀π∈Πα.∃A⊆Aα(π·A)∈Πα.

The set Πα consists of all the partial traces that the processes and channels can
jointly engage in. Notice that, as long as the processes and channels involved in α are
consistent, Πα is not empty: it contains at least the empty trace!

Therefore, by itself, being progress-enabled does not guarantee that an ARN is con-
sistent: moving from finite to infinite behaviours requires the analysis of what happens

7

‘at the limit’. A progress-enabled but inconsistent ARN guarantees that all the processes
and channels will happily make joint progress but at least one will be prevented from
achieving a successful full trace at the limit. Therefore, it seems justifiable that we look
for a class of ARNs for which being progress-enabled implies consistency, which we do
in the next subsection. However, in relation to the points that we raised at the beginning
of this section, we still need to show that, by investigating a stronger property (being
progress-enabled and consistent), we have not made the questions harder to answer.

In [10], we also identified properties of ARNs and channels that guarantee that the
composition of two progress-enabled ARNs is progress-enabled: that processes are able
to buffer incoming messages, i.e., to be ‘delivery-enabled’, and that channels are able
to buffer published messages, i.e., to be ‘publication-enabled’.

Definition 7 (Delivery-enabled) Let α=〈P,C, γ, Λ〉 be an ARN, 〈p,M〉∈Iα one of its
interaction-points, and D〈p,M〉={p.m¡:m∈M+}. We say that α is delivery-enabled in
relation to 〈p,M〉 if, for every (π·A)∈Πα and B⊆D〈p,M〉, (π·B ∪ (A\D〈p,M〉))∈Πα.

That is, being delivery-enabled at an interaction point requires that any joint prefix
of the ARN can be extended by any set of messages delivered at that interaction-point.
Note that this does not interfere with the decision of the process to publish messages:
B∪(A\D〈p,M〉)) retains all the publications present in A. Also notice that accepting
the delivery of a message does not mean that a process will act on it; this is why we
distinguish between executing a delivered message (m?) and discarding it (m¿). For
example, the processes Clerk and RiskEvaluator informally described in Sec. 2.2
define, individually, atomic ARNs that are delivery-enabled: they put no restrictions on
the delivery of messages.

Definition 8 (Publication-enabled) Let h=〈M,Λ〉 be a channel andEh = {m! : m ∈
M}. We say that h is publication-enabled iff, for every (π·A)∈Λf and B⊆Eh, we have
π·(B∪(A\Eh))∈Λf .

The requirement here is that any prefix can be extended by the publication of any set
of messages, i.e., the channel should not prevent processes from publishing messages.
Notice that this does not interfere with the decision of the channel to deliver messages:
(B∪(A\Eh)) retains all the deliveries present in A. An example is the channel used in
Fig. 1, which we informally described in Sec. 2.2.

These two properties allow us to prove that the composition of two progress-enabled
ARNs is progress-enabled [10]:

Theorem 9 Letα = (α1

ni=1...n

〈pi1,Mi
1〉,wi,〈pi2,Mi

2〉
α2) be a composition of progress-enabled

ARNs where, for each i = 1 . . . n, wi = 〈M i
1
µi
1←−M

µi
2−→M i

2, Λ
i〉. If, for each i=1. . . n,

α1 is delivery-enabled in relation to 〈pi1,M i
1〉, α2 is delivery-enabled in relation to

〈pi2,M i
2〉 and hi=〈M i,Λi〉 is publication-enabled, then α is progress-enabled.

3.2 Safe ARNs

The class of ARNs for which we can guarantee consistency are those that involve only
closed (safety) properties (cf. Def. 1). As discussed above, progress-enabledness guar-
antees that all the processes and channels can progress by making joint steps but does

8

not guarantee that successful full traces will be obtained at the limit. Choosing to work
with safety properties essentially means that ‘success’ does not need to be measured at
the limit, i.e., checking the ability to make ‘good’ progress is enough.

From a methodological point of view, restricting ARNs to safety properties is jus-
tified by the fact that, within SOC, we are interested in processes whose liveness prop-
erties are bounded (bounded liveness being itself a safety property). This is because,
in typical business applications, one is interested only in services that respond within a
fixed (probably negotiated) delay. In SOC, one does not offer as a service the kind of
systems that, like operating systems, are not meant to terminate

Definition 10 (Safe processes, channels and ARNs) A process 〈γ, Λ〉 (resp. channel
〈M,Λ〉) is said to be safe if Λ is closed. A safe ARN is one that is labelled with safe
processes and channels.

Proposition 11 For every safe ARN α, Λα is a closed (safety) property.

Proof. Λα is the intersection of the images of the properties of the processes and chan-
nels associated with the nodes and edges of the graph. According to Prop. 2, those
images are safety properties. The result follows from the fact that an intersection of
closed sets in any topology is itself a closed set.

Theorem 12 (Consistency) Any safe progress-enabled ARN is consistent.

Proof. Given that the processes and channels in a safe ARN are consistent,Πα (cf. Def.
6) is not empty (it contains at least the empty segment ε).Πα can be organised as a tree,
which is finitely branching becauseAα is finite. If the ARN is progress-enabled, the tree
is infinite. By Kőnigs lemma, it contains an infinite branch λ.

We now prove that λ∈Λα, i.e., λ|p∈Λp for all p∈P and λ|c∈Λc for all c∈C. Let
p∈P and π ≺ λ|p. We know that π is of the form π′|p where π′∈Πα. Therefore, π∈Λfp .
It follows that λ|p∈Λp. Because Λp is closed, we can conclude that λ|p∈Λp. The same
reasoning applies to all channels.

Note that, in the case of non-safe ARNs, being progress-enabled is a necessary but
not sufficient condition to ensure consistency. For example, consider the following two
processes: P recurrently sends a given message m and Q is able to receive a message n
but only a finite, though arbitrary, number of times. If these processes are interconnected
through a reliable channel that ensures to delivering n every time m is published, it is
easy to conclude that the resulting ARN is not consistent in spite of being progress-
enabled: after having engaged in any joint partial trace, both processes and the channel
can proceed (Qwill let the channel deliver n once more if necessary); however, they are
not able to generate a full joint trace because P will want to send m an infinite number
of times and Q will not allow the channel to deliver n infinitely often.

Because the composition of safe ARNs through safe channels is safe, Theo. 9 can
be generalised to guarantee consistency of composition:

Corollary 13 (Consistency of composition) The composition of safe progress-enabled
ARNs is both safe and progress-enabled (and, hence, consistent) provided that inter-
connections are made through safe publication-enabled channels and over interaction-
points in relation to which the ARNs are delivery-enabled.

9

It remains to determine how ARNs can be proved to be safe, progress-enabled, and
delivery-enabled in relation to interaction points, and channels to be safe and publication-
enabled. In this respect, another important result (see [10] for details) is that the com-
position of two ARNs is delivery-enabled in relation to all the interaction-points of
the original ARNs that remain disconnected and in relation to which they are delivery-
enabled. Therefore, because every process defines an (atomic) progress-enabled ARN
(by virtue of being consistent), the proof that an ARN is progress-enabled can be re-
duced to checking that individual processes are delivery-enabled in relation to their
ports and that the channels are publication-enabled. On the other hand, ensuring that
processes and channels are safe relates to the way they are specified and implemented.

All these questions are addressed in the next section, where we also discuss how
service interfaces should be specified in the context of orchestrations that are safe and
progress-enabled. In particular, we show that all the properties that can guarantee con-
sistent composition can be checked at (process/channel) design time, not at (ARN) com-
position time (which, in SOC, is done at run time).

4 Interface specifications for safe ARNs

4.1 Interfaces and orchestrations

Making the discovery and binding of services to be based on interfaces, not implemen-
tations, has the advantage of both simplifying those processes (as interfaces should offer
a more abstract view of the behaviour of the services) and decoupling the publication
of services in registries from their instantiation when needed. In [10] we proposed an
interface theory for ARNs based on linear temporal logic (LTL), which distinguishes
between provides- and requires-points:

– A provides-point r consists of a port Mr together with a consistent set of sentences
Φr over AMr

that express what the service offers to any of its clients.
– A requires-point r consists of a port Mr and a consistent set of sentences Φr over
AMr that express what the service requires from an external service, together with
a consistent set of sentences Ψr over {m!,m¡: m∈Mr} that express requirements
on the channel through which it expects to interact with the external service.

– Matching a requires-point of a service interface with a provides-point of another
service interface amounts to checking that the specification of the latter entails that
of the former.

In Fig. 2, we present an example of an interface for a credit service using a graphical
notation similar to that of SCA. On the left, we have a provides-point Customer and,
on the right, a requires-point IRiskEvaluator . The set of sentences Φc, in the logic
discussed in the next subsection, specifies the service offered at Customer:

– (creditReq¡R (creditReq¡ ⊃ 3≤10(approved!∨denied!))) — either approved
or denied are published within ten time units of the first delivery of creditReq.

– �(approved! ⊃ (accept¡ R≤20 (accept¡ ⊃ 3≤2transferDate!))) — if accept
is received within twenty time units of the publication of approved, transferDate
will be published within 2 time units.

10

The specification Φr of IRiskEvaluator requires the external service to react to
the delivery of every request by publishing result in no more than four time units:
�(request¡ ⊃ 3≤4result!).

The connection with the external service is required to ensure that messages are
transmitted immediately to the recipient.

IBankCreditService

creditReq
approved
denied

transferDate
request
result

getRisk
riskValue

accept

Φc

Φr

Customer IRiskEvaluator

⃞(getRisk!⊃◯request¡)

⃞(result!⊃◯riskValue¡)

Fig. 2. An example of a service interface.

An ARN orchestrates a service-interface by assigning interaction-points to interface-
points in such a way that the behaviour of the ARN validates the specifications of the
provides-points on the assumption that it is interconnected to ARNs that validate the
specifications of the requires-points through channels that validate the corresponding
specifications. Notice that ensuring consistency is essential because an interconnec-
tion that leads to an inconsistent composition would vacuously satisfy any specification
(there would be no behaviours to check against the specification).

Therefore, in order to check that an ARN α orchestrates a service-interface I:

1. For every requires-point r of I , we consider an ARN αr defined by a single process
〈Mr, Λr〉 where Λr is a safety property that validates Φr and makes αr delivery-
enabled in relation to r, which is representative of the safe and progress-enabled
ARNs that can be interconnected at r, i.e., that provides a ‘canonical’ orchestration
of a service that offers a provides-point that matches r.

2. For every requires-point r of I , we consider a channel cr=〈Mr, Λr〉 where Λr is a
safety property that validates Ψr and makes the channel publication-enabled, which
represents the most general channel that can be used for interconnecting an orches-
tration with an external service.

3. We consider the composition α∗ of α with all the αr via 〈Mpr
θr←− Mr

id−→ Mr, 〉
where pr is the interaction-point of α that corresponds to the requires-point r
through the mapping θr:Mop

r →Mp (for every port M , we denote by Mop the port
defined by Mop+=M− and Mop−=M+).

4. For α to orchestrate the interface I we require that Λα∗ |AMr � Φr for every
provides-point r of I . Notice that Λα∗ |AMr is the projection of the traces of the
composed ARN on the alphabet of the provides-point r which, by Prop. 2, is a
safety property.

The question now is how to choose such canonical processes 〈Mr, Λr〉 (and chan-
nels). Typically, in logic, the collection ΛΦr of all traces that validate Φr (Ψr in the
case of channels) would meet the requirement because any other ARN would give rise

11

to fewer traces over AMr
. However, if we want to restrict ourselves to processes and

channels that are safe, one has to choose interfaces in the class of specifications that
denote safety properties, i.e., for which ΛΦr is closed. For example, not every specifi-
cation in LTL is in that class. The same applies to provides-points because, by Prop. 2,
Λα∗ |AMr is a safety property. In this case, because the properties offered in a provides-
points derive from the ARN that orchestrates the interface, we would need to be able
to support the development of safe processes and channels from logical specifications.
Therefore, we need to discuss which logics support that class of specifications.

4.2 A logic of safety properties

Several extensions of LTL (e.g., Metric Temporal Logic – MTL [14]) have been pro-
posed in which different forms of bounded liveness can be expressed through eventu-
ality properties of the form 3Iφ where I is a time interval during which φ is required
to become true. Another logic of interest is PROMPT-LTL [15] in which, instead of a
specific bound for the waiting time, one can simply express that a sentence φ will be-
come true within an unspecified bound — 3pφ. Yet another logic is PLTL [3] in which
one can use variables in addition to constants to express bounds on the waiting time and
reason about the existence of a bound (or of a minimal bound) for a response time.

The logic we propose to work with, which we call SAFE-LTL, is a ‘safety’ fragment
of LTL — positive formulas with ‘release’ and ‘next’ — which corresponds to the
fragment of PLTL where intervals are finite and bounded by constants. This logic can
also be seen as a restricted version of Safety MTL [18] (a fully decidable fragment of
MTL) where, instead of an explicit model of real-time, we adopt an implicit one in
which time is measured by the natural numbers (as in PLTL). From a methodological
point of view, the adoption of an implicit, discrete time model can be justified by the fact
that, in SOC, one deals with ‘business’ time where delays are measured in discrete time
units that are global (i.e., the time model is synchronous even if the interaction model
is asynchronous). This is somewhat different from time-critical systems, for which a
continuous time model (i.e., with no fixed minimal time unit) is more adequate.

Definition 14 (SAFE-LTL) Let A be an alphabet.

– The language of SAFE-LTL over A is defined by (where a∈A):

φ ::= a | ¬a | φ ∨ φ | φ ∧ φ | ©φ | φR φ

– Sentences are interpreted over λ∈(2A)
ω as follows :

λ � a iff a∈λ(0); λ � ¬a iff a/∈λ(0)

λ � φ1 ∧ φ2 iff λ � φ1 and λ � φ2; λ � φ1 ∨ φ2 iff λ � φ1 or λ � φ2
λ �©φ iff λ1 � φ
λ � φ1 R φ2 iff, for all j, either λj � φ2 or there exists k<j s.t. λk � φ1

Notice that sentences are in positive form: negation is only available for atomic proposi-
tions (actions). This allows us to define (a ⊃ φ) as an abbreviation for (¬a∨φ) as used
in the interface specifications above. We also use �φ as an abbreviation of (falseR φ).

The bounded operators used in the interface specifications given in Sec. 4.1 amount
to the following abbreviations where t∈N:

12

– (φ1 R≤t φ2) ≡ φ2 ∧ (φ1 ∨©φ2) ∧ · · · ∧ (φ1 ∨©φ1 ∨ · · · ∨©t−1φ1 ∨©tφ2)
– (φ1 U≤t φ2) ≡ φ2 ∨ (φ1 ∧©φ2) ∨ · · · ∨ (φ1 ∧©φ1 ∧ · · · ∧©t−1φ1 ∧©tφ2)
– �≤tφ ≡ falseR≤t φ ≡ φ ∧©φ ∧ · · · ∧©tφ
– 3≤tφ ≡ true U≤t φ ≡ φ ∨©φ ∨ · · · ∨©tφ

Theorem 15 (Safety) All the sentences of SAFE-LTL express safety properties, i.e., for
every sentence φ, the set of traces that satisfy it is closed.

Proof. See [19] for a similar logic that uses ‘unless’ instead of ‘release’.

Corollary 16 (Safe specifications) It follows from the previous theorem that all speci-
fications over SAFE-LTL are safe, i.e., for all sets of sentences Φ, the set ΛΦ of all traces
λ such that (λ � Φ) is a safety property.

Proof. The results follow from the fact that the intersection of any number of closed
properties is closed.

4.3 Ensuring delivery/publication-enabledness

In addition to making sure that specifications generate safety properties, it is important
to guarantee that specifications associated with requires-points generate processes that
are delivery-enabled in relation to their port and channels that are publication-enabled.
Ensuring delivery/publication-enabledness is not the same as proving that an implemen-
tation satisfies a specification because those properties are not expressible as sentences
whose satisfaction can be checked over individual traces: they need to be checked over
the set of all traces that satisfy the specification.

Traces are observations of the behaviours of systems that implement processes. Typ-
ical examples of (models of) such systems that are used in association with a logic are fi-
nite automata of some kind such that, for every specification 〈A,Φ〉, there is a system SΦ
over the alphabet A such that ΛSΦ=ΛΦ. The idea is then to check delivery/publication-
enabledness directly over SΦ.

In the case of LTL, systems are non-deterministic Bücchi automata (NBAs) [21]. An
NBA over an alphabet A is a tuple of the form 〈Q, δ,Q0, Q∞〉 where Q is a finite set of
states, Q0 ⊆ Q is the subset of initial states, Q∞ ⊆ Q is the set of accepting states, and
δ : Q × A → 2Q is the transition relation. The property defined by 〈Q, δ,Q0, Q∞〉 is
the set of infinite sequences of elements of A that, starting on an initial state, generate
a run that visits at least one of the accepting states infinitely often.

In relation to safety properties, there is also a closure operator on NBAs [2]: the
closure of 〈Q, δ,Q0, Q∞〉 is 〈Q, δ,Q0, Q〉, i.e., the NBA obtained by making all states
accepting. A reduced NBA (i.e., one in which every state leads to an accepting state) de-
fines a safety property if and only if its closure defines the same property. Furthermore,
every NBA is equivalent to a reduced one.

Therefore, given that we are interested in working with safe specifications, we can
choose closed reduced NBAs as models of implementations of processes and channels.
In this case, it is easy to see that all that needs to be checked for processes (resp. chan-
nels) to be delivery (resp. publication) enabled is that, from every state of the automata
that implement them, the set of transitions from that state satisfies the corresponding

13

property, i.e., for every set of deliveries (resp. publications), there is a transition that
delivers (resp. publishes) exactly those messages. As a result, the complexity of the
checking process is in the order of the product of the size of the automaton and of the
sub-language of deliveries/publications.

5 Concluding remarks

In this paper, we discussed the problem of ensuring that the composition of orchestra-
tions of matching service interfaces is consistent, i.e., that the orchestrations of both
services can effectively work together when interconnected through the communica-
tion channels that bind them. Our findings led us to propose a refinement of the service
interface and component algebra presented in [10] in which services are orchestrated
by asynchronous relational nets that exhibit only safety properties (i.e., any ‘bad’ be-
haviour should be able to detected after a finite number of steps) and are progress-
enabled (i.e., always able to make progress, even if by remaining idle). The advantages
of working with safe progress-enabled ARNs are that they are consistent (Theo. 12) and
closed under composition provided that interconnections are made through channels
that are safe and publication-enabled and over interaction-points in relation to which
the ARNs are delivery-enabled (Cor. 13).

We also investigated the nature of the logics that should be used for specifying ser-
vice interfaces and describing the processes and channels through which services are
orchestrated. In particular, we exhibited a fragment of LTL in which only safety proper-
ties can be specified and argued that this fragment is expressive enough for the typical
properties through which service interfaces are specified. In this setting, binding ser-
vices, through the provides-points of their interfaces, to requires-points of the interfaces
of discovered services, leads to a consistent composition of the service orchestrations.

Finally, we showed that, by using a logic such as SAFE-LTL, closed reduced NBAs
can be used as models of implementations of safe processes and channels, and that
checking processes/channels for delivery/publication enabledness can be done over
those automata with a complexity that is in the order of the product of the size of
the automata and of the sub-languages of deliveries/publications. Equally importantly,
these checks can be made at design time, i.e., when implementations are chosen for or-
chestrating service interfaces. Therefore, there is no need for any additional checking to
be made at discovery/run time to guarantee consistency; the only checking that needs to
be made at run time is that the specifications of provides-points entail the specifications
of the corresponding requires-points.

One point that we intend to investigate further concerns the interplay between con-
sistency, safety, and the behavioural model. We intend to explore the use of sub-domains
of traces that are applicable to SOC and generalise the underlying time model (and as-
sociated logic) using the notion of ‘safety relative to a given condition’ developed in
[12]. Choosing a sub-domain can have an impact in the structure of the automata and
the complexity of checking that processes and channels satisfy delivery/publication en-
abledness (and that ARNs orchestrate service interfaces), which are aspects that we did
not have space left in the paper to analyse and explain in full.

14

Acknowledgments

We would like to thank Nir Piterman for many helpful comments and suggestions. This
work was partially supported by FCT under contract (PTDC/EIA-EIA/103103/2008)
and by the Tracing Networks research programme funded by the Leverhulme Trust.

References

1. B. Alpern and F. B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185, 1985.
2. B. Alpern and F. B. Schneider. Recognizing safety and liveness. Distributed Computing,

2(3):117–126, 1987.
3. R. Alur, K. Etessami, S. L. Torre, and D. Peled. Parametric temporal logic for “model

measuring”. ACM Trans. Comput. Log., 2(3):388–407, 2001.
4. C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.
5. A. Betin-Can, T. Bultan, and X. Fu. Design for verification for asynchronously communi-

cating web services. In Ellis and Hagino [9], pages 750–759.
6. D. Beyer, A. Chakrabarti, and T. A. Henzinger. Web service interfaces. In Ellis and Hagino

[9], pages 148–159.
7. T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specification: a new approach to design

and analysis of e-service composition. In WWW, pages 403–410, 2003.
8. L. de Alfaro and T. A. Henzinger. Interface theories for component-based design. In T. A.

Henzinger and C. M. Kirsch, editors, EMSOFT, volume 2211 of LNCS, pages 148–165.
Springer, 2001.

9. A. Ellis and T. Hagino, editors. Proceedings of the 14th international conference on World
Wide Web, WWW 2005, Chiba, Japan, May 10-14, 2005. ACM, 2005.

10. J. L. Fiadeiro and A. Lopes. An interface theory for service-oriented design. In D. Gi-
annakopoulou and F. Orejas, editors, FASE, volume 6603 of LNCS, pages 18–33. Springer,
2011.

11. X. Fu, T. Bultan, and J. Su. Conversation protocols: a formalism for specification and verifi-
cation of reactive electronic services. Theor. Comput. Sci., 328(1-2):19–37, 2004.

12. T. A. Henzinger. Sooner is safer than later. Inf. Process. Lett., 43(3):135–141, 1992.
13. R. Kazhamiakin, M. Pistore, and L. Santuari. Analysis of communication models in web

service compositions. In L. Carr, D. D. Roure, A. Iyengar, C. A. Goble, and M. Dahlin,
editors, WWW, pages 267–276. ACM, 2006.

14. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems,
2(4):255–299, 1990.

15. O. Kupferman, N. Piterman, and M. Y. Vardi. From liveness to promptness. Formal Methods
in System Design, 34(2):83–103, 2009.

16. A. Martens. Process oriented discovery of business partners. In C.-S. Chen, J. Filipe,
I. Seruca, and J. Cordeiro, editors, ICEIS (3), pages 57–64, 2005.

17. OSOA. Service component architecture: Building systems using a service oriented architec-
ture, 2005. White paper available from www.osoa.org.

18. J. Ouaknine and J. Worrell. Safety metric temporal logic is fully decidable. In H. Hermanns
and J. Palsberg, editors, TACAS, volume 3920 of LNCS, pages 411–425. Springer, 2006.

19. A. P. Sistla. Safety, liveness and fairness in temporal logic. Formal Asp. Comput., 6(5):495–
512, 1994.

20. O. W. TC. Web services business process execution language, 2007. Version 2.0. Technical
report, OASIS.

21. M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Inf. Comput., 115(1):1–
37, 1994.

15

