
Softw Syst Model
DOI 10.1007/s10270-012-0236-1

SPECIAL SECTION PAPER

A model for dynamic reconfiguration in service-oriented
architectures

José Luiz Fiadeiro · Antónia Lopes

Received: 22 November 2010 / Revised: 17 November 2011 / Accepted: 6 February 2012
© Springer-Verlag 2012

Abstract The importance of modelling the dynamic char-
acteristics of the architecture of software systems has long
been recognised. However, the nature of the dynamics of
service-oriented applications goes beyond what is currently
addressed by architecture description languages (ADLs).
At the heart of the service-oriented approach is the logical
separation between the service need and the need-fulfillment
mechanism, i.e., the provision of the service: the binding
between the requester and the provider is deferred to run
time and established at the instance level, i.e., each time the
need for the service arises. As a consequence, computation in
the context of service-oriented architectures transforms not
only the states of the components that implement applica-
tions but also the configurations of those applications. In this
paper, we present a model for dynamic reconfiguration that
is general enough to support the definition of ADLs that are
able to address the full dynamics of service-oriented appli-
cations. As an instance of the model, we present a simple
service-oriented ADL derived from the modelling language
srmlthat we developed in the Sensoria project.

Keywords Software architecture · Service-oriented
computing · Dynamic formal modelling

Communicated by Dr. Muhammad Ali Babar, Flavio Oquendo, and
Ian Gorton.

J. L. Fiadeiro
Department of Computer Science,
University of Leicester, University Road, Leicester LE1 7RH, UK
e-mail: jose@mcs.le.ac.uk

A. Lopes (B)
Faculty of Sciences, University of Lisbon, Campo Grande,
1749-016 Lisbon, Portugal
e-mail: mal@di.fc.ul.pt

1 Introduction

Several architectural aspects arise from service-oriented
computing (SOC), loosely understood as a paradigm that sup-
ports the construction of complex software-intensive systems
from entities, called services, that can be dynamically (i.e.
at run time) discovered and bound to applications to fulfil
given business goals. On the one hand, we have the so-called
service-oriented architecture (SOA), normally understood as
a (partially) layered architecture in which business processes
can be structured as choreographies of services and ser-
vices are orchestrations of enterprise components. SOAs are
supported by an integration middleware providing the com-
munication protocols, brokers, identification/binding/com-
position mechanisms, and other architectural components
that support a new architectural style. This style is charac-
terised by an interaction model between service consumers
and providers that is mediated by brokers that maintain reg-
istries of service descriptions and are capable of binding the
requester who invoked the service to an implementation of
the service description made available by a provider that is
able to enter into a service-level agreement (SLA) with the
consumer.

On the other hand, this new style and form of enterprise-
scale IT architecture has a number of implications on the
nature of the configurations (or run-time architectures) of the
systems that adhere to that style (what we will call service-
oriented systems). If we take one of the traditional concepts of
architecture as being “concerned with the selection of archi-
tectural elements, their interactions and the constraints on
those elements and their interactions necessary to provide a
framework in which to satisfy the requirements and serve as
a basis for the design” [38], it is possible to see why ser-
vice-oriented systems fall outside the realm of the languages
and models that we have been using so far for architectural

123

J. L. Fiadeiro, A. Lopes

description: for service-oriented systems, the selection of
their architectural elements (components and connectors) is
not made at design time; as new services are bound, at run
time, to the applications that, in the system, trigger their dis-
covery, new architectural elements are added to the system
that could not have been anticipated at design time. In other
words, the new style is essentially ‘dynamic’ in the sense that
it applies not only to the way configurations are organised but
also primarily to the way they evolve.

For example, a typical business system may rely on an
external service to supply goods; in order to take advantage
of the best deal available at the time the goods are needed,
the system may resort to different suppliers at different times.
Each of those suppliers may in turn rely on services that they
will need to procure. For instance, some suppliers may have
their own delivery system but others may prefer to outsource
the delivery of the goods; some delivery companies may
have their own transport system but prefer to use an external
company to provide the drivers; and so on. In summary,
the structure of a service-oriented system, understood as the
components and connectors that determine its configuration,
is intrinsically dynamic. Therefore, the role of architecture
in the construction of a service-oriented system needs to go
beyond that of identifying, at design time, components and
connectors that developers will need to implement. Because
these activities are now performed by the SOA middleware,
what is required from software architects is that they identify
and model the high-level business activities and the depen-
dencies that they have on external services to fulfil their goals.

Run-time architectural change is itself an area of software
engineering that has deserved considerable attention from
the research community [3,26,33,34,36,43], mainly as a
response to the need for mechanisms that can enhance adapt-
ability and evolvability of systems in the face of changing
requirements or operating conditions. Although the dynamic
nature of the architecture of service-oriented systems could
be thought to fall within this general remit, there are a number
of specificities that suggest that a more focused and funda-
mental study of dynamic reconfiguration in the context of
SOC is needed.

Indeed, dynamic reconfiguration is intrinsic to the compu-
tational model of SOC, i.e., it is not a process that, like adapt-
ability or evolvability, is driven by factors that are external
to the system. Naturally, self-adaptation is a key concern for
many systems but, essentially, this means reacting to changes
perceived in the environment in which the system operates.
In the case of services, the driver for dynamic reconfigura-
tion (through change of the source of provision each time
a service is required) is not so much the need to adjust the
behaviour in response to changes in the environment: it is part
of the way systems should be designed to meet goals that are
endogenous to the business activities that they perform. In
both cases, the aim is to optimise the way quality-of-service

requirements are met. However, while in architecture-based
approaches to self-adaptation the optimisation process is pro-
grammed in terms of reconfiguration actions, in the case of
services the optimisation process is determined by quality-
of-service requirements that derive from business goals.

In this paper, we address the lack of architectural mod-
els that can cope with the intrinsic dynamicity of service
configuration by showing how the mathematical model that
we proposed in [24] for service discovery and binding can
be used as a semantic domain for service-oriented architec-
tural description languages. Mathematical models that cap-
ture the essence of a paradigm play an essential role as a
foundation for methods, languages and support tools for that
paradigm [13]. Architectural models in particular contrib-
ute to the identification of abstractions that are useful for
describing the architecture of software systems, including
the architecture of specific classes of systems. It has now
become consensual that a general purpose ADL must include
explicit support for modelling both component and connec-
tor types as well as configurations, for example as graphs
whose nodes are typed by component and connector types
and whose edges represent attachments. In order to under-
stand how SOC impacts on those configurations, and how
this differs from the other forms of dynamic reconfiguration
mentioned above, we need to resort to a mathematical model
that offers a layer of abstraction at which we can capture
the nature and analyse the properties of the transformations
that, under SOC, operate on configurations. An example of
how an operational account of dynamic reconfiguration under
service-oriented architectures can be defined over our math-
ematical model can be found in [15].

The mathematical model proposed in this paper was used
in the Sensoria project to define the dynamic semantics of
the language srml [25] and support quantitative (e.g., [7])
and qualitative (e.g., [2]) analysis techniques. Herein, we
define a ‘light’ version of srmlthat is simpler but expressive
enough to be used as an ADL for service-oriented applica-
tions. In this language, we use a linear-time temporal logic
(LTL) for specifying the behaviour of the components and
interaction protocols through which business systems are
configured and services are delivered. In what concerns the
dynamic aspects, we adopt a graph-based approach in the
tradition of what we and other authors have used for archi-
tectural reconfiguration [14,43]. Essentially, we introduce
a mechanism of reflection (as used in other approaches to
dynamic reconfiguration [17,28,30,41,42]) by which con-
figurations are typed with models of business activities and
service models define rules for dynamic reconfiguration.

More precisely, the interface between the structural and
dynamic aspects of our approach operates as follows: (1) LTL
specifications are used for describing the behaviour of com-
ponents and interactions between them, and also for specify-
ing the behaviour required of, or offered by, services (what

123

A model for dynamic reconfiguration in service-oriented architectures

in Sect. 5 we call interfaces); (2) structures (which we call
modules) of such specifications are used for typing the con-
figurations of systems—they describe the behaviour of the
components and interconnections present in the configura-
tion and they identify the interfaces to external services that
may need to be discovered; (3) modules also encapsulate
rules for evolving the configuration when the discovery of a
required service is triggered. At the same time that the con-
figuration is changed, a new module is calculated that is used
for typing the resulting configuration (which is what makes
our model reflective).

The paper is organised as follows. In Sect. 2, we provide
the basic concepts that underly our view of dynamic recon-
figuration in service-oriented architectures and introduce the
example that we use throughout the paper for illustrating our
approach (a financial case study developed in Sensoria). In
Sect. 3, we introduce srmLight and its role in this paper. In
Sect. 4, we define a model for state configurations of systems
and, in Sect. 5, we define a model for business-reflective con-
figurations of systems. In Sect. 6, we put forward a model of
services as rules for the dynamic reconfiguration of systems
and we outline an operational semantics for the rules defined
by services. We discuss related work in Sect. 7 and conclude
in Sect. 8 by pointing to other aspects of SOC that we have
been investigating.

2 Preliminaries

2.1 Configurations of global computers

As mentioned in Sect. 1, SOC defies the traditional notion
of software system. Whereas, in the context of component-
based development, we can design a system “by assembling
prefabricated software components” [19], within SOC it is
not possible to define, at design time, what the architecture
of a system will be because it will evolve, at run time, as
applications trigger the discovery of services and bind to
them to fulfil given business goals. Therefore, one needs to
think that computation takes place in the context of ‘global
computers’—computational infrastructures that are available
globally and support the distributed execution of business
applications—and that computation in this context trans-
forms not only the states of the components that implement
applications but also the configurations of those applications.

At a certain level of abstraction, the configuration of such a
global computer on a given moment of time can be seen to be
a particular case of component-connector architectural con-
figurations: a graph of components (applications deployed
over a given execution platform) linked through wires (inter-
connections between components over a given network).1

1 In SOC, message exchanges are essentially peer-to-peer and, hence,
for simplicity, we take all connectors to be binary.

We denote by COMP and WIRE the universes of compo-
nents and wires, respectively.

Definition 1 (Configuration) A configuration is a simple
graph G such that nodes(G) ⊆ COMP (i.e., nodes are com-
ponents) and edges(G) ⊆WIRE (i.e., edges are wires). Each
edge w is a (unordered) pair of nodes that we denote by
c1

w←→c2.

The fact that the graph is simple—undirected, without
self-loops or multiple edges—means that all interactions
between two components are supported by a single wire
and that no component can interact with itself (components
are instances; different components of the same type—i.e.,
that implement the same specification—can interact with
each other). The graph is undirected because typical service-
oriented interactions are conversational, i.e., the wires need
to be able to transmit messages both ways. These configura-
tions are global in the sense that they apply to a given global
computer. In Sect. 5, we refine this notion by recognising
sub-configurations that are local to given business applica-
tions.

2.2 Running example

Configurations of service-oriented applications change as a
result of the creation of new business activities and the exe-
cution of existing ones: new components or wires may be
added to a configuration because the execution of a business
activity triggered the discovery of and binding to a service
that is required.

As a running example, we use a (simplified) scenario in
which there is a financial services organisation that offers
a mortgage-brokerage service (called MortgageFinder)
that, in addition to finding the best mortgage deal for a mort-
gage request, opens a bank account associated with a loan (if
the lender does not provide one) and procures an insurance
policy (if required by either the customer or the lender). The
provision of this service depends on three other services—a
Lender , a Bank and an I nsurance—that are assumed to
be provided by other organisations and procured at run time,
each time they are needed, according to the profile of the
customer and market availability.

In this context, let us consider a situation in which there
is a business activity ABob processing a mortgage request
issued through a user interface BobHouseUI on behalf of
a customer (Bob), and that this activity is being served by
MortgageFinder. Suppose that the active computational
ensemble of components that collectively pursue the busi-
ness goal of this activity in the current state is as highlighted
(through a dotted line) on the left-hand side of Fig. 1—
the component BobMortAg is orchestrating the delivery of
MortgageFinder, which requires it to interact with the
component BobEstAg that is acting on behalf of Bob (who is

123

J. L. Fiadeiro, A. Lopes

Fig. 1 Two configurations that
shows the sub-configuration that
corresponds to the business
activity ABob before and after
the discovery of a provider of
the service Lender , respectively

RockLoans

BobMortAg

bcl

BobHouseUI

BobEstAg

bea

bam

MortRegistry

BobMortAg

BobHouseUI

BobEstAg

bea

bam

MortRegistry

AliceManag

AliceRegUI

AliceManag

AliceRegUI

bcr

arm

amr

bcr

arm

amr

using the interface BobHouseUI), and MortRegistry, a data-
base of trusted lenders. Other components may be present
in the current configuration that account for other business
activities running in parallel with ABob, say activities pro-
cessing other mortgage requests that share the same database
MortRegistry or, as depicted in Fig. 1, updating that registry
with new lenders. That is, ABob is in fact a sub-configuration
of a larger system.

Let us further imagine that the discovery of a provider of
the service Lender is triggered by BobMortAg. As illustrated
in the right-hand side of Fig. 1, as a result of the execution
of the discovery and binding process, a new component—
RockLoans—is added to the current configuration and bound
to the component BobMortAg that is orchestrating the deliv-
ery of MortgageFinder. This new component is responsi-
ble for the provision of the service by the selected provider
of Lender .

This illustrates why, in order to capture the dynamic
aspects of SOC, we need to look beyond the information
available in configurations. They account only for which
components are active and how they are interconnected, not
why they are active and interconnected in that way. There-
fore, we need to have available information that accounts for
the dependencies that the activity has on externally provided
services, the situations in which they need to be discovered,
and the criteria according to which they should be selected.
The approach that we developed achieves this by making
configurations business reflective, i.e. by labelling each sub-
configuration that corresponds to a business activity with a
model of the workflow that implements its business logic.
The models that we propose for this effect are called activ-
ity modules, whose operational semantics defines the rules
according to which service-oriented systems are dynamically
reconfigured.

3 SRMLight

Our goal in this paper is to offer a formal model for the recon-
figuration steps that arise in service-oriented systems. This
model is defined in terms of abstractions like COMP and
WIRE so that it is independent of the nature of components
and wires and of the underlying computation and commu-
nication model. In order to illustrate how this model can be
used to support the definition of ADLs for service-oriented
systems, we use srmLight. This language, though not a full-
fledged ADL, is rich enough to illustrate the use of the model
and to provide a better insight on its capabilities.

srmLight is a ‘light’ version of the modelling language
srml [25] that was developed as part of the Sensoria pro-
ject [45] within which it was validated over a number of
case studies (e.g., in telecommunications [1], automotive [9],
and financial systems [25]). The simplification retains all the
essential elements of the execution and reconfiguration mod-
els of srml, which can be found in [23]. A detailed account
of the mortgage brokerage service description in srml can
be found in [25].

In srmLight, components can either interact asynchro-
nously by exchanging messages, or synchronously by read-
ing from or writing into their states. Asynchronous commu-
nication is essential for supporting the forms of loose binding
that are typical of SOC, whereas synchronous interactions are
useful for tighter binding with persistent components such as
databases or software-enabled devices (sensors, GPSs, and
so on).

In order to handle data, we assume a fixed data space that
we model as a pair � = 〈D, F〉where D is a set of data sorts
(such as int, currency, and so on) and F is a D∗×D-indexed
family of sets of operations over the sorts. We also assume
a fixed partial algebra U for interpreting � [39]. Partiality

123

A model for dynamic reconfiguration in service-oriented architectures

arises from the fact that variables or parameters may become
defined only when certain events occur. We use ⊥ to repre-
sent the undefined value and work with strong equality, i.e.,
two terms need to be defined in order to be equal.

Every architectural element has a signature, which defines
the messages and variables that characterise their behaviour.
Messages may have a number of parameters in order to trans-
mit data.

Every message m has a finite set Pm of parameters each
of which is a pair 〈p, d〉where p is the name of the parameter
and d ∈ D is the type of p.

A component signature is a pair 〈V, M〉, where:

– V is a finite set of variables each of which is a pair 〈v, d〉
where v is the name of the variable and d ∈ D is the type
of v.

– M is a finite set of messages partitioned in two sets M−
and M+. The messages in M− are said to have polarity
− (meaning that they are outgoing), and those in M+ have
polarity + (meaning that they are incoming).

For example, the signature of the component BobMortAg of
the running example might include messages that account
for requests for a proposal (reqP) from a customer, replying
to the customer (replyP), asking a lender for a quote (askQ)
or receiving a quote from a lender (recQ).

V – S:[init,waiting,replied], seqNum:nat,
lender:set_of(lender_id), charge:nat

M+ – reqP, recQ

Preq P – usr:usr_data, income:money
PrecQ – prop:mortgage, loan:loan_data,

accountRequired:bool

M− – askQ, replyP

Pask Q – usr:usr_data, income:money, id:nat
Preply P – prop:mortgage, cost:money

An A-wire signature is a finite set M of messages.
Notice that the messages of A-wires do not have a polarity

because the role of A-wires is to transmit messages between
components and, hence, each message is both incoming and
outgoing. In addition to a signature, every A-wire c1

w←→c2

has an associated connection, which interconnects the com-
ponents c1 and c2.

Let c1
w←→c2 be an A-wire with signature M, and 〈Vi , Mi 〉

the signature of ci (i = 1, 2). The connection associated
with w is a pair of injections μi : M → Mi such that
μ−1

i (M+i) = μ−1
j (M−j), {i, j} = {1, 2}. Each injection μi

is called the attachment of w to ci . We denote the connection
by (c1

μ1←− w μ2−→ c2).

The condition μ−1
i (M+i) = μ−1

j (M−j) means that the
wire connects messages that have opposite polarities, i.e.,
an incoming message of one component is connected by the
wire to an outgoing message of the other component.

Notice that the injections are not identities: the compo-
nents and the wire may all use different names for the same
message. This is important because, in the context of SOC, it
is not possible to anticipate which names will be used by ser-
vices discovered and bound to at run time. Therefore, inter-
connections are established explicitly by the attachments, not
implicitly by name sharing.

As an example, suppose that RockLoans is a component
whose signature includes messages that account for requests
for a mortgage quote (reqM) and replies to those requests
(replyM):

M+ – reqM

Preq M – usr:usr_data, income:money, id:nat

M− – replyM

PreplyM – prop:mortgage, loan:loan_data,
accountRequired:bool

The signature of the A-wire bcl used for connecting Bob-
MortAg and RockLoans might then include:

M – req, reply

Preq – usr:usr_data, income:money, id:nat
Preply – prop:mortgage, loan:loan_data,

accountRequired:bool

The connection associated with the wire bcl would then
involve, as attachments, the injections

μ1 : req
→ ask Q, reply
→ recQ
μ2 : req
→ req M, reply
→ replyM

Notice that, as required, ask Q and req M , which are con-
nected via req, do have opposite polarities: ask Q is outgo-
ing for BobMort Ag and incoming for RockLoans (ditto for
replyM and recQ).

A-wires do not connect variables, just messages. On the
other hand, S-wires connect only variables. An S-wire sig-
nature is a finite set V of variables. Let c1

w←→c2 be an
S-wire with signature V, and 〈Vi , Mi 〉 the signature of ci

(i = 1, 2). The connection associated with w is a pair of par-
tial injections μi : V← Vi such that μ1(V1) ∩ μ2(V2) = ∅
and μ1(V1) ∪ μ2(V2) = V. We denote this connection by
(c1

μ1−→ w μ2←− c2).
As an example, assume that the signature of the compo-

nent MortRegistry, a database, includes:

123

J. L. Fiadeiro, A. Lopes

V – selectedLenders:set_of(lender_id), reqNum:nat

The signature of the S-wire bcr that connects BobMortAg
and MortRegistry would then include

V – le1,le2:set_of(lender_id), seq1,seq2:nat,

so that the connection is established via the following partial
injections:

μ1 : lender
→ le1, seqNum
→ seq1
μ2 : selectedLender
→ le2, reqNum
→ seq2

Note that partiality is essential on the side of BobMortAg,
whose signature has more variables than those being con-
nected to MortRegistry.

4 State configurations

In Sect. 2, we defined configurations of global computers
as graphs of components linked through wires. In order to
account for the way configurations evolve, it is necessary to
consider the states of the configuration elements and the steps
that they can execute.

For this purpose, we take that every component c ∈
COMP and wire w ∈ WIRE of a configuration may be
in a number of states, the set of which is denoted by STATEc

and STATEw, respectively. We further assume that, for every
component c ∈ COMP and wire w ∈WIRE, there are sub-
sets STATE 0

c and STATE 0
w of initial states.

In srmLight, states consist of the values taken by a num-
ber of typed variables and buffers (modelled as sets) where
they store the messages that are pending to be processed.
More precisely, a state of a component c with signature
〈V, M〉 (an element of STATEc) is a pair 〈VAL, INV〉,
where:

– VAL assigns to every 〈v, d〉 ∈ V and 〈p, d〉 ∈ Pm, m ∈
M, an element of dU .

– INV ⊆ M+ is the set of messages that have been invoked
and are waiting to be processed.

We use sets as buffers because components execute in
‘sessions’ and, within a session, messages are not repeated.

For example, in BobMortAg we use the variable S to model
a state machine that captures the workflow executed by the
component. A possible initial state might assign ini t to S
and undefined values (⊥) to the other variables and message
parameters.

A state for an A-wire w with signature M (an element of
STATEw) is a pair 〈VAL,PND〉 where PND ⊆ M—the

set of messages that are pending to be delivered by the wire—
and VAL assigns values to the parameters of the messages as
in the case of states for component signatures. On the other
hand, because they are synchronous, S-wires are stateless.

Based on state abstractions for components and wires—
STATEc and STATEw—we can define a notion of state for
a whole configuration:

Definition 2 (State configuration) A state configuration is a
pair 〈G,S〉, where G is a configuration and S is a configura-
tion state, i.e., a mapping that assigns an element of STATEc

to each c ∈ nodes(G) and an element of STATEw to each
w ∈ edges(G).

A state configuration 〈G,S〉 may change in two different
ways:

– A state transition from S to S ′ can take place within the
configuration G; we call such transitions execution steps.
An execution step involves a local transition at the level
of each component and wire, though some may be idle.

– Both a state transition from S to S ′ and a change from
the configuration G to another configuration G′ can take
place; we call such transitions reconfiguration steps.

In this section, we discuss execution steps, leaving reconfig-
uration steps to Sect. 6.

The nature of execution steps is abstracted away by assum-
ing that, for every c ∈ COMP (resp. w ∈WIRE), and every
pair of states s, s′ ∈ STATEc (resp. STATEw), there is a
family STEPs→s′

c (resp. STEPs→s′
w) of steps from s to s′.

In the particular case of srmLight, an execution step in

STEP〈VAL,INV〉→〈VAL′,INV ′〉
c for a component c with sig-

nature 〈V, M〉 consists of four sets of messages PRC, EXC,

DLV and PUB such that:

– PRC ⊆ INV is the set of messages that are selected to
be processed during the step.

– EXC ⊆ PRC is the set of selected messages that are
actually executed (the remaining ones are discarded).

– DLV ⊆ M+ is the set of messages that are delivered to
the component during the step.

– PUB ⊆ M− is the set of messages that are published by
the component during the step.

– INV ′ = (INV \ PRC) ∪DLV

That is, the state is changed by removing from the buffer
the messages selected to be processed (executed or discarded)
and adding those that are delivered to the component. The
variable valuation can also change, of course.

An execution step in STEP〈VAL,INV〉→〈VAL′,INV ′〉
w for

an A-wire w with signature M consists of two sets of mes-
sages DLV and PUB such that:

123

A model for dynamic reconfiguration in service-oriented architectures

– DLV ⊆ PND is the set of messages that are delivered
by the wire during the step.

– PUB is the set of messages that are published to the wire
during the step.

– PND′ = (PND \DLV) ∪ PUB

That is, the state is changed by removing from the buffer
the messages that are delivered to the components and adding
those that are published to the wire.

It remains to define how components and wires perform
joint execution steps as part of a configuration.

Definition 3 (Configuration execution step) Given a config-
uration G, an execution step between a pair of states S and
S ′ consists of a mapping T that assigns to every component

c (resp. wire w), a step in STEP
Sc→S ′c
c (resp. STEPSw→S ′w

w)
subject to a number of constraints that ensure that the execu-
tion step of every wire agrees with the execution steps of the
components that the wire connects.

The specific contraints that, srmLight, apply to execution
steps are, for every connection (c1

μ1←− w μ2−→ c2):

– PUBw = μ−1
1 (PUBc1) ∪ μ−1

2 (PUBc2)

– DLVw = μ−1
1 (DLVc1) ∪ μ−1

2 (DLVc2)

That is, every wire delivers all messages to (and only to)
the components it connects, and all the messages that are
published to the wire come from the same components.

Definition 4 (Execution path and behaviour) An execution
path for a component or wire is an infinite sequence of alter-
nating states and steps λ = 〈s0t0s1t1 · · · 〉 such that s0 is an
initial state and, for every i , ti is an execution step between
si and si+1. The behaviour of a component c (resp. wire w)
is a set �c (resp. �w) of execution paths.

Given an execution path λ = 〈s0t0s1t1 · · · 〉, we denote by
λi the i th suffix of the path λ, i.e. the infinite sequence that
starts in state si .

Definition 5 (Configuration execution path and behaviour)
An execution path for a configuration G consists of an infi-
nite sequence λ = 〈S1T1S2T2 · · · 〉 of alternating states and
steps and, for every component c (resp. wire w), an index
ic (resp. iw). The behaviour of a configuration G, which we
denote by �G , consists of all the execution paths λ such that
the projection of λic (resp. λiw) into the states and steps of c
(resp. w), belongs to �c (resp. �w).

The reason for the indexes is that we need to take into
account the fact that, as exemplified in Sect. 6, configurations
may evolve through the addition of components or wires.
Therefore, we need to account for the state in which compo-
nents and wires join a configuration.

5 Business-reflective configurations

In order to capture the business activities that perform in a
configuration and determine how the configuration evolves,
we need a more sophisticated typing mechanism that goes
beyond the typing of the individual components and wires:
we need to capture activities as more complex structures of
specifications, which we call activity modules—specification
artefacts that we use for typing the sub-configurations that, in
a given state, execute the business activities that are running.
Figure 2 depicts the activity module that types the configura-
tion of the activity ABob on the left-hand side of Fig. 1, i.e.,
before the discovery of a provider of the service Lender. The
different elements of an activity module are:

– Component-interfaces: the specifications that type the
components that, in the sub-configuration, execute the
business activity. For example, MA is a component inter-
face declared to be of type MortgageAgent.

– Serves-interface: the specification of the interface (HUI
in the example) through which the activity interacts with
users.

– Uses-interfaces: the specification of the interactions that
the activity performs with persistent components (MR of
type Registry in the example).

– Wire-interfaces: the specification of the interaction pro-
tocols that are executed by the wires.

– Requires-interfaces: the specifications of the external
services that may be required during the execution of
the activity. For instance, the activity module in Fig. 2
declares three requires-interfaces—LA of type Lawyer,
IN of type Insurance, LE of type Lender and BA of type

BA:
Bank

intBA

LA:
Lawyer

EA:
EstateAgent

intLA

eal: EL

HUI:
House

Application

ea: HE
intEA

MR:
Registry

MA:
MortgageAgent

IN:
Insurance

intIN

cr:ME

cl:ML

mi:MI

mb: MB

intMA

am:CM LE:
Lender

intLE

Fig. 2 The activity module that types the sub-configuration that cor-
responds to ABob as shown on the left-hand side of Fig. 1

123

J. L. Fiadeiro, A. Lopes

Bank. These types are used for the selection of providers
when the discovery of the services is triggered.

– Internal configuration policies: these are state conditions
associated with component interfaces that specify how
they should be initialised, and triggers associated with
requires-interfaces that determine when external services
need to be discovered. Graphically, these policies are
identified by clocks.

– External configuration policies: these are constraints
through which service-level agreements (SLAs) can be
negotiated with external services during discovery and
selection. Graphically, these policies are identified by rul-
ers.

The overall framework that we propose is largely inde-
pendent of the choice of a specification language and formal-
ism—we distinguish between the different kinds of interfaces
because they have different roles in the dynamic re-configu-
ration of the activity as explained in Sect. 6. Therefore, for
generality, we may assume that all specifications belong to a
universe SPEC and that we have available a satisfaction rela-
tion |� between execution paths (in the sense of Definition 4)
and specifications.

A component c (resp. wire w) implements a specification
� if, for every execution path λ of �c (resp. �w), λ |� �.

In srmLight we use a single formalism for specifying
components and wires—a linear-time version of UCTL, a
logic that we used in [2,23] for giving semantics to, and
model checking, srml specifications. We opted for a linear-
time logic in srmLight because it is simpler than UCTL and
can build directly on the notion of execution path introduced
in Definition 4.

The formal definition of this logic is presented in Appen-
dix A. In this logic, both states and transitions are labelled
and formulas m!, m¡, m?, m¿ refer to the action of publishing,
delivering, executing and discarding a message m, respec-
tively. In the next paragraphs, we provide examples of speci-
fications in srmLightfor some of the components and wires
involved in the activity module presented in Fig. 2.

For example, the specification MortgageAgent of Bob-
MortAg might include the following properties:

�(S = ini t ∧ req P¡ ⊃ �req P?)
�([req P?](S = waiting

∧ ask Q!
∧ ask Q.usr = req P.usr
∧ ask Q.income = req P.income
∧ ask Q.id = seq Num))

�(S = waiting ∧ recQ¡ ⊃ �recQ?)
�([recQ?](S = replied

∧ reply P!
∧ reply P.prop = recQ.prop
∧ reply P.cost = (1+ charge/100) ∗ 750))

The first two properties state that the component ensures
to execute the request for a proposal (reqP) if the request is
delivered when S is ini t , and that the execution publishes the
message askQ, i.e., a request for a quote. The parameters usr
and income of askQ are the same as those of the reqP, and the
value of id is provided by the variable seqNum. Moreover,
the execution of reqP changes S to waiting.

The last two properties state that the component ensures
to act upon receiving the quote (recQ) if delivered when S
is waiting, as a result of which it publishes replyP with the
parameter prop set to the value of the corresponding param-
eter of recQ, and cost calculated in terms of the variable
charge. This charge is applied to the base price of the bro-
kerage service (750). Moreover, S is changed to replied.

As already mentioned, we say that BobMortAg imple-
ments MortgageAgent if all the execution paths of the com-
ponent satisfy the specification, which is equivalent to

�BobMortAg ⊆ �MortgageAgent

In srmLight, the specification ML of the wire bcl might
include the following properties:

�(BobMort Ag.ask Q! ⊃ �(RockLoans.req M¡
∧ RockLoans.req M.usr =

BobMort Ag.ask Q.usr
∧ RockLoans.req M.income =

BobMort Ag.ask Q.income
∧ RockLoans.req M.id =

BobMort Ag.ask Q.id))

�(RockLoans.replyM ! ⊃ �(BobMort Ag.recQ¡
∧ BobMort Ag.recQ.prop =

RockLoans.replyM.prop
∧ BobMort Ag.recQ.loan =

RockLoans.replyM.loan
∧ BobMort Ag.recQ.account Required =

RockLoans.replyM.account Required))

These properties state that the wire will eventually deliver
(i) the message askQ, sent by BobMortAg, to RockLoans
under the local name reqM, and (ii) the message replyM, pub-
lished by RockLoans, to BobMortAg under the name recQ.
In this example, the parameters of the messages on each side
coincide but, more generally, the connection may be required
to operate conversions between the data transmitted through
the variable (for example, currency or units of measurement).

A specification ME for the S-wire bcr might consist sim-
ply of the properties:

�(BobMortAg.lender = MortRegistry.selectedLender)
�(BobMortAg.seqNum = MortRegistry.reqNum)

More complex examples could involve the operations of the
data types to convert between data.

123

A model for dynamic reconfiguration in service-oriented architectures

Notice that, in conjunction with the specification of Bob-
MortAg, this connection implies that the value of the parame-
ter id of the message askQ sent by BobMortAg to RockLoans
through the A-wire specified above is stored in MortRegistry.

In the previous paragraphs, we have presented several
specifications of components and wires interfaces used in
the activity module of Fig. 2. Because requires-interfaces
also play a critical role in activity modules, it is important to
illustrate how they can be specified.

Consider, for instance, the requires-interface Lender of the
activity module presented in Fig. 2. Lender refers to a speci-
fication with the same signature as RockLoans that includes,
among other properties:

�(req M¡ ⊃ �replyM !)
That is, the specification Lender requires the service to be
discovered to reply, eventually, to any request for a mortgage
quote.

The proposed framework is also independent of the
language used for specifying initialisation conditions and
triggers: we assume that we have available a set STC of con-
ditions and a set TRG of triggers, and satisfaction relations
between them and states and execution steps, respectively.
State and trigger conditions in srmLight are state formulas
over the values of variables and action formulas involving the
delivery of messages, respectively. Their formal definition is
also presented in the appendix.

For example, in the activity module of Fig. 2, the initiali-
sation condition for MA:MortgageAgent is simply

(state = ini t)

Furthermore, LE:Lender has to be discovered as soon as
reqP is delivered to MA:MortgageAgent provided that M A
is in the initial state. The trigger associated with the required
interface LE is, therefore,

〈(state = ini t), MA.reqP¡〉
For SLA constraints, we adopt so called ‘soft constraints’,
which generalise the notion of constraint: while a constraint
is a predicate over a certain set of variables X and, hence,
divides the set of valuations of X in two disjoint subsets (those
that satisfy the constraint and those that do not), a soft con-
straint is a function mapping each valuation of X into some
domain D (e.g., the interval of real numbers [0, 1]) that cap-
tures different degrees of satisfaction. Soft constraints are
commonly used for describing problems where it is neces-
sary to model preferences, costs, inter alia. In particular, they
have shown to be useful for supporting the negotiation of ser-
vice-level agreements [6]. Some well-known soft constraint
formalisms are Valued Constraint Satisfaction Problems [20]
and Semiring-based Soft Constraints [5]. The particular for-
malism that is adopted is not relevant for the approach that

we propose. For srmLight, we use [5] in much the same
way we used it in srml [25].

Definition 6 (c-semiring) A c-semiring is a semiring of the
form 〈A,+,×, 0, 1〉 in which A represents a space of degrees
of satisfaction, e.g., the set {0, 1} for yes/no or the interval
[0, 1] for intermediate degrees of satisfaction. The operations
× and + are used for composition and choice, respectively.
Composition is commutative, choice is idempotent and 1 is
an absorbing element (i.e., there is no better choice than 1).
That is, a c-semiring is an algebra of degrees of satisfaction.
Notice that every c-semiring S induces a partial order≤S (of
satisfaction) over A — a ≤S b iff a + b = b. That is, b is
better than a iff the choice between a and b is b.

Definition 7 (Constraint system) A constraint system is a
triple 〈S, D, V 〉 where S is a c-semiring, V is a totally
ordered set (of configuration variables), and D is a finite
set (domain of possible elements taken by the variables). A
constraint consists of a selected subset con of V and a map-
ping de f : D|con| → S that assigns a degree of satisfaction
to each tuple of values taken by the variables involved in the
constraint.

In srmLight, because we want to handle constraints that
involve different degrees of satisfaction, it makes sense that
we work with the c-semiring 〈[0..1], max, min, 0, 1〉 of soft
fuzzy constraints. In this c-semiring, the preference level is
between 0 (worst) and 1 (best). srmLight provides a set of
standard configuration variables, namely:

– m.UseBy, for every outgoing message m; its value is the
length of time the message is valid after it is issued.

– ServiceId, for every required-interface; it represents the
identification of the service that is bound to that interface
(for instance, a URI).

In addition, constraints can involve the variables declared
in signatures. In the activity module presented in Fig. 2 we
might include the following constraint involving the variable
MA.charge:

C1 : {MA.charge, MA.replyP.UseBy}
de f (c, t) =

{
1 if t = 10 and c = 1
0 otherwise

This constraint states that the charge applied to the base
price of the brokerage service and the interval during which
the proposal is valid are fixed to 10 and 1, respectively. This
is, in fact, a constraint that has resulted from a negotiation
performed during a reconfiguration step as discussed in the
next section (in which we also illustrate the use soft con-
straints).

123

J. L. Fiadeiro, A. Lopes

We might also include in the external policy of the activity
module a constraint requiring the choice of the lender to be a
member of MA.lender. This would be expressed as follows:

C2 : {LE.ServiceId},
de f (s) =

{
1 if s ∈ MA.lender
0 otherwise

Recall that, according to the specification MortgageAgent,
MA.lender is a set of trusted lenders obtained from the Reg-
istry.

Activity modules are formalised as graphs:

Definition 8 (Activity module) An activity module M con-
sists of

– A simple graph graph(M).
– A set requires(M) ⊆ nodes(M).
– A set uses(M) ⊆ nodes(M) \ requires(M).
– A node serves(M) not in (requires(M) ∪ uses(M)).

We use components(M) to denote the set of all remain-
ing nodes.

– A labelling function SPM such that assigns a specifica-
tion to every node and edge.

– A pair int Plc(M) of mappings 〈tr iggerM , ini tM 〉 such
that tr iggerM assigns a condition in TRG to each node
in requires(M) and ini tM assigns a condition in STC
to each node in components(M).

– A pair ext Plc(M) of a constraint system cs(M) and a
set sla(M) of constraints over cs(M).

We denote by body(M) the (full) sub-graph of graph(M)

that forgets the nodes in requires(M) and the edges that
connect them to the rest of the graph.

We can now also formalise the typing of configurations
with activity modules motivated before, which makes con-
figurations business reflective. We consider a space A of busi-
ness activities to be given, which can be seen to consist of
reference numbers (or some other kind of identifier) such
as the ones that organisations automatically assign when a
service request arrives.

Definition 9 (Business configuration) A business configura-
tion is a triple 〈G,B, C〉 where

– G is a configuration (see Def. 1).
– B is a partial mapping that assigns an activity module

B(a) to every activity a ∈ A — the workflow being exe-
cuted by a. We say that the activities in the domain of this
mapping are active.

– C is a mapping that assigns a homomorphism C(a) of
graphs body(B(a))→ G to every activity a ∈ A that is

active. We denote by G(a) the image of C(a)—the sub-
configuration of G that corresponds to the activity a.

– Every homomorphism C(a) is such that, for every node n
(resp. edge e), C(a)(n) (resp. wire C(a)(e)) implements
SPB(a)(n) (resp. SPB(a)(e)) and every initial state of
C(a)(n) satisfies ini tB(a)(n).

– Every node and edge of G belongs to at least an activity.

A homomorphism of graphs is just a mapping of nodes
to nodes and edges to edges that preserves the end-points
of the edges. Therefore, the homomorphism C of a business
configuration types the nodes (components) and the edges
(wires) of G(a) with specifications of the roles that they play
(implement) in the activity.

In Fig. 3, we represent a business configuration for the
configuration depicted on the left-hand side of Fig. 1. For
simplicity, we only show the node mappings of the homo-
morphisms. In addition to the business activity ABob that
we have been discussing, Fig. 3 reveals another business
activity—AAlice—in which the registry of trusted lenders
Mort Registr y is also involved. The activity module that
types AAlice defines that the business goal of this activity
is to update the registry with new lenders; in the particular
configuration being depicted, this activity still requires an
external service to be discovered that can certify the new
lender.

The fact that the homomorphism is defined over the body
of the activity module means that the requires-interfaces are
not used for typing components of the configuration. Indeed,
as discussed above, the purpose of requires-interfaces is to
identify the need that the activity may incur on external ser-
vices if certain conditions become true (the triggers asso-
ciated with the requires-interfaces). In particular, this makes
requires-interfaces different from uses-interfaces as the latter
are indeed mapped, through the homomorphism, to a com-
ponent of the configuration.

In summary, the homomorphism makes configurations
reflective in the sense of [17] as it adds meta (business)
information to the configuration. This information is used for
deciding how the configuration will evolve (namely, how it
will react to events that trigger the discovery process). Indeed,
reflection has been advocated as a means of making systems
adaptable through reconfiguration, which is similar to the
mechanisms through which activities evolve in our model.
The reconfiguration process, as driven by services, is dis-
cussed in the next section.

6 Service binding as a reconfiguration action

Business configurations change whenever the execution of
an activity requires the discovery of and binding to a service.
It remains to formalise this process, which starts with the dis-

123

A model for dynamic reconfiguration in service-oriented architectures

MortRegistry

BobMortAg

BobHouseUI

BobEstAg bam

AliceManag

AliceRegUI

RE:
Registry

MC:
Management
Coordinator

CA:
cation

Autority

intCA

cr:MR

am:MA

RUI:
Registry
Manager

rm:RM

intMC

BA:
Bank

intBA

LA:
Lawyer

EA:
EstateAgent

intLA

eal: EL

HUI:
House

Application

ea: HE
intEA

MR:
Registry

MA:
MortgageAgent

IN:
Insurance

intIN

cr:ME

cl:ML

mi:MI

mb: MB

intMA

am:CM

HUI := BobHouseUI
EA := BobEstAg
MA := BobMortAg
MR := Registry

RUI := AliceRegUI
MC := AliceManag
RE := Registry

LE:
Lender

intLE

bea

arm

amr

bcr

Fig. 3 A business conguration that shows the sub-congurations that correspond to the business activities ABob (top part) and AAlice (bottom part)
and the activity modules that type them

covery of potential providers of the service and the selection
of one service provider among them.

We start by formalising the notion of service, adapting
from the model that we developed in SENSORIA [25], which
was inspired by concepts proposed in the Service Component
Architecture (SCA) [37]. We model services through ser-
vice modules, which are similar to the activity modules that
we introduced in the previous section except that, instead of
a serves-interface to the user of the activity, they include a
designated component interface through which activities can
connect to the service (identified through a requires inter-
face). An additional specification, which we call the pro-
vides-interface of the service, describes the properties that a
customer can expect from the interactions with the service.
Uses-interfaces and requires-interfaces can be included in
service modules in the same way as in activity modules.

In order to define the mechanisms of discovery and bind-
ing, we need some additional assumptions on the nature of
the formalisms that support specification.

Definition 10 (Service module) A service module M con-
sists of

– A simple graph graph(M).
– A set requires(M) ⊆ nodes(M).
– A set uses(M) ⊆ nodes(M) \ requires(M).
– A node main(M) not in requires(M) ∪ uses(M).
– A labelling function SPM as in definition 8.
– A specification provides(M).
– An internal configuration policy int Plc(M) as in defini-

tion 8.
– An external configuration policy ext Plc(M) as in defi-

nition 8.

The node main(M) represents the component that is
responsible for orchestrating the interactions with custom-
ers of the service (the formulation of a more general case in
which the customer can interact with more than one com-
ponent can be found in [24]). The specification provides(M)

describes the properties that customers can expect from the
service. Note that this is not the specification of main(M): the
properties offered to customers result from the joint behav-
iour of the architectural elements defined in the module,
including the external services that may need to be discov-
ered, again at run-time.

123

J. L. Fiadeiro, A. Lopes

In order to formalise the relationship between the speci-
fication provides(M) and the specifications of the architec-
tural elements of the module, we would need to make further
assumptions on the structure of the domain SPEC. In [24],
we define this domain using category theory, more precisely
in terms of the category of theory presentations of a π -insti-
tution [21] (an abstract notion of an entailment system). For
simplicity, we present the case of srmLight, which is an
instance of that more general construction.

Referring to the notion of configuration logic defined in
A.3, a service module in srmLight is said to be well defined
iff

�SPM |� provides(M)

That is, the properties offered through provides(M) derive
from the properties of any possible configuration that imple-
ments SPM .

In Fig. 4 we present the structure of the service module that
models MortgageFinder—a mortgage brokerage service.
A complete definition of this service using the modelling
language srml, including all the specifications involved, is
presented in [25]. The orchestration of the provision of the
service is specified through the component-interface MA of
type MortgageAgent which may require external services that
match the requires-interfaces LE of type Lender (for secur-
ing a loan), BA of type Bank (for opening a bank account),
and IN of type Insurance (for procuring an insurance). The
orchestration also requires the binding to a persistent com-
ponent RE of type Registry (that stores information about
trusted lenders).

The specifications that type interfaces such as MA, RE
and LE are the same as those used in the activity module
presented in Fig. 2. In what concerns the external policy of
the service module, it includes the constraint C2 presented
before but, instead of C1, it has the following constraint:

MORTGAGEFINDER

RE:
Registry

MA:
MortgageAgent

LE:
Lender

intLE

BA:
Bank

intBA

IN:
Insurance

intIN

CR:
 Customer

cr:ME

cl:ML

mi:MI

mb: MB

cc:
CM

Fig. 4 The structure of a service module that models Mortgage-
Finder

C ′1 : {MA.charge, MA.replyP.UseBy},

def(c, t)=
{

1 if t ≤ 10 · c
1+ 2 · c − 0.2 · t if 10 · c< t≤5+10 · c

This means that, in MortgageFinder, the values of
charge can be negotiated at the time the service is procured.
The constraint defines the negotiation conditions imposed by
the service: the higher the charge applied to the base price
of the brokerage service, the longer the interval during which
the proposal is valid.

The provides interface of MortgageFinder is the speci-
fication Customer. That is, the service module can bind to any
activity that requests an external service through a requires-
interface that is matched by Customer. The signature of the
specification Customer in srmLight includes messages that
account for requests for a proposal (reqP) from a customer
and replying to the customer (replyP):

V – charge:nat
M+ – reqP

Preq P – usr:usr_data, income:money,

M− – replyP

Preply P – prop:mortgage, cost:money

It also contains the following properties:

�(req P¡ ⊃ �reply P!)
�([reply P!]

reply P.cost = (1+ charge/100) ∗ 750))

These properties state that the service commits to replying
to the request reqP by sending the message replyP, and that
the service brokerage has a base price that is subject to an
extra charge, subject to negotiation.

In order to formalise the processes of discovery and bind-
ing, let r be a requires-interface of an activity a. The dis-
covery of services to which r can be bound involves finding
services M that (i) through their provides-interface p are able
to satisfy the specification associated with r , and (ii) through
their external configuration policies offer SLA constraints
that are compatible with those of a and, therefore, make it
possible to reach a service-level agreement.

For the formulation of condition (i) above we assume that
the universe SPEC of specifications is equipped with a notion
of refinement such that ρ : r → p means that the behavioural
properties offered by p entail the properties required by r , up
to a suitable translation ρ between the languages of both. For
example, in srmLight, a refinement ρ is a mapping between
the signatures of the specifications (from the signature of r
to the signature of p) such that p |� ρ(r).

123

A model for dynamic reconfiguration in service-oriented architectures

The formulation of condition (ii) above relies on a com-
position operator ⊕ρ that performs amalgamated unions of
constraint systems and sets of constraints, where ρ identifies
the variables in both constraint systems that are shared—for
more details see [5]. Constraint systems also provide a notion
of consistency:

Definition 11 (Consistency of a set of constraints) The con-
sistency of a set of constraints is defined in terms of the notion
of best level of consistency, which assigns an element of the
c-semiring to every set of constraints C as follows:

blevel(C) =
∑

t

∏
c∈C

de fc(t ↓ con(c))

Intuitively, this notion gives us the degree of satisfaction that
we can expect for the set of constraints—we choose (through
the sum) the best among all possible combinations (product)
of all constraints; for more details see [5]. A set of constraints
C is said to be consistent iff blevel(C) >S 0. If C is consis-
tent, a valuation for the variables of C is said to be a solution
for C .

Definition 12 (Service matching) Let A be an activity mod-
ule and r ∈ requires(A). We denote by match(A, r) the set
of pairs 〈M, ρ〉 such that:

– ρ is a refinement SPA(r)→ provides(M).
– M is a service module such that sla(M) ⊕ρ sla(A) is

consistent.

That is, the matching process for an activity module and
one of its requires interfaces returns all the service modules
whose provides interface refines the requires interface of the
activity module, and whose constraint systems are compati-
ble (in the sense that the refinement identifies which variables
of the constraint systems are shared) and whose constraints
are consistent.

Definition 13 (Service discovery) Let A be an activity mod-
ule and r ∈ requires(A). We denote by discover(A, r) the
set of triples 〈M, ρ,�〉 such that:

– 〈M, ρ〉 ∈ match(A, r);
– � is a solution for sla(M)⊕ρ sla(A) such that the degree

of satisfaction bvalue(sla(M)⊕ρ sla(A)) is maximal for
match(A, r), i.e., � maximises the degree of satisfaction
for the combined set of SLA constraints.

That is, the discovery process returns the set of service
modules that offer the best possible service available, the
solution � being the corresponding SLA agreement.

We now define the process of binding 〈M, ρ,�〉 to a.

Definition 14 (Service binding) Let L = 〈G,B, C〉be a busi-
ness configuration, a an active activity in L, M a service

module, r ∈ requires(B(a)), ρ a refinement mapping from
r to provides(M) and � a solution. A business configura-
tion 〈G′,B′, C′〉 implements the binding of 〈M, ρ,�〉 to r
iff:

– B′(a) is an activity module M ′ such that:

– graph(M ′) is obtained from the sum (disjoint union)
of the graphs of B(a) and M by identifying r with
main(M).

– requires(M ′) = requires(M) ∪ requires(B(a)) \
{r}, i.e., we add to B(a) the requires-interfaces of M
and eliminate r .

– uses(M ′) = uses(M) ∪ uses(B(a)), i.e., we add to
B(a) the uses-interfaces of M .

– serves(M ′) = serves(M), i.e. we keep the serves-
interface of B(a).

– the labels SPM ′ are those of B(a) and M applied to
the corresponding nodes and edges that remain in M ′.

– int Plc(M ′) has the triggers and initialisation condi-
tions that are inherited from B(a) and M .

– ext Plc(M ′) =
〈cs(M)⊕ρ cs(B(a)), sla(M)⊕ρ sla(B(a)) ∪ {�}〉
i.e., we add the solution � to the set of constraints
inherited from both modules.

– G′ adds to G:

– For each node n ∈ components(M), a new compo-
nent cn ∈ COMP that implements the specification
SPM (n) and, for each edge n e←→n′, a wire that imple-
ments the specification SPM (e).

– For every node n of uses(M), a component cn ofG that
implements the specification SPM (n) and, for every
edge n e←→n′, a wire that implements the specification
SPM (e).

That is to say, implementations of component-interfaces
of M are added to the graph G and existing compo-
nents are chosen for uses-interfaces. Wires are added that
implement the connectors specified in M .

– C′ is the homomorphism that results from updating C
with the mappings defined above, i.e. for each node n
of body(M), C′(n) = cn , and similarly for the edges.

Notice the difference between uses and component inter-
faces. The former are implemented using components already
available in the configuration (thus ensuring persistence),
whilst new components (instances) are used as implemen-
tations of the latter. Notice also the difference with respect
to requires-interfaces, which are not implemented at all: they
remain in the business configuration as types so that services
that match them can be discovered when (and only when)
needed.

123

J. L. Fiadeiro, A. Lopes

RE:
Registry

MC:
Management
Coordinator

CA:
cation

Autority

intCA

cr:MR

am:MA

RUI:
Registry
Manager

rm:RM

intMC

HUI := BobHouseUI
EA := BobEstAg

RUI := AliceRegUI
MC := AliceManag
RE := Registry

LA:
Lawyer

EA:
EstateAgent

intLA

eal: EL

HUI:
House

Application

ea: HE
intEA

MG:
Mortgage

intMG

mi:MI

MortRegistry

BobHouseUI

BobEstAg

AliceManag

AliceRegUI

bea

arm

amr

Fig. 5 A business conguration that precedes that of Fig. 3

In order to illustrate how binding works, consider the busi-
ness configuration in Fig. 5, which shows ABob at an earlier
stage of execution (i.e. earlier than the configuration depicted
in the left-hand side of Fig. 1). Assume that, in the current
state, the trigger int MG is true and that the service module
shown in Fig. 4 is returned by the discovery process described
in Definition 13 for the requires-interface MG. A possible
result of the binding is depicted in Fig. 3, in which ABob

becomes typed by the activity module in Fig. 2. Notice that
the external configuration policy of this new module contains
the solution to the constraint C ′1, which is C1. This explains
why we said that C1 was (so) hard.

Note that a new component—BobMortAg—is added to
ABob as an instance of MortgageAgent , but that the uses-
interface RE of MortgageFinder does not give rise to a
new component: it is mapped to Mort Registr y. These are
the means through which effects of services can be made
‘persistent’, i.e. the execution of the service can interfere
with other activities in the current configuration. For exam-
ple, if AAlice registers a new lender, ABob will be able to
consider that lender when discovering an external service
that responds to the trigger intLE of the requires-interface
LE of type Lender. On the other hand, the serves-interface
of the activity module remains invariant through the evolu-

tion of the business configuration. This captures the fact that
the activity relies on the same interface to interact with its
user. Also notice that the new activity module that types ABob

acquires the requires-interfaces of MortgageAgent , i.e. the
business activity evolves both at the level of its configuration
and its type.

We can now formalise the notion of reconfiguration step
that we discussed in Sect. 2.1.

Definition 15 (Reconfiguration step) A business configura-
tion state is a quadruple 〈G,B, C,S〉whereL = 〈G,B, C〉 is a
business configuration (cf. Definition 9) and 〈G,S〉 is a state
configuration. A reconfiguration step consists of a pair of
business configuration states 〈G,B, C,S〉 and 〈G′,B′, C′,S ′〉
and a configuration execution step T between S and S∗ (as
in Definition 3) such that:

– For every activity a in L, S ′ coincides with S∗ on G(a).
– For every activity a in L and r ∈ requires(B(a)) such

that T |� tr iggerB(a)(r) and discover(B(a), r) �= ∅,
– 〈G′,B′, C′〉 implements the binding of an element
〈M, ρ,�〉 of discover(B(a), r) to r .

– For every n ∈ components(M),S ′ assigns to cn a
state that satisfies ini tM (n).

123

A model for dynamic reconfiguration in service-oriented architectures

– G′ results from G through the creation of new activities
and reconfiguration of existing activities as above.

Notice that every binding extends the current configura-
tion with new components and wires. As no two bindings
interfere with each other, several bindings can be performed
in just one step.

7 Related work

In the last decade, different approaches to architectural spec-
ification have been proposed that permit the representation of
dynamic architectures [3,4,14,36,43,44]. The focus of these
approaches is on the description of a control (reconfiguration)
layer on top of a managed system. The dynamic architectural
changes that have to be performed in the managed system are
specified explicitly, for instance in terms of reconfiguration
rules [4,14,43], configurator processes [3] or reconfiguration
scripts [36,44]. Although different semantic domains have
been used in those aforementioned works, their underlying
mechanisms can be defined in terms of operations that rewrite
state configurations in the sense of Definition 2. The work
that we presented in this paper follows on this tradition but
offers a more structured approach (based on reflection) that
targets the forms of reconfiguration that arise, specifically,
in SOC.

A different direction was taken by Darwin [32], π -ADL
[34] and ArchWare [33], which explore the expressive
power of the π -calculus—a calculus developed precisely for
concurrent systems whose configurations may change dur-
ing computation. As a result, these ADLs do not promote the
separation between the management of the computational
aspects of systems and of their architecture (configuration);
by borrowing primitives from the π -calculus, they include
instantiation, binding and rebinding as part of the behaviour
of system components. From our point of view, the separa-
tion that the approaches mentioned in the previous paragraph
(including ours) promote between the two levels (computa-
tion and reconfiguration) has clear advantages for manag-
ing the complexity that arises in modern software-intensive
systems, especially when, like in SOC, their architecture is
highly dynamic. The expressive power of the π -calculus has
also been explored within SOC: several service calculi have
been proposed to address operational foundations of SOC (in
the sense of how services compute) [16,12,29,31] as well
as to capture the dynamic architectures of service-oriented
systems [40,35]. Here again, a clear separation between the
aspects that belong to the SOA middleware and those that
derive from the application domain seems to be essential for
the definition of ADLs that can effectively support high-level
design.

Therefore, the reason that led us to propose a different
model for dynamic architectures specifically targeted for
SOC is not the lack expressiveness of existing models but,
rather, the lack of models that capture the ‘business’ aspects
of SOC at the ‘right’ level of abstraction. To our knowledge,
ours is the first proposal in this direction.

Indeed, the definition of models is intrinsically associated
with abstraction. For example, operational models of sequen-
tial programming are typically defined in terms of functions
(called states) that assign values to variables, which abstract
from the way memory is organised and accessed in any con-
crete conventional computer architecture. Paradigms such
as SOC superpose further layers of abstraction (creating a
richer middleware) so that systems can be built and intercon-
nected by relying on a software infrastructure that adds to the
basic computation and communication platform a number of
facilities that, in the case of SOAs, support service publi-
cation, discovery and binding. This means that designers or
programmers working over a SOA do not need to imple-
ment these mechanisms: they can rely on the fact that they
are available as part of the abstract operating system that
is offered by the middleware. Just like any Java programmer
does not need to program the dynamic allocation, referencing
and de-referencing of names, a programmer of a complex ser-
vice should not need to include the discovery, selection and
binding processes among the tasks of the orchestrator.

This is why we perceive that the architectural aspects of
SOC are best handled over graph-based representations that
separate computation from reconfiguration such as the ones
proposed in this paper. Drawing an analogy with the seman-
tics of programming languages, we could say that we pro-
posed a notion of (typed) state and state transition for such
dynamic aspects of SOC: states are graphs of components and
connectors that capture configurations that execute business
activities, and transitions are reconfigurations that result from
binding to selected services. Our model captures the nature
of SOA-middleware approaches and generalises them, offer-
ing a more abstract level of modelling in which the business
aspects that drive reconfiguration can be represented explic-
itly and separately from the orchestration of the interactions
through which services are delivered.

8 Concluding remarks

In this paper we presented a mathematical model that can be
used as a semantic domain for architectural description lan-
guages that operate over service-oriented architectures. The
static aspects of our model were inspired by the concepts
proposed in the Service Component Architecture (SCA) [37]
towards a general assembly model and binding mechanisms
for service components and clients that may have been pro-
grammed in possibly many different languages, e.g. Java,

123

J. L. Fiadeiro, A. Lopes

C++, BPEL, or PHP. We have transposed those concepts to
a more abstract level of modelling and enriched them with
primitives that address the dynamic aspects (run-time ser-
vice discovery, selection and binding) of service-oriented
systems.

This model paves the way for the definition of ADLs that
are able to address the specification of dynamic architectural
characteristics of service-oriented applications and, more-
over, contribute to overcome the lack of models that capture
the ‘business’ aspects of SOC. This is especially relevant in
the absence of standards for these dynamic aspects of SOAs.
An example of how an operational account of dynamic recon-
figuration under service-oriented architectures can be defined
over our mathematical model can be found in [15].

The advantages of having modelling techniques that oper-
ate at the more abstract business level have been explored
in the language srml that we defined in SENSORIA [25].
In this paper, we presented a simplified version of srml—
srmLight—and its semantics in order to illustrate how
the concepts and constructions that we proposed can be
applied to a concrete language. However, our model is gen-
eral enough that it can be used to support other ADLs.
For example, at a methodological level, we have extended
the traditional use-case method to define the structure of
both activity and service modules from business require-
ments [10], which was validated in a number of case studies,
including automotive [9] and telco systems [1] in addition
to more classical business-oriented domains such as the one
used in the paper (a full account of which can be found in
[25]).

Another advantage of the separation of reconfiguration
from computation is that different orchestration languages
can be used for modelling the components and connectors
through which services are provided without affecting the
way activities or services are structured in modules: for exam-
ple, transformations were defined from BPEL to srml [11],
UML state machines were used for supporting operational
verification through model-checking [2], and transforma-
tions to PEPA [27] were used for supporting the analysis of
quantitative quality-of-service properties such as response
time [7]. Those transformations can be supported by tools
(prototypes have been developed in MSc projects). The exis-
tence of a formal semantic domain such as the one presented
in this paper is an essential pre-requisite for transforma-
tions to be certified to preserve the semantics of the mod-
els that they manipulate, an example of which can be found
in [8].

Acknowledgments We would like to thank the reviewers for the sug-
gestions that they gave us to improve the readability of the paper, as
well as the reviewers of the conference version of this paper [22] for
their comments, and the participants of ECSA 2010 for their helpful
feedback. We would also like to thank João Abreu and Laura Bocchi
for their collaboration in the definition of srml and its semantics.

Appendix A: the specification formalisms of SRMLight

A.1 Component specifications

The logic defined by a component signature 〈V, M〉 is as fol-
lows:

– Its language of actions has the following syntax:

α ::= tt | m? | m¿ | m¡ | m′! | ¬α | α ∧ α′

where m ∈ M+ and m′ ∈ M−.
Given an execution step t ,

t |� tt
t |� m? iff m ∈ EXCt

t |� m¿ iff m ∈ PRCt \ EXCt

t |� m¡ iff m ∈ DLV t

t |� m! iff m ∈ PUBt

t |� ¬α iff not t |� α

t |� α ∧ α′ iff t |� α and t |� α′

– Its language of terms has the following syntax:

βd ::= v | m.p | a | f (βd1 , · · · , βdn)

where d, d1, . . . , dn ∈ D, v : d ∈ V, m ∈ M, p : d ∈
Pm, a : d ∈ F and f : d1 · · · dn → d ∈ F .
Given a state s,

�v�s = VALs(v)

�m.p�s = VALs(m, p)

�a�s = aU
� f (β1, · · · , βn)�s = fU (�β1�s, · · · , �βn�s)

– Its language of formulas has the following syntax:

φ ::= tt | βd = β ′d | ¬φ | φ ⊃ φ′ | ©αφ | φ αU φ′

Given a path λ = 〈s0t0s1t1 · · · 〉,
λ |� tt
λ |� (β = β ′) iff �β�s0 = �β ′�s0

λ |� ¬φ iff not λ |� φ

λ |� φ ⊃ φ′ iff λ |� φ implies that λ |� φ′
λ |� ©αφ iff t0 |� α and λ1 |� φ

λ |� φ αU φ′ iff there exists 0 ≤ j s.t. λ j |� φ′ and,
for all 0 ≤ k < j, λk |� φ and tk |� α

– Some useful abbreviations are:

α ≡ ©α t t — α occurs
[α]φ ≡ ¬©α ¬φ — α brings about φ

�φ ≡ t t t tU φ — now or eventually φ

�φ ≡ ¬�(¬φ) — now and forever φ

123

A model for dynamic reconfiguration in service-oriented architectures

– For every collection � of formulas, �� = {λ : ∀φ ∈
�(λ |� φ)}. We say that � entails φ (� |� φ) iff �� ⊆
�φ . A set � is consistent iff �� �= ∅.

– A specification is a collection � of formulas that is con-
sistent. A model of a specification � is an element (path)
of ��.

Typical specifications include formulas of the form:

– �(guard ⊃ [m?]effects)—the execution of m when
guard holds brings about effects

– �(guard ⊃ ¬m¿)—m will not be discarded when guard
holds

– �([request¡]�reply!)—the delivery of request ensures
the publication of reply

A.2 Wire and connection specifications

The logic of an A-wire signature M is defined in the same way
as that of a component signature with an empty set of vari-
ables. The logic defined by an A-connection (c1

μ1←− w μ2−→ c2)

is as follows:

– Its language of actions has the following syntax:

α ::= tt | c j .μ j (m)¡ | ci .μi (m)! | ¬α | α ∧ α′

where m ∈ μ−1
i (M−ci

), {i, j} = {1, 2}.
Given an execution step t ,

t |� tt
t |� c j .μ j (m)¡ iff m ∈ DLV t

t |� ci .μi (m)! iff m ∈ PUBt

t |� ¬α iff not t |� α

t |� α ∧ α′ iff t |� α and t |� α′

– Its language of terms has the following syntax:

βd ::= ci .μi (m).p | a | f (βd1, · · · , βdn)

where d, d1, . . . , dn ∈ D, a : d ∈ F and f : d1 · · · dn →
d ∈ F, m ∈ M and p : d ∈ Pμi (m).
Given a state s,

�ci .μi (m).p�s = VALs
ci
(μi (m), p)

�a�s = aU
� f (β1, · · · , βn)�s = fU (�β1�s, · · · , �βn�s)

– Its language of formulas is as for component signatures.
– A specification is a collection � of formulas that is con-

sistent.

That is, the logic of A-connections uses the messages (and
corresponding parameters) of the components being con-
nected. We prefix them with the (name of) the corresponding

components so as to avoid name clashes—as already men-
tioned, different components may use the same names for
messages (or variables).

The logic defined by an S-connection (c1
μ1−→ w μ2←− c2) is

as follows:

– Its language of terms has the following syntax (i = 1, 2):

βd ::= ci .μ
−1
i (v) | a | f (βd1 , · · · , βdn)

where d, d1, · · · , dn ∈ D, f : d1 · · · dn → d ∈ F, v :
d ∈ V, a : d ∈ F .
Given a state s,

�ci .μ
−1
i (v)�s = VALs

ci
(μ−1

i (v))

�a�s = aU
� f (β1, · · · , βn)�s = fU (�β1�s, · · · , �βn�s)

– Its language of formulas has the following syntax:

φ ::= βd = β ′d | �φ

interpreted as for component signatures.
– A specification is a collection � of formulas that is con-

sistent.

A.3 Logic for configurations

The relationship between specifications and architectural ele-
ments is formalised in terms of execution models as follows:
let c be a component and � a component specification with
the same signature; we say that c implements � iff �c ⊆ ��;
the same applies to connections (wires). That is, a component
(connection) implements a specification if all the execution
paths of the component (connection) satisfy the specification.

A specification for a configuration G is a mapping SP that
assigns a specification to every component and connection
such that every architectural element implements the corre-
sponding specification.

In order to reason about the global properties of a con-
figuration, it is useful to define a logic for the configuration
itself. In srmLight, this logic is defined as follows.

The signature of a configuration specification SP with
domain G is the pair 〈V, M〉 where:

– V =⋃
c∈nodes(G) c.Vc

– M+ =⋃
c∈nodes(G) c.M+c .

– M− =⋃
c∈nodes(G) c.M−c .

where 〈Vc, Mc〉 is the signature of the component c and c.Vc

(resp. c.M−c and c.M+c) is the result of prefixing the variables
of Vc (resp. messages of M−c , M+c) with c.

123

J. L. Fiadeiro, A. Lopes

The language associated with this signature is as for com-
ponent signatures. This language is interpreted over config-
uration states and steps as follows:

– T |� c.m? iff Tc |� m?, idem for m¿, m¡ and m!
– �c.v�S= �v�Sc

The theory presentation associated with the configuration
specification SP, which we denote by �SP, is the union of
the following sets of formulas:

– For every component c, the translation c.SPc, which is
obtained by replacing every variable and message with
the prefix c.

– For every wire, the specification of its connection.

The set �SP is the union of the translations of the specifi-
cations of all components and wires. The following theorem
establishes that this set provides a specification for the exe-
cution paths of the configuration.

Theorem 16 For every specification SP for a configuration G,

�G ⊆ ��SP

Proof (sketch) Because SP is such that every component
and connection implements the corresponding specification,
i.e., �c ⊆ �� for every component c (and mutatis mutandis
for wires), and every execution path in �G projects to �c

for every component c (and mutatis mutandis for wires)—
see Definition 5—all such execution paths satisfy the set of
formulas ��SP , i.e. the union of the translations of the spec-
ifications �c (mutatis mutandis for wires). ��

A.4 State and trigger conditions

State conditions are of the form

φ ::= tt | βd = β ′d | ¬φ | φ ⊃ φ′

with

βd ::= v | m.p | a | f (βd1 , . . . , βdn)

where d, d1, . . . , dn ∈ D, f : d1 · · · dn → d ∈ F, v : d ∈ V
and a : d ∈ F .

Triggers are pairs 〈φ, m¡〉 where φ is as above. The deliv-
ery of the message is evaluated during the transition and the
condition is evaluated on the state before the transition.

References

1. Abreu, J., Bocchi, L., Fiadeiro, J.L., Lopes, A.: Specifying and
composing interaction protocols for service-oriented system mod-
elling. In: Derrick, J., Vain, J. FORTE. LNCS, vol. 4574, pp. 358–
373. Springer, Berlin (2007)

2. Abreu, J., Mazzanti, F., Fiadeiro, J.L., Gnesi, S.: A model-
checking approach for service component architectures. In: Lee,
D., Lopes, A., Poetzsch-Heffter, A. FMOODS/FORTE. LNCS,
vol. 5522, pp. 219–224. Springer, Berlin (2009)

3. Allen, R., Douence, R., Garlan, D.: Specifying and analyzing
dynamic software architectures. In: FASE, pp. 21–37 (1998)

4. Batista, T.V., Joolia, A., Coulson, G.: Managing dynamic recon-
figuration in component-based systems. In: Morrison, R., Oqu-
endo, F. EWSA. LNCS, vol. 3527, pp. 1–17. Springer, Berlin
(2005)

5. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint
satisfaction and optimization. J. ACM 44(2), 201–236 (1997)

6. Bistarelli, S., Santini, F.: A nonmonotonic soft concurrent con-
straint language for SLA negotiation. Electron. Notes Theor. Com-
put. Sci 236, 147–162 (2009)

7. Bocchi, L., Fiadeiro, J.L., Gilmore, S., Abreu, J., Solanki, M.,
Vankayala, V.: A formal approach to modelling time properties of
service oriented systems. In: Handbook of Research on Non-Func-
tional Properties for Service-Oriented Systems: Future Directions.
Advances in Knowledge Management Book Series. IGI Global
(2012, in press)

8. Bocchi, L., Fiadeiro, J.L., Lapadula, A., Pugliese, R., Tiezzi, F.:
From architectural to behavioural specification of services. Elec-
tron. Notes Theor. Comput. Sci 253(1), 3–21 (2009)

9. Bocchi L., Fiadeiro J.L., Lopes A.: Service-oriented modelling of
automotive systems. In: COMPSAC. IEEE Computer Society, pp.
1059–1064 (2008)

10. Bocchi, L., Fiadeiro, J.L., Lopes, A.: A use-case driven approach
to formal service-oriented modelling. In: Margaria, T., Steffen,
B. ISoLA. Communications in Computer and Information Science,
vol. 17, pp. 155–169. Springer, Berlin (2008)

11. Bocchi, L., Hong, Y., Lopes, A., Fiadeiro, J.L.: From BPEL to
SRML: A formal transformational approach. In: Dumas, M., Hec-
kel, R. WS-FM. LNCS, vol. 4937, pp. 92–107. Springer, Ber-
lin (2007)

12. Boreale, M. et al.: SCC: a service centered calculus. In: Bravetti, M.,
Núñez, M., Zavattaro, G. WS-FM. LNCS, vol. 4184, pp. 38–57.
Springer, Berlin (2006)

13. Broy, M.: From “formal methods” to system modeling. In: Jones,
C.B., Liu, C.B., Woodcock, J. (eds.) Formal Methods and Hybrid
Real-Time Systems. Lecture Notes in Computer Science, vol. 4700,
pp. 24–44. Springer, Berlin (2007)

14. Bruni, R., Bucchiarone, A., Gnesi, S., Hirsch, D., Lluch-Lafuente,
A.: Graph-based design and analysis of dynamic software archi-
tectures. In: Degano, P., Nicola, R.D., Meseguer, J. Concurrency
Graphs and Models. LNCS, vol. 5065, pp. 37–56. Springer, Ber-
lin (2008)

15. Bruni, R., Lluch-Lafuente, A., Montanari, U., Tuosto, E.:
Service oriented architectural design. In: Barthe,G., Fournet, G.
(ed.) TGC. Lecture Notes in Computer Science, vol. 4912, pp.
186–203. Springer, Berlin (2007)

16. Carbone, M., Honda, K., Yoshida, N.: Structured communica-
tion-centred programming for web services. In: De Nicola [18],
pp. 2–17

17. Coulson, G., Blair, G.S., Grace, P., Taïani, F., Joolia, A., Lee, K.,
Ueyama, J., Sivaharan, T.: A generic component model for building
systems software. ACM Trans. Comput. Syst. 26(1), (2008)

18. De Nicola, R. (ed.): Programming Languages and Systems. LNCS,
vol. 4421. Springer, Berlin (2007)

123

A model for dynamic reconfiguration in service-oriented architectures

19. Elfatatry, A.: Dealing with change: components versus ser-
vices. Commun. ACM 50(8), 35–39 (2007)

20. Fargier, H., Lang, J., Schiex, T.: Mixed constraint satisfaction: a
framework for decision problems under incomplete knowledge. In:
AAAI/IAAI, vol. 1, pp. 175–180 (1996)

21. Fiadeiro, J.L.: Categories for Software Engineering. Springer, Ber-
lin (2004)

22. Fiadeiro, J.L., Lopes, A.: A model for dynamic reconfiguration in
service-oriented architectures. In: Babar, M.A., Gorton, I. ECSA.
LNCS, vol. 6285, pp. 70–85. Springer, Berlin (2010)

23. Fiadeiro, J.L., Lopes, A., Abreu, J.: A formal model for service-
oriented interactions. Sci. Comput. Program (2011, in print)

24. Fiadeiro, J.L., Lopes, A., Bocchi, L.: An abstract model of ser-
vice discovery and binding. Formal Asp. Comput. 23(4), 433–
463 (2011)

25. Fiadeiro, J.L., Lopes, A., Bocchi, L., Abreu, J.: The Sensoria ref-
erence modelling language. In: Wirsing and Hölzl [45], pp. 61–114

26. Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B.R., Steenk-
iste, P.: Rainbow: architecture-based self-adaptation with reusable
infrastructure. IEEE Comput. 37(10), 46–54 (2004)

27. Gilmore, S., Hillston, J.: The PEPA workbench: a tool to support a
process algebra-based approach to performance modelling. In: Har-
ing, G., Kotsis, G. Computer Performance Evaluation. LNCS, vol.
794, pp. 353–368. Springer, Berlin (1994)

28. Kon, F., Costa, F.M., Blair, G.S., Campbell, R.H.: The case for
reflective middleware. Commun. ACM 45(6), 33–38 (2002)

29. Lapadula, A., Pugliese, R., Tiezzi F.: A calculus for orchestration
of web services. In: De Nicola [18], pp. 33–47

30. Léger, M., Ledoux, T., Coupaye, T.: Reliable dynamic reconfigu-
rations in a reflective component model. In: Grunske, L., Reussner,
R., Plasil, F. CBSE. LNCS, vol. 6092, pp. 74–92. Springer, Ber-
lin (2010)

31. Lucchi, R., Mazzara, M.: A π -calculus based semantics for
WS-BPEL. J. Log. Algebr. Program. 70(1), 96–118 (2007)

32. Magee, J., Kramer J.: Dynamic structure in software architectures.
In: SIGSOFT FSE, pp. 3–14 (1996)

33. Morrison, R., Kirby, G.N.C., Balasubramaniam, D., Mickan, K.,
Oquendo, F., Cîmpan, S., Warboys, B., Snowdon, B., Greenwood,
R.M.: Support for evolving software architectures in the archware
ADL. In: WICSA, pp. 69–78. IEEE Computer Society (2004)

34. Oquendo, F.: π -ADL: an architecture description language based
on the higher-order typed pi-calculus for specifying dynamic
and mobile software architectures. ACM SIGSOFT Softw. Eng.
Notes 29(3), 1–14 (2004)

35. Oquendo, F.: Formal approach for the development of busi-
ness processes in terms of service-oriented architectures using
π -ADL. In: Lee, J., Liang, D., Cheng, Y.C. SOSE, pp. 154–159.
IEEE Computer Society, Berlin (2008)

36. Oreizy, P., Taylor, R.N.: On the role of software architectures in
runtime system reconfiguration. IEE Proc. Softw. 145(5), 137–
145 (1998)

37. OSOA. Service component architecture: Building systems using
a service oriented architecture, 2005. White paper available from
http://www.osoa.org

38. Perry, D.E., Wolf, A.L.: Foundations for the study of software
architecture. SIGSOFT Softw. Eng. Notes 17(4), 40–52 (1992)

39. Reichel, H.: Initial Computability, Algebraic Specifications, and
Partial Algebras. Oxford University Press Inc., New York (1987)

40. Sanz, M.L., Qayyum, Z., Cuesta, C.E., Marcos, E., Oqu-
endo, F.: Representing service-oriented architectural models
using π -ADL. In: Morrison, R., Balasubramaniam, D., Falkner,
K.E. ECSA. LNCS, vol. 5292, pp. 273–280. Springer, Ber-
lin (2008)

41. Simonot, M., Aponte V.: A declarative formal approach to dynamic
reconfiguration. In: Proceedings of the 1st international workshop
on Open component ecosystems, IWOCE’09, pp. 1–10. ACM, New
York, 2009

42. Tiberghien, A., Merle, P., Seinturier, L.: Specifying self-config-
urable component-based systems with fractoy. In: Frappier, M.,
Glässer, U., Khurshid, S., Laleau, R., Reeves, S. ASM. LNCS, vol.
5977, pp. 91–104. Springer, Berlin (2010)

43. Wermelinger, M., Fiadeiro, J.L.: A graph transformation approach
to software architecture reconfiguration. Sci. Comput. Pro-
gram. 44(2), 133–155 (2002)

44. Wermelinger, M., Lopes, A., Fiadeiro, J.L.: A graph based archi-
tectural (re)configuration language. In: ESEC / SIGSOFT FSE, pp.
21–32 (2001)

45. Wirsing, M., Hölzl, M. (eds.): Rigorous Software Engineering
for Service-Oriented Systems. LNCS, vol. 6582. Springer, Ber-
lin (2011)

Author Biographies

José Luiz Fiadeiro is Profes-
sor for Software Science and
Engineering at the University of
Leicester, which he joined in
2002 after having held acad-
emic positions at the Technical
University of Lisbon and the Uni-
versity of Lisbon. He also held
visiting positions at Imperial
College London, King’s College
London, PUC-Rio de Janeiro
(Brazil), and the SRI Interna-
tional (California). He was Head
of Department at Leicester from
August 2006 to July 2011. José’s

current research interests are in formal aspects of software system mod-
elling and analysis in the context of global ubiquitous computing. He is
also-member of the Editorial Board of Information Processing Letters
(Elsevier) and Fellow of the British Computer Society.

Antónia Lopes is Associate
Professor at the University of
Lisbon, Portugal, since March
2006. She received a Ph.D.
in Informatics at the Univer-
sity of Lisbon in 1999. Her
research interests are in design
principles, theories and tech-
niques that support the modelling
and analysis of various types
of software intensive systems,
namely service-oriented systems
and self-adaptive systems.

123

http://www.osoa.org

	A model for dynamic reconfiguration in service-oriented architectures
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Configurations of global computers
	2.2 Running example

	3 srmLight
	4 State configurations
	5 Business-reflective configurations
	6 Service binding as a reconfiguration action
	7 Related work
	8 Concluding remarks
	Acknowledgments
	Appendix A: the specification formalisms of srmLight
	A.1 Component specifications
	A.2 Wire and connection specifications
	A.3 Logic for configurations
	A.4 State and trigger conditions

	References

