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Abstract. We put forward an interface and component algebra through which
we characterise fundamental structures that support service-oriented design in-
dependently of the specific formalisms that may be adopted to provide models
for languages or analysis tools. We view services as an interface mechanism that
can be superposed over a component infrastructure, what is sometimes referred
to as a ‘service overlay’. The component algebra consists of networks of pro-
cesses that interact asynchronously through communication channels. A service
interface offers properties to potential clients and requires properties of external
services that, at run time, may need to be discovered and bound to the orchestra-
tion of the service. We define what it means for an asynchronous relational net
to orchestrate a service interface and prove a number of compositionally results
that relate the operations of both algebras. One of the major results of the paper is
the characterisation of a sub-class of asynchronous relational nets over which we
can guarantee that, when binding, through their interfaces, a client and a supplier
service, the composition of the orchestrations of the two services is consistent,
i.e., both services can work together as interconnected.

1 Introduction

In [15], de Alfaro and Henzinger put forward a number of important insights, backed up
by mathematical models, that led to an abstract characterisation of essential aspects of
component-based software design (CBD), namely the distinction between the notions
of component and interface, and the way they relate to each other. In this paper, we take
stock on the work that we developed in the FET-GC2 integrated project SENSORIA [47]
around a language (SRML) and mathematical model for service-oriented modelling
[26], and investigate what abstractions can be put forward for service-oriented com-
puting (SOC) that relate to the notions of interface and component algebra proposed
in [15]. Our ultimate goal is to characterise the fundamental structures that support
SOC independently of the specific formalisms (Petri-nets, different kinds of automata
or state machines, process calculi, inter alia) that may be adopted to provide models for
languages or analysis tools.
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1.1 Services vs. components, informally

A question that, in this context, cannot be avoided, concerns the difference between
component-based and service-oriented design. The view that we adopt herein is that, on
the one hand, services offer a layer of activity that can be superposed over a component
infrastructure (what is sometimes referred to as a ‘service overlay’) and, on the other
hand, the nature of the interactions that are needed to support such a service overlay
is intrinsically asynchronous and conversational, which requires a notion of component
algebra that is different from the ones investigated in [15] for CBD.

The difference between components and services, in what concerns the purpose
of this paper, can be explained in terms of two different notions of ‘composition’, re-
quiring two different notions of interface. In CBD, composition is integration-oriented
— “the idea of component-based development is to industrialise the software develop-
ment process by producing software applications by assembling prefabricated software
components” [16]. In other words, CBD addresses what, in [19] we have called ‘physi-
ological complexity’ — the ability to build a complex system by integrating a number
of independently developed parts. Hence, interfaces for component-based design must
describe the means through which software elements can be plugged together to build
a product and the assumptions made by each element on the environment in which it
will be deployed. Interfaces in the sense of [15] – such as assume/guarantee interfaces
– fall into this category: they specify the combinations of input values that components
implementing an interface must accept from their environment (assumptions) and the
combinations of output values that the environment can expect from them (guarantees).

In contrast, services respond to the necessity for separating “need from the need-
fulfilment mechanism” [16] and address what in [19] we have called ‘social complex-
ity’: the ability of software elements to engage with other parties to pursue a given
business goal. For example, we can design a seller application that may need to use
an external supplier service if the local stock is low (the need); the discovery and se-
lection of, and binding to, a specific supplier (the need-fulfilment mechanism) are not
part of the design of the seller but performed, at run time, by the underlying middle-
ware (service-oriented architecture) according to quality-of-service constraints. In this
context, service interfaces must describe the properties that are provided (so that the ser-
vices offered by applications can be discovered) as well as those that may be required
from external services (so that the middleware can select a proper provider). The latter
are not assumptions on the environment as in CBD — in a sense, through run-time dis-
covery and binding, applications create the environment in which they need to operate
in order to deliver the services that they promise.

This difference has implications on the nature and properties of the algebras that
capture the operations on and relationships between design elements. For example, in
CBD, composition is commutative, reflecting that we are building something more com-
plex from simpler parts: software applications are composed as components of a bigger
whole; the process stops when the designer has assembled all the components it needs.
In SOC, composition is not commutative, reflecting the fact that it supports the binding
of a client to a supplier: the purpose is not to build a bigger whole but to bind an appli-
cation to the external suppliers that it needs to deliver a service. The process continues
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if some of those suppliers, in turn, require external services, and so on, leading to a
dynamic form of composition that cannot be predicted at design time.

Concerning the key questions that [15] identifies for distinguishing between com-
ponents and interfaces, where the question What does it do? in the context of describing
components that communicate synchronously through I/O ports ultimately means How
are inputs transformed into outputs?, in SOC it should mean How are interactions or-
chestrated among a group of partners?; and where the question How can it be used?
in the context of describing component interfaces ultimately means What constraints
apply to the values that can be passed through the ports?, in SOC it should mean What
are the protocols that parties need to observe at the ports to engage with the service?.
These differences have important methodological and design implications as decisions
need to be made on whether coupling should be tight or loose, binding should be static
(at design time) or dynamic (at run time), communication should be synchronous or
asynchronous, and so on.

1.2 Overview of the paper

In the context of modelling and specifying services, one can find two different kinds
of approaches — choreography and orchestration — which are also reflected in the
languages and standards that have been proposed for Web services, namely WS-CDL
for choreography and WS-BPEL for orchestration. In a nutshell, choreography is con-
cerned with the specification and realizability of a ‘conversation’ among a (fixed) num-
ber of peers that communicate with each other to deliver a service, whereas orches-
tration is concerned with the definition of a (possibly distributed) business process (or
workflow) that may use external services discovered and bound to the process at run
time in order to deliver a service.

Whereas the majority of formal frameworks that have been developed for SOC ad-
dress choreography (see [43] for an overview), the approach that we take in this paper
is orchestration-oriented. More precisely, we propose to model the workflow through
which a service is orchestrated as being executed by a network of processes that inter-
act asynchronously and offer interaction-points to which clients and external services
(executed by their own networks) can bind. The questions that we propose to answer are
What is a suitable notion of interface for such asynchronous networks of processes that
deliver a service?, and What notion of interface composition is suitable for the loose
coupling of the business processes that orchestrate the interfaces?

The rest of this paper is technical and formal: our purpose is not to define an inter-
face language but, rather, characterise the fundamental structures that support software
engineering for SOC and the way it differs from CBD. Methodological aspects of our
approach can be found in previous publications, e.g., [1,10,11,26].

In Section 2, we present a ‘component algebra’ that builds on networks of pro-
cesses that communicate asynchronously, i.e., components are networks. We define a
law of composition and an abstraction mechanism that we prove to be compositional. A
significant part of this section is dedicated to the characterisation of a subclass of asyn-
chronous relational nets that are guaranteed to be consistent (i.e., they admit at least one
run that projects to valid runs of the processes in the network and the channels through
which they communicate) and closed under composition. This characterisation is given
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in terms of properties that can be checked at design time; checking for consistency at
discovery time would not be credible because, in SOC, there is no time for the tradi-
tional design-time integration and validation activities as the SOA middleware brokers
need to discover and bind services at run time.

This leads us to the characterisation of services as an ‘interface algebra’ (again in
the sense of [15]), which we develop in Section 3. Interfaces involve the specification of
behaviour in terms of temporal logic. More precisely, an interface consists of a provides-
point through which properties can be specified that are offered to clients of the service,
and a collection of requires-points through which properties can be specified that are
required of the external services that, at run time, may need to be discovered and of the
channels through which they will bind to the orchestration of the service. We define a
law of composition and a refinement mechanism that we prove to be compositional.

The two algebras are connected by defining what it means for an asynchronous rela-
tional net to orchestrate a service interface, and we prove a number of compositionality
results that relate the operations of both algebras. Finally, we present a fragment of
linear temporal logic that is suitable for the subclass of asynchronous relational nets
whose composition can be guaranteed to preserve consistency, thus ensuring that, when
binding, through their interfaces, a client and a supplier service, the composition of the
orchestrations of the two services is consistent, i.e., both services can work together as
interconnected.

In Section 4, we compare our framework with formal models that have been pro-
posed in the last few years for orchestration, namely [7,9,27]. Finally, we conclude with
a summary of the results obtained in the paper and a discussion of further work.

The paper builds on two of our previous papers ([21,22]) but extends them in a
significant way. In relation to [21], the component algebra has been changed to that of
[22] in order to use the topological properties that are required to address consistency
of composition. A notion of component abstraction has also been added, which had
not been previously defined. Sect. 3 is almost totally new. On the one hand, the notion
of orchestration proposed in [21] had to be redefined in order to take into account the
revised component algebra and build on the new notion of component abstraction. On
the other hand, a notion of interface refinement was introduced, for which several com-
positionally results had to be proved. In relation to SRML and our previous work in
SENSORIA (e.g., [23,24,26]), this paper separates the component from the interface al-
gebra (the notion of module in SRML corresponds to an orchestrated interface), which
allows us to address aspects that, such as consistency, abstraction and refinement, are
essential for the toolbox of any software engineer.

2 The component algebra

In this paper, we adopt the view that services are delivered by systems of components
as in SCA [39]:

“SCA is a model designed for SOA, unlike existing systems that have been adapted to
SOA. SCA enables encapsulating or adapting existing applications and data using an
SOA abstraction. SCA builds on service encapsulation to take into account the unique
needs associated with the assembly of networks of heterogeneous services.
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SCA provides the means to compose assets, which have been implemented using a va-
riety of technologies using SOA. The SCA composition becomes a service, which can
be accessed and reused in a uniform manner. In addition, the composite service itself
can be composed with other services [...] SCA service components can be built with a
variety of technologies such as EJBs, Spring beans and CORBA components, and with
programming languages including Java, PHP and C++ [...] SCA components can also
be connected by a variety of bindings such as WSDL/SOAP web services, JavaTM Mes-
sage Service (JMS) for message-oriented middleware systems and J2EETM Connector
Architecture (JCA)”.

In the terminology of [15], we can see components in the sense of SCA as imple-
menting processes that are connected by channels. However, there is a major difference
in the way processes are connected. In [15], and indeed many models used for ser-
vice choreography and orchestration (e.g., [7,14,41]), communication is synchronous
(based in I/O connections). In order to capture the forms of loose coupling that SOAs
support, communication should be asynchronous: in most business scenarios, the tra-
ditional synchronous call-and-return style of interaction is simply not appropriate. This
leads us to propose a model that is closer to communicating finite-state machines [12]
(also adopted in [8]) than, say, I/O automata [34]. We call our (service) component
algebra asynchronous relational nets (ARNs).

2.1 Preliminaries

The processes that execute in SOC are typically open, reactive and interactive. Their
behaviour can be observed in terms of the actions that they perform. For simplicity, we
use a linear time model, i.e., we observe streams of actions. In order not to constrain the
environment in which processes execute and communicate, we take streams that capture
complete behaviours to be infinite (which we call traces) and we allow several actions
to occur ‘simultaneously’, i.e., the granularity of observations may not be so fine that
we can always tell which of two actions occurred first. The execution of an empty set
of actions corresponds to a step during which a process is idle, i.e., a step performed by
the environment without the involvement of the process.

The following definition sets out terminology and notation that is used throughout
the paper.

Definition 1 (Trace, segment, and property) Let A be a set (of actions).

– A trace λ over A is an element of (2A)
ω , i.e., an infinite sequence of sets of actions.

We denote by λ(i) the i-th element of λ, by λi the prefix of λ that ends at λ(i), and
by λi the suffix of λ that starts at λ(i).

– A segment over A is an element of (2A)
∗, i.e., a finite sequence of sets of actions.

We use π≺λ to mean that the segment π is a prefix of λ.

– Given A′⊆A and a segment π, we denote by (π·A′) the segment obtained by ex-
tending π withA′. We use the same symbol to denote the concatenation of segments
(π1 · π2) and of segments with traces (π · λ).

– A property Λ over A is a subset of (2A)ω .
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Notice that finite behaviours can be captured through traces that, after some point, con-
sist only of the empty set, i.e., they are of the form π.∅ω where π∈(2A)

∗.

Definition 2 (Closure) Let A be a set and Λ a property over A. We define:

– Λf = {π∈(2A)
∗
: ∃λ∈Λ(π≺λ)} — the segments that are prefixes of traces in Λ,

also called the downward closure of Λ.

– Λ̄ = {λ∈(2A)
ω

: ∀π≺λ(π∈Λf )}— the traces whose prefixes are in Λf , also called
the closure of Λ.

– Λ is said to be closed iff Λ ⊇ Λ̄ (and, hence, Λ = Λ̄).

The closure operator on (2A)ω is defined according to the Cantor topology used in
[2] for characterising safety and liveness properties (see also [6]). In that topology, the
closed sets are the safety properties (and the dense ones are the liveness properties).

Functions between sets of actions, which we call alphabet maps, are useful for
defining relationships between individual processes and the networks in which they
operate.

Definition 3 (Projection and translation) Let σ:A→B be a function (alphabet map).

– For every λ′∈(2B)ω , we define λ′|σ∈(2A)ω pointwise as λ′|σ(i)=σ−1(λ′(i)) —
the projection of λ′ over A. If σ is an inclusion, i.e., A⊆B, then we tend to write
|A instead of |σ; this is a function that, when applied to a trace, forgets the actions

of B that are not in A.

– For every property Λ⊆(2A)ω , we define σ(Λ) = {λ′∈(2B)ω : λ′|σ∈Λ} — the
translation of Λ to B. Note that λ′∈σ(Λ) iff λ′|σ∈Λ.

We are particularly interested in translations defined by prefixing every element of a
set with a given symbol. Such translations are useful for identifying in a network the
process to which an action belongs — we do not assume that processes have mutually
disjoint alphabets. More precisely, given a set A and a symbol p, we denote by (p. ) the
function that prefixes the elements ofA with ‘p.’. Note that prefixing defines a bijection
between A and its image (p.A).

Alphabet maps induce translations that preserve closed properties:

Proposition 4 (Translation) Let σ:A→B be an alphabet map. For every closed prop-
erty Λ over A, σ(Λ) is a closed property over B.

Proof. This is a simple property of the topological space defined by traces.

2.2 Asynchronous relational nets

In an asynchronous communication model, interactions are based on the exchange of
messages that are transmitted through channels (wires in the terminology of SCA).
For simplicity, we ignore the data that messages may carry. We organise messages in
sets that we call ports. More specifically, every process consists of a (finite) collection
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of mutually disjoint ports, i.e., each message that a process can exchange belongs to
exactly one of its ports. Ports are communication abstractions that are convenient for
organising networks of processes as formalised below.

Every message belonging to a port has an associated polarity: − if it is an outgoing
message (published at the port) and + if it is incoming (delivered at the port). This is
the notation proposed in [12] and also adopted in [7].

Definition 5 (Port and message polarity) A port is a finite set (of messages). Every
port M has a partition M− ∪M+. The messages in M− are said to have polarity − ,
and those in M+ have polarity +.

The actions of sending (publishing) or receiving (being delivered) a message m are
denoted by m! and m¡, respectively.

Definition 6 (Action) Let M be a port and m∈M .

– The set of actions associated with M− is AM− = {m¡ : m∈M−}.
– The set of actions associated with M+ is AM+ = {m! : m∈M+}.
– The set of actions associated with M is AM = AM− ∪AM+ .

A process is a non-empty property over the alphabet generated from a finite set of
mutually disjoint ports:

Definition 7 (Process) A process consists of:

– A finite set γ of mutually disjoint ports.
– A non-empty property Λ over Aγ =

⋃
M∈γ AM .

We also define A+
γ =

⋃
M∈γ AM+ and A−γ =

⋃
M∈γ AM− .

Interactions in ARNs are established through channels. Channels transmit messages
both ways, i.e., they are bidirectional, which is consistent with [12]. Notice that, in
some formalisms (e.g., [8]), channels are unidirectional, which is not so convenient
for capturing typical forms of conversation that, like in SCA, are two-way: a request
sent by the sender through a wire has a reply sent by the receiver through the same
wire (channel). This means that channels are agnostic in what concerns the polarity of
messages: these are only meaningful within ports.

Definition 8 (Channel) A channel consists of:

– A set M of messages.
– A non-empty property Λ over the alphabet AM = {m!,m¡ : m ∈M}.

We also define A+
M = {m¡ : m∈M} and A−M = {m! : m∈M}.

Notice that in [8] as well as other asynchronous communication models adopted for
choreography, when sent, messages are inserted in the queue of the consumer. In the
context of loose coupling that is of interest for SOC, channels (wires) may have a be-
haviour of their own that one may wish to describe or, in the context of interfaces, spec-
ify. Therefore, for generality, we take channels as first-class entities that are responsible
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for delivering messages and, hence, may have their own buffers. More specifically, we
consider that the publication of messages are inputs for channels and the delivery of
messages are inputs for processes.

Channels connect processes through their ports. Formally, the connections are es-
tablished through what we call attachments:

Definition 9 (Connection) Let M1 and M2 be ports and 〈M,Λ〉 a channel. A connec-
tion between M1 and M2 via 〈M,Λ〉 consists of a pair of injections µi:M→Mi such
that µ−1i (M+

i ) = µ−1j (M−j ), {i, j}={1, 2}. Each injection µi is called the attachment
of 〈M,Λ〉 to Mi. We denote the connection by 〈M1

µ1←−M
µ2−→M2, Λ〉.

A connection establishes a one-to-one correspondence between the two ports such that
any two messages that are connected have opposite polarities. The fact that the attach-
ments are injections but not necessarily bijections means that the correspondence may
be partial: some of the messages of M1 or M2 may end up not being connected.

Proposition 10 Every connection 〈M1
µ1←− M

µ2−→ M2, Λ〉 defines an injection 〈µ1, µ2〉
from AM to AM1∪AM2 as follows: for every m∈M and {i, j}={1, 2}, if µi(m)∈M−i
then 〈µ1, µ2〉(m!) = µi(m)! and 〈µ1, µ2〉(m¡) = µj(m)¡.

Definition 11 (Asynchronous relational net) An asynchronous relational net (ARN)
α consists of:

– A simple finite graph 〈P,C〉 where P is a set of nodes and C is a set of edges. Note
that each edge is an unordered pair {p, q} of nodes.

– A labelling function that assigns a process 〈γp, Λp〉 to every node p and a connec-
tion 〈γc, Λc〉 to every edge c such that:
• If c={p, q} then γc is a pair of attachments 〈Mp

µp←− Mc
µq−→ Mq〉 for some

Mp∈γp and Mq∈γq .
• If γ{p,q}=〈Mp

µp←−M{p,q}
µq−→Mq〉 and γ{p,q′}=〈M ′p µ

′
p←−M{p,q′}

µ′q′−→M ′q′〉 with
q 6= q′, then Mp 6= M ′p.

We also define the following sets and mappings:

– Aα =
⋃
p∈P p.Aγp is the language associated with α.

– For every p∈P , ιp is the function that maps Aγp to Aα, which prefixes the actions
of Aγp with p.

– For every c∈C, ιc is the function that maps AMc to Aα, which, assuming that
c = {p, q}, translates the actions of AMc through 〈p. ◦ µp, q. ◦ µq〉.

– Λα = {λ∈(2Aα)ω: ∀p∈P (λ|ιp∈Λp) ∧ ∀c∈C(λ|ιc∈Λc)}.

Note that, for every p∈P , ( |ιp) first removes the actions that are not in the language
p.Ap and then removes the prefix p. Similarly, for every c = {p, q}∈C, ( |ιc) first
removes the actions that are not in the language 〈p. ◦µp, q. ◦µq〉(AMc), then removes
the prefixes p and q, and then projects onto the language of Mc.

We often refer to the ARN through the quadruple 〈P,C, γ, Λ〉 where γ returns the
set of ports of the processes that label the nodes and the pair of attachments of the
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connections that label the edges, and Λ returns the corresponding properties. The fact
that the graph is simple – undirected, without self-loops or multiple edges – means
that all interactions between two given processes are supported by a single channel and
that no process can interact with itself. The graph is undirected because, as already
mentioned, channels are bidirectional. Furthermore, because of the second restriction
on the labelling function, different channels cannot share ports.

The alphabet ofAα is the union of the alphabets of the processes involved translated
by prefixing all actions with the node from which they originate (see the definition of
this translation after Def. 3).

We take the set Λα to define the set of possible traces observed on α – those traces
over the alphabet of the ARN that are projected to traces of all its processes and chan-
nels. Notice that

Λα =
⋂
p∈P

ιp(Λp) ∩
⋂
c∈C

ιc(Λc)

That is, the behaviour of the ARN is given by the intersection of the behaviour of the
processes and channels translated to the language of the ARN — this corresponds to
what one normally understands as a parallel composition.

Notice that nodes and edges denote instances of processes and channels, respec-
tively. Different nodes (resp. edges) can be labelled with the same process (resp. chan-
nel), i.e., processes and channels act as types. This is why it is essential that, in the ARN,
it is possible to trace actions to the instances of processes where they originate (all the
actions of channels are mapped to actions of processes through the attachments so it
is enough to label actions with nodes). Also notice that the alphabets of the channels
are translated through the attachments in a way that is consistent with the translations
performed on process alphabets.

In order to illustrate the notions introduced in the paper, we consider a simplified
bank portal that mediates the interactions between clients and the bank in the context of
different business operations such as the request of a credit. Fig. 1 depicts an ARN with
two interconnected processes that implement that business operation. Process Clerk is
responsible for the interaction with the environment and for making decisions on credit
requests, for which it relies on the process RiskEvaluator that is able to evaluate the
risk of the transaction.

ClerkcreditReq

           Λ c

approved
denied

transferDate

RiskEvaluator

Λ w

request

result

getRisk

riskValueaccept

Lc

Rc Le

           Λe

Fig. 1. An example of an ARN with two processes connected through a channel.

The graph of this ARN consists of two nodes c:Clerk and e:RiskEvaluator and
an edge {c, e}:wce where:
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– Clerk is a process with two ports: Lc and Rc. In port Lc, the process receives
messages creditReq and accept and sends approved , denied and transferDate.
Port Rc has outgoing message getRisk and incoming message riskValue . The be-
haviour of Clerk is as follows: immediately after the delivery of the first creditReq
message on port Lc, it publishes getRisk on Rc; then it waits five time units for
the delivery of riskValue , upon which it either publishes denied or approved (we
abstract from the criteria that it uses for deciding on the credit); if riskValue does
not arrive by the deadline, Clerk publishes denied on Lc; after sending approved
(if ever), Clerk waits twenty time units for the delivery of accept , upon which it
sends transferDate; all other deliveries of creditReq and accept are discarded. The
property that corresponds to this behaviour is denoted by Λc in Fig. 1.

– RiskEvaluator is a process with a single port (Le) with incoming message request
and outgoing message result . Its behaviour is quite simple: every time request is
delivered, it takes no more than three time units to publish result . The property that
corresponds to this behaviour is denoted by Λe in Fig. 1.

– The port Rc of Clerk is connected with the port Le of RiskEvaluator through
wce:〈Rc µc←− {m,n} µe−→ Le, Λw〉, with µc={m 7→ getRisk , n 7→ riskValue}, µe=
{m 7→ request , n 7→ result}. The corresponding channel is reliable: a m¡ follows
everym! and a n¡ follows every n!. The property that corresponds to this behaviour
is denoted by Λw in Fig. 1.

The alphabet of this ARN is the language of actions generated by the set M of
messages defined by:

M+: c.creditReq , c.accept , c.riskValue , e.request
M−: c.approved , c.denied , c.transferDate, c.getRisk , e.result

In order to explain how the channels connect processes, consider a trace of the
channel wce of the form:

∅k1 ·m! ·m¡ · ∅k2 · n! · n¡ · ∅ω

The translation of this trace to the language of the ARN is a set of traces of the form

τ1 ·A1 ⊕ c.getRisk ! ·A2 ⊕ e.request¡ · τ2 ·A3 ⊕ e.result! ·A4 ⊕ c.riskValue¡ · λ

where the τi are segments of length ki, λ is a trace and Ai are sets of actions, none
of which intersects {c.getRisk !, e.request¡, e.result!, c.riskValue¡}. We use A ⊕ a as
shorthand for A ∪ {a}.

That is, Clerk publishes getRisk , which the channel delivers to RiskEvaluator as
request ; after a while,RiskEvaluator publishes result , which the channel delivers to
Clerk as riskValue , both without any delay.

A class of very simple ARNs, which we call atomic, are those that consist of a single
process:

Definition 12 (ARN defined by a process) Given a process P , we define the ARN νP
whose graph consists of only one node, which is labelled with P .
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2.3 Consistency

In [15], joint consistency of the descriptions of the processes and the connections is
required for a (component-based) relational net to be well defined. For asynchronous
relational nets, consistency can be formulated as follows:

Definition 13 (Consistent ARN) An ARN α is said to be consistent if Λα is not empty.

Consistency of an ARN is an important property because it shows that there is a joint
trace of all the processes and channels that are part of the ARN. Naturally, one cannot
expect every ARN to be consistent as the interference established through the connec-
tions may make it impossible for the processes involved to work together. Therefore, it
is important to know how one can determine whether an ARN is consistent. Typically,
this could be done at the level of automata (e.g., non-deterministic Bücchi automata
[46]) that implement the processes and channels of the ARN by computing their prod-
uct and checking that the resulting language is not empty, for example as in [45,46].
However, for reasons explained in more detail in Sect. 2.4, we would like to have a
more compositional way of checking for consistency, i.e., based on characteristics of
the processes and channels involved without having to compute the product of the au-
tomata.

For that purpose, a different (but related) property was found to be relevant. Con-
sistency is about infinite behaviours, i.e., it concerns the ability of all the processes and
channels of an ARN to generate a full joint trace. However, it does not guarantee that,
having engaged in a joint segment, the processes can proceed: it may happen that the
joint segment is not a prefix of a joint (full) trace, which would be considered undesir-
able as it is not possible for individual processes to anticipate what other processes will
do. Therefore, another intuitive (and important) property of an ARN is that, after any
joint segment, a joint step can be performed1.

Definition 14 (Progress-enabled ARN) For every ARN α, let

Πα = {π∈2Aα
∗
: ∀p∈P (π|ιp∈Λfp) ∧ ∀c∈C(π|ιc∈Λfc )}

We say that α is progress-enabled iff

∀π∈Πα.∃A⊆Aα(π·A)∈Πα.

The set Πα consists of all the partial traces that the processes and channels can jointly
engage in. Note that, because the intersection of A with the alphabet of any process or
channel can be empty, being progress-enabled does not require all parties to actually
perform an action.

By itself, being progress-enabled does not guarantee that an ARN is consistent:
moving from finite to infinite behaviours requires the analysis of what happens ‘at the
limit’. A progress-enabled but inconsistent ARN guarantees that all the processes will
happily make joint progress but at least one will be prevented from achieving a suc-
cessful full trace at the limit. For example, consider the following two processes: P

1 Progress properties of this kind have been studied, for example, for communicating finite-state
machines [12,30].
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recurrently sends a given message m and Q is able to receive a message n but only a
finite, though arbitrary, number of times. If these processes are interconnected through
a reliable channel that ensures to delivering n every time m is published, it is easy to
conclude that the resulting ARN is not consistent in spite of being progress-enabled:
after having engaged in any joint partial trace, both processes and the channel can pro-
ceed (Q will let the channel deliver n once more time if necessary); however, they are
not able to generate a full joint trace because P will want to send m an infinite number
of times and Q will not allow the channel to deliver n infinitely often.

A class of progress-enabled ARNs for which we can guarantee consistency are those
that involve only closed (safety) properties (cf. Def. 2). The rationale is that, by choos-
ing to work with safety properties, ‘success’ does not need to be measured at the limit:
checking the ability to make ‘good’ progress is enough.

From a methodological point of view, considering ARNs that consist of safety prop-
erties is justified by the fact that, within SOC, we are interested in processes whose live-
ness properties are bounded (bounded liveness being itself a safety property). This is
because, in typical business applications, one is interested only in services that respond
within a fixed (probably negotiated) delay. In SOC, one does not offer as a service the
kind of systems that, like operating systems, are not meant to terminate2.

Definition 15 (Safe processes, channels and ARNs) A process 〈γ, Λ〉 (resp. channel
〈M,Λ〉) is said to be safe if Λ is closed. A safe ARN is one that is labelled with safe
processes and channels.

Proposition 16 For every safe ARN α, Λα is a closed (safety) property.

Proof. Λα is the intersection of the images of the properties of the processes and chan-
nels associated with the nodes and edges of the graph. According to Prop. 4, those
images are safety properties. The result follows from the fact that an intersection of
closed sets in any topology is itself a closed set.

We can now prove one of the major results of this paper.

Theorem 17 (Consistency) Any safe progress-enabled ARN is consistent.

Proof. Given that the processes and channels in a safe ARN are consistent, Πα is not
empty (it contains at least the empty segment ε). Πα can be organised as a tree, which
is finitely branching because Aα is finite. If the ARN is progress-enabled, the tree is
infinite. By Kőnigs lemma, it contains an infinite branch λ.

We now prove that λ∈Λα, i.e., λ|ιp∈Λp for all p∈P and λ|ιc∈Λc for all c∈C:

1. Let p∈P and π ≺ λ|ιp . We know that π is of the form π′|ιp where π′∈Πα. There-
fore, π∈Λfp .

2. It follows that λ|ιp∈Λp.

3. Because Λp is closed, we can conclude that λ|ιp∈Λp.

2 Cloud computing does offer platform or infrastructure as a service, but this is not what is
normally meant by SOC — software as a service.
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4. The same reasoning applies to all channels.

It is not difficult to see that any atomic ARN νP , where P is a process such as Clerk,
is progress-enabled. This is because the process is taken in isolation. For communi-
cating finite-state machines, the problem of whether any arbitrary pair of machines is
able to communicate indefinitely is known to be undecidable but approaches exist to
bypass this problem [12,29,30]. In the next subsection, we analyse the composition of
ARNs and give sufficient conditions for the composition of progress-enabled ARNs to
be progress-enabled, which effectively guarantees that ARNs are progress-enabled by
construction.

2.4 Composing ARNs

We consider now the composition operation of our component algebra. Two ARNs can
be composed through the ports that are still available for establishing further intercon-
nections, i.e., not connected to any other port, which we call interaction-points:

Definition 18 (Interaction-point) An interaction-point of an ARN α = 〈P,C, γ, Λ〉 is
a pair 〈p,M〉 such that p∈P , M∈γp and there is no edge {p, q}∈C labelled with a
connection that involves M . We denote by Iα the collection of interaction-points of α.

For example, the ARN depicted in Fig. 1 has a single interaction point, which is repre-
sented by projecting the corresponding port to the external box.

Interaction-points are used in the operation of composition that we define for ARNs,
which subsumes the notion of interconnect of [15]:

Proposition and Definition 19 (Composition of ARNs) Letα1 = 〈P1, C1, γ1, Λ1〉 and
α2 = 〈P2, C2, γ2, Λ2〉 be ARNs such that P1 and P2 are disjoint, and a family wi =

〈M i
1
µi
1←−M i µi

2−→M i
2, Λ

i〉 (i = 1 . . . n) of connections for interaction-points 〈pi1,M i
1〉 of

α1 and 〈pi2,M i
2〉 of α2 such that, for every i 6= j:

– pi1 6= pj1 or pi2 6= pj2,
– if pi1 = pj1 then M i

1 6= M j
1 ,

– if pi2 = pj2 then M i
2 6= M j

2 .

The composition (α1

ni=1...n

〈pi1,Mi
1〉,wi,〈pi2,Mi

2〉
α2) is the ARN defined as follows:

– Its graph is 〈P1 ∪ P2, C1 ∪ C2 ∪
⋃
i=1...n{pi1, pi2}〉

– Its labelling function coincides with that of α1 and α2 on the corresponding sub-
graphs, and assigns to the new edges {pi1, pi2} the label wi.

Proof. We need to prove that the composition does define an ARN. This is because we
are adding to the sum of the graphs edges between interaction-points that do not share
interaction-points, the resulting graph is simple. It is easy to check that the labels are
well defined.
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Fig. 1 can also be used to illustrate the composition of ARNs: the depicted ARN is the
composition of the two atomic ARNs defined by Clerk and RiskEvaluator .

An important property of ARN composition is:

Proposition 20 Let α be a composition of two ARNs as in Def. 19. Let ι1 be the inclu-
sion of Aα1

in Aα, ι2 the inclusion of Aα2
in Aα, and ιci the inclusion of AMci

in Aα
where ci is the channel involved in wi. Then,

Λα = ι1(Λα1
) ∩ ι2(Λα2

) ∩
⋂

i=1...n

ιci(Λ
i)

Proof. The results follows from the definition of Λα given in Def. 11.

We consider now the question of ascertaining that the composition of two consistent
ARNs is consistent. In SOC, composition of ARNs occurs at run time as applications
discover and bind to applications that offer required services. Therefore, checking for
consistency by checking directly that the set of traces generated by the composition is
not empty (which could be done, as already mentioned, over the product of the automata
that implement the processes and channels) is not feasible. Instead, we would like to find
criteria over the ARNs and the channels that guarantee consistency of the composition
and can be checked at design time.

We start by identifying criteria for the composition of two progress-enabled ARNs
to be progress-enabled. For this purpose, an important property of an ARN relative to
its set of interaction-points is that it does not constrain the actions that do not ‘belong’
to the ARN. Naturally, this needs to be understood in terms of a computational and
communication model in which it is clear what dependencies exist between the different
parties. Taking it to be the responsibility of processes to publish and process messages,
and of channels to deliver them, we are interested in processes that are able to buffer
incoming messages, i.e., are ‘delivery-enabled’, and channels that are able to buffer
published messages, i.e., are ‘publication-enabled’. Note that processes are nevertheless
free to discard delivered messages and channels not to deliver published messages.

Definition 21 (Delivery-enabled ARN) Let α=〈P,C, γ, Λ〉 be an ARN, 〈p,M〉∈Iα
one of its interaction-points, and D〈p,M〉={p.m¡: m∈M+}. We say that α is delivery-
enabled in relation to 〈p,M〉 if, for every (π·A)∈Πα and B⊆D〈p,M〉, we have that
(π·B ∪ (A\D〈p,M〉))∈Πα.

That is, being delivery-enabled at an interaction point requires that any joint prefix of
the ARN (see Def. 14 for Πα) can be extended by any set of messages delivered at that
interaction-point. Notice that this does not interfere with the decision of the process to
publish messages: B∪(A\D〈p,M〉)) retains all the publications present in A.

Consider, for example, a process P with a single port with an incoming message n
and an outgoing messagem. If the process P ensures the publication ofm immediately
after the delivery of the first n and does not publish m in any other situation, then its set
of behaviors can be expressed as

∅∗ · ({n¡} · {m!}+ {n¡} · {m!, n¡}+ ∅) · (∅+ {n¡})ω

It is easy to see that the atomic ARN defined by P is delivery-enabled in relation to its
interaction-point.
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Definition 22 (Publication-enabled channel) Let h=〈M,Λ〉 be a channel and Eh =
{m!:m∈M}. We say that h is publication-enabled iff, for every (π·A)∈Λf and B⊆Eh,
we have that π·(B∪(A\Eh))∈Λf .

The requirement here is that any prefix can be extended by the publication of any set
of messages, i.e., the channel should not prevent processes from publishing messages
when they are in a state in which they could do so. Notice that this does not inter-
fere with the decision of the channel to deliver messages: (B∪(A\Eh)) retains all the
deliveries present in A.

Consider, for example, a channel with a singleton set of messages {n}. If the chan-
nel ensures the delivery of n immediately after its publication in the channel, then its set
of behaviors corresponds to the language of the Bücchi automaton presented in Fig. 2.
It is easy to see that this channel is publication-enabled.

n¡

n!

n!,n¡∅

Fig. 2. The behaviour of a publication-enabled channel.

We can now prove our main composition result:

Theorem 23 Let α be a composition of progress-enabled ARNs through the connec-
tions wi = 〈M i

1
µi
1←−M i µi

2−→M i
2, Λ

i〉, i = 1 . . . n, i.e.,

α = (α1

ni=1...n

〈pi1,Mi
1〉,wi,〈pi2,Mi

2〉
α2)

If, for each i=1. . . n, α1 is delivery-enabled in relation to 〈pi1,M i
1〉, α2 is delivery-

enabled in relation to 〈pi2,M i
2〉 and hi=〈M i,Λi〉 is publication-enabled, then α is

progress-enabled.

Proof. To simplify the notation, we consider the case of a single pair of interaction
points — α = (α1

f
〈p,M1〉,w,〈q,M2〉 α2) is a composition of progress-enabled ARNs

where w = 〈M1
µ1←− M µ2−→ M2, Λ〉, α1 is delivery-enabled in relation to 〈p,M1〉, α2

is delivery-enabled in relation to 〈q,M2〉 and h = 〈M,Λ〉 is publication-enabled. We
prove that α is progress-enabled.

Let c = {p, q}, π∈Πα and π1, π2 and πc be the corresponding projections to the
languages of α1, α2 and AM , respectively. Let Πc denote Λf , the set of prefixes of the
traces of the channel h that labels the edge c.

We know that π1∈Πα1
, π2∈Πα2

and πc∈Πc. Because α1 and α2 are progress-
enabled, let (π1·B1)∈Πα1

and (π2·B2)∈Πα2
. Let also (πc·Bc)∈Πc. The addition of

the new edge c only interferes with the ability of p and q to move — the language
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ιc(AM ) only intersects those of the two interaction-points. Therefore, we need to adjust
the deliveries inB1 andB2 with the intersection of µ1(Bc) withD〈p,M1〉 and of µ2(Bc)

with D〈q,M2〉, respectively — the deliveries made by the channel — and Bc with the
intersection of µ−11 (B1)∪µ−12 (B2) with Eh — the publications made into the channel.

Let Bp=µ1(Bc)∩D〈p,M1〉 and Bq=µ2(Bc)∩D〈q,M2〉:

– LetB′1=Bp∪ (B1\D〈p,M1〉)). Then, (π1·B′1)∈Πα1
because α1 is delivery-enabled

in relation to 〈p,M1〉— that is, α1 progresses by the deliveries made by c and the
publications made by B1.

– Let B′2=Bq ∪ (B2\D〈q,M2〉)). Then, (π2·B′2)∈Πα2
because α2 is delivery-enabled

in relation to 〈q,M2〉— that is, α2 progresses by the deliveries made by c and the
publications made by B2.

– Let B′c = (µ−11 (B1)∪ µ−12 (B2))∩Eh. Then, (πc·(µ−11 (Bp)∪µ−12 (Bq)∪B′c))∈Πc

because h is publication-enabled, i.e., the channel progresses by the deliveries
made by Bc and the publications made by B1 and B2. Note that because µ1 and
µ2 are injective, (Bc\Eh)=(µ−11 (Bp)∪µ−12 (Bq)).

We can now conclude that (π·(ι1(B′1)∪ι2(B′2)∪ιc(B′c)))∈Πα.

Because the composition of safe ARNs through safe channels is safe, Theorem 23 can
be generalised to guarantee consistency of composition:

Corollary 24 (Consistency of composition) The composition of safe progress-enabled
ARNs is both safe and progress-enabled (and, hence, consistent) provided that inter-
connections are made through safe publication-enabled channels and over interaction-
points in relation to which the ARNs are delivery-enabled.

Another useful result is that checking whether an ARN is delivery-enabled in rela-
tion to an interaction-point can be reduced to checking that the process that owns the
interaction-point, as an atomic ARN, is delivery-enabled.

Proposition 25 Let α be the composition of two ARNs α1 and α2 through the connec-
tions wi = 〈M i

1
µi
1←−M i µi

2−→M i
2, Λ

i〉, i = 1 . . . n.

– Let 〈p′1,M ′1〉 be an interaction-point of α1 that is not one of the 〈pi1,M i
1〉. If α1 is

delivery-enabled in relation to 〈p′1,M ′1〉, so is α.
– Let 〈p′2,M ′2〉 be an interaction-point of α2 that is not one of the 〈pi2,M i

2〉. If α2 is
delivery-enabled in relation to 〈p′2,M ′2〉, so is α.

Therefore, the proof that an ARN is progress-enabled can be reduced to checking that
individual processes are delivery-enabled in relation to their interaction points and that
the channels used for composition are publication-enabled. That is, all the checking can
be done at design time, not necessarily at composition time (which, in SOC, takes place
at run time).
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In order to consider the complexity of checking these properties, we need to con-
sider implementation models for processes and channels. Typical examples of models
are finite automata of some kind. For automata that enforce a syntactic distinction be-
tween input and output actions (i.e., between actions generated by the environment
or by the automata), the notions of delivery/publication-enabled are subsumed by the
property of being input-enabled, taking that publications are inputs for channels and
deliveries are inputs for processes. For example, I/O automata [35] are, by definition,
input-enabled.

Consider, however, the more general class of non-deterministic Bücchi automata
(NBAs) [46]. An NBA over an alphabet A is a tuple of the form 〈Q, δ,Q0, Q∞〉 where
Q is a finite set of states, Q0 ⊆ Q is the subset of initial states, Q∞ ⊆ Q is the set of
accepting states, and δ : Q × A → 2Q is the transition relation. The property defined
by 〈Q, δ,Q0, Q∞〉 is the set of infinite sequences of elements of A that, starting on an
initial state, generate a run that visits at least one of the accepting states infinitely often.

In relation to safety properties, there is also a closure operator on NBAs [3]: the
closure of 〈Q, δ,Q0, Q∞〉 is 〈Q, δ,Q0, Q〉, i.e., the NBA obtained by making all states
accepting. A reduced NBA (i.e., one in which every state leads to an accepting state) de-
fines a safety property if and only if its closure defines the same property. Furthermore,
every NBA is equivalent to a reduced one.

Therefore, given that we are interested in working with safe processes and channels,
we can choose closed reduced NBAs as models of their implementations. In this case,
it is easy to see that all that needs to be checked for processes (resp. channels) to be
delivery (resp. publication) enabled is that, from every state of the automata that imple-
ment them, the set of transitions from that state satisfies the corresponding property, i.e.,
for every set of deliveries (resp. publications), there is a transition that delivers (resp.
publishes) exactly those messages. As a result, the complexity of the checking process
is in the order of (|Q| ×m× 22×m) where m is the size of the largest port of the ARN.

2.5 Abstraction

One question that arises quite naturally is whether, by forgetting its internal structure,
an ARN could be seen as a process – an abstraction mechanism useful in system design.
For example, in the example of the composition of Clerk and RiskEvaluator (see Fig.
1), this would be a process that would have Lc as its only port and whose behaviour
would be that of the ARN translated back to the language of Lc.

When considering an ARN as a process, its ports should be, intuitively, the inter-
action points, i.e., those ports of the processes that are still available for establishing
further interconnections.

Definition 26 (Process defined by an ARN) Let α be a consistent ARN. We define the
process Pα as follows:

– Its set of ports γα consists of the ports p.M where 〈p,M〉 is an interaction point of
α.

– Its behaviour consists of the projection ofΛα onto the language ofAγα , i.e.,Λα|Aγα .
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Notice that α being consistent, Λα|Aγα is not empty and, therefore, Pα is indeed a pro-
cess. Also note that we need to apply the translations p. to the ports of the interaction
points to ensure that γα consists of mutually-disjoint points as required in Def. 7. In
practice, we can omit these translations if the original ports are disjoint.

We consider now a relationship of abstraction between two ARNs. First, we con-
sider abstraction between processes:

Definition 27 (Process morphism) A morphism between two processes 〈γ1, Λ1〉 and
〈γ2, Λ2〉 consists of

– A function σ : γ1 → γ2.
– For every M∈γ1, a polarity-preserving function σM :M→σ(M), i.e., σM maps
M+ to σ(M)+ and M− to σ(M)−.

such that Λ2|σ∗⊆Λ1 where by σ∗ we denote the translation between Aγ1 and Aγ2 de-
fined by, for every M∈γ1 and m∈M , σ∗(m!)=σM (m)! and mutatis mutandis for m¡.

Two processes are said to be isomorphic if there is a morphism between them that
is bijective and whose inverse is also a morphism.

For simplicity, we use σ to denote σ∗ and also the morphism 〈σ, {σM : M∈γ1}〉.
Isomorphic processes are equal up to a renaming of their alphabets. An example is,

for every process Q, the process PνQ defined by the atomic ARN that consists of Q.
To capture abstraction, we are particularly interested in the process morphisms

where the map between the set of ports is injective and each map between two ports is
also injective — in the abstract process we can forget ports and we can forget messages
within ports of the concrete process, but we cannot split ports or duplicate messages of
the concrete process. We call such morphisms injective.

Process morphisms can be generalised to a relationship of abstraction between
ARNs as follows:

Definition 28 (Abstraction for ARNs) An abstraction of an ARN β consists of

– an ARN α,
– an injective morphism ρ:Pα→Pβ between the processes defined by the two ARNs,

i.e., Λβ |ρ ⊆ Λα.

That is, the abstraction may remove some interaction-points of β and some of the mes-
sages of those interaction-points, and it preserves the behaviour of β at the remaining al-
phabet of messages. In other words, abstraction is a relationship between the behaviour
that can be observed at the interaction-points of the two ARNs.

We write β �ρ α to indicate that α is an abstraction of β, or just β � α when we
do not want to refer to the abstraction morphism. The abstraction relation thus defined
is reflexive (the identity is an abstraction) and transitive (abstractions compose).

This notion of abstraction is compositional in the following sense:

Theorem 29 (Compositionality of abstraction) Given a composition

β = (β1
n
〈p1,M1〉,w,〈p2,M2〉

β2)
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with w = 〈M1
µ1←−M

µ2−→M2, Λ〉, and

α = (α1

n
〈p′1,M ′1〉,w′,〈p2,M2〉

β2)

where β1�ρα1, 〈p1,M1〉=ρ(〈p′1,M ′1〉) and w′=〈M1
ρ−1◦µ1←−−−− µ

−1
1 (ρ(M ′1)) µ2−→ M2, Λ〉,

then
(β �ρ′ α)

where ρ′ coincides with ρ on Iα\〈p′1,M ′1〉 and with the identity on Iβ2
\〈p2,M2〉.

Proof. See Fig. 3 for the context of the proof. We start by noticing that ρ′ is well defined
and injective. The result follows from Prop. 20 and the fact that, because β1 �ρ α1,
Λβ1
|ρ ⊆ Λα1

.

That is, in a composition of two ARNs, if we replace a component by one of its ab-
stractions, the resulting composition is an abstraction of the original one. Notice that,
because ρ is not necessarily surjective, w′ may make fewer connections than w. The
definition can be easily generalised to compositions via multiple connections.

p2

βMβ 21

p1

ρρ≼

α
p'1

1

μ1

M'1

Fig. 3. The context of Theorem 29.

Another important construction is the one through which we can observe the be-
haviour of an ARN through one of its interaction points:

Definition 30 (Process defined by an interaction point) Let α be a consistent ARN
and 〈p,M〉 one of its interaction points. We define the process Pα,p,M as follows:

– Its only port is M .
– Its behaviour is Λα|ια,p,M where ια,p,M is the inclusion of AM in Aα, i.e., the

projection of Λα onto the language of AM .

That is, we project Λα onto the language of p.Aγp , then we remove the prefix p, and
then the actions not in AM .
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Proposition 31 Let α1 = 〈P1, C1, γ1, Λ1〉 and α2 = 〈P2, C2, γ2, Λ2〉 be two con-
sistent ARNs such that P1 and P2 are disjoint. Let w = 〈M1

µ1←− M µ2−→ M2, Λ〉 be a
connection for interaction-points 〈p1,M1〉 of α1 and 〈p2,M2〉 of α2. Let

α = (α1

n
〈p1,M1〉,w,〈p2,M2〉

α2) and β = (α1

n
〈p1,M1〉,w,〈p2,M2〉

Pα2,p2,M2
)

i.e., β is the composition of α1 with the atomic ARN that consists of the single node p2
labelled with the process Pα2,p2,M2

through the same connection w — i.e., we replace
α2 in α with the process that it defines for 〈p2,M2〉.

Then,

1. α � β
2. Given any interaction-point 〈p,M〉 of α1 such that p1 6= p, Pα,p,M = Pβ,p,M —

i.e., Λα|ια,p,M = Λβ |ιβ,p,M

Proof. Tedious.

That is, in a composition of two ARNs, if we replace a component by the process that
it defines at the interconnection point, the resulting composition is an abstraction of
the original one. The second property further tells us that, for the purpose of observing
the behaviour of α in relation to an interaction-point of α1 other than the one used in
the interconnection, only the behaviour that α2 displays at the interconnection point is
relevant.

Proposition 32 Let α be a consistent ARN and 〈p,M〉 one of its interaction points. If
β �ρ α and ρ(〈p,M〉) is an interaction point of β, then ρM is a process morphism
Pα,p,M → Pβ,ρ(〈p,M〉).

3 The interface algebra

In this section, we put forward a notion of interface for software components described
in terms of ARNs and a notion of interface composition that is suitable for service-
oriented design. As discussed in Section 1, this means that interfaces need to specify
the services that customers can expect from ARNs as well as the dependencies that the
ARNs may have on external services for providing the services that they offer.

3.1 Specifications

In [15], predicates are used as a means of describing properties of input/output be-
haviour, i.e., establishing relations (or the lack thereof) between inputs and outputs of
processes, leading to several classes of relational nets depending on when they are con-
sidered to be ‘well-formed’. In the context of our asynchronous communication model,
behaviour is observed in terms of the actions that are performed over the lifetime of the
process, for which the natural formalism to use is temporal logic, namely some form of
linear temporal logic given that behaviours are defined in terms of infinite sequences of
actions.
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Rather than propose one specific logic, it seems to be more useful to identify the
properties that would make a logic suitable for the description of the kind of networks
with which we are concerned. Some of these properties concern the ability to relate
specifications over alphabets related by a map, namely to relate the logical properties
of processes with those of the networks in which they execute.

Definition 33 (Specification logic) A specification logic maps:

– every alphabet A to a set ΩA (of sentences) and a (satisfaction) relation �A be-
tween traces and sentences
• Given a property Λ, we write Λ �A φ to mean that λ �A φ for every λ∈Λ, in

which case we say that Λ is a model of (or validates) φ
• Given Φ⊆ΩA, we write Λ �A Φ to mean that Λ �A φ for every φ∈Φ
• Given Φ⊆ΩA, we denote by ΛΦ the set of traces λ such that λ �A Φ

– every function σ:A→B between alphabets to a function Ωσ:ΩA→ΩB that trans-
lates sentences over A to sentences over B such that, for every trace λB in B and
sentence φA∈ΩA,

(1) λB �B Ωσ(φ) iff λB |σ �A φA

We call a specification a pair 〈A,Φ〉 where A is an alphabet and Φ is a finite set of
sentences in ΩA.

For simplicity, we tend to use σ(φ) as an abbreviation of Ωσ(φ).
Equation (1) means that the satisfaction relation is independent of the alphabet, i.e.,

that the specific choice of actions does not interfere with the logical properties of the
satisfaction relation.

Proposition 34 (Algebraic properties of specification logics) Specification logics de-
fine institutions [28]. The following definitions and properties apply to all institutions.
Let A be an alphabet and σ:A→B a map.

1. �A extends to sets of sentences Φ over A as follows: Φ �A φ iff, for every trace λ
over A, if λ �A φ′ for all φ′∈Φ, then λ �A φ.

2. Λ �A Φ iff Λ ⊆ ΛΦ
3. For every set Φ of sentences over A and sentence φ, if Φ �A φ then σ(Φ) �B σ(φ).

Definition 35 (Process defined by a specification) Let γ be a set of mutually disjoint
ports and Φ a consistent set of sentences over Aγ . The process defined by the specifica-
tion 〈Aγ , Φ〉 is 〈γ, ΛΦ〉.

Definition 36 (Processes and ARNs as models) The process 〈γ, Λ〉 is a model of (or
validates) the specification 〈A,Φ〉 via the alphabet map σ:A→Aγ , which we denote by
〈γ, Λ〉 �σ Φ, iff Λ|σ � Φ — i.e., σ is a process morphism 〈γ, ΛΦ〉 → 〈γ, Λ〉.

An ARN α is a model of (or validates) the specification 〈A,Φ〉 via the alphabet map
σ:A→Aγα , which we denote by α �σ Φ, iff Pα �σ Φ.

Proposition 37 The following properties follow immediately from the definition:
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– If ρ:P1→P2 is a process morphism and P1 �σ Φ then P2 �ρ◦σ Φ.

– If β �ρ α and α �σ Φ then β �ρ◦σ Φ.

We defer the discussion of choosing a specification logic to Sect. 3.5 and, for the rest of
this section, we assume a fixed specification logic. Naturally, it would be important to
show that at least one such logic exists. A simple example is linear temporal logic (LTL)
[36]: a proof that LTL is an institution can be found in [18]. However, as discussed
below, LTL is not necessarily the most suitable logic for defining an interface theory for
safe ARNs.

3.2 Service interfaces and their orchestrations

In our model, a service interface identifies a number of ports through which services are
provided and ports through which services are required (hence the importance of ports
for correlating messages that belong together from a business point of view). Sentences
of the specification logic are used for specifying the properties offered or required.

Ports for required services include messages as sent or received by the external
service. Therefore, to complete the interface we need to be able to express requirements
on the channel through which communication with the external service will take place,
if and when required. In order to express those properties, we need to have actions on
both sides of the channel, for which we introduce the notion of dual port.

Definition 38 (Dual port) Given a port M , we denote by Mop the port defined by
Mop+ = M− and Mop− = M+.

Definition 39 (Service interface) A service interface i consists of:

– A set I (of interface-points) partitioned into a singleton set {i→} and a set I← the
members of which are called the provides- and requires-points, respectively.

– For every r∈I ,
• a port Mr,
• a consistent set of formulas Φr over AMr

.

– For every point r∈I←, a consistent set of formulas Ψr over AMr
∪AMop

r
.

We identify an interface with the tuple 〈i→, I←,M,Φ, Ψ〉 where Mr:r∈I , Φr:r∈I ,
Ψr:r∈I← are the indexed families that identify the ports and specifications of each
point of the interface.

In Fig. 4, we present an example of an interface for a credit service using a graphical
notation similar to that of SCA. On the left, we have a provides-point Customer and,
on the right, a requires-point IRiskEvaluator .

The set of sentences Φc specifies the service offered at Customer . In the logic
defined in Sect. 3.5, these are:

– (creditReq¡ R (creditReq¡ ⊃ 3≤10(approved ! ∨ denied !))) — either approved
or denied are published within ten time units of the first delivery of creditReq .
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– �(approved ! ⊃ (accept¡ R≤20 (accept¡ ⊃ 3≤2transferDate!))) — if accept
is received within twenty time units of the publication of approved , transferDate
will be published within 2 time units.

The specification IRiskEvaluator requires the external service to react to the deliv-
ery of every getRisk by publishing riskValue in no more than four time units:

Φr : �(getRisk ¡ ⊃ 3≤4riskValue!)

The channel is specified to be reliable with delay 1:

Ψr : �(getRisk ! ⊃ ©getRisk ¡) ∧�(riskValue! ⊃ ©riskValue¡)

    

Customer

IRiskEvaluatorIBANKCREDITSERVICE

getRisk
riskValue

getRisk
riskValue Ψ r

creditReq
approved

denied

transferDate
accept

           
Φc

           
Φ r

Fig. 4. An example of a service interface.

An ARN orchestrates a service-interface by assigning interaction-points to interface-
points in such a way that the behaviour of the ARN validates the specifications of the
provides-points on the assumption that it is interconnected to ARNs that validate the
specifications of the requires-points through channels that validate the corresponding
specifications.

Definition 40 (Orchestration) An orchestration of a service interface 〈i→,I←,M,Φ,Ψ〉
consists of:

– an ARN α = 〈P,C, γ, Λ〉 where P and I are disjoint;
– an injective function θ : I → Iα that assigns a different interaction-point to each

interface-point; we write r θ−→p to indicate that θ(r) = 〈p,Mp〉 for some port Mp;

– a polarity-preserving injection θi→ from Mi→ to Mp where i→ θ−→p, which assigns
to every message of the provides-point a message of the corresponding interaction-
point of the ARN;

– for every requires-point r∈I←, a polarity-preserving injection θr:Mop
r →Mq where

r θ−→q, which assigns to every message of the requires-point a message of the cor-
responding interaction-point of the ARN — the polarities are reversed because the
requires-point stands for an external service with which the ARN may be required
to connect;

such that Pα∗,θ(i→) �θi→ Φi→ where:
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– For every requires-point r of I←, αr is the ARN defined by the process 〈{Mr}, ΛΦr 〉
and wr the connection 〈Mq

θr←−Mr
id−→Mr, ΛΨr 〉 where r θ−→q.

– α∗ = (α
fr∈I←
θ(r),wr,〈r,Mr〉 αr)

That is, Λα∗ |ια∗,θ(i→)◦θi→ � Φi→ where i→ θ−→p and ια∗,θ(i→) is the inclusion of AMp

in Aα∗ .

Notice that Pα∗,θ(i→) is the process that abstracts the behaviour of α∗ observed at the
image of the provides-point. The requirement is, therefore, that whenever the orches-
tration α is composed with ‘canonical’ implementations of the requires-points, the re-
sulting ARN validates the provides-point.

We borrow from [15] the notation α �θ i to indicate that the ARN α provides,
through the family of mappings θ, an orchestration of the service interface i. Figure 5
summarises the constructions involved in the definition.

α

α

i

α

r1

r2

θr 1θr 2θi⟶

p

idr 2

idr 1

i⟶

r 1

r 2

= Λ Φ r 1

= Λ Φ r 2

= Λ Ψ r 1

= Λ Ψ r 2

Fig. 5. α �θ i iff the properties in Φi→ are validated by the composition of α with the
models of the specifications of the requires-points.

In order to illustrate the concept, consider again the atomic ARN νClerk , defined by
the process Clerk . As illustrated in Fig. 6, νClerk �θ IBANKCREDITSERVICE where
IBANKCREDITSERVICE is the service interface presented before and θ is such that:

– Customer θ−→〈Clerk , Lc〉 and θCustomer is the identity function;
– IRiskEvaluator θ−→〈Clerk , Rc〉 and θIRiskEvaluator is the identity function.

The property Λc is such that it validates Φc on the assumption that Clerk is intercon-
nected through IRiskEvaluator to a ARN that validates Φr via a channel that validates
Ψr.

The following result clarifies what we mean by ‘canonical’ and justifies the defini-
tion:

24



    

Customer
IRiskEvaluator

Clerk

ΘCustomer
Θ IRiskEvaluator

Θ

IBANKCREDITSERVICE

getRisk
riskValue

getRisk
riskValue Ψe
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approved

denied

transferDate
accept

creditReq
approved

denied

transferDate
accept

getRisk
riskValue

           
Φc

           
Φ r

Lc

Rc

           Λ c

Fig. 6. Example of an orchestration: νClerk �θ IBANKCREDITSERVICE.

Theorem 41 (Canonicity of orchestrations) Let 〈α, θ〉 be an orchestration of an in-
terface i = 〈i→, I←,M i, Φi, Ψ i〉. For every requires-point r of I←, let

– βr be an ARN with an interaction point 〈qr,M ′r〉 such that Pβr,qr,M ′r �θ′r Φr where
θ′r:Mr→M ′r is a polarity-preserving injection,

– wr be a connection between α and βr via a channel cr=〈Mr, Λr〉 where Λr vali-
dates Ψr and attachments θr, θ′r.

Then, the composition β∗ = (α
fr∈I←
θ(r),wr,〈qr,M ′r〉

βr) satisfies Pβ∗,θ(i→) �θi→ Φi→ .

Proof.

– From Pβr,qr,M ′r �θ′r Φr, we derive that βr �qr. ◦θ′r αr.
– From Theo.29, we conclude that β∗ �ρ α∗ where ρ is the identity on α and coin-

cides with (qr. ◦ θ′r) on αr (α and α∗ being as in Def. 40).
– From Prop. 31, the identity is a process morphism Pα∗,θ(i→) → Pβ∗,θ(i→).
– Because 〈α, θ〉 is an orchestration of i, we know that Pα∗,θ(i→) �θi→ Φi→ .
– From Prop. 37 we can then conclude that Pβ∗,θ(i→) �θi→ Φi→ .

Fig. 7 summarises the constructions involved in the proof. The result means that, no
matter what the external services that bind to the requires-points do and how the chan-
nels transmit messages (as long as they satisfy the corresponding specifications), the
ARN will be able to deliver the properties specified in its provides-point.

A property that is often useful in proofs is that the internal structure of the orches-
tration is not relevant:
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β

i
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r1

r2
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r 1
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Λ Φ r 1⊆ 
Λ Ψ r 1⊆ 

Λ Ψ r 2⊆ 

Fig. 7. α �θ i iff the properties offered through Φi→ are validated by all compositions
of α with ARNs and via channels that validate the specifications of the requires-points.

Proposition 42 Given a service interface i and an ARN α, (α�θ i) iff (νPα�θ i) where
νPα is the atomic ARN consisting of the process defined by α (cf. Def. 12).

Proof. Trivial.

Requiring the ARN α∗ to be consistent is also important because an interconnection that
leads to an inconsistent composition would vacuously satisfy any specification (there
would be no behaviours to check against the specification).

Definition 43 (Well-defined orchestration) An orchestration α of a service-interface
i is said to be well defined if the ARN α∗ as constructed in Def. 40 is consistent. We use
α Jθ i to indicate that α is a well-defined orchestration of i.

Naturally, α itself needs to be consistent to be a well-defined orchestration.
Corollary 24 gives us a sufficient condition for checking that an an orchestration is

well defined:

Corollary 44 Given a service-interface i = 〈i→,I←,M,Φ,Ψ〉 and an orchestration
(α /θ i), (α Jθ i) if:

1. α is a safe progress-enabled ARN that is delivery-enabled in relation to the images
of the requires-points.

2. The ARNs αr defined by the processes 〈{Mr}, ΛΦr 〉 are safe and delivery-enabled
in relation to {Mr}.

3. The channels 〈Mr, ΛΨr 〉 are safe and publication-enabled.

We defer the discussion on how to ensure points 2 and 3 to Section 3.5.
Likewise, Theorem 41 does not guarantee by itself that the resulting ARN β∗ is

consistent. As above, we can guarantee consistency provided that:
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1. the orchestration α is safe, progress-enabled and delivery-enabled in relation to the
interaction-points that correspond to the requires-points;

2. the ARNs βr that implement the specifications of the requires-points are consistent,
safe, progress-enabled and delivery-enabled in relation to the interaction-points
through which they connect to α;

3. the channels involved are safe and publication-enabled.

Another corollary concerns orchestrations defined through specifications:

Corollary 45 Let i = 〈i→,I←,M,Φ,Ψ〉 be a service-interface such that all ports are
mutually disjoint. Let 〈A,Γ 〉 a specification such that its alphabet A includes AMi→

and all the AMr
where r∈I←. Let iα = 〈{Mop

r : r∈I←}∪{Mi→}, ΛΓ 〉 be the ARN
consisting of a single process whose ports are those of the interface-points and whose
behaviour is generated by the set Γ of sentences (cf. Def 33).

– If (Γ ∪
⋃
r∈I← Φr ∪

⋃
r∈I← Ψr) � Φi→ then (iα�id i) (iα is an orchestration of i).

– If in addition (Γ ∪
⋃
r∈I← Φr ∪

⋃
r∈I← Ψr) is consistent, (iα Jid i).

3.3 Composition of service interfaces

We now turn our attention to the composition of interfaces, an essential ingredient of
any interface algebra.

Definition 46 (Match) A match between two interfaces i = 〈i→, I←,M i, Φi, Ψ i〉 and
j = 〈j→, J←,M j , Φj , Ψ j〉 is a pair 〈r, δ〉 where r∈I← and δ:M i

r→M
j
j→ is a polarity-

preserving injection such that Φjj→ |= δ(Φir). Two interfaces are said to be compatible
if their sets of interface-points are disjoint and admit a match.

⊣
i

r j
 

δ
r3

r2

i⟶
j⟶

i || j
r 2

r3

δ:r
i⟶

Fig. 8. Match between interfaces i and j and the interface that results from their com-
position.
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That is, a match maps a requires-point of one of the interfaces to the provides-point of
the other in such a way that the required properties are entailed by the provided ones.
Notice that, because the identity of the interface-points is immaterial, requiring that the
sets of points of the interfaces be disjoint is not restrictive at all. We typically use δ:r to
refer to a match.

Definition 47 (Composition of interfaces) Given a match δ:r between compatible in-
terfaces i and j, their composition (i ‖δ:r j) is 〈i→,K←,M,Φ, Ψ〉 where:

– K← = J← ∪ (I← \ {r}).

– 〈M,Φ, Ψ〉 coincides with 〈M i, Φi, Ψ i〉 and 〈M j , Φj , Ψ j〉 on the corresponding
interface-points.

Notice that the composition of interfaces is not commutative: one of the interfaces (on
the left) plays the role of client and the other (on the right) of supplier of services.

We can now prove compositionality, i.e., that the composition of the orchestrations
of compatible interfaces is an orchestration of the composition of the interfaces.

Theorem 48 (Composition of orchestrations) Let i = 〈i→, I←,M i, Φi, Ψ i〉 and j =
〈j→, J←,M j , Φj , Ψ j〉 be compatible interfaces, δ:r a match between them, 〈α, θ〉 and
〈β, σ〉 orchestrations of i and j, respectively, with disjoint graphs, and 〈Mr, Λ〉 a chan-
nel such that Λ |= Ψ ir. Then,

(α
n

θ(r),w,σ(j→)

β)�κ (i ‖δ:r j)

where κ coincides with θ on I and with σ on J , w = 〈Mp
θr←− Mr

σj→ ◦ δ−−−−→ Mq, Λ〉,
θ(r)=〈p,Mp〉 and σ(j→) = 〈q,Mq〉.

Proof. We start by noticing that κ is an injection because we assumed that α and β
have disjoint graphs. Let (α ‖ β)∗ be the ARN constructed as in Def. 40

( (α
n

〈p,Mp〉,w,〈q,Mq〉

β)

t∈K←n

κ(t),wt,〈t,Mt〉

γt)

i.e., the ARNs γt are the models of the specifications of the requires-points t ∈ K←. We
now prove that (α ‖ β)∗ validates the provides-point:

– Because 〈β, σ〉 is an orchestration of j, Pβ∗,σ(j→) �σj→ Φjj→ .

– We also know that, because δ:r is a match, Φjj→ |= δ(Φir).
Therefore, Pβ∗,σ(j→) �δ◦σj→ Φir.

– By applying Theo. 41 to α and the family βt, t∈I←, of ARNs defined by

• βr = β∗ = (β
ft∈J←
σ(t),wt,〈t,Mt〉 γt)

• βt = γt for t 6= r

we can conclude that P(α‖β)∗,θ(i→) �θi→ Φii→
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Fig. 9. The context of Theorem 48.

Notice that the proof essentially rearranges the ARN (α ‖ β)∗ as a composition of α
with the models of the specifications of its requires-points except for r where we use
β∗, which we know is a model of Φr.

Compositionality is one of the key properties required in [15] for a suitable notion
of interface. From the software engineering point of view, it means that there is indeed
a separation between interfaces and their implementations in the sense that composition
can be performed at the interface level independently of the way the interfaces will be
implemented.

Well-definedness of the composition can be guaranteed as follows:

Theorem 49 (Composition of orchestrations) In the circumstances of Theorem 48, if

– (α Jθ i) and (β Jσ j),
– α is safe, progress-enabled and delivery-enabled in relation to θ(r),
– β is safe, progress-enabled and delivery-enabled in relation to σ(j→),
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– 〈Mr, ΛΨ iMr
〉 is publication-enabled

then
(α

n

θ(r),w,σ(j→)

β) Jκ (i ‖δ:r j)

It follows from this result that, if a match is established between the interface of a
service i and the interface of another service j, any orchestrations of i and j that fulfil
the stated conditions will work properly together at run time (i.e., there will be no
interaction errors).

In Fig. 10 we illustrate the composition of the orchestrations

νClerk �θ IBANKCREDITSERVICE

νRiskEvaluator �κ IRISKEVALSERVICE

where IRISKEVALSERVICE is an interface with provides-point RECustomer whose
set of properties Φe includes �(request¡ ⊃ 3≤3result!). This interface is orchestrated
by the atomic ARN νRiskEvaluator presented before, κRECustomer being the identity.

The matching between the two interfaces is established by the polarity preserving
mapping δ: getRisk 7→ request , riskValue 7→ result . The requirement in Φr translates
through δ to�(request¡ ⊃ 3≤4result!), which is trivially entailed by Φe. For the com-
position of the two services, we take the channel wce also used in the ARN presented in
Fig. 1, as Λw validates δ(Ψr). The result of this composition, presented at the bottom of
Fig. 10, is an interface with a single interface-point orchestrated by the ARN presented
before.

3.4 Refinement of service interfaces

An important ingredient of the theory of component interfaces developed in [15] is a
notion of compositional refinement that applies to interfaces (for top-down design) and
a notion of compositional abstraction for implementations (orchestrations in the case of
services), that can support bottom-up verification. Both notions are based on a reflexive
and transitive binary relation � that, left to right, means refinement and, right to left,
means abstraction. In this section we address refinement that applies to interfaces while
abstraction for orchestrations is as in Section 2.5.

Definition 50 (Refinement of interfaces) A refinement of i = 〈i→, I←,M i, Φi, Ψ i〉
consists of

– an interface j = 〈j→, J←,M j , Φj , Ψ j〉
– a bijection ρ between I and J
– a polarity-preserving injection ρi→ : M i

i→ →M j
j→

– an I←-indexed family of polarity-preserving bijections ρr : M j
ρ(r) →M i

r

such that

– ρ(i→) = j→
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Fig. 10. The composition of two orchestrations.

– Φjj→ |= ρi→(Φii→),

– Φir |= ρr(Φ
j
ρ(r)) for every r ∈ I←,

– Ψ ir |= ρr(Ψ
j
ρ(r)) for every r ∈ I←.

We write j � i to indicate that the interface j refines i, or j �ρ i when we want
to make the refinement mapping 〈ρ, {ρr}r∈I〉 explicit. The refinement relation � thus
defined is reflexive and transitive.

Because ρ is a bijection, the number of interface-points of the two service interfaces
are the same: none can be added or removed. This is because, on the one hand, and
following the tradition of ‘don’t ask more’, an orchestration of j cannot rely on more
external services than those required by i, otherwise it would not be able to orchestrate
i. On the other hand, the number of requires-points cannot decrease either: if a service
interface declares a particular requires-point, this is because it wants to optimise the
provision of the service by procuring an external provider at run time; therefore, refine-
ment should preserve this decision instead of forcing that external functionality to be
implemented in the orchestration.

Notice that, through refinement, new messages can be added to the provides-point
and more properties can be added (‘don’t offer less’). On the other hand, in relation to
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requires-points, refinement can weaken the required properties (‘don’t ask more’), thus
enlarging the space of providers, but it cannot change the required messages.

A fundamental property of refinement is that if j refines i, then any orchestration of
j should also be an orchestration of i.

Theorem 51 (Refinement vs implementation) Given interfaces i and j such that j
refines i, every orchestration of j also defines an orchestration of i.

Proof. See Figure 11 for a sketch of the context of the proof. Assume that α �θ j and
j �ρ i.

1. We start by defining the mapping θ′ from I to Iα:
– θ′(i→) = θ(j→) and θ′i→ = θj→ ◦ ρi→ where j→ θ−→p.

– For every r∈I←, θ′(r)=θ(ρ(r)) and θ′r=θρ(r)◦ρ−1r :M iop

r →Mp where ρ(r) θ−→p.
The function θ′ is injective because ρ and θ are injective. Every function θ′r is a
composition of polarity-preserving injections, so it is itself a polarity-preserving
injection.

2. Let α∗i = (α
fr∈I←
θ(r),wir,〈r,Mr〉 α

i
r) where the αir and wir are as in Def. 40.

– Because, for every r∈J←, Φir |= ρr(Φ
j
ρ(r)) and Ψ ir |= ρr(Ψ

j
ρ(r)), we can con-

clude that, for every r∈J←, ΛΦir |ρr |= Φjρ(r) and ΛΨ ir |ρr |= Ψ jρ(r)

– Because α�θ j and ρ is a bijection between I and J , we are in the conditions
of Theo. 41 and can conclude that Pα∗i ,θ(j→) �θj→ Φjj→ .

– Because Φjj→ |= ρi→(Φii→), we have that Pα∗i ,θ(j→)◦ρi→ �θj→◦ρi→ Φii→ .

– Given that θ′i→ = θj→ ◦ ρi→ , we conclude that Pα∗i ,θ′(i→) �θ′i→ Φii→ i.e.,
α�θ′ i.

Another fundamental property of refinement so that it can support top-down design (i.e.,
that an interface i can be refined, iteratively, into an interface j � i) is that the elements
of a composite interface can be refined independently [15], i.e., the refinement relation
� is compositional w.r.t. ‖ in the following sense:

Theorem 52 (Compositional refinement) Let δ : r be a match between service inter-
faces i1 and i2. If j1�ρ1i1 and j2�ρ2i2, then

– ρ2i→2
◦ δ ◦ ρ1r : ρ1(r)→j→2 is a match between j1 and j2

– (j1 ‖ρ2i→2 ◦δ◦ρ1r
j2) � (i1 ‖δ i2)

Proof. See Fig. 12 for a sketch of the context of the proof. We start by proving that
ρ2i→2

◦ δ ◦ ρ1r is indeed a match between j1 and j2.

1. Because all the functions involved are polarity-preserving injections, so is their
composition.

2. Because δ is a match between i1 and i2, we know that Φi
→
2
i2
|= δ(Φri1) and, by Prop.

34.3, ρ2i→2 (Φ
i→2
i2

) |= ρ2i→2
(δ(Φri1)).
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3. Because j2 �ρ2 i2,Φρ2(i
→
2 )

j2
|= ρ2i→2

(Φ
i→2
i2

) and, from (2),Φρ2(i
→
2 )

j2
|= ρ2i→2

(δ(Φri1)).

4. On the other hand, j1 �ρ1 i1 implies that Φri1 |= ρ1r (Φ
ρ1(r)
j1

), which by Prop. 34.3

implies ρ2i→2 (δ(Φri1)) |= ρ2i→2
(δ(ρ1r (Φ

ρ1(r)
j1

)))

5. Finally, from (3) and (4), Φρ2(i
→
2 )

j2
|= ρ2i→2

(δ(ρ1r (Φ
ρ1(r)
j1

))).

It remains to prove that (j1 ‖ρ2i→2 ◦δ◦ρ1r
j2) � (i1 ‖δ i2), which is straightforward

by taking the sum of the refinement mappings ρ1 and ρ2, i.e., the mapping that coincides
with ρ1 on the provides-point and with ρn on the requires-points that remain from jn
(n=1,2).

Abstraction is also a way of simplifying the proof that an ARN orchestrates an interface:

Proposition 53 (Abstraction vs orchestration) Given an interface i and an ARN α
such that α�θ i, if β �ρ α then β �θ◦ρ i.

Proof. This is a simple consequence of Proposition 37.

That is, to prove that an ARN orchestrates an interface, it is sufficient to prove that one
of its abstractions is an orchestration of that interface. This result generalises Proposi-
tion 42.

33



j

⊣
i

r i
 

δ

ρ1

1

2

1 j2

≼ ≼⊣ ρ2

⊣

ρ
r1

ρ2 i⟶2

Fig. 12. The context of Theorem 52.

3.5 Logics for service interfaces

The results of Sec. 3.2 highlight the importance of choosing specifications logics so that
it is possible (and effective) to check whether specifications define safe delivery-enabled
processes or safe publication-enabled channels. As argued in Section 2.3, working with
safety properties is justified by the fact that, within SOC, we are interested in processes
whose liveness properties are bounded (bounded liveness being itself a safety property).

Several extensions of LTL have been proposed in which one can express different
forms of bounded liveness. For instance, several logics for real-time systems (see [5]
for an early survey) allow one to express eventuality properties of the form 3Iφ where
I is a time interval during which φ is required to become true. Another logic of interest
is PROMPT-LTL [33] in which, instead of a specific bound for the waiting time, one can
simply express that a sentence φ will become true within an unspecified bound —3pφ.
Yet another logic is PLTL [4] in which one can use variables in addition to constants to
express bounds on the waiting time and reason, for example, about the existence of a
bound (or of a minimal bound) for a response time.

The logic we use in this paper, which we call SAFETY-LTL, is a version of PLTL
where intervals are finite and bounded by constants. It can also be seen as a restricted
version of SAFETY-MTL [40] (itself a fragment of Metric Temporal Logic [32]) where,
instead of an explicit model of real-time, we adopt an implicit one in which time is
discrete. An advantage of adopting a discrete-time model is that we can work directly
over (2A)

ω without introducing an explicit space of real-time3. From a methodological
point of view, the restriction can be justified by the fact that, in SOC, one often deals
with ‘business’-time where delays are measured in discrete time units.

Definition 54 (SAFETY-LTL) Let A be an alphabet.
3 The choice of a timed semantics – where a time sequence runs along a trace – with topological

properties that would allow the results given in this paper to be generalised is not trivial and
will be discussed in a future publication.
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– The language of SAFETY-LTL over A is defined by (where a∈A and t∈N):

φ ::= a | ¬a | φ ∨ φ | φ ∧ φ | ©φ | φR φ | φR≤t φ | φ U≤t φ

– Sentences are interpreted over λ∈(2A)
ω as follows :

λ � a iff a∈λ(0)

λ � ¬a iff a/∈λ(0)

λ � φ1 ∧ φ2 iff λ � φ1 and λ � φ2
λ � φ1 ∨ φ2 iff λ � φ1 or λ � φ2
λ �©φ iff λ1 � φ
λ � φ1 R φ2 iff, for all j, either λj � φ2 or there exists k<j s.t. λk � φ1
λ � φ1 R≤t φ2 iff, for all j≤t, either λj � φ2 or there exists k<j s.t. λk � φ1
λ � φ1 U≤t φ2 iff there exists j≤t s.t. λj � φ2 and, for all k< j, λk � φ1

– We use the following abbreviations:
a ⊃ φ ≡ ¬a ∨ φ
3≤tφ ≡ true U≤t φ — φ will hold before t units of time (or it holds now)
�φ ≡ falseR φ — now and forever φ
�≤tφ ≡ falseR≤t φ — φ will hold for the next t units of time (and now)

Notice that the language is not closed under negation: negation is only available for
atomic propositions (actions) and sentences are in negation normal form.

Theorem 55 (Safety) All the sentences of SAFETY-LTL express safety properties, i.e.,
for all sentences φ, Λφ is a closed set.

Proof. By a simple induction in the structure of φ.

Corollary 56 (Safe specifications) It follows from the previous theorem that all the
specifications over SAFETY-LTL are safe, i.e., for all sets of sentences Φ, ΛΦ is a safety
property.

Proof. The result follows from the fact that the intersection of any number of closed
properties is closed.

As motivated in Section 3.2, in addition to making sure that specifications of processes
and channels generate safety properties, it is important that developers can guaran-
tee that the processes thus defined are delivery-enabled in relation to their ports and
that channels are delivery-enabled. Ensuring delivery/publication-enabledness is not the
same as proving that a process/channel satisfies a specification because those proper-
ties are not expressible as sentences whose satisfaction can be checked over individual
traces: they would need to be checked over sets of traces, for which a branching-time
logic would be required. In the context of a logic like SAFETY-LTL, these properties
can be checked instead over the non-deterministic Bücchi automata that implement the
specifications as explained in Section 2.4.
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4 Related Work

In this paper, we proposed a formalisation of ‘services’ as interfaces for an algebra
of asynchronous components inspired by the work reported in [15] on a theory of in-
terfaces for component-based design. That is, we exposed and provided mathematical
support for the view that services are, at a certain level of abstraction, a way of using
software components — what is sometimes called a ‘service-overlay’ — and not so
much a way of constructing software. This view is consistent with the way services are
being perceived in businesses [16] and supported by architectures such as SCA [39].

This view differs from the more traditional component-based approach in which
components expose methods in their interfaces and bind tightly to each other (based on
I/O-relations) to construct software applications. In our approach, components expose
conversational, stateful interfaces through which they expose services that can be dis-
covered by business applications or bind, on the fly, to external services. Having in mind
that one of the essential features of SOC is loose-binding, we proposed a component
algebra that is asynchronous.

Our approach also differs from assumption/guarantee (A/G) styles of specifications,
which have been proposed (since [38]) for networks of processes and also used in [42]
for web services. The aim of A/G is to ensure compositionality of specifications of pro-
cesses by making explicit assumptions on the way they interact with their environment.
The purpose of the interfaces that we propose is, instead, to specify the protocols offered
to clients of the service and the protocols that the external services that the service may
need to discover and bind to are required to follow. The notion of orchestration makes
this clear: the purpose of the requires-points is to create the environment required by
the orchestration to deliver the properties specified at the provides-point. This is also
why our notion of composition of interfaces is not symmetric: composition of service
interfaces reflects the provision of some of the services required by one interface (the
client) in terms of another interface (the provider). The notion of composition of A/G
specifications is meant instead to reflect the parallel composition of components and,
therefore, is symmetric. In SOC, there is also a notion of composition (or aggregation)
of services through which more complex services can be provided. In our approach
[23], this is achieved by orchestrating the interactions between the component services
and defining a service-interface for the composition that offers the properties that result
from the composition in its provides-interface.

As mentioned in Sect. 1, most formal frameworks that have been proposed for SOC
address choreography, i.e., the specification of a global conversation among a fixed
number of peers and the way it can be realised in terms of the local behaviour gen-
erated by implementations of the peers. A summary of different choreography models
that have been proposed in the literature can be found in [43]. Among those, we would
like to distinguish the class of automata-based models proposed in [8,13,27], which
are asynchronous. Such choreography models are inherently different from ours in the
sense that they study different problems: the adoption of automata reflects the need to
study the properties and realisability of conversation protocols captured as words of a
language of message exchange. It would be tempting to draw a parallel between their
notion of composite service — a network of machines — and our ARNs, but they are
actually poles apart: our aim has not been to model the conversations that characterise
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the global behaviour of the peers that deliver a service, but to model the network of
processes executed by an individual peer and how that network orchestrates a service
interface for that peer — that is, our approach is orchestration-based. Therefore, we do
not make direct usage of automata, although a reification of our processes could natu-
rally be given in terms of automata. Our usage of temporal logic for describing ARNs,
as a counterpart to the use of first-order logic in [15] for describing I/O communication,
has the advantage of being more abstract than a specific choice of an automata-based
model (or, for that matter, a Petri-net model [41]). This has also allowed us to adopt a
more general model of asynchronous communication in which channels are first-class
entities (reflecting the importance that they have in SOC). We are currently studying
decidability and other structural properties of our model and the extent to which we can
use model-checking or other techniques to support analysis.

Another notion of web service interface has been proposed in [9]. This work presents
a specific language, not a general approach like we did in this paper, but there are
some more fundamental differences between them, such as the fact that their underly-
ing model of interaction is synchronous (method invocation): as argued in [31], web-
service composition languages such BPEL (the Business Process Execution Language
[44]) rely on an (asynchronous) message-passing model, which is more adequate for
interactions that need to run in a loosely-coupled operating environment. The underly-
ing approach is, like ours, orchestration-based but, once again, more specific than ours
in that orchestrations are modelled through a specific class of automata supporting a
restricted language of temporal logic specifications. Another fundamental difference is
that, whereas in [9] the orchestration of a service is provided by an automaton, ours is
provided by a network of processes (as in SCA), which provides a better model for cap-
turing the dynamic aspects of SOC that arise from run-time discovery and binding [20]:
our notion of composition is not for integration (as in CBD) but for dynamic intercon-
nection of processes. This is also reflected in the notion of interface: the interfaces used
in [9] are meant for design-time composition, the client being statically bound to the
invoked service (which is the same for all invocations); the interfaces that we proposed
address a different form of composition in which the provider (the “need-fulfilment
mechanism”) is procured at run time and, therefore, can differ from one invocation to
the next, as formalised in [25] in a more general algebraic setting.

Being based on a specific language, [9] explores a number of important issues re-
lated to compatibility and consistency that arise naturally in service design when one
considers semantically-rich interactions, e.g., when messages carry data or are corre-
lated according to given business protocols. A similar orchestration-based approach
has been presented in [7], which is also synchronous and based on finite-state machines,
and also addresses notions of compatibility and composition of conversation protocols
(though, interestingly, based on branching time). We are studying an extension of our
framework that can support such richer models of interaction (and the compatibility
issues that they raise), for which we are using, as a starting point, the model that we
adopted in the language SRML [26], which has the advantage of being asynchronous.

In what concerns the aspects related to consistency of composition, which occupy
a central part of our work, several notions of compatibility have been studied aimed at
ensuring that services are composable, mostly in the context if process-oriented models
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such as automata, labelled transition systems or Petri-Nets. Compatibility in this con-
text may have several different meanings. For example, [37] addresses the problem of
ensuring that, at service-discovery time, requirements placed by a requester service are
matched by the discovered services — the requirements of the requester are formulated
in terms of a graph-based model of a protocol that needs to be simulated by the BPEL
orchestration of any provided service that can be discovered. That is, compatibility is
checked over implementations. However, one has to assume that the requester has for-
mulated its requirements in such a way that, once bound to a discovered service that
meets the requirements, its implementation will effectively work together with that of
the provided service in a consistent way — a problem not addressed in that paper.

A different approach is proposed in [9] where compatibility is tested over the in-
terfaces of services (not their implementations), which is simpler and more likely to be
effective because a good interface should hide (complex) information that is not rele-
vant for compatibility. A limitation of that approach is, as already mentioned that it is
based on a (synchronous) method-invocation model of interaction. On the other hand,
the notions of interface that are proposed in [9] do not clearly separate between inter-
faces for clients of the service and interfaces for providers of required external services,
i.e., the approach is not formulated in the context of run-time service discovery and
binding. Furthermore, [9] does not propose a model of composition of implementations
(what is called a component algebra in [15]) so one has to assume that implementations
of services with compatible interfaces, when composed, are ‘consistent’. Our model
formulates the notion of consistency at the level of the component algebra in a way
that one can ensure, at design time, that matching required with provided services at
the interface level leads to a consistent implementation of the composite service when
binding the implementations of the requester and the provider services.

5 Concluding Remarks

5.1 Summary

In this paper, we have put forward a component and interface algebra for service-
oriented computing (SOC) inspired by the seminal work of de Alfaro and Henzinger
[15] and the service-component architecture (SCA) [39]:

The component algebra. Components in our framework are asynchronous rela-
tional nets (ARNs) consisting of processes (sets of infinite traces over an alphabet of
messages) interconnected via asynchronous channels. Two operations were defined:
composition and abstraction. Composition takes two ARNs and a collection of channels
that connect pairs of interaction points, one from each ARN. Abstraction maps ARNs
to processes by forgetting their internal structure, which we showed to be compositional
in relation to the composition operation.

In this setting, we discussed the problem of ensuring that the composition of con-
sistent ARNs (in the sense that they admit a trace that is projected to the behaviours
of every process and channel) is itself consistent. This is a non-trivial problem, espe-
cially if we want to be able to check consistency in a compositional way, i.e., based
only on properties of the individual ARNs and the channels used to interconnect them.
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This form of compositionally is required to be able to ensure consistency at design time
(i.e., when the participating processes and channels are specified and implemented),
which is essential in the context of SOC for supporting run-time discovery and binding
(composition) of services.

We characterised a subclass of ARNs for which an answer to this problem can
be provided: those that are both safe (in the sense that their processes and channels
implement safety properties) and progress-enabled (in the sense that every finite joint
trace can be extended with a joint action). We proved that safe progress-enabled ARNs
are consistent – Theo. 17 – and closed under composition provided that interconnections
are made through channels that are publication-enabled (i.e., channels that do not refuse
the publication of messages by the processes) and over interaction-points in relation to
which the ARNs are delivery-enabled (i.e., processes that do not refuse the delivery of
messages by the channels) – Cor. 24.

Given that individual processes are always progress-enabled, all that remains in
order to ensure consistency of composition is to work with safe processes and channels
and check for publication/delivery-enabledness. This can be done at design time over
the implementations of the channels and the processes, the complexity of which we
discussed for closed (safe) reduced non-deterministic Bücchi automata (NBAs).

The interface algebra. A service interface consists of a provides-point (offering
properties to customers) and a collection of requires-points, each of which specifies the
properties of an external service that may be required and of the channel through which
the external service will be connected. At the level of interfaces, properties (offered and
required) are specified through logical formulas.

Two operations were defined: composition and refinement. Composition takes two
interfaces and a match between a requires-point of one of the interfaces (the client) and
the provides-point of the other (the supplier) – the properties provided by the supplier
entail those required by the client. Refinement strengthens the properties offered at the
provides-point and weakens those of the requires-points. Refinement was shown to be
compositional in relation to the composition operation.

A notion of orchestration of a service-interface by an ARN was also defined and
shown to be compositional in relation to both the composition and refinement of in-
terfaces. We then discussed the problem of ensuring that orchestrations are well de-
fined, i.e., that when interconnected with orchestrations of required services, the result-
ing composition is consistent and delivers the properties offered at the provides-point.
Using the results obtained for ARN composition, we are able to ensure consistency
provided that orchestrations are safe, progress-enabled, and delivery-enabled in rela-
tion to the requires-points, and that the specifications of the channels and external ser-
vices given at the requires-points denote channels and processes that are safe and either
publication-enabled (in the case of the channels) or delivery-enabled (in the case of the
processes) – Cor. 44.

It then remained to discuss how to guarantee that the specifications given at the
requires-points denote safe processes and channels. For that purpose, we presented a
fragment of linear temporal logic – SAFETY-LTL – in which all the behaviours that can
be specified are safety properties. Closed reduced NBAs can be used as implementations
of such specifications. Because checking processes/channels for delivery/publication
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enabledness can be done at design time (i.e., when implementations are chosen for
orchestrating service interfaces) over those automata, there is no need for any additional
checking to be made at discovery/run time to guarantee consistency; the only checking
that needs to be made at run time is that the specifications of provides-points entail the
specifications of the corresponding requires-points. Naturally, these are all sufficient
conditions.

5.2 Further work

A question that arises from the work that we have presented is whether it can be gen-
eralised, either to other models of behaviour or specification logics. For example, and
although justification can be (and was) given for working with the implicit model of
time enforced by SAFETY-LTL, application domains in which timing requirements are
more critical (e.g., finance) would benefit from using an explicit model of time based
on the real numbers. Logics such as SAFETY-MTL [40] could still be used over such
a domain in order to restrict behaviours to safety properties. Probabilistic models have
also been emerging as providing useful ways of addressing behaviour of services that
depend on properties that, such as resource availability or performance, are intrinsically
stochastic. What is not clear is if (and how) one can also generalise the characterisation
of ARNs for which consistency can be ensured. For instance, the proof of Theo. 17
relies on properties of trace semantics (namely finite branching) that do not generalise
immediately to a real-time or probabilistic domain. One point that we intend to investi-
gate further concerns, indeed, the interplay between consistency, safety, the behavioural
model and the associated logic. Frameworks such as institutions [28] could provide a
starting point, though extensions are clearly required in order to have a finer characteri-
sation of the topological properties that are required of behaviour models to address the
kind of properties discussed herein.

Other lines for further work concern the dynamic aspects that are intrinsic to SOC
in virtue of the run-time discovery, selection and binding processes. We plan to use, as
a starting point, the algebraic semantics that we developed for SRML [25]. Important
challenges that arise here relate to the unbounded nature of the configurations (ARNs)
that execute business applications in a service-oriented setting, which is quite different
from the complexity of the processes and communication channels that execute in those
configurations.
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