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Abstract. This paper provides an overview of a formal approach to service-
oriented modelling that we have been developing within the SENSORIA pro-
ject [47].  A modelling language – SRML – and a number of formal techniques 
that address qualitative and quantitative analysis support this approach, all of 
which are based on mathematical foundations.  Our focus will be on the lan-
guage primitives that SRML offers for modelling business services and activi-
ties, and on the methodological approach that SRML supports. 

1 Introduction 

This paper provides an overview of a formal approach to service-oriented modelling 
that we have been developing within SENSORIA [47] – an Integrated Project funded 
under the ‘Global Computing’ (GC) initiative.  A modelling language – SRML – and 
a number of formal techniques that address qualitative and quantitative analysis sup-
port this approach, all of which are based on mathematical foundations.  Our focus in 
this paper is on the language primitives that SRML offers for modelling business 
services and activities, and on the methodological approach that SRML supports.  
Details on the mathematical semantics can be found in [3,26,27,28]. 

Our approach addresses Service-Oriented Computing (SOC) as a new paradigm in 
which interactions are no longer based on fixed or programmed exchanges of pro-
ducts with specific parties – what is known as clientship in object-oriented program-
ming – but on the provisioning of services by external providers that are procured on 
the fly subject to a negotiation of service level agreements (SLAs).  More precisely, 
the processes of discovery and selection of services as required by an application are 
not coded (at design time) but performed by the middleware according to functional 
and non-functional requirements (SLAs).  The process of binding the client applica-
tion and the selected service is not performed by skilled software developers, but also 
at run time, by the middleware.  Because the set of available services changes as pro-
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viders update their portfolios, and service-level agreements may be context-
dependent, different instances of the same application may bind to different services 
and operate according to different SLAs resulting from different negotiations. 

A number of research initiatives have been proposing formal approaches that ad-
dress different aspects of the paradigm independently of the specific languages that 
are available today.  For example, recent proposals for service calculi (e.g. [14,20,34]) 
address operational foundations of SOC (in the sense of how services compute) by 
providing a mathematical semantics for the mechanisms that support ‘coreography’ or 
‘orchestration’ – sessions, message/event correlation, compensation, inter alia.  This 
line of work has contributed to languages and standards developed by organisations 
such as OASIS (www.oasis-open.org) and W3C (www.w3.org) for Web services.  

 Whereas such calculi address the need for specialised language primitives for pro-
gramming in this new paradigm, we are still lacking models that are abstract enough 
to understand the engineering foundations of SOC, i.e. those aspects (both technical 
and methodological) that concern the way applications can be developed to provide 
business solutions, independently of the languages in which services are programmed.  
The Service Component Architecture (SCA) [55] has been proposing a number of 
specifications that address aspects of this challenge, which we have used as a source 
of inspiration.  However, SCA addresses low-level design in the sense that it provides 
an assembly model and binding mechanisms for service components and clients pro-
grammed in specific languages, e.g. Java, C++, BPEL, or PHP.  The goal of the work 
that we discuss in this paper is, instead, to address high-level design.  More specifi-
cally, we aim for models and mechanisms that support the design of complex services 
from business requirements in ways that are independent of the languages in which 
the service components are programmed, and for analysis techniques through which 
designers can verify or validate properties of composite services.  This shift of em-
phasis from programming to (business) modelling, from component interoperability 
to business integration, implies that we will be discussing SOC at a level of abstrac-
tion that is different from most other work on Web services (e.g. [8, 43]) or Grid 
computing (e.g. [29]). 

Having this in mind, the paper proceeds as follows.  In Section 2, we provide an 
overview of the engineering ‘architecture’ and processes that we see supporting SOC 
in Global Computing.  In Section 3, we provide a brief overview of how we support 
the transition from business requirements to high-level design models using a (ser-
vice-oriented) extension of use-case diagrams.  In Section 4, we put forward the co-
ordination model on which SRML is based.  In Section 5, we present the modelling 
primitives of SRML.  Finally, in Section 6, we discuss our model of configuration 
management.  As a running example, we will use a mortgage brokerage service.  
Although our approach is formal, in the sense that a formal semantics is available for 
all the primitives of the language [1,27], the paper is mostly mathematics-free with 
the exception of Sections 4.3 and 6. 



– 3 – 

2 Engineering Software for Service-Overlay Computers  

The term ‘service’ is being used sin a wide variety of contexts, often with different 
meanings.  In SENSORIA, we address the notion of ‘service-overlay computer’, by 
which we mean the development of highly-distributed loosely-coupled applications 
over ‘global computers’ (GC) – “computational infrastructures available globally and 
able to provide uniform services with variable guarantees for communication, co-
operation and mobility, resource usage, security policies and mechanisms” [30].   

In this setting, there is a need to rethink the way we engineer software applications, 
moving from the typical ‘static’ scenario in which components are assembled to build 
a (more or less complex) system that is delivered to a customer, to a more ‘dynamic’ 
scenario in which (smaller) applications are developed to run on such global com-
puters and respond to business needs by interacting with services and resources that 
are globally available.  In this latter setting, there is much more scope for flexibility in 
the way business is supported: business processes can be viewed globally as emerging 
from a varying collection of loosely-coupled applications that can take advantage of 
the availability of services procured on the fly when they are needed.  

In this context, the notion of ‘system’ itself, as it applies to software, also needs to 
be revisited.  If we take one of the accepted meanings of ‘system’ – a combination of 
related elements organised into a complex whole – we can see why it is not directly 
applicable to SOC/GC: services get combined at run time and redefine the way they 
are organised as they execute; no ‘whole’ is given a priori and services do not com-
pute within a fixed configuration of a ‘universe’.  In a sense, we are seeing reflected 
in software engineering the trend for ‘globalisation’ that is now driving the economy. 

SOC brings to the front many aspects that have already been discussed about com-
ponent-based development (CBD), for instance in [24].  Given that different people 
have different perceptions of what SOC and CBD are, we will simply say that, in this 
paper, we will take CBD to be associated with what we called the ‘static’ engineering 
approach.  For instance, starting from a universe of (software) components as ‘struc-
tural entities’, Broy et al view a service as a way of orchestrating interactions among a 
subset of components in order to obtain some required functionality – “services co-
ordinate the interplay of components to accomplish specific tasks” [17].  As an exam-
ple, we can imagine that a bank will have available a collection of software compo-
nents that implement core functionalities such as computing interests or charging 
commissions, which can be used in different products such as savings or loans.   

SOC differs from this view in that there is no such fixed system of components that 
services are programmed to draw from but, rather, an evolving universe of software 
applications that service providers publish so that they can be discovered by (and 
bound to) business activities as they execute.  For instance, if documents need to be 
exchanged as part of a loan application, the bank may rely on an external courier 
service instead of imposing a fixed one.  In this case, a courier service would be dis-
covered for each loan application that is processed, possibly taking into account the 
address to which the documents need to be sent, speed of delivery, reliability, and so 
on.  However, the added flexibility provided through SOC comes at a price – dynamic 
interactions impose the overhead of selecting the co-party at each invocation – which 
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means that the choice between invoking a service and calling a component is a deci-
sion that needs to be taken according to given business goals.  This is why SRML 
makes provision for both SOC and CBD types of interaction (through requires and 
uses interfaces as discussed in Section 3).  

To summarise, the impact that we see (and explore) SOC to have on software en-
gineering methodology stems from the fact that applications are built without know-
ing who will provide services that may be required, and that the discovery and selec-
tion of such services is performed, on the fly, by dedicated middleware components.  
This means that application developers cannot rely on the fact that someone will 
interact with them to implement the services that may be required so as to satisfy their 
requirements.  Therefore, service-oriented ‘clientship’ needs to be based on shared 
ontologies of data and service provision.  Likewise, service development is not the 
same as developing software applications to a costumer’s set of requirements: it is a 
separate business that, again, has to rely on shared ontologies of data and service 
provision so that providers can see their services discovered and selected. 

This view is summarised in Figure 1, where we elaborate beyond the basic Service-
Oriented Architecture [5] to make explicit the different stakeholders and the way they 
interact, which is important for understanding the formal model that we are propos-
ing.  In this model, we distinguish between ‘business activities’ and ‘services’ as 
software applications that pertain to different stakeholders (see [31] for a wider dis-
cussion on the stakeholders of service-oriented systems): 

• Activities correspond to applications developed according to requirements pro-
vided by a business organisation, e.g. the applications that, in a bank, imple-
ment the financial products that are made available to the public.  The activity 
repository provides a means for a run-time engine to trigger such applications 
when the corresponding requests are published, say when a client of the bank 
requests a loan at a counter or through on-line banking.  Activities may be im-
plemented over given components (for instance, a component for computing 
and charging interests) in a traditional CBD way, but they can also rely on ser-
vices that will be procured on the fly using SOC (for instance, an insurance for 
protecting the customer in case he/she is temporarily prevented from re-paying 
the loan due to illness or job loss).  In SRML, activities are modelled through 
activity modules.  As discussed in Section 3, these identify the components that 
activities need to be bound to when they are launched and the services (types) 
that they may require as they execute.  Activity modules also include a specifi-
cation of the workflow that orchestrates the interactions among all the parties 
involved in the activity and SLA constraints. 

• Services differ from activities in that they are not developed to satisfy specific 
business requirements of a given organisation but to be published (in service 
repositories) in ways that allow them to be discovered when a request for an 
external service is published in the run-time environment.  As such, they are 
classified according to generic service descriptions – what in Section 5.1.3 we 
call ‘business protocols’ – that are organised in a hierarchical ontology to fa-
cilitate discovery.  Services are typed by ‘service modules’, which, like ac-
tivity modules, identify the components and additional services that may be 
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required together with a specification of the workflow that orchestrates the 
interactions among them so as to deliver the properties declared in the service 
description – its ‘provides-interface’.  Service modules also specify service-
level agreements that need to be negotiated during matchmaking and selection. 

• The configuration management unit (discussed in Section 6) is responsible for 
the binding of the new components and connectors that derive from the instan-
tiation of new activities or services.  A formal model can be found in [27]. 

• The ontology unit is responsible for organising both data and service descrip-
tions.  In this paper, we do not discuss the classification and retrieval mecha-
nisms per se.  See, for instance, [35,44] for some of the aspects involved when 
addressing such issues.    
 

 

Figure 1: Overall ‘engineering’ architecture and processes  

Notice that the ‘business IT teams’ and the ‘service providers’ can be totally inde-
pendent and unrelated: the former are interested in supporting the business of their 
companies or organisations, whereas the latter run a business of their own.  They can 
also belong to the same organisation, as illustrated below.  In both cases, they share 
the ontology component of the architecture so that they can do business together.  
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3 From Use-Case Diagrams to Service and Activity Modules 

Before we introduce the modelling primitives that SRML offers for high-level (busi-
ness) design, it is important to show how traditional use-case diagrams can be ex-
tended so as to support the engineering approach that we described in Section 2.  In 
order to illustrate our approach, we consider the (simplified) case of a financial ser-
vices organisation that wants to offer a mortgage-brokerage service GETMORTGAGE.  
This service involves the following steps:  

• Proposing the best mortgage deal to the customer that invoked the service; 
• Taking out the loan if the customer accepts the proposal;  
• Opening a bank account associated with the loan if the lender does not provide 

one;  
• Getting insurance if required by either the customer or the lender.     

In our example, the selection of a lender is restricted to firms that are considered 
reliable.  For this reason, we consider an UPDATEREGISTRY activity supporting the 
management of a registry of reliable lenders.  This activity relies on an external certi-
fication authority that may vary according to the identity of the lender.   

3.1 Use-case diagrams for service-oriented modelling  

Traditionally, use-case diagrams are used for providing an overview of usage re-
quirements for a system that needs to be built.  As discussed in Section 2, and report-
ing to Figure 1, our aim is to address a novel development process that does not aim 
at the construction of a ‘system’ but, rather, of two kinds of software applications – 
services and activities – that can be bound to other software components either stati-
cally (in a component-based way) or dynamically (in a service-oriented way).  The 
methodological implications of this view are twofold.  On the one hand, services and 
activities have the particularity that each has a single usage requirement.  Hence, they 
can be perceived as use cases.  On the other hand, from a business point of view, the 
services and activities to be developed by an organisation constitute logical units.   

In our example, UPDATEREGISTRY should be treated as an activity in the sense that 
it is driven by the requirements of the financial services organisation itself – it will be 
stored in an activity repository and will be invoked by internal applications (e.g., a 
web interface).  On the other hand, GETMORTGAGE is meant to be place in a service 
repository for being discovered and bound to activities running ‘globally’, i.e. not 
necessarily in the financial services organisation. 

Both UPDATEREGISTRY and GETMORTGAGE can be seen to operate as part of a same 
business unit and, hence, it makes sense to group them in the same use-case diagram – 
use-case diagrams are useful for structuring usage requirements of units of business 
logic.  In order to reflect the methodological implications of our approach, we propose 
a number of extensions to the standard notation of use cases.  Figure 2 uses the mort-
gage example to illustrate our proposal: the diagram represents a business logical unit 
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with the two use cases identified before.  The rectangle around the use cases, which in 
traditional use-case diagrams indicates the boundary of the system at hand, is used to 
indicate the scope of the business unit.  Anything within the box represents function-
ality that is in scope and anything outside the box is considered not to be in scope.  

For the UPDATEREGISTRY activity, the primary actor is Registry Manager; its goal 
is to control the way a registry of trusted lenders is updated.  The registry itself is 
regarded as a supporting actor.  The Certification Authority on which UPDATEREGIS-
TRY relies is also considered a supporting actor in the use case because it is an external 
service that needs to be discovered based on the nature of the lender being considered. 

In the GETMORTGAGE service, the primary actor is a Customer that wants to obtain 
a mortgage.  The use case has four supporting actors: Lender, Bank, Insurance and 
Registry.  The Lender represents the bank or building society that lends the money to 
the customer.  Because only reliable firms can be considered for the selection of the 
lender, the use case involves communication with Registry.  When the lender does not 
provide a bank account, the use case involves an external Bank for opening a new 
account.  Similarly, the use case involves interaction with an Insurance provider for 
situations where the lender requires insurance or the customer decides to get one. 

 

 
Figure 2: Service-oriented use-case diagram for Mortgage Finder 
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As in traditional use cases, we view an actor as any entity that is external to the 
business unit and interacts with at least one of its elements in order to perform a task.  
As motivated above, we can distinguish between different kinds of actors, which led 
us to customise the traditional icons as depicted in Figure 2.  These allow us to dis-
criminate between user/requester and resource/service actors. 

User-actors and requester-actors are similar to primary actors in traditional use-
case diagrams in the sense that they represent entities that initiate the use case and 
whose goals are fulfilled through the successful completion of the use case.  The 
difference between them is that a user-actor is a role played by an entity that interacts 
with the activity, while a requester-actor is a role played by one or more software 
components operating as part of the activity that triggers the discovery of the service.   

For instance, the user-actor Registry Manager represents an interface for an em-
ployee of the business organisation that is running Mortgage Finder whereas the 
requester-actor Customer represents an interface for a service requester that can come 
from any external organisation.  A requester-actor can be regarded as an interface to 
an abstract user of the functionality that is exposed as a service; it represents the range 
of potential customers of the service and the requirements typically derive from stan-
dard service descriptions stored in service repositories such as the UDDI.  In SRML, 
and reporting to Figure 1, these descriptions are given by business protocols (dis-
cussed in Section 5.1.3) and organised in a shared ontology, which facilitates and 
makes the discovery of business partners more effective.  The identification of re-
quester-actors may take advantage of existing descriptions in the ontology or it may 
identify new business opportunities.  In this case, the ontology would be extended 
with new business protocols corresponding to the new types of service.  

Resource-actors and service-actors of a use case are similar to supporting actors in 
traditional use-case diagrams in the sense that they represent entities to rely on in 
order to achieve the underlying business goal.  The difference is that a service-actor 
represents an outsourced functionality to be procured on the fly and, hence, will typi-
cally vary from one instance of the use case to another, whereas a resource-actor is an 
entity that is statically bound and, hence, is the same for all instances of the use case.  
Resource-actors are typically persistent sources/repositories of information.  In gen-
eral, they are components that are already available to be shared within a business 
organisation. 

The user- and resource-actors, which we represent at the top and bottom of our 
specialised use-case diagrams, respectively, correspond in fact to the actors that are 
presented on the left and right-hand side in traditional use-case diagrams, respec-
tively.  In contrast, the ‘horizontal dimension’ of the new diagrams, comprising re-
quester- and service-actors, captures the types of interactions that are specific to SOC.  

We assume that every use case corresponds to a service-oriented artefact and that 
the association between a primary actor and a use case represents an instantia-
tion/invocation.  For this reason, in this context, we constrain every use case to be 
associated with only one primary actor (either a requester or a user). 



– 9 – 

3.2 Deriving the structure of SRML modules 

The proposed specialisations of use-case diagrams allow us to identify and derive a 
number of aspects of the structure of SRML modules – the main modelling primitives 
that we use for services and activities.  Each use case, representing either a service or 
an activity, gives rise to a SRML service module or activity module, respectively.  
Figure 3 presents the structure of the modules derived from the use-case diagram in 
Figure 2. 

A SRML module provides a formal model of a service or activity in terms of a 
configuration of ‘interfaces’ (formal specifications) to the parties involved.  In the 
case of activity modules: 

• A serves-interface (at the top-end of the module) identifies the interactions that 
should be maintained between the activity and the rest of the system in which 
it will operate.  This interface results from the user-actor of the corresponding 
use case. 

• Uses-interfaces (at the bottom-end of the module) are defined for those (persis-
tent) components of the underlying configuration that the activity will need to 
interact with once instantiated.  These interfaces result from the resource-
actors of the corresponding use case and provide formal descriptions of the be-
haviour required of the actual interfaces that need to be set up for the activity 
to interact with components that correspond to (persistent) business entities. 

• Requires-interfaces (on the right-hand boundary of the module) are defined for 
services that the activity will have to procure from external providers if and 
when needed.  Typically, these reflect the structure of the business domain it-
self in the sense that they reflect the existence of business services provided 
outside the scope of the local context in which the activity will operate.  These 
interfaces result from the service-actors of the corresponding use case. 

• Component and wire interfaces (inside the module) are defined for orchestrat-
ing all these entities (actors) in ways that will deliver stated user requirements 
through the serves-interface.  These interfaces are not derived from the use-
case diagram but from the description of the corresponding business require-
ments, i.e. they result from a design step.  Typically, a designer will choose 
pre-defined patterns of orchestration that reflect business components that will 
be created in support of the activity or chosen from a portfolio of components 
already available for reuse within the business organisation.  The choice of the 
internal architecture of the module (components and wires) should also reflect 
the nature of the business communication and distribution network over which 
the activity will run. 
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Figure 3: The SRML modules for the activity UPDATEREGISTRY and the service GET-

MORTGAGE  

In the case of a service module, a similar diagrammatic notation is used except that 
a provides-interface is used instead of a serves-interface: 

• The provides-interface should be chosen from the hierarchy of standard busi-
ness protocols because the purpose here is to make the service available to the 
wider market, not to a specific client.  It derives from the requester-actor of the 
corresponding use case. 

• Some of the component interfaces will correspond to standard components that 
are part of the provider’s portfolio.  For instance, these may be application 
domain dependent components that correspond to typical entities of the busi-
ness domain in which the service provider specialises. 

• Uses-interfaces should be used for those components that the service provider 
has for insuring persistence of certain effects of the services that it offers.  

In addition, both activity and service modules include: 
• An internal configuration policy (indicated by the symbol ), which identifies 

the triggers of the external service discovery process as well as the initialisa-
tion and termination conditions of the components that instantiate the compo-
nent-interfaces. 
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• An external configuration policy (indicated by the symbol ), 
which consists of the variables and constraints that determine the quality pro-
file of the activity to which the discovered services need to adhere. 

The language primitives that are used in SRML for defining all these interfaces as 
well as the configuration policies are detailed in Section 5.  A summary of the graphi-
cal notation can be found in Appendix A at the end of the paper. 

4 The Coordination Model 

The interfaces of a SRML module identified through a use-case diagram reflect busi-
ness dependencies of services or activities, not the interfaces that software compo-
nents offer to be interconnected: modules are not models of components but of busi-
ness processes.  In this section, we detail the coordination model that SRML adopts 
for component interconnection, i.e. we address the nature of the interfaces that com-
ponents offer and the way wires interconnect them.  We also outline a formalisation 
of this model, full details of which are available from [1]. 

4.1 Conversational interactions 

Typically, in CBD, one organises component interfaces (what they offer to and expect 
from the rest of the system) in ports, which include the protocols that regulate mes-
sage exchange at those ports.  In SRML, we have fixed the nature of the interactions 
and protocols followed by components and wires.  We distinguish the following types 
of interactions:  

r&s 
The interaction is initiated by the co-party, which expects a reply.  The co-party 
does not block while waiting for the reply. 

s&r 
The interaction is initiated by the party and expects a reply from its co-party.  
While waiting for the reply, the party does not block. 

rcv The co-party initiates the interaction and does not expect a reply. 

snd The party initiates the interaction and does not expect a reply. 

ask The party synchronises with the co-party to obtain data. 

rpl The party synchronises with the co-party to transmit data. 

tll The party requests the co-party to perform an operation and blocks. 

prf The party performs an operation and frees the co-party that requested it. 

Interactions involve two parties and can be in both directions, i.e. they can be con-
versational.  Interactions are described from the point of view of the party in which 
they are declared, i.e. ‘receive’ means invocations received by the party and sent by 
the co-party, and ‘send’ means invocations made by the party.  Interactions can be 
synchronous, implying that the party waits for the co-party to reply or complete, or 
asynchronous, in which case the party does not block.  Typically, synchronous (block-
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ing) interactions occur with persistent components, reflecting interconnections based 
on the exchange of products (clientship as in OO).  Interactions among the (internal) 
components responsible for the orchestration are non-blocking so that they can en-
gage in multiple, concurrent conversations with different parties.  

Interactions of type r&s and s&r are conversational (what we call 2-way), i.e. they 
involve a number of events exchanged between the two parties:  

interaction The event of initiating interaction. 
interaction The reply-event of interaction. 
interaction The commit-event of interaction. 
interaction The cancel-event of interaction. 
interaction The revoke-event of interaction. 

The meaning of the these events should be self-explanatory: the reply-event is sent 
by the co-party, offering a deal or declining to offer one; in the first case, the party 
that initiated the conversation may either commit to the deal or cancel the interaction; 
after committing, the party can still revoke the deal, triggering a compensation 
mechanism. Every 2-way interaction has an associated pledge – a condition that is 
guaranteed to hold from the moment a positive reply-event occurs until either the 
commit-event, the cancel-event or the expiration time occurs, whichever happens 
first.  We denote this condition by interaction.  See Figure 4 for some of the possible 
scenarios (explained further below). 

All interactions can have parameters for transmitting data when they are initiated – 
declared as .  Conversational interactions can also have parameters for carrying a 
reply – declared as  – or for carrying data if there is a commit, a cancel or a revoke 
– declared as ,  and  respectively.   In particular, every reply-event interaction 
has two distinguished parameters: 

• Reply is a Boolean parameter that indicates whether the reply is positive, 
meaning that the co-party is ready to proceed.  The value of interaction.Reply 
is False if, for some reason related with the business logic, the request interac-
tion can not be fulfilled.  

• UseBy is a parameter that, in the case of a positive reply, indicates the deadline 
for receiving the commit and cancel events.  The value of this parameter is an 
expiration time (including the value +∞) obtained by adding the value of the 
configuration variable (non-functional attribute) interaction to the instant at 
which interaction is sent.  As discussed in Section 5.2.2, configuration vari-
ables can be subject to negotiation during the discovery/selection process. 

Interactions can be seen as ports in the traditional CBD sense, the associated events 
representing the interface of the components.  The sequence diagrams in Figure 4 
illustrate the protocol that is associated with every interaction for which the reply is 
positive.  In the case on the left, the initiator commits to the pledge; a revoke may 
occur later on, compensating the effects of the commit-event interaction (this can 
however be constrained by the business logic, for instance, by defining a deadline for 
compensation).  In the middle, there is a cancellation; in this situation, a revoke is not 
available.  In the case on the right, the expiration time occurs without a commit or 
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cancel having occurred; this implies that no further events for that interaction will 
occur.  In Section 5.1, we give examples of the intended usage of these primitives. 

 
Figure 4: The protocol of 2-way interactions when the reply is positive 

Events occur during state transitions in both parties involved in the interaction: we 
use event! in order to refer to the publication of event in the life of the initiating party, 
and event? (resp. event¿) for its execution (resp. being discarded) by the party that 
receives it.  The occurrences of event! and event? (or event¿) may not coincide in 
time: we consider that there may exist a delay between publishing and delivering an 
event.  The value of this delay is given by the configuration variable Delay associated 
with the wire through which the events are transmitted (see Figure 5).  In this paper, 
we do not explore in any depth the use of such delays.  See instead [9] for a formal 
model over which timing aspects of service provision can be analysed through a tool 
like PEPA [32].  

 
Figure 5: The intuitive semantics of delays. 

4.2 Deriving interactions from message sequence diagrams 

One of the ways that we have found useful to identify the interactions that are relevant 
for defining a given activity or service module is to draw message sequence diagrams 
that characterise the interconnections required between the different parties.  For 
instance, the message sequence diagram in Figure 6 depicts the workflow that is initi-
ated by the initial request received by GETMORTGAGE from the customer CR.  
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Figure 6: Identifying interactions within GETMORTGAGE. 

4.3 A formal model 

The overall coordination model of SRML can be summarised as follows (see [1] for 
details).  We work over configurations of global computers defined by a set COMP of 
components (applications deployed over execution platforms) linked through wires 
(e.g. interconnections between components over a given communication network), the 
set of which we denote by WIRE.  

A state consists of: 
• The set PND of the events that are pending in the wires, i.e. the events that 

have been published but not yet delivered by the wires to the corresponding 
components; 

• The set INV of the events that have been invoked, i.e. those that were delivered 
by the wires and are stored locally by the components that received them, wait-
ing to be processed;  

• The time at that state; 
• The set of pledges that hold in that state; 
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• A record of all events that have been published (!), delivered (¡), executed (?) 
or discarded (¿); 

• The values of all event parameters and configuration attributes. 

In this model, state transitions are characterised by what we call a computation step. 
A computation step consists of: 
• An ordered pair of states SRC (source) and TRG (target); 
• A subset DLV of PNDSRC consisting of the events that are pending in the source 

state and selected for delivery during that step; 
• A set PRC that selects from INVSRC one event for every component that has 

events waiting to be processed; 
• A subset EXC of PRC consisting of the events that are actually executed (the 

others are discarded); 
• A set PUB of the events that are published during that step together with a 

function that assigns a value to the parameters of each such event; 
such that: 
• The set INVTRG of the events in the target state that have been invoked are those 

in DLV (i.e. delivered during the step) together with those already in INVSRC 

that have not been selected by PRC to be processed;  
• The set PNDTRG of the events that are pending at the target state are those in 

PUB (i.e. published during the step) together with those of PNDSRC that have 
not been selected by DLV to be delivered. 

That is, the set of events that are pending in wires is updated during each computa-
tion step by removing the events that the wire delivers during that step – DLV – and 
adding the events that each component publishes – PUB.  We assume that all the 
events that are selected by DLV are actually delivered to the receiving component, i.e. 
each wire is reliable – see [1] for a model that considers unreliable wires. 

At each step, components may choose to process one of the events waiting to be 
processed; this is captured by the function PRC.  The fact each component can only 
process one event at a time is justified by the assumption that the internal state of the 
components is not necessarily distributed and therefore no concurrent changes can be 
made to their states.  

The set of events that are waiting to be processed by every component is updated 
in each step by removing the event that is processed and adding the events that are 
actually delivered to that component.  Figure 7 is a graphical representation of the 
flow of events that takes place during a computation step from the point of view of 
components A and B connected by a wire W.  
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Figure 7: Graphical representation of event flow from the point of view of a wire w be-

tween parties A and B. 

5 The Modelling Primitives of SRML 

5.1 Behaviour specification languages  

The entities involved in service and activity modules – component interfaces, re-
quires-interfaces, provides-interfaces, uses-interfaces, serves-interfaces and interac-
tion protocols – can be defined in SRML independently of one another as design-time 
reusable resources.  For that purpose, we have defined a number of different but re-
lated languages, which we present and illustrate in this section using fragments of our 
running example.  The full specification is available in Appendix B. 

5.1.1 Signatures 

All the languages that we use have in common the declaration of the interactions (in 
the sense of Section 4.1) in which the corresponding entity can be involved – what we 
call a signature.  These declarations are strictly local to the entity, i.e. we cannot rely 
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on global names to establish interconnections between entities – that is the role of the 
wires. 

As an example, consider the component-interface MA, which we declared to be of 
type MortgageAgent.  The corresponding signature is: 

INTERACTIONS 
 r&s getProposal 
    idData:usrdata, 
   income:moneyvalue, 
   preferences:prefdata, 
   proposal:mortgageproposal 
   cost:moneyvalue 

  s&r askProposal 
     idData:usrdata, 

   income:moneyvalue, 
    proposal:mortgageproposal 
    loanData:loandata, 
    accountIncluded:bool, 
    insuranceRequired:bool 
  s&r getInsurance 
     idData:usrdata, 
    loanData:loandata, 
    insuranceData:insurancedata 
  s&r openAccount 
     idData:usrdata, 
    loanData:loandata, 
    accountData:accountdata 
  s&r signOutLoan 
     insuranceData:insurancedata, 
    accountData:accountdata, 
    contract:loancontract 
  snd confirmation 

    contract:loancontract  
   ask getLenders(prefdata):setids 
   tll regContract(loandata,loancontract) 

Interactions are classified according to the types defined in Section 4.1.  For in-
stance, getProposal is declared to be of type r&s, i.e. as being an asynchronous con-
versational interaction that is invoked by the co-party.  This interaction has three 
parameters that carry data produced by the co-party at invocation time – the user 
profile, income and preferences for the mortgage.  Such parameters are declared 
under the symbol .  Parameters that are used by the mortgage agent for sending the 
reply are declared under the symbol  – in the case at hand, the details of mortgage 
proposal and the cost of the mortgage-brokerage service for taking out the loan if the 
customer accepts the proposal.      

The co-party of the mortgage agent in this interaction is not named (the same ap-
plies to all other interactions, as discussed in Section 4.1).  This makes it possible to 
specify the behaviour that can be assumed of the mortgage agent at the interface, 
independently of the way it is instantiated within any given system.  

The signature of MortgageAgent includes six additional interactions, all of which 
are self-initiated.  While askProposal, getInsurance, openAccount and signoutLoan 
are conversational and asynchronous (i.e. of type s&r or snd), the interactions 
getLenders and regContract are synchronous.  In the case of getLenders, the mort-
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gage agent has to synchronise with the co-party to obtain data (the identification of 
the lenders that meet the user preferences for the mortgage) while, in the case of reg-
Contract, the party requests the co-party to perform an operation (register a loan con-
tract) and blocks until the operation is completed.  

5.1.2 Business roles 

In SRML, interfaces of service components are typed by business roles.  A business 
role is specified by defining the way in which the interactions declared in the signa-
ture are orchestrated.  For that purpose, we offer a textual declarative language based 
on states and transitions that is general enough to support languages and notations that 
are typically used for orchestrating workflows such as BPEL and UML statecharts.   

In a typical business role, a set of variables provides an abstract view of the state of 
the component and a set of transitions models the activities performed by the compo-
nent, including the way it interacts with its co-parties.  For instance, the local state of 
a mortgage agent is defined as follows: 

local  s:[INITIAL, WAIT_PROPOSAL, WAIT_DECISION, 
        PROPOSAL_ACCEPTED, SIGNING, FINAL]  
   lenders:setids 
   needAccount, needInsurance:bool 
   insuranceData:insurancedata, accountData:accountdata 

We use s to model control flow, including the way the component reacts to trig-
gers.  The other state variables are used for storing data that is needed at different 
stages of the orchestration.  

Each transition has an optional name and a number of possible features.  For in-
stance: 

transition GetClientRequest 
triggeredBy getProposal 
guardedBy s=INITIAL 
effects lenders’=getLenders(prefdata) 
  ∧ ¬empty(lenders’) ⊃ s’=WAIT_PROPOSAL 
  ∧ empty(lenders’) ⊃ s’=FINAL 
sends ¬empty(lenders’) ⊃ askProposal   
  ∧ askProposal.idData=getProposal.idData 
  ∧ askProposal.income=getProposal.income 
 ∧ empty(lenders’) ⊃ getProposal  
  ∧ getProposal.Reply=false  

• A trigger is either the processing of an event, like in the example above, or a 
state condition.  The former means that the transition is triggered when the 
component processes the event, and the latter when the condition changes 
from false to true.   

• A guard is a condition that identifies the states in which the transition can 
take place – in GetClientRequest, the state INITAL.  If the trigger is an event 
and the guard is false, the event is processed but not executed (it is dis-
carded).  



– 19 – 

• A sentence specifies the effects of the transition in the local state.  Given a 
state variable var, we use var’ to denote the value that it takes after the tran-
sition.  In the case above, we change the value of s and store the identifica-
tion of the lenders that match the users-preferences.  This data is obtained 
from a co-party through the synchronous interaction getLenders.  As already 
mentioned, this co-party is not identified in the business role: we will see 
that, because of the way components are wired, the co-party in this interac-
tion within the module GETMORTGAGE is RE of type Registry – the interface 
of a persistent component.  

• Another sentence specifies the events that are published during the transition, 
including the values taken by their parameters.  In this sentence, we use vari-
ables and primed variables as in the ‘effects’-section.  In the example, if 
there is at least one lender that matches the user-preferences, the interaction 
askProposal is initiated in order to get a mortgage proposal from a lender.  
Once again, the corresponding co-party is not named: we will see that, within 
the module GETMORTGAGE, this is an external service provided by a bank or 
building society that needs to be discovered and bound to the mortgage 
agent.  If no lenders are found that match the user-preferences, a negative 
reply to getProposal is published. 

Another example of a transition is GetLenderProposal: 
transition GetLenderProposal 

triggeredBy askProposal 
guardedBy s=WAIT_PROPOSAL 
effects needAccount’=askProposal.accountIncluded  
  ∧ needInsurance’=askProposal.insuranceRequired 
  ∧ askProposal.Reply ⊃ s’=WAIT_DECISION 
  ∧ ¬askProposal.Reply ⊃ s’=FINAL 
sends getProposal  
  ∧ getProposal.Reply=askProposal.Reply 
  ∧ getProposal.proposal=askProposal.proposal  
  ∧ getProposal.cost=(CHARGE/100+1)*750 

In this case, the transition is triggered by the processing of the reply to askProposal 
and the effect is to send a reply to getProposal (the parameter Reply of askProposal 
and the proposal received in proposal are both transmitted by the reply-event).  The 
transition also defines the cost of the mortgage-brokerage service for taking out the 
loan if the customer accepts the proposal.  

Specifications may also declare configuration variables, which are discussed in 
Section 5.2.2.  These variables are instantiated at run time, when a new session of the 
service starts, possibly as a result of the negotiation process involved in the discovery 
of the service.  In the case of MortgageAgent, we declare the configuration variable 
CHARGE that determines an additional charge over the base price of the mortgage-
brokerage service.  In Section 5.2.2 we will see that, in the module GETMORTGAGE, 
this extra-charge relates to the period of validity of the loan proposal offered by the 
service, which is also subject to negotiation. 

 SLA VARIABLES 
  CHARGE:[0..100] 
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Notice that, through business roles, SRML offers a very flexible way to model con-
trol flow because transitions are decoupled from interactions and changes to state 
variables, which offers a declarative style of defining orchestrations.  For instance, the 
transition TimeoutProposal defined below is triggered once the reply to getProposal 
expires; in this situation, the component informs the lender that the proposal was not 
accepted and moves to the final state.  

  transition TimeoutProposal 
   triggeredBy now>getProposal.UseBy 
   guardedBy s=WAIT_DECISION 
   effects s’=FINAL 
   sends askProposal 

Other aspects of this declarative style include the possibility of leaving certain as-
pects under-specified that can be refined at later stages of the development process.  
This is why the various aspects of a transition are specified as sentences using a logi-
cal notation. 

More traditional (control-oriented) notations can be used instead for defining or-
chestrations.  In Figure 8 we show how part of the orchestration of MortgageAgent 
can be defined using a UML statechart.  Because statecharts focus only on control 
flow, we would need to provide a separate specification for the data flow.  In [12], we 
have also shown how BPEL can be encoded in our language. 

 
Figure 8: Using UML statecharts for defining orchestrations in business roles 

 

5.1.3 Business protocols 

In SRML, a module may declare a number of requires-interfaces, each of which pro-
vides an abstraction (type) for a service that will have to be procured from external 
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providers, if and when needed – what, in SCA, corresponds to an “External Service”.  
In the case of a service module, a provides-interface is also declared for describing the 
service that is offered by the module, corresponding to what in SCA is called an “En-
try Point”. 

Both types of external interfaces are typed with what we call business protocols, or 
just protocols if it is clear from the context what kind of protocols we are addressing.  
Like business roles, protocols include a signature.  The difference is that, instead of an 
orchestration, we provide a set of properties.  In the case of a requires-interface, these 
are the properties required of the external service that needs to be procured.  In the 
case of a provides-interface, we specify the properties offered by the service orches-
trated by the module.   

In the case of business protocols used for specifying the required services, we de-
clare the interactions in which the external entity (to be procured) must be able to be 
involved as a (co-)party and we specify the protocol that it has to adhere to.  For in-
stance, the service GETMORTGAGE expects the following behaviour from a lender: 

BUSINESS PROTOCOL Lender is  

 INTERACTIONS 
  r&s requestMortgage 
     idData:usrdata, 

   income:moneyvalue, 
    proposal:mortgageproposal 
    loanData:loandata, 
    accountIncluded:bool, 
    insuranceRequired:bool 
  r&s requestSignOut 
     insuranceData:insurancedata, 
    accountData:accountdata, 
    contract:loancontract 
 BEHAVIOUR  
  initiallyEnabled requestMortgage?   

   requestMortgage? enables requestSignOut? 
   requestSignOut.Reply after requestSignOut? 

Notice that the interactions are again named from the point of view of the party 
concerned – the lender in the case at hand.  The specified properties require the fol-
lowing: 

• In the initial state, the lender is ready to engage in requestMortgage. 
• After receiving the commitment to the mortgage proposal, the lender be-

comes ready to engage in requestSignOut. 
• The reply to requestSignOut is always positive. 

The language in which these properties are expressed uses a set of patterns that 
capture commonly occurring requirements in the context of service-oriented interac-
tions.  Their semantics have been defined in terms of formulas of the temporal logic 
UCTL [6].  Intuitively, they correspond to traces of the form depicted in Figure 9:  
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Figure 9: The traces that correspond to the patterns 

The intuitive semantics of these patterns is as follows: 
• initiallyEnabled e: The event e is enabled (cannot be discarded) in the initial 

state and remains so until it is executed. 
• a after e: a holds forever after event e is executed.  
• a enables e until b: The event e cannot be executed before a holds and remains 

enabled after a becomes true until it is either executed or b becomes true (if 
ever).  

• a enables e: The event e cannot be executed before a holds and remains en-
abled after a becomes true until it is executed.  It is easy to see that this pattern 
is equivalent to a enables e until false. 

• a ensures e: The event e cannot be published before a holds, and is published 
sometime after a becomes true. 
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Business protocols are also used for modelling the behaviour that users can expect 
from a service.  This subsumes what, in [5], are called external specifications: 

In particular, a trend that is gathering momentum is that of including, as part 
of the service description, not only the service interface, but also the business 
protocol supported by the service, i.e. the specification of which message ex-
change sequences are supported by the service, for example expressed in terms 
of constraints on the order in which service operations should be invoked. 

For instance, the provides-interface of GETMORTGAGE is typed by the following busi-
ness protocol: 

BUSINESS PROTOCOL Customer is  

 INTERACTIONS 
 r&s getProposal 
    idData:usrdata, 
   income:moneyvalue, 
   preferences:prefdata, 
   proposal:mortgageproposal, 
   cost:moneyvalue 

  snd confirmation 
      contract:loancontract 
  SLA VARIABLES 
   CHARGE:[0..100] 
  BEHAVIOUR  
   initiallyEnabled getProposal?  
   getProposal.cost≤750*(CHARGE/100+1) after  
     getProposal! ∧ getProposal.Reply  
   getProposal? ensures confirmation! 

This business protocol specifies that the service offered by GETMORTGAGE relies on 
two asynchronous interactions — getProposal and confirmation.  The properties 
offered by the service are: 

• A request for getProposal is enabled when the service is activated. 
• The service brokerage has a base price that can be subject to an extra charge, 

subject to negotiation.  
• A confirmation carrying the loan contract will be issued upon receipt of the 

commit to getProposal. 

5.1.4 Layer protocols 

A module in SRML may also declare one or more uses-interfaces.  These provide 
abstractions of components corresponding to resource actors as discussed in Section 
3.1 – the components with which the service needs to interact in order to ensure per-
sistent effects.   

Uses-interfaces are specified through what we call layer protocols.  Like business 
protocols, layer protocols are defined by a signature and a set of properties.  However, 
where the interactions used in business protocols are asynchronous, those declared in 
a layer protocol can be synchronous and blocking.  
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As an example, consider the following specification of the layer protocol fulfilled 
by a registry.  It defines that a registry can be queried – through the interaction 
getLenders – about the registered lenders that meet given users preferences, and is 
able to register a new contract through the operation registerContract.  

LAYER PROTOCOL Registry is  

 INTERACTIONS 
   rpl getLenders(prefdata):setids 
   prf registerContract(loandata,loancontract) 
  BEHAVIOUR  

The properties of synchronous interactions are typically in the style of pre/post-
condition specifications of methods.  

5.1.5 Interaction protocols 

A module consists of a number of interfaces connected through wires.  Wires are 
labelled by connectors that coordinate the interactions in which the parties are jointly 
involved.  In SRML, we model the interaction protocols involved in these connectors 
as separate, reusable entities. 

Just like business roles and protocols, an interaction protocol is specified in terms 
of a number of interactions.  Because interaction protocols establish a relationship 
between two parties, the interactions in which they are involved are divided in two 
subsets called roles – A and B.  The semantics of the protocol is provided through a 
collection of sentences – what we call interaction glue – that establish how the inter-
actions are coordinated.  This may include routing events, superposing protocols for 
secure communication, or transforming sent data to the format expected by the re-
ceiver, inter alia.   

As an example, consider the following protocol used in the wire that connects 
MortgageAgent and Insurance: 

INTERACTION PROTOCOL Straight.I(d1,d2)O(d3) is  

 ROLE A 
   s&r S1 

    i1:d1, i2:d2 
     o1:d3 

 ROLE B 
   r&s R1 

    i1:d1, i2:d2 
     o1:d3 

 COORDINATION 
 S1 ≡ R1 
 S1.i1=R1.i1 
 S1.i2=R1.i2 
 S1.o1=R1.o1 

This is a ‘straight’ protocol that connects directly two entities over two conversa-
tional interactions that have two -parameters and one -parameter.  The property 
S1 ≡ R1 establishes that the events associated with each interaction are the same, e.g. 
that S1 is the same as R1. 
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The names used in interaction protocols are generic to facilitate reuse.  In fact, the 
specification itself is parameterised by the data sorts involved in the interactions.  
Parameterisation (which is also available for business roles and protocols) provides 
the means for defining families of specifications.  The parameters are instantiated at 
design time when the specifications are used in the definition of a module.  This can 
be seen in Section 5.1.6. 

Two other families of straight protocols are presented below.  These families de-
fine the connection of two synchronous interactions with two parameters; in the first 
protocol, the interaction involves a return value.  

INTERACTION PROTOCOL Straight.A(d1,d2)R(d3) is  

 ROLE A 
   ask S1(d1,d2):d3 

 ROLE B 
   rpl R1(d1,d2):d3 

 COORDINATION 
 S1(d1,d2)=R1(d1,d2) 
 

INTERACTION PROTOCOL Straight.T(d1,d2) is  

 ROLE A 
   tll S1(d1,d2) 

 ROLE B 
   prf R1(d1,d2) 

 COORDINATION 
 S1(d1,d2)≡R1(d1,d2) 
 

The first interaction protocol establishes that the values returned by the synchro-
nous interaction are the same, while the second protocol synchronises the two oper-
ations without any conversion of data. 

Interaction protocols are first-class objects that can be (re)used to assign properties 
to wires, which reflect constraints on the underlying run-time environment.  These 
may concern data transmission, synchronous/asynchronous connectivity, distribution, 
and other non-functional properties such as security.  In such cases, the specifications 
are not as simple as those of straight protocols.  

5.1.6 Connectors 

After having chosen the protocols that coordinate the interactions between two par-
ties, we use them as the ‘glue’ (in the sense of [48]) of the connectors that label the 
wires that link the corresponding parties.  In a connector, the interaction protocol is 
bound to the parties via ‘attachments’: these are mappings from the roles to the signa-
tures of the parties identifying which interactions of the parties perform which roles in 
the protocol.  The use of attachments allows us to separate the definition of the inter-
action protocols from their use in the wires, which promotes reuse: typically, one 
defines a connector by choosing from a repository of (types of) protocols that have 
proved to be useful in other situations. 

Summarising, connectors are triples <μA,P,μB> where: 
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• P is an interaction protocol.  We use roleAP and roleBP to designate its roles 
and glueP for the role. 

• μA and μB are attachments that connect the roles of the protocol to the signa-
tures of the entities (business roles, business protocols or layer protocols) be-
ing interconnected. 

For instance, both Straight.A(prefdata)R(setids) and Straight.T(loandata, loancon-
tract) are used in the following wire to connect different interactions between Mort-
gageAgent and Registry: 
 

BR 
MortgageAgent  

c4 BE d4 
RE 
Registry 

ask getLenders S1 Straight. 
A(prefdata)R(setids) 

R1 rpl getLenders 

tll regContract 
 

S1 

 

Straight. 
T(loandata,loancontract) 

R1 

 

prf registerContract 

Each row describes one connector.  The first two columns define the attachment be-
tween roleA of the interaction protocol (specified in the middle column) and the sig-
nature of MortgageAgent.  In the same way, the last two columns define the attach-
ment between roleB of the interaction protocol and the signature of Registry. 

We use the same notation for specifying the wires that connect module compo-
nents to requires-interfaces.  However, the specification of these wires is subject to 
an additional correctness condition that restricts the signature of the requires-
interfaces to the interaction used in the corresponding wires.  This is to ensure that all 
the interactions of the services that are bound to the module through the requires-
interface have a corresponding co-party. 

For instance, the only wire that connects LE in GETMORTGAGE is CL (with MA).  
Its specification is as follows: 

 
MA 

MortgageAgent c1 CL d1 
LE 
Lender 

s&r askProposal 
  idData 
  income 
  proposal 
  loanData 
  accountIncluded 
  insuranceRequired 

S1 

i1 
i2 

o1 

o2 

o3 

o4 

Straight. 
I(usrdata, 
moneyvalue) 

O(mortgageproposal, 
loandata, 
bool,bool) 

R1 

i1 
i2 

o1 

o2 

o3 

o4 

r&s requestMortgage 
  idData 
  income 
  proposal 
  loanData 
  accountIncluded 
  insuranceRequired 

r&s signOutLoan 
  insuranceData 
   accountData 
  contract 

S1 

i1 
i2 

o1 

Straight 
I(insurancedata, 

accountdata) 
O(loancontract) 

R1 

i1 
i2 

o1 

s&r requestSignOut 
  insuranceData 
  accountData 
  contract 

The correctness condition is satisfied because the signature of Lender is isomor-
phic to the sum of the interactions of the roles connected to it, i.e. all the interactions 
of Lender are mapped to a port.   

The specification of the wires that connect module components to the provides-
interface of the module uses a slightly different syntax.  This is because what we need 
to declare is the set of interactions that the components make available to the cus-
tomer of the service, and the protocols through which the corresponding events are 
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transmitted.  In this sense, we do not model the customer proper, which in SRML is 
reflected by omitting the corresponding column of the table that defines the wire. 

For instance, the wire SW that interconnects Customer and MortgageAgent in 
GETMORTGAGE module is specified as follows: 

c1 CB d1 
MA 
MortgageAgent 

S1 

i1 
i2 

i3 

o1 

o2 

Straight. 
I(usrdata, 

moneyvalue,prefdata) 
O(mortageproposal, 

moneyvalue) 

R1 

i1 
i2 

i3 

o1 

o2 

r&s getProposal 
  idData 
  income 
  preferences 
  proposal 
  cost 

R1 

i1 
Straight. 

O(loancontract) 

S1 

i1 
snd confirmation 
  contract 

In this case, each row also describes one connector, whose interaction protocol is 
specified in the second column. The difference is that the entities that will be con-
nected to the roleAs of their interaction protocols are unknown (these will belong to 
the services that will bind to GETMORTGAGE).  As before, the last two columns define 
the attachment between roleB of the interaction protocol and the signature of Mort-
gageAgent. 

5.2 Configuration policies 

Whereas business roles, business protocols, layer protocols and interaction protocols 
deal with functional aspects of the behaviour of a (complex) service or activity, con-
figuration policies address aspects that relate to processes of discovery, selection and 
instantiation of services.  In SRML, we distinguish between internal and external 
configuration policies.  The former concern aspects related with service instantiation 
such as the initialization of service components and the triggering of the discovery of 
required services.  The latter address aspects related with the selection of partner 
services and negotiation of contracts. 

5.2.1 Internal configuration policy 

The internal configuration policy of a service module concerns the triggering of the 
discovery and selection process associated with its requires-interfaces, and the instan-
tiation of its component and wire interfaces.  

A trigger is usually associated with the occurrence of one or more events and addi-
tional conditions on the state of the components in which the events occur.  For in-
stance, GETMORTGAGE defines that the lender has to be discovered as soon as getPro-
posal is executed (by the workflow).  There is a default trigger condition: the publi-
cation of the initiation event of the first interaction connected to the requires-interface.  
In our example, this is the case of the bank and insurance external services. 
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 LE: Lender 
   intLE trigger: getproposal? 
 BA: Bank 

    intBA trigger: default 
 IN: Insurance 

    intIN trigger: default 

In a module, each service component has an associated initialisation condition, 
which is guaranteed to hold when the component is instantiated, and a termination 
condition, which determines when the component stops executing and interacting 
with the rest of the components (in which case it can be removed from the state con-
figuration to which it belong).  Typically, both conditions relate to the state variables 
of the component, but they can also include the publication of given events.  For in-
stance, in the case of MortgageAgent, these conditions are defined only in terms of 
the local variable s: 

 MA: MortgageAgent 
   intMA init: s=INITIAL  
   intMA term: s=FINAL 

Notice that these conditions can be more underspecified, leaving room for further 
refinement.  For instance, we may force the termination of the component after a 
certain date without specifying exactly when. 

5.2.2 External policies 

The external policy concerns the way the module relates to external parties: it declares 
the set of variables that can be used for negotiation and establishing service level 
agreement (SLA), and a set of constraints that have to be taken into account during 
discovery and selection.  

SLA variables include all the configuration variables declared in the specifications 
(except in the provides-interface).  For instance, in GETMORTGAGE, MortgageAgent 
declares the configuration variable CHARGE.  These variables are local to the inter-
faces to which they are attached and instantiated when the corresponding component 
is created.  Because constraints apply to the module as a whole, we refer to these 
variables by preceding them with the name of the entity to which they belong.  Hence, 
in GETMORTGAGE, we refer to MA.CHARGE.  

SRML also provides a set of standard configuration variables – availability, re-
sponse time, message reliability, service identification, inter alia.  Some of them, e.g. 
response time, are associated with requires or provides-interfaces, and other, e.g. 
message reliability, apply to the wires.   

The standard configuration variables used in GETMORTGAGE are: 
• interaction, for every interaction of type r&s; its value is the length of 

time the reply is valid after interaction is issued. 
• wire.Delay, for every wire; it defines the maximum delivery delay for events 

sent over that wire.  
• ServiceId, for every external-interface; it represents the identification of the 

service that is bound to that interface (for instance, a URI).   
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Notice that although these variables are standard they need to be declared in a mod-
ule if the designer wants them to be involved in the service discovery negotiation 
process.  For instance, in GETMORTGAGE we have: 

 SLA VARIABLES   
 MA.CHARGE, MA.getProposal, 
 LE.ServiceId, LE.COST, LE.requestMortgage 

The approach that we adopt in SRML for SLA negotiation is based on the con-
straint satisfaction and optimization framework presented in [8] in which constraint 
systems are defined in terms of c-semirings.  As explained therein, this framework is 
quite general and allows us to work with constraints of different kinds – both hard and 
‘soft’, the latter in many grades (fuzzy, weighted, and so on).  The c-semiring ap-
proach also supports selection based on a characterisation of ‘best solution’ supported 
by multi-dimensional criteria, e.g. minimizing the cost of a resource while maximiz-
ing the work it supports.  

In this framework: 
• A c-semiring is a semiring 〈A,+,×,0,1〉 in which A represents a space of de-

grees of satisfaction, e.g. the set {0,1} for yes/no or the interval [0,1] for 
intermediate degrees of satisfaction.  The operations × and + are used for 
composition and choice, respectively.  Composition is commutative, choice 
is idempotent and 1 is an absorbing element (i.e. there is no better choice 
than 1).  That is, a c-semiring is an algebra of degrees of satisfaction.  Notice 
that every c-semiring S induces a partial order ≤S (of satisfaction) over A as 
follows: a≤ Sb iff a+b=b.  That is, b is better than a iff the choice between a 
and b is b. 

• A constraint system is a triple 〈S,D,V〉 where S is a c-semiring, V is a totally 
ordered set (of configuration variables), and D is a finite set (domain of pos-
sible elements taken by the variables).   

• A constraint consists of a selected subset con of variables and a mapping 
def:D|con|→S that assigns a degree of satisfaction to each tuple of values taken 
by the variables involved in the constraint. 

The external configuration policy of a module involves a constraint system based 
on a fixed c-semiring and a set of constraints over this constraint system. Because we 
want to handle constraints that involve different degrees of satisfaction, it makes 
sense that we work with the c-semiring <[0..1],max,min,0,1> of soft fuzzy con-
straints [8].  In this c-semiring, the preference level is between 0 (worst) and 1 (best).   

For instance, the external configuration policy of GETMORTGAGE includes the fol-
lowing constraints: 

C1: {MA.CHARGE,MA.getProposal},  

def(c,t)= 

  

€ 

1 if t ≤ 10 ∗c

1 + 2 ∗ c − 0.2 ∗ t   if  10 ∗ c < t ≤ 5 + 10 ∗ c 

0  otherwise
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That is, the more CHARGE is applied to the base price of the brokerage service 
the longer is the interval during which the proposal is valid.   

C2: {LE.ServiceId}, def(s)= 
  

€ 

1  if  s ∈ BR .lenders

0  otherwise

 
 
 

 

That is, the choice of the lender is constrained by the service identifier, which 
must belong to the set MA.lenders (recall that, according to the orchestration 
of MortgageAgent, this set contains the identification of the services provided 
by trusted lenders that were found to be appropriate for the request at hand). 

C3: {MA.getProposal,LE.requestMortgage},  

def(t1,t2)= 
  

€ 

1  if  t2 > t1+ CC.Delay + CL.Delay

0  otherwise

 
 
 

 

That is, the choice of the lender is also constrained by the period of validity as-
sociated with its loan proposals.  This period must be greater than the sum of 
the validity period offered by the brokerage service to its clients and the pos-
sible delays that may affect the transmission through the wires involved (no-
tice that CC.Delay and CL.Delay are not declared as SLA variables and, 
hence, they are used like constants). 

C4: {LE.COST,LE.requestMortgage}, def(c,t)= 

  

€ 

1

c
+

t

100
 if  c < 500  

0  otherwise

 
 
 

  
 

That is, the cost to be paid by the brokerage service to the lender must be less 
than 500, and the preference between lenders charging the same value will 
take into account the validity period of the loan proposals. 

The value of SLA variables is negotiated during the service discovery/binding.  
Details on negotiation of constraints and SLAs are further discussed in Section 6.3. 

5.3 Module declaration 

SRML makes available a textual language for defining modules, which involves the 
specification of the module external interfaces, service components, wires and poli-
cies, as discussed in the previous sections.  The full definition of GETMORTGAGE can 
be seen in Appendix B. 

In the case of a service module, we also have to map the interactions and SLA 
variables of the provides-interface to corresponding interactions and variables of the 
entities that provide the service.  This is because the business protocol that labels the 
provides-interface represents the service that is offered by the module (behavioural 
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properties and negotiable SLA variables), not the activity to which the service will be 
bound.  

In the case of GETMORTGAGE, only MA is connected to CR, so the mapping is ac-
tually an identity.  This is specified as follows: 

PROVIDES 

 CR: Customer 
CR 
Customer 

MA 
MortgageAgent 

r&s getProposal 
  idData 
  income 
  preferences 
  proposal 
  cost 

r&s getProposal 
  idData 
  income 
  preferences 
  proposal 
  cost 

snd confirmation 
  contract 

snd confirmation 
  contract 

 SLA VARIABLES 
 CHARGE 

 SLA VARIABLES 
 CHARGE 

 

6 The Configuration-Management Model 

6.1 Layered state configurations of global computers 

As already mentioned, we take SOC to be about applications that can bind to other 
applications discovered at run time in a universe of resources that is not fixed a priori.  
As a result, there is no structure or ‘architecture’ that one can fix at design-time for an 
application; rather, there is an underlying notion of configuration of a global computer 
that keeps being redefined as applications execute and get bound to other applications 
that offer required services.  As is often the case (e.g. [48]), by ‘configuration’ we 
mean a graph of components (applications deployed over a given execution platform) 
linked through wires (e.g. interconnections between components over a given com-
munication network) in a given state of execution.  Typically, wires deal with the 
heterogeneity of partners involved in the provision of the service, performing data (or, 
more, generally, semantic) integration.  See Figure 10 for an example, over which we 
will later recognise three business activities (instances). 

Summarising, a state configuration F is defined to consist of: 
• A simple graph G, i.e. a set nodes(F) and a set edges(F); each edge e is asso-

ciated with a (unordered) pair n↔m of nodes.  We take nodes(F)⊆COMP (i.e. 
nodes are components) and edges(F)⊆WIRE (i.e. edges are wires).  

• A (configuration) state S  as defined in 4.3.  
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Figure 10: The graph of a state configuration with 11 components and 10 wires 

Every state configuration <G,S > can change because either the state S or the 
graph G changes.  Changes to the state result from computations executed by compo-
nents and the coordination activities performed by the wires that connect them as 
defined in 4.3.  However, the essence of SOC, as we see it in this paper, is not cap-
tured at the level of state changes (which is basically a distributed view of computa-
tion), but at the level of the changes that operate on configuration graphs: in SOC, 
changes to the underlying graph of components and wires occur at run time when a 
component performs an action that triggers the discovery and binding of a service. 

An important aspect of our model is the fact that we view SOC as providing an ar-
chitectural layer that interacts with two other layers (see Figure 11).  This can be 
noticed in Figure 10 where shadows are used for indicating that certain components 
reside in different layers: AliceRegUI, BobEstateUI and CarolEstateUI (three user 
interfaces) in the top layer, and MyRegistry (a database) in the bottom layer.  Layers 
are architectural abstractions that reflect different levels of organisation and change, 
i.e. one looks at a configuration as a (flat) graph as indicated above but, in order to 
understand how such configurations evolve, it is useful to distinguish different layers. 

In our model, the bottom layer consists of components that are persistent as far as 
the service layer is concerned, i.e. those that in Section 3 we identified as resource-
actors.  More precisely, when a new session of a service starts (e.g. a mortgage broker 
starts putting together a proposal on behalf of a client), the components of the bottom 
layer are assumed to be available so that, as the service executes, they can be used as 
(shared) ‘servers’ – for instance the registry, which shared by all sessions of the mort-
gage broker, or a currency converter.  In particular, the bottom layer can be used for 
making persistent the effects of services as they execute.   
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Figure 11: A 3-layered architecture for configurations 

The components that execute in the service layer are created when the session of 
the corresponding service starts, i.e. as fresh instances that last only for the duration of 
the session – for instance, the workflow that orchestrates the mortgage-brokerage 
service for a particular client.  In component-based development (CBD) one often 
says that the bottom layer provides ‘services’ to the layer above.  As we see it in this 
paper, an important difference between CBD and SOC is precisely in the way such 
services are procured, which in the case of SOC involves identifying (possibly new) 
providers and negotiating terms and conditions for each new instance of the activity, 
e.g. for each new user of a travel agent.  SOA middleware supports this service layer 
by providing the infrastructure for the discovery and negotiation processes to be exe-
cuted without having to be explicitly programmed as (part of) components. 

The top layer is the one responsible for launching business activities in the service 
layer.  The user of a given activity – identified through a user-actor as discussed in 
Section 3 – resides in the top layer; it can be an interface for human-computer interac-
tion, a software component, or an external system (e.g. a control device equipped with 
sensors).  When the user launches an activity, a component is created in the service 
layer that starts executing a workflow that may involve the orchestration of services 
that will be discovered and bound to the workflow at run time.  

6.2 Business activities and configurations 

In our model, state configurations change as a result of the execution of business 
processes.  More precisely, changes to the configuration graph result from the fact 
that the discovery of a service is triggered and, as a consequence, new components are 
added and bound to existing ones (and, possibly, other components and wires disap-
pear because they finished executing their computations).  The information about the 
triggers and the constraints that apply to service discovery and binding are not coded 
in the components themselves: they are properties of the ‘business activities’ that are 
active and determine how the configuration evolves.  Thus, in order to capture the 
dynamic aspects of SOC, we need to look beyond the information available in a state. 
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In our approach, we achieve this by making configurations ‘business reflective’, 
i.e. by labelling the sub-configurations that correspond to instances of business activi-
ties by the corresponding activity module. 

 
Figure 12: The sub-configurations corresponding to an instance of UPDATEREGISTRY 

For instance, we should be able to recognise an activity in Figure 10 whose sub-
configuration is as depicted in Figure 12.  Intuitively, it corresponds to an instance of 
UPDATEREGISTRY.  In order to formalise this notion of typed subconfiguration, we 
start by providing a formal definition of activity modules.  We denote by BROL the 
set of business roles (see 5.1.2), by BUSP the set of business protocols (see 5.1.3), by 
LAYP the set of layer protocols (see 5.1.4), and by CNCT the set of connectors (see 
5.1.6). 

An activity module M consist of:  
• A graph graph(M). 
• A distinguished subset of nodes requires(M)⊆nodes(M).  
• A distinguished subset of nodes uses(M)⊆nodes(M).  
• A node serves(M)∈ nodes(M) distinct from requires(M) and uses(M). 
• A labelling function labelM such that  

o labelM(n)∈BROL if n∈components(M), where by components(M) we de-
note the set of nodes(M) that are not serves(M) nor in requires(M) or 
uses(M). 

o labelM(n)∈BUSP if n∈requires(M)  
o labelM(n)∈LAYP if n∈serves(M)∪uses(M) 
o labelM(e:n↔m)∈CNCT.   

• An internal configuration policy. 
• An external configuration policy). 

We denote by body(M) the (full) sub-graph of graph(M) that forgets the nodes in 
requires(M) and the edges that connect them to the rest of the graph. 

We can now formalise the typing of state configurations with activity modules that 
we discussed around Figure 12, which accounts for the coarser business dimension 
that is overlaid by services on global computers.  That is, we define what corresponds 
to a state configuration of a service overlay computer, which we call a business con-
figuration.  We consider a space A of business activities to be given, which can be 
seen to consist of reference numbers (or some other kind of identifier) such as the 
ones that organisations automatically assign when a service request arrives. 
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A business configuration consists of:  
• A state configuration F. 
• A partial mapping B that assigns an activity module B(a) to each activity 

a∈A – the workflow being executed by a in SF.  We say that the activities in 
the domain of this mapping are those that are active in that state. 

• A mapping C that assigns an homomorphism C(a) of graphs body(B(a))→F 
to every activity a∈A that is active in F.  We denote by F(a) the image of 
C(a) – the sub-configuration of F that corresponds to the activity a. 

A homomorphism of graphs is just a mapping of nodes to nodes and edges to edges 
that preserves the end-points of the edges.   Therefore, the homomorphism C of a 
business configuration <F, B, C > types the nodes (components) of F(a) with busi-
ness roles or layer protocols – i.e. C(a)(n):labelB(a)(n) for every node n – and the 
edges (wires) with connectors – i.e. C(a)(e): labelB(a)(e) for every edge e of the body 
of the activity.  In other words, the homomorphism binds the components and wires 
of the state configuration to the business elements (interfaces labelled with business 
roles, layer protocols and connectors) that they fulfil in the activity.  

In the example discussed above, we have activity – that we call Alice – such that 
B(Alice) is UPDATEREGISTRY (as in Figure 3), F(Alice) is the sub-configuration in 
Figure 12, and C maps RM to AliceRegUI, MC to AliceManag, RE to MyRegistry, MR 
to AMR, and RM to ARM. 

The fact that the homomorphism is defined over the body of the activity module 
means that business protocols are not used for typing components of the state configu-
ration.  Indeed, as discussed above, the purpose of the requires-interfaces is for identi-
fying dependencies that the activity has, in that state, on external services.   In particu-
lar, this makes requires-interfaces different from uses-interfaces as the latter are in-
deed mapped through the homomorphism to a component of the state configuration.  

In a sense, the homomorphism makes state configurations reflective in the sense of 
[22] as it adds meta (business) information to the state configuration.  This informa-
tion is used for deciding how the configuration will evolve (namely, how it will react 
to events that trigger the discovery process).  Indeed, reflection has been advocated as 
a means of making systems adaptable through reconfiguration, which is similar to the 
mechanisms through which activities evolve in our model.  

6.3 Run-time discovery and binding 

In order to illustrate how a business configuration evolves through service discov-
ery and binding, we are going to consider another business activity type that supports 
the purchase of a house.  The corresponding module is depicted in Figure 13.  
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Figure 13: The HOUSEBUYING activity module 

That is, the orchestration of the purchase of a house is performed by a component 
EA of type (business role) EstateAgent, which may need to discover and bind to a 
mortgage dealer MO and a lawyer LA.  Consider the configuration depicted in Figure 
14, and the business configuration that consists of Alice (as defined in Section 6.2) 
and of the activity Bob typed HOUSEBUYING mapped to the configuration by the 
homomorphism that associates GH with BobEstateUI, EA with BobEstateAG and HE 
with BEA.   

 
Figure 14: A configuration 

Assume that, in the current state, intMO trigger holds, i.e. that the execution of the 
workflow associated with EA requires the discovery of a mortgage dealer.  Let us 
consider what is necessary for GETMORTGAGE to be selected and bound to HOUSEBUY-
ING as a result of the trigger (see Figure 15). 
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Figure 15: The elements involved in unification 

In our setting, this process involves three steps, outlined as follows:  
• Discovery.  For GETMORTGAGE to be discovered, it is necessary that the prop-

erties of its provides-interface Customer entail the properties of the requires-
interface Mortgage, and that the properties of the interaction protocol of CC 
entail those of EM.  

• Ranking.  If it is discovered, GETMORTGAGE is ranked among all services that 
are discovered by calculating the most favourable service-level agreement that 
can be achieved – the contract that will be established between the two parties 
if GETMORTGAGE is selected.  This calculation uses a notion of satisfaction that 
takes into account the preferences of the activity HOUSEBUYING and the service 
GETMORTGAGE.  

• Selection.  Finally, GETMORTGAGE can be selected if it is one of the services 
that maximises the level of satisfaction offered by the corresponding contract. 

These steps are formalised in [27].  If GETMORTGAGE is selected then it is unified 
with HOUSEBUYING, giving rise to another activity module.  As depicted in Figure 16, 
the resulting activity module is obtained by replacing the requires-interface and cor-
responding wire of HOUSEBUYING by those that connect the provides-interface of 
GETMORTGAGE to its body.   

At the level of the configuration, we add the new instances of the components of 
GETMORTGAGE and corresponding wires, making sure that instances of the uses-
interfaces are components of the bottom layer (already present in the configuration).  
This can be witnessed in Figure 17 where the instance of RE is the component 
MyRegistry, which is shared with other activities.  Notice that the type of the activity 
Bob is now the activity module in Figure 17, and that the homomorphism now maps 
MA to BobMortBR, RE to MyRegistry, EM to BAM and BE to BCR.  It is in this sense 
that the activity is reconfigured as new services are discovered and bound to its re-
quires-interfaces.  See [27] for a full formalisation of this process of reconfiguration. 
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Figure 16: The result of the unification 

 
Figure 17: The result of the binding 

7 Related Approaches 

One of the main aspects that distinguishes the approach that we proposed from other 
work on Web Services (e.g. [5]) and SOC in general (e.g. [55]) is that we address not 
the middleware architectural layers (or low-level design issues in general), but what 
we call the ‘business level’.  For instance, the main concern of the Service Compo-
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nent Architecture (SCA) [55], from which we have borrowed concepts and notations, 
is to provide an open specification “allowing multiple vendors to implement support 
for SCA in their development tools and runtimes”.  This is why SCA offers a 
middleware-independent layer for service composition and specific support for a 
variety of component implementation and interface types (e.g. BPEL processes with 
WSDL interfaces, or Java classes with corresponding interfaces).  Our work explores 
a complementary direction: our research aims for a modelling framework supported 
by a mathematical semantics in which business activities and services can be defined 
in a way that is independent of the languages and technologies used for programming 
and deploying the components that will execute them.  The fact that the modelling 
framework is equipped with a formal semantics makes it possible to support the an-
alysis of services, service compositions and activities, a direction that we are pursuing 
through the use of model-checking [4].   

Another architectural approach to SOC has been designed [50] that follows SCA 
very closely.  However, its purpose is to offer a meta-model that covers service-
oriented modelling aspects such as interfaces, wires, processes and data.  Therefore, 
as in SCA, interfaces are syntactic and bindings are established at design time, 
whereas our interfaces are behavioural and binding occurs at run time.  Other ap-
proaches to service modelling have considered richer interfaces that encompass busi-
ness protocols, e.g. [7,13,23,45,46], but not the dynamic aspects – discovery and 
binding – offered by SRML as illustrated in this paper. 

Indeed, a characteristic that distinguishes our approach from other formal models 
of services such as [17] is the fact that we address the dynamic aspects of SOC, 
namely run-time discovery and binding.  Formalisms for modelling (web) services 
tend not to address these.  For example, in BPEL, service compositions are created 
statically and are governed by a centralised engine. This also holds for approaches 
that focus on choreography (e.g. [20, 45]), where it is possible to calculate which are 
the partners that can properly interact with a service but the actual discovery and 
binding processes are not considered.  Exceptions can be found among some of the 
process calculi that have been developed for capturing semantic foundations of SOC 
(e.g. [14,19,34]).  However, such process calculi tend not to address dynamic recon-
figuration separately from computation, i.e. the process of discovery and binding is 
handled as part of the computation performed by a service.  As far as we know, 
SRML is the first service-modelling language to separate these two concerns.   

Indeed, in our opinion, what makes SOC different from other paradigms is the fact 
that it concerns run-time, not design-time complexity.  This is also the view exposed 
in [24] – a very clear account of what distinguishes SOC from CBD (Component 
Based Development).  For instance, starting from a universe of (software) compo-
nents as “structural entities”, [17] views a service as a way of orchestrating interac-
tions among a subset of components in order to obtain some required functionality – 
“services coordinate the interplay of components to accomplish specific tasks”.  
Whereas in CBD component selection is either performed at design time or pro-
grammed over a fixed universe of components, SOC provides a means of obtaining 
functionalities by orchestrating interactions among components that are procured at 
run time according to given (functional) types and service level constraints.  
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Another area related to the work that we have presented concerns the non-
functional aspects of services, namely the policies and constraints for service level 
agreement that have to be taken into account in the composition of services.  Most of 
the research developed in this area has been devoted to languages for modelling spe-
cific kind of policies (over specific non-functional features) and of selection algor-
ithms, e.g. SCA Policy [55] and several others [36,37,38,53,54].  These languages 
have been primarily designed to be part of the technology available for implementing 
and executing services.  As such, they are tailored to the technological infrastructure 
that is currently enabling web services and are not appropriate for being used at high-
levels of business modelling.  

8 Concluding Remarks and Further Work 

We presented a formal approach for modelling service-oriented application.  This is 
part of an on-going effort that we are pursuing within the SENSORIA project towards 
a methodological and mathematical characterisation of the service-oriented comput-
ing paradigm [47].   

The approach is built around a prototype language called SRML – the SENSORIA 
Modelling Reference Language – and offers an engineering environment that includes 
abstraction mappings from workflow languages (such as BPEL [12]) and policy lan-
guages (such as StPowla [11]), and model-checking techniques that support qualita-
tive analysis [4].  A mathematical semantics is available for all aspects of the ap-
proach as partially illustrated in the paper (see [1,3,25,26,27,28] for a more compre-
hensive account).  

The overall methodology that we have in mind for developing software for global 
computers was also discussed and illustrated through a fragment of the financial case 
study being investigated in SENSORIA, namely the aspects that relate to a mortgage 
brokering service and registry activity.  A novel aspect of SRML is the separation that 
it provides for services in the sense of component-based development (CBD) and 
service-oriented computing (SOC).  This separation is reflected in the use of different 
kinds of actors in the proposed extension of use-case diagrams and different model-
ling primitives in SRML [10].  SENSORIA is also producing a more global approach 
to modelling service orchestrations in UML2 – called UML4SOA – and utilising 
these models for code generation (including BPEL code) [35,52]. 
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Appendix A – The Iconography 

icon represents type sections 

 

component interface 
(instantiated when a new 
session starts; the lifetime 
is that of the session) 

business role 
(orchestration of inter-
actions) 

 

 

requires-interface 
(bound during service 
execution after discovery) 

business protocol 
(properties required of 
external services) 

 

 

provides-interface 
(bound when a new ses-
sion starts) 

business protocol 
(properties offered by 
the service) 

 

 

uses/serves-interface 
(bound to a component in 
the bottom/top layer when 
a new session starts) 

layer protocol (proper-
ties assumed of the 
components in the 
bottom or top layer) 

 

 

wire interface 
(instantiated together with 
the second party) 

connector (interaction 
protocol and attach-
ments) 

 

 

external configuration 
policy 

constraint system  

 
internal configuration 
policy 

state conditions  
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Appendix B – The Example 

 

MODULE GETMORTGAGE is  

DATATYPES 

sorts:  usrdata, prefdata, 
   moneyvalue, mortgageproposal, 
   loandata, loancontract, 
   insurancedata, accountdata, 
   setids, bool, nat 

PROVIDES 

 CR: Customer 
CR 
Customer 

MA 
MortgageAgent 

r&s getProposal 
  idData 
  income 
  preferences 
  proposal 
  cost 

r&s getProposal 
  idData 
  income 
  preferences 
  proposal 
  cost 

snd confirmation 
  contract 

snd confirmation 
  contract 

 SLA VARIABLES 
 CHARGE 

 SLA VARIABLES 
 CHARGE 

REQUIRES 

 LE: Lender 
   intLE trigger: getproposal? 
 BA: Bank 

    intBA trigger: default 
 IN: Insurance 

    intIN trigger: default 
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COMPONENTS 

 MA: MortgageAgent 
   intMA init: s=INITIAL  
   intMA term: s=FINAL 

USES 

 RE: Registry   

EXTERNAL POLICY  

  SLA VARIABLES   
 MA.CHARGE, MA.getProposal, 
 LE.ServiceId, LE.COST, LE.requestMortgage 

 CONSTRAINTS 

  C1:  {MA.CHARGE,MA.getProposal} 

    def(c,t)= 

  

€ 

1 if t ≤ 10 ∗c

1 + 2 ∗ c − 0.2 ∗ t   if  10 ∗ c < t ≤ 5 + 10 ∗ c 

0  otherwise

 

 
 

  
  

  C2:  {LE.COST,LE.requestMortgage}  

    def(c,t)= 

  

€ 

1

c
+

t

100
 if  c < 500  

0  otherwise

 
 
 

  
 

  C3:  {LE.ServiceId} 

    def(s)= 

  

€ 

1  if  s ∈ WF .lenders

0  otherwise

 
 
 

 

  C4: {MA.getProposal,LE.requestMortgage},  

def(t1,t2)= 
  

€ 

1  if  t2 > t1+ CC.Delay + CL.Delay

0  otherwise

 
 
 

 

WIRES 

 
MA 

MortgageAgent  
c4 BE d4 

RE 
Registry 

ask getLenders S1 Straight. 
A(prefdata)R(setids) 

R1 rpl getLenders 

tll regContract 
 

S1 

 

Straight. 
T(loandata,loancontract) 

R1 

 

prf registerContract 

 
MA 

MortgageAgent c1 CB d1 
BA 
Bank 

s&r openAccount 
  idData 
  loanData 
  accountData 

S1 

i1 
i2 

o1 

Straight. 
I(usrdata, 
loandata) 

O(accountdata) 

R1 

i1 
i2 

o1 

r&s newMortgageAccount 
  idData 
  loanData 
  accountData 

 



– 47 – 

MA 
MortgageAgent 

c1 CI d1 
IN 
Insurance 

s&r getInsurance 
  idData 
  loanData 
  insuranceData 

S1 

i1 
i2 

o1 

Straight. 
I(usrdata, 
loandata) 

O(insurancedata) 

R1 

i1 
i2 

o1 

r&s newMortgageInsurance 
  idData 
  loanData 
  insuranceData 

 
MA 

MortgageAgent 
c1 CL d1 

LE 
Lender 

s&r askProposal 
  idData 
  income 
  proposal 
  loanData 
  accountIncluded 
  insuranceRequired 

S1 

i1 
i2 

o1 

o2 

o3 

o4 

Straight. 
I(usrdata, 
moneyvalue) 

O(mortgageproposal, 
loandata, 
bool,bool) 

R1 

i1 
i2 

o1 

o2 

o3 

o4 

r&s requestMortgage 
  idData 
  income 
  proposal 
  loanData 
  accountIncluded 
  insuranceRequired 

r&s signOutLoan 
  insuranceData 
   accountData 
  contract 

S1 

i1 
i2 

o1 

Straight 
I(insurancedata, 

accountdata) 
O(loancontract) 

R1 

i1 
i2 

o1 

s&r requestSignOut 
  insuranceData 
  accountData 
  contract 

 
c1 CB d1 

MA 
MortgageAgent 

S1 

i1 
i2 

i3 

o1 

o2 

Straight. 
I(usrdata, 

moneyvalue,prefdata) 
O(mortageproposal, 

moneyvalue) 

R1 

i1 
i2 

i3 

o1 

o2 

r&s getProposal 
  idData 
  income 
  preferences 
  proposal 
  cost 

R1 

i1 
Straight 

O(loancontract) 

S1 

i1 
snd confir-
mation 
  contract 

 
 

END MODULE 
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SPECIFICATIONS 

LAYER PROTOCOL Registry is  

 INTERACTIONS 
   rpl getLenders(prefdata):setids 
   prf registerContract(loandata,loancontract) 
  BEHAVIOUR 

BUSINESS ROLE MortgageAgent is  

INTERACTIONS 
 r&s getProposal 
    idData:usrdata, 
   income:moneyvalue, 
   preferences:prefdata, 
   proposal:mortgageproposal 
   cost:moneyvalue 

  s&r askProposal 
     idData:usrdata, 

   income:moneyvalue, 
    proposal:mortgageproposal 
    loanData:loandata, 
    accountIncluded:bool, 
    insuranceRequired:bool 
  s&r getInsurance 
     idData:usrdata, 
    loanData:loandata, 
    insuranceData:insurancedata 
  s&r openAccount 
     idData:usrdata, 
    loanData:loandata, 
    accountData:accountdata 
  s&r signOutLoan 
     insuranceData:insurancedata, 
    accountData:accountdata, 
    contract:loancontract 
  snd confirmation 

    contract:loancontract  
   ask getLenders(prefdata):setids 
   tll regContract(loandata,loancontract) 

 SLA VARIABLES 
  CHARGE:[0..100] 

 ORCHESTRATION 

local  s:[INITIAL, WAIT_PROPOSAL, WAIT_DECISION, 
      PROPOSAL_ACCEPTED, SIGNING, FINAL],  
   lenders:setids, 
   needAccount, needInsurance:bool, 
   insuranceData:insurancedata, accountData:accountdata 
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transition GetClientRequest 
triggeredBy getProposal 
guardedBy s=INITIAL 
effects s’=WAIT_PROPOSAL 
 ∧ lenders’= getLenders(prefdata) 
sends askProposal   
 ∧ askProposal.idData=getProposal.idData 
 ∧ askProposal.income=getProposal.income 

  transition GetProposal 
triggeredBy askProposal 
guardedBy s=WAIT_PROPOSAL 
effects needAccount’=askProposal.accountIncluded  
 ∧ needInsurance’=askProposal.insuranceRequired 
 ∧ askProposal.Reply ⊃ s’=WAIT_DECISION 
 ∧ ¬askProposal.Reply ⊃ s’=FINAL 
sends getProposal  
 ∧ getProposal.Reply=askProposal.Reply 
 ∧ getProposal.proposal=askProposal.proposal  
 ∧ getProposal.cost=(CHARGE/100+1)*750 

  transition TimeoutProposal 
triggeredBy now>getProposal.UseBy 
guardedBy s=WAIT_DECISION 
effects s’=FINAL 
sends askProposal 

   transition ProposalNotAccepted 
triggeredBy getProposal 
guardedBy s=WAIT_DECISION  
 ∧ now<askProposal.UseBy 
effects s’=FINAL 
sends askProposal    

   transition ProposalAccepted 
triggeredBy getProposal 
guardedBy s=WAIT_DECISION  
 ∧ now<deadline 
effects needAccount ∨ needInsurance ⊃ s’=PROPOSAL_ACCEPTED 
 ∧ ¬needAccount ∧ ¬needInsurance ⊃ s’=SIGNING 
sends askProposal 
 ∧ needAccount ⊃ openAccount 
   ∧ openAccount.idData=getProposal.idData 
   ∧ openAccount.loanData=getProposal.loanData 
 ∧ needInsurance ⊃ getInsurance 
   ∧ getInsurance.idData=getProposal.idData 
   ∧ getInsurance.loanData=getProposal.loanData 
 ∧ ¬needAccount ∧ ¬needInsurance ⊃ signOutLoan   
   ∧ signOutLoan.insuranceData=insuranceData 
   ∧ signOutLoan.accountData=accountData 
 

   transition GetAccount 
triggeredBy openAccount 
guardedBy s=PROPOSAL_ACCEPTED  
effects needAccount’=false  
 ∧ ¬needInsurance ⊃ s’=SIGNINING 
 ∧ accountData=openAccount.accountData 
sends ¬needInsurance ⊃ signOutLoan   
   ∧ signOutLoan.insuranceData=insuranceData 
   ∧ signOutLoan.accountData=accountData 
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   transition GetInsurance 
triggeredBy getInsurance 
guardedBy s=PROPOSAL_ACCEPTED  
effects needInsurance’=false  
 ∧ ¬needAccount ⊃ s’=SIGNING 
 ∧ insuranceData=getInsurance.insuranceData 
sends ¬needAccount ⊃ signOutLoan   
   ∧ signOutLoan.insuranceData=insuranceData 
   ∧ signOutLoan.accountData=accountData 

   transition Conclude 
triggeredBy signOutLoan 
guardedBy s=SIGNING 
effects s’=FINAL  
sends confirmation   
 ∧ confirmation.contract=signOutLoan.contract 
 ∧ regContract(askProposal.loanData,signOutLoan.contract) 

BUSINESS PROTOCOL Lender is  

 INTERACTIONS 
  r&s requestMortgage 
     idData:usrdata, 

   income:moneyvalue, 
    proposal:mortgageproposal 
    loanData:loandata, 
    accountIncluded:bool, 
    insuranceRequired:bool 
  r&s requestSignOut 
     insuranceData:insurancedata, 
    accountData:accountdata, 
    contract:loancontract 
 BEHAVIOUR  
  initiallyEnabled requestMortgage?   

   requestMortgage? enables requestSignOut? 
   requestSignOut.Reply after requestSignOut?  

BUSINESS PROTOCOL Bank is 

 INTERACTIONS 
  r&s newMortgageAccount 
    idData:usrdata, 
   loanData:loandata, 
   accountData:accountdata 

  BEHAVIOUR   
   initiallyEnabled newMortgageAccount?  
   newMortgageAccount.Reply after newMortgageAccount! 
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BUSINESS PROTOCOL Insurance is 

 INTERACTIONS 
  r&s newMortgageInsurance 
    idData:usrdata, 
   loanData:loandata, 
   insuranceData:insurancedata 

  BEHAVIOUR   
   initiallyEnabled newMortgageInsurance?  
   newMortgageInsurance.Reply after newMortgageInsurance! 

BUSINESS PROTOCOL Customer is  

 INTERACTIONS 
 r&s getProposal 
    idData:usrdata, 
   income:moneyvalue, 
   preferences:prefdata, 
   proposal:mortgageproposal 
   cost:moneyvalue 

  snd confirmation 
      contract:loancontract  
  SLA VARIABLES 
   CHARGE:[0..100] 
  BEHAVIOUR  
   initiallyEnabled getProposal?  
   getProposal.cost≤750*(CHARGE/100+1) after getProposal! 
   getProposal? ensures confirmation! 
 

END SPECIFICATIONS 

 


