
– 1 –

A Formal Approach to Service-Oriented Modelling†

José Luiz Fiadeiro1, Antónia Lopes2, Laura Bocchi1 and João Abreu1

1 Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK
{bocchi,jose,jpad2}@mcs.le.ac.uk

2 Department of Informatics, Faculty of Sciences, University of Lisbon
Campo Grande, 1749-016 Lisboa, PORTUGAL

mal@di.fc.ul.pt

Abstract. This paper provides an overview of a formal approach to service-
oriented modelling that we have been developing within the SENSORIA pro-
ject [47]. A modelling language – SRML – and a number of formal techniques
that address qualitative and quantitative analysis support this approach, all of
which are based on mathematical foundations. Our focus will be on the lan-
guage primitives that SRML offers for modelling business services and activi-
ties, and on the methodological approach that SRML supports.

1 Introduction

This paper provides an overview of a formal approach to service-oriented modelling
that we have been developing within SENSORIA [47] – an Integrated Project funded
under the ‘Global Computing’ (GC) initiative. A modelling language – SRML – and
a number of formal techniques that address qualitative and quantitative analysis sup-
port this approach, all of which are based on mathematical foundations. Our focus in
this paper is on the language primitives that SRML offers for modelling business
services and activities, and on the methodological approach that SRML supports.
Details on the mathematical semantics can be found in [3,26,27,28].

Our approach addresses Service-Oriented Computing (SOC) as a new paradigm in
which interactions are no longer based on fixed or programmed exchanges of pro-
ducts with specific parties – what is known as clientship in object-oriented program-
ming – but on the provisioning of services by external providers that are procured on
the fly subject to a negotiation of service level agreements (SLAs). More precisely,
the processes of discovery and selection of services as required by an application are
not coded (at design time) but performed by the middleware according to functional
and non-functional requirements (SLAs). The process of binding the client applica-
tion and the selected service is not performed by skilled software developers, but also
at run time, by the middleware. Because the set of available services changes as pro-

† This work was partially supported through the IST-2005-16004 Integrated Project SENSORIA: Software

Engineering for Service-Oriented Overlay Computers.

– 2 –

viders update their portfolios, and service-level agreements may be context-
dependent, different instances of the same application may bind to different services
and operate according to different SLAs resulting from different negotiations.

A number of research initiatives have been proposing formal approaches that ad-
dress different aspects of the paradigm independently of the specific languages that
are available today. For example, recent proposals for service calculi (e.g. [14,20,34])
address operational foundations of SOC (in the sense of how services compute) by
providing a mathematical semantics for the mechanisms that support ‘coreography’ or
‘orchestration’ – sessions, message/event correlation, compensation, inter alia. This
line of work has contributed to languages and standards developed by organisations
such as OASIS (www.oasis-open.org) and W3C (www.w3.org) for Web services.

 Whereas such calculi address the need for specialised language primitives for pro-
gramming in this new paradigm, we are still lacking models that are abstract enough
to understand the engineering foundations of SOC, i.e. those aspects (both technical
and methodological) that concern the way applications can be developed to provide
business solutions, independently of the languages in which services are programmed.
The Service Component Architecture (SCA) [55] has been proposing a number of
specifications that address aspects of this challenge, which we have used as a source
of inspiration. However, SCA addresses low-level design in the sense that it provides
an assembly model and binding mechanisms for service components and clients pro-
grammed in specific languages, e.g. Java, C++, BPEL, or PHP. The goal of the work
that we discuss in this paper is, instead, to address high-level design. More specifi-
cally, we aim for models and mechanisms that support the design of complex services
from business requirements in ways that are independent of the languages in which
the service components are programmed, and for analysis techniques through which
designers can verify or validate properties of composite services. This shift of em-
phasis from programming to (business) modelling, from component interoperability
to business integration, implies that we will be discussing SOC at a level of abstrac-
tion that is different from most other work on Web services (e.g. [8, 43]) or Grid
computing (e.g. [29]).

Having this in mind, the paper proceeds as follows. In Section 2, we provide an
overview of the engineering ‘architecture’ and processes that we see supporting SOC
in Global Computing. In Section 3, we provide a brief overview of how we support
the transition from business requirements to high-level design models using a (ser-
vice-oriented) extension of use-case diagrams. In Section 4, we put forward the co-
ordination model on which SRML is based. In Section 5, we present the modelling
primitives of SRML. Finally, in Section 6, we discuss our model of configuration
management. As a running example, we will use a mortgage brokerage service.
Although our approach is formal, in the sense that a formal semantics is available for
all the primitives of the language [1,27], the paper is mostly mathematics-free with
the exception of Sections 4.3 and 6.

– 3 –

2 Engineering Software for Service-Overlay Computers

The term ‘service’ is being used sin a wide variety of contexts, often with different
meanings. In SENSORIA, we address the notion of ‘service-overlay computer’, by
which we mean the development of highly-distributed loosely-coupled applications
over ‘global computers’ (GC) – “computational infrastructures available globally and
able to provide uniform services with variable guarantees for communication, co-
operation and mobility, resource usage, security policies and mechanisms” [30].

In this setting, there is a need to rethink the way we engineer software applications,
moving from the typical ‘static’ scenario in which components are assembled to build
a (more or less complex) system that is delivered to a customer, to a more ‘dynamic’
scenario in which (smaller) applications are developed to run on such global com-
puters and respond to business needs by interacting with services and resources that
are globally available. In this latter setting, there is much more scope for flexibility in
the way business is supported: business processes can be viewed globally as emerging
from a varying collection of loosely-coupled applications that can take advantage of
the availability of services procured on the fly when they are needed.

In this context, the notion of ‘system’ itself, as it applies to software, also needs to
be revisited. If we take one of the accepted meanings of ‘system’ – a combination of
related elements organised into a complex whole – we can see why it is not directly
applicable to SOC/GC: services get combined at run time and redefine the way they
are organised as they execute; no ‘whole’ is given a priori and services do not com-
pute within a fixed configuration of a ‘universe’. In a sense, we are seeing reflected
in software engineering the trend for ‘globalisation’ that is now driving the economy.

SOC brings to the front many aspects that have already been discussed about com-
ponent-based development (CBD), for instance in [24]. Given that different people
have different perceptions of what SOC and CBD are, we will simply say that, in this
paper, we will take CBD to be associated with what we called the ‘static’ engineering
approach. For instance, starting from a universe of (software) components as ‘struc-
tural entities’, Broy et al view a service as a way of orchestrating interactions among a
subset of components in order to obtain some required functionality – “services co-
ordinate the interplay of components to accomplish specific tasks” [17]. As an exam-
ple, we can imagine that a bank will have available a collection of software compo-
nents that implement core functionalities such as computing interests or charging
commissions, which can be used in different products such as savings or loans.

SOC differs from this view in that there is no such fixed system of components that
services are programmed to draw from but, rather, an evolving universe of software
applications that service providers publish so that they can be discovered by (and
bound to) business activities as they execute. For instance, if documents need to be
exchanged as part of a loan application, the bank may rely on an external courier
service instead of imposing a fixed one. In this case, a courier service would be dis-
covered for each loan application that is processed, possibly taking into account the
address to which the documents need to be sent, speed of delivery, reliability, and so
on. However, the added flexibility provided through SOC comes at a price – dynamic
interactions impose the overhead of selecting the co-party at each invocation – which

– 4 –

means that the choice between invoking a service and calling a component is a deci-
sion that needs to be taken according to given business goals. This is why SRML
makes provision for both SOC and CBD types of interaction (through requires and
uses interfaces as discussed in Section 3).

To summarise, the impact that we see (and explore) SOC to have on software en-
gineering methodology stems from the fact that applications are built without know-
ing who will provide services that may be required, and that the discovery and selec-
tion of such services is performed, on the fly, by dedicated middleware components.
This means that application developers cannot rely on the fact that someone will
interact with them to implement the services that may be required so as to satisfy their
requirements. Therefore, service-oriented ‘clientship’ needs to be based on shared
ontologies of data and service provision. Likewise, service development is not the
same as developing software applications to a costumer’s set of requirements: it is a
separate business that, again, has to rely on shared ontologies of data and service
provision so that providers can see their services discovered and selected.

This view is summarised in Figure 1, where we elaborate beyond the basic Service-
Oriented Architecture [5] to make explicit the different stakeholders and the way they
interact, which is important for understanding the formal model that we are propos-
ing. In this model, we distinguish between ‘business activities’ and ‘services’ as
software applications that pertain to different stakeholders (see [31] for a wider dis-
cussion on the stakeholders of service-oriented systems):

• Activities correspond to applications developed according to requirements pro-
vided by a business organisation, e.g. the applications that, in a bank, imple-
ment the financial products that are made available to the public. The activity
repository provides a means for a run-time engine to trigger such applications
when the corresponding requests are published, say when a client of the bank
requests a loan at a counter or through on-line banking. Activities may be im-
plemented over given components (for instance, a component for computing
and charging interests) in a traditional CBD way, but they can also rely on ser-
vices that will be procured on the fly using SOC (for instance, an insurance for
protecting the customer in case he/she is temporarily prevented from re-paying
the loan due to illness or job loss). In SRML, activities are modelled through
activity modules. As discussed in Section 3, these identify the components that
activities need to be bound to when they are launched and the services (types)
that they may require as they execute. Activity modules also include a specifi-
cation of the workflow that orchestrates the interactions among all the parties
involved in the activity and SLA constraints.

• Services differ from activities in that they are not developed to satisfy specific
business requirements of a given organisation but to be published (in service
repositories) in ways that allow them to be discovered when a request for an
external service is published in the run-time environment. As such, they are
classified according to generic service descriptions – what in Section 5.1.3 we
call ‘business protocols’ – that are organised in a hierarchical ontology to fa-
cilitate discovery. Services are typed by ‘service modules’, which, like ac-
tivity modules, identify the components and additional services that may be

– 5 –

required together with a specification of the workflow that orchestrates the
interactions among them so as to deliver the properties declared in the service
description – its ‘provides-interface’. Service modules also specify service-
level agreements that need to be negotiated during matchmaking and selection.

• The configuration management unit (discussed in Section 6) is responsible for
the binding of the new components and connectors that derive from the instan-
tiation of new activities or services. A formal model can be found in [27].

• The ontology unit is responsible for organising both data and service descrip-
tions. In this paper, we do not discuss the classification and retrieval mecha-
nisms per se. See, for instance, [35,44] for some of the aspects involved when
addressing such issues.

Figure 1: Overall ‘engineering’ architecture and processes

Notice that the ‘business IT teams’ and the ‘service providers’ can be totally inde-
pendent and unrelated: the former are interested in supporting the business of their
companies or organisations, whereas the latter run a business of their own. They can
also belong to the same organisation, as illustrated below. In both cases, they share
the ontology component of the architecture so that they can do business together.

Current configuration
(software components and interaction protocols that

interconnect them [48])

Triggers

Reconfiguration

Discovery and selection Invocation

Business
IT teams

Service
providers

Publication Application
development

Ontology
(data and service

descriptions)

Configuration Management

Service repository

t
t

Activity repository

– 6 –

3 From Use-Case Diagrams to Service and Activity Modules

Before we introduce the modelling primitives that SRML offers for high-level (busi-
ness) design, it is important to show how traditional use-case diagrams can be ex-
tended so as to support the engineering approach that we described in Section 2. In
order to illustrate our approach, we consider the (simplified) case of a financial ser-
vices organisation that wants to offer a mortgage-brokerage service GETMORTGAGE.
This service involves the following steps:

• Proposing the best mortgage deal to the customer that invoked the service;
• Taking out the loan if the customer accepts the proposal;
• Opening a bank account associated with the loan if the lender does not provide

one;
• Getting insurance if required by either the customer or the lender.

In our example, the selection of a lender is restricted to firms that are considered
reliable. For this reason, we consider an UPDATEREGISTRY activity supporting the
management of a registry of reliable lenders. This activity relies on an external certi-
fication authority that may vary according to the identity of the lender.

3.1 Use-case diagrams for service-oriented modelling

Traditionally, use-case diagrams are used for providing an overview of usage re-
quirements for a system that needs to be built. As discussed in Section 2, and report-
ing to Figure 1, our aim is to address a novel development process that does not aim
at the construction of a ‘system’ but, rather, of two kinds of software applications –
services and activities – that can be bound to other software components either stati-
cally (in a component-based way) or dynamically (in a service-oriented way). The
methodological implications of this view are twofold. On the one hand, services and
activities have the particularity that each has a single usage requirement. Hence, they
can be perceived as use cases. On the other hand, from a business point of view, the
services and activities to be developed by an organisation constitute logical units.

In our example, UPDATEREGISTRY should be treated as an activity in the sense that
it is driven by the requirements of the financial services organisation itself – it will be
stored in an activity repository and will be invoked by internal applications (e.g., a
web interface). On the other hand, GETMORTGAGE is meant to be place in a service
repository for being discovered and bound to activities running ‘globally’, i.e. not
necessarily in the financial services organisation.

Both UPDATEREGISTRY and GETMORTGAGE can be seen to operate as part of a same
business unit and, hence, it makes sense to group them in the same use-case diagram –
use-case diagrams are useful for structuring usage requirements of units of business
logic. In order to reflect the methodological implications of our approach, we propose
a number of extensions to the standard notation of use cases. Figure 2 uses the mort-
gage example to illustrate our proposal: the diagram represents a business logical unit

– 7 –

with the two use cases identified before. The rectangle around the use cases, which in
traditional use-case diagrams indicates the boundary of the system at hand, is used to
indicate the scope of the business unit. Anything within the box represents function-
ality that is in scope and anything outside the box is considered not to be in scope.

For the UPDATEREGISTRY activity, the primary actor is Registry Manager; its goal
is to control the way a registry of trusted lenders is updated. The registry itself is
regarded as a supporting actor. The Certification Authority on which UPDATEREGIS-
TRY relies is also considered a supporting actor in the use case because it is an external
service that needs to be discovered based on the nature of the lender being considered.

In the GETMORTGAGE service, the primary actor is a Customer that wants to obtain
a mortgage. The use case has four supporting actors: Lender, Bank, Insurance and
Registry. The Lender represents the bank or building society that lends the money to
the customer. Because only reliable firms can be considered for the selection of the
lender, the use case involves communication with Registry. When the lender does not
provide a bank account, the use case involves an external Bank for opening a new
account. Similarly, the use case involves interaction with an Insurance provider for
situations where the lender requires insurance or the customer decides to get one.

Figure 2: Service-oriented use-case diagram for Mortgage Finder

– 8 –

As in traditional use cases, we view an actor as any entity that is external to the
business unit and interacts with at least one of its elements in order to perform a task.
As motivated above, we can distinguish between different kinds of actors, which led
us to customise the traditional icons as depicted in Figure 2. These allow us to dis-
criminate between user/requester and resource/service actors.

User-actors and requester-actors are similar to primary actors in traditional use-
case diagrams in the sense that they represent entities that initiate the use case and
whose goals are fulfilled through the successful completion of the use case. The
difference between them is that a user-actor is a role played by an entity that interacts
with the activity, while a requester-actor is a role played by one or more software
components operating as part of the activity that triggers the discovery of the service.

For instance, the user-actor Registry Manager represents an interface for an em-
ployee of the business organisation that is running Mortgage Finder whereas the
requester-actor Customer represents an interface for a service requester that can come
from any external organisation. A requester-actor can be regarded as an interface to
an abstract user of the functionality that is exposed as a service; it represents the range
of potential customers of the service and the requirements typically derive from stan-
dard service descriptions stored in service repositories such as the UDDI. In SRML,
and reporting to Figure 1, these descriptions are given by business protocols (dis-
cussed in Section 5.1.3) and organised in a shared ontology, which facilitates and
makes the discovery of business partners more effective. The identification of re-
quester-actors may take advantage of existing descriptions in the ontology or it may
identify new business opportunities. In this case, the ontology would be extended
with new business protocols corresponding to the new types of service.

Resource-actors and service-actors of a use case are similar to supporting actors in
traditional use-case diagrams in the sense that they represent entities to rely on in
order to achieve the underlying business goal. The difference is that a service-actor
represents an outsourced functionality to be procured on the fly and, hence, will typi-
cally vary from one instance of the use case to another, whereas a resource-actor is an
entity that is statically bound and, hence, is the same for all instances of the use case.
Resource-actors are typically persistent sources/repositories of information. In gen-
eral, they are components that are already available to be shared within a business
organisation.

The user- and resource-actors, which we represent at the top and bottom of our
specialised use-case diagrams, respectively, correspond in fact to the actors that are
presented on the left and right-hand side in traditional use-case diagrams, respec-
tively. In contrast, the ‘horizontal dimension’ of the new diagrams, comprising re-
quester- and service-actors, captures the types of interactions that are specific to SOC.

We assume that every use case corresponds to a service-oriented artefact and that
the association between a primary actor and a use case represents an instantia-
tion/invocation. For this reason, in this context, we constrain every use case to be
associated with only one primary actor (either a requester or a user).

– 9 –

3.2 Deriving the structure of SRML modules

The proposed specialisations of use-case diagrams allow us to identify and derive a
number of aspects of the structure of SRML modules – the main modelling primitives
that we use for services and activities. Each use case, representing either a service or
an activity, gives rise to a SRML service module or activity module, respectively.
Figure 3 presents the structure of the modules derived from the use-case diagram in
Figure 2.

A SRML module provides a formal model of a service or activity in terms of a
configuration of ‘interfaces’ (formal specifications) to the parties involved. In the
case of activity modules:

• A serves-interface (at the top-end of the module) identifies the interactions that
should be maintained between the activity and the rest of the system in which
it will operate. This interface results from the user-actor of the corresponding
use case.

• Uses-interfaces (at the bottom-end of the module) are defined for those (persis-
tent) components of the underlying configuration that the activity will need to
interact with once instantiated. These interfaces result from the resource-
actors of the corresponding use case and provide formal descriptions of the be-
haviour required of the actual interfaces that need to be set up for the activity
to interact with components that correspond to (persistent) business entities.

• Requires-interfaces (on the right-hand boundary of the module) are defined for
services that the activity will have to procure from external providers if and
when needed. Typically, these reflect the structure of the business domain it-
self in the sense that they reflect the existence of business services provided
outside the scope of the local context in which the activity will operate. These
interfaces result from the service-actors of the corresponding use case.

• Component and wire interfaces (inside the module) are defined for orchestrat-
ing all these entities (actors) in ways that will deliver stated user requirements
through the serves-interface. These interfaces are not derived from the use-
case diagram but from the description of the corresponding business require-
ments, i.e. they result from a design step. Typically, a designer will choose
pre-defined patterns of orchestration that reflect business components that will
be created in support of the activity or chosen from a portfolio of components
already available for reuse within the business organisation. The choice of the
internal architecture of the module (components and wires) should also reflect
the nature of the business communication and distribution network over which
the activity will run.

– 10 –

Figure 3: The SRML modules for the activity UPDATEREGISTRY and the service GET-

MORTGAGE

In the case of a service module, a similar diagrammatic notation is used except that
a provides-interface is used instead of a serves-interface:

• The provides-interface should be chosen from the hierarchy of standard busi-
ness protocols because the purpose here is to make the service available to the
wider market, not to a specific client. It derives from the requester-actor of the
corresponding use case.

• Some of the component interfaces will correspond to standard components that
are part of the provider’s portfolio. For instance, these may be application
domain dependent components that correspond to typical entities of the busi-
ness domain in which the service provider specialises.

• Uses-interfaces should be used for those components that the service provider
has for insuring persistence of certain effects of the services that it offers.

In addition, both activity and service modules include:
• An internal configuration policy (indicated by the symbol), which identifies

the triggers of the external service discovery process as well as the initialisa-
tion and termination conditions of the components that instantiate the compo-
nent-interfaces.

– 11 –

• An external configuration policy (indicated by the symbol),
which consists of the variables and constraints that determine the quality pro-
file of the activity to which the discovered services need to adhere.

The language primitives that are used in SRML for defining all these interfaces as
well as the configuration policies are detailed in Section 5. A summary of the graphi-
cal notation can be found in Appendix A at the end of the paper.

4 The Coordination Model

The interfaces of a SRML module identified through a use-case diagram reflect busi-
ness dependencies of services or activities, not the interfaces that software compo-
nents offer to be interconnected: modules are not models of components but of busi-
ness processes. In this section, we detail the coordination model that SRML adopts
for component interconnection, i.e. we address the nature of the interfaces that com-
ponents offer and the way wires interconnect them. We also outline a formalisation
of this model, full details of which are available from [1].

4.1 Conversational interactions

Typically, in CBD, one organises component interfaces (what they offer to and expect
from the rest of the system) in ports, which include the protocols that regulate mes-
sage exchange at those ports. In SRML, we have fixed the nature of the interactions
and protocols followed by components and wires. We distinguish the following types
of interactions:

r&s
The interaction is initiated by the co-party, which expects a reply. The co-party
does not block while waiting for the reply.

s&r
The interaction is initiated by the party and expects a reply from its co-party.
While waiting for the reply, the party does not block.

rcv The co-party initiates the interaction and does not expect a reply.

snd The party initiates the interaction and does not expect a reply.

ask The party synchronises with the co-party to obtain data.

rpl The party synchronises with the co-party to transmit data.

tll The party requests the co-party to perform an operation and blocks.

prf The party performs an operation and frees the co-party that requested it.

Interactions involve two parties and can be in both directions, i.e. they can be con-
versational. Interactions are described from the point of view of the party in which
they are declared, i.e. ‘receive’ means invocations received by the party and sent by
the co-party, and ‘send’ means invocations made by the party. Interactions can be
synchronous, implying that the party waits for the co-party to reply or complete, or
asynchronous, in which case the party does not block. Typically, synchronous (block-

– 12 –

ing) interactions occur with persistent components, reflecting interconnections based
on the exchange of products (clientship as in OO). Interactions among the (internal)
components responsible for the orchestration are non-blocking so that they can en-
gage in multiple, concurrent conversations with different parties.

Interactions of type r&s and s&r are conversational (what we call 2-way), i.e. they
involve a number of events exchanged between the two parties:

interaction The event of initiating interaction.
interaction The reply-event of interaction.
interaction The commit-event of interaction.
interaction The cancel-event of interaction.
interaction The revoke-event of interaction.

The meaning of the these events should be self-explanatory: the reply-event is sent
by the co-party, offering a deal or declining to offer one; in the first case, the party
that initiated the conversation may either commit to the deal or cancel the interaction;
after committing, the party can still revoke the deal, triggering a compensation
mechanism. Every 2-way interaction has an associated pledge – a condition that is
guaranteed to hold from the moment a positive reply-event occurs until either the
commit-event, the cancel-event or the expiration time occurs, whichever happens
first. We denote this condition by interaction. See Figure 4 for some of the possible
scenarios (explained further below).

All interactions can have parameters for transmitting data when they are initiated –
declared as . Conversational interactions can also have parameters for carrying a
reply – declared as – or for carrying data if there is a commit, a cancel or a revoke
– declared as , and respectively. In particular, every reply-event interaction
has two distinguished parameters:

• Reply is a Boolean parameter that indicates whether the reply is positive,
meaning that the co-party is ready to proceed. The value of interaction.Reply
is False if, for some reason related with the business logic, the request interac-
tion can not be fulfilled.

• UseBy is a parameter that, in the case of a positive reply, indicates the deadline
for receiving the commit and cancel events. The value of this parameter is an
expiration time (including the value +∞) obtained by adding the value of the
configuration variable (non-functional attribute) interaction to the instant at
which interaction is sent. As discussed in Section 5.2.2, configuration vari-
ables can be subject to negotiation during the discovery/selection process.

Interactions can be seen as ports in the traditional CBD sense, the associated events
representing the interface of the components. The sequence diagrams in Figure 4
illustrate the protocol that is associated with every interaction for which the reply is
positive. In the case on the left, the initiator commits to the pledge; a revoke may
occur later on, compensating the effects of the commit-event interaction (this can
however be constrained by the business logic, for instance, by defining a deadline for
compensation). In the middle, there is a cancellation; in this situation, a revoke is not
available. In the case on the right, the expiration time occurs without a commit or

– 13 –

cancel having occurred; this implies that no further events for that interaction will
occur. In Section 5.1, we give examples of the intended usage of these primitives.

Figure 4: The protocol of 2-way interactions when the reply is positive

Events occur during state transitions in both parties involved in the interaction: we
use event! in order to refer to the publication of event in the life of the initiating party,
and event? (resp. event¿) for its execution (resp. being discarded) by the party that
receives it. The occurrences of event! and event? (or event¿) may not coincide in
time: we consider that there may exist a delay between publishing and delivering an
event. The value of this delay is given by the configuration variable Delay associated
with the wire through which the events are transmitted (see Figure 5). In this paper,
we do not explore in any depth the use of such delays. See instead [9] for a formal
model over which timing aspects of service provision can be analysed through a tool
like PEPA [32].

Figure 5: The intuitive semantics of delays.

4.2 Deriving interactions from message sequence diagrams

One of the ways that we have found useful to identify the interactions that are relevant
for defining a given activity or service module is to draw message sequence diagrams
that characterise the interconnections required between the different parties. For
instance, the message sequence diagram in Figure 6 depicts the workflow that is initi-
ated by the initial request received by GETMORTGAGE from the customer CR.

– 14 –

Figure 6: Identifying interactions within GETMORTGAGE.

4.3 A formal model

The overall coordination model of SRML can be summarised as follows (see [1] for
details). We work over configurations of global computers defined by a set COMP of
components (applications deployed over execution platforms) linked through wires
(e.g. interconnections between components over a given communication network), the
set of which we denote by WIRE.

A state consists of:
• The set PND of the events that are pending in the wires, i.e. the events that

have been published but not yet delivered by the wires to the corresponding
components;

• The set INV of the events that have been invoked, i.e. those that were delivered
by the wires and are stored locally by the components that received them, wait-
ing to be processed;

• The time at that state;
• The set of pledges that hold in that state;

– 15 –

• A record of all events that have been published (!), delivered (¡), executed (?)
or discarded (¿);

• The values of all event parameters and configuration attributes.

In this model, state transitions are characterised by what we call a computation step.
A computation step consists of:
• An ordered pair of states SRC (source) and TRG (target);
• A subset DLV of PNDSRC consisting of the events that are pending in the source

state and selected for delivery during that step;
• A set PRC that selects from INVSRC one event for every component that has

events waiting to be processed;
• A subset EXC of PRC consisting of the events that are actually executed (the

others are discarded);
• A set PUB of the events that are published during that step together with a

function that assigns a value to the parameters of each such event;
such that:
• The set INVTRG of the events in the target state that have been invoked are those

in DLV (i.e. delivered during the step) together with those already in INVSRC

that have not been selected by PRC to be processed;
• The set PNDTRG of the events that are pending at the target state are those in

PUB (i.e. published during the step) together with those of PNDSRC that have
not been selected by DLV to be delivered.

That is, the set of events that are pending in wires is updated during each computa-
tion step by removing the events that the wire delivers during that step – DLV – and
adding the events that each component publishes – PUB. We assume that all the
events that are selected by DLV are actually delivered to the receiving component, i.e.
each wire is reliable – see [1] for a model that considers unreliable wires.

At each step, components may choose to process one of the events waiting to be
processed; this is captured by the function PRC. The fact each component can only
process one event at a time is justified by the assumption that the internal state of the
components is not necessarily distributed and therefore no concurrent changes can be
made to their states.

The set of events that are waiting to be processed by every component is updated
in each step by removing the event that is processed and adding the events that are
actually delivered to that component. Figure 7 is a graphical representation of the
flow of events that takes place during a computation step from the point of view of
components A and B connected by a wire W.

– 16 –

Figure 7: Graphical representation of event flow from the point of view of a wire w be-

tween parties A and B.

5 The Modelling Primitives of SRML

5.1 Behaviour specification languages

The entities involved in service and activity modules – component interfaces, re-
quires-interfaces, provides-interfaces, uses-interfaces, serves-interfaces and interac-
tion protocols – can be defined in SRML independently of one another as design-time
reusable resources. For that purpose, we have defined a number of different but re-
lated languages, which we present and illustrate in this section using fragments of our
running example. The full specification is available in Appendix B.

5.1.1 Signatures

All the languages that we use have in common the declaration of the interactions (in
the sense of Section 4.1) in which the corresponding entity can be involved – what we
call a signature. These declarations are strictly local to the entity, i.e. we cannot rely

– 17 –

on global names to establish interconnections between entities – that is the role of the
wires.

As an example, consider the component-interface MA, which we declared to be of
type MortgageAgent. The corresponding signature is:

INTERACTIONS
 r&s getProposal
 idData:usrdata,
 income:moneyvalue,
 preferences:prefdata,
 proposal:mortgageproposal
 cost:moneyvalue

 s&r askProposal
 idData:usrdata,

 income:moneyvalue,
 proposal:mortgageproposal
 loanData:loandata,
 accountIncluded:bool,
 insuranceRequired:bool
 s&r getInsurance
 idData:usrdata,
 loanData:loandata,
 insuranceData:insurancedata
 s&r openAccount
 idData:usrdata,
 loanData:loandata,
 accountData:accountdata
 s&r signOutLoan
 insuranceData:insurancedata,
 accountData:accountdata,
 contract:loancontract
 snd confirmation

 contract:loancontract
 ask getLenders(prefdata):setids
 tll regContract(loandata,loancontract)

Interactions are classified according to the types defined in Section 4.1. For in-
stance, getProposal is declared to be of type r&s, i.e. as being an asynchronous con-
versational interaction that is invoked by the co-party. This interaction has three
parameters that carry data produced by the co-party at invocation time – the user
profile, income and preferences for the mortgage. Such parameters are declared
under the symbol . Parameters that are used by the mortgage agent for sending the
reply are declared under the symbol – in the case at hand, the details of mortgage
proposal and the cost of the mortgage-brokerage service for taking out the loan if the
customer accepts the proposal.

The co-party of the mortgage agent in this interaction is not named (the same ap-
plies to all other interactions, as discussed in Section 4.1). This makes it possible to
specify the behaviour that can be assumed of the mortgage agent at the interface,
independently of the way it is instantiated within any given system.

The signature of MortgageAgent includes six additional interactions, all of which
are self-initiated. While askProposal, getInsurance, openAccount and signoutLoan
are conversational and asynchronous (i.e. of type s&r or snd), the interactions
getLenders and regContract are synchronous. In the case of getLenders, the mort-

– 18 –

gage agent has to synchronise with the co-party to obtain data (the identification of
the lenders that meet the user preferences for the mortgage) while, in the case of reg-
Contract, the party requests the co-party to perform an operation (register a loan con-
tract) and blocks until the operation is completed.

5.1.2 Business roles

In SRML, interfaces of service components are typed by business roles. A business
role is specified by defining the way in which the interactions declared in the signa-
ture are orchestrated. For that purpose, we offer a textual declarative language based
on states and transitions that is general enough to support languages and notations that
are typically used for orchestrating workflows such as BPEL and UML statecharts.

In a typical business role, a set of variables provides an abstract view of the state of
the component and a set of transitions models the activities performed by the compo-
nent, including the way it interacts with its co-parties. For instance, the local state of
a mortgage agent is defined as follows:

local s:[INITIAL, WAIT_PROPOSAL, WAIT_DECISION,
 PROPOSAL_ACCEPTED, SIGNING, FINAL]
 lenders:setids
 needAccount, needInsurance:bool
 insuranceData:insurancedata, accountData:accountdata

We use s to model control flow, including the way the component reacts to trig-
gers. The other state variables are used for storing data that is needed at different
stages of the orchestration.

Each transition has an optional name and a number of possible features. For in-
stance:

transition GetClientRequest
triggeredBy getProposal
guardedBy s=INITIAL
effects lenders’=getLenders(prefdata)
 ∧ ¬empty(lenders’) ⊃ s’=WAIT_PROPOSAL
 ∧ empty(lenders’) ⊃ s’=FINAL
sends ¬empty(lenders’) ⊃ askProposal
 ∧ askProposal.idData=getProposal.idData
 ∧ askProposal.income=getProposal.income
 ∧ empty(lenders’) ⊃ getProposal
 ∧ getProposal.Reply=false

• A trigger is either the processing of an event, like in the example above, or a
state condition. The former means that the transition is triggered when the
component processes the event, and the latter when the condition changes
from false to true.

• A guard is a condition that identifies the states in which the transition can
take place – in GetClientRequest, the state INITAL. If the trigger is an event
and the guard is false, the event is processed but not executed (it is dis-
carded).

– 19 –

• A sentence specifies the effects of the transition in the local state. Given a
state variable var, we use var’ to denote the value that it takes after the tran-
sition. In the case above, we change the value of s and store the identifica-
tion of the lenders that match the users-preferences. This data is obtained
from a co-party through the synchronous interaction getLenders. As already
mentioned, this co-party is not identified in the business role: we will see
that, because of the way components are wired, the co-party in this interac-
tion within the module GETMORTGAGE is RE of type Registry – the interface
of a persistent component.

• Another sentence specifies the events that are published during the transition,
including the values taken by their parameters. In this sentence, we use vari-
ables and primed variables as in the ‘effects’-section. In the example, if
there is at least one lender that matches the user-preferences, the interaction
askProposal is initiated in order to get a mortgage proposal from a lender.
Once again, the corresponding co-party is not named: we will see that, within
the module GETMORTGAGE, this is an external service provided by a bank or
building society that needs to be discovered and bound to the mortgage
agent. If no lenders are found that match the user-preferences, a negative
reply to getProposal is published.

Another example of a transition is GetLenderProposal:
transition GetLenderProposal

triggeredBy askProposal
guardedBy s=WAIT_PROPOSAL
effects needAccount’=askProposal.accountIncluded
 ∧ needInsurance’=askProposal.insuranceRequired
 ∧ askProposal.Reply ⊃ s’=WAIT_DECISION
 ∧ ¬askProposal.Reply ⊃ s’=FINAL
sends getProposal
 ∧ getProposal.Reply=askProposal.Reply
 ∧ getProposal.proposal=askProposal.proposal
 ∧ getProposal.cost=(CHARGE/100+1)*750

In this case, the transition is triggered by the processing of the reply to askProposal
and the effect is to send a reply to getProposal (the parameter Reply of askProposal
and the proposal received in proposal are both transmitted by the reply-event). The
transition also defines the cost of the mortgage-brokerage service for taking out the
loan if the customer accepts the proposal.

Specifications may also declare configuration variables, which are discussed in
Section 5.2.2. These variables are instantiated at run time, when a new session of the
service starts, possibly as a result of the negotiation process involved in the discovery
of the service. In the case of MortgageAgent, we declare the configuration variable
CHARGE that determines an additional charge over the base price of the mortgage-
brokerage service. In Section 5.2.2 we will see that, in the module GETMORTGAGE,
this extra-charge relates to the period of validity of the loan proposal offered by the
service, which is also subject to negotiation.

 SLA VARIABLES
 CHARGE:[0..100]

– 20 –

Notice that, through business roles, SRML offers a very flexible way to model con-
trol flow because transitions are decoupled from interactions and changes to state
variables, which offers a declarative style of defining orchestrations. For instance, the
transition TimeoutProposal defined below is triggered once the reply to getProposal
expires; in this situation, the component informs the lender that the proposal was not
accepted and moves to the final state.

 transition TimeoutProposal
 triggeredBy now>getProposal.UseBy
 guardedBy s=WAIT_DECISION
 effects s’=FINAL
 sends askProposal

Other aspects of this declarative style include the possibility of leaving certain as-
pects under-specified that can be refined at later stages of the development process.
This is why the various aspects of a transition are specified as sentences using a logi-
cal notation.

More traditional (control-oriented) notations can be used instead for defining or-
chestrations. In Figure 8 we show how part of the orchestration of MortgageAgent
can be defined using a UML statechart. Because statecharts focus only on control
flow, we would need to provide a separate specification for the data flow. In [12], we
have also shown how BPEL can be encoded in our language.

Figure 8: Using UML statecharts for defining orchestrations in business roles

5.1.3 Business protocols

In SRML, a module may declare a number of requires-interfaces, each of which pro-
vides an abstraction (type) for a service that will have to be procured from external

– 21 –

providers, if and when needed – what, in SCA, corresponds to an “External Service”.
In the case of a service module, a provides-interface is also declared for describing the
service that is offered by the module, corresponding to what in SCA is called an “En-
try Point”.

Both types of external interfaces are typed with what we call business protocols, or
just protocols if it is clear from the context what kind of protocols we are addressing.
Like business roles, protocols include a signature. The difference is that, instead of an
orchestration, we provide a set of properties. In the case of a requires-interface, these
are the properties required of the external service that needs to be procured. In the
case of a provides-interface, we specify the properties offered by the service orches-
trated by the module.

In the case of business protocols used for specifying the required services, we de-
clare the interactions in which the external entity (to be procured) must be able to be
involved as a (co-)party and we specify the protocol that it has to adhere to. For in-
stance, the service GETMORTGAGE expects the following behaviour from a lender:

BUSINESS PROTOCOL Lender is

 INTERACTIONS
 r&s requestMortgage
 idData:usrdata,

 income:moneyvalue,
 proposal:mortgageproposal
 loanData:loandata,
 accountIncluded:bool,
 insuranceRequired:bool
 r&s requestSignOut
 insuranceData:insurancedata,
 accountData:accountdata,
 contract:loancontract
 BEHAVIOUR
 initiallyEnabled requestMortgage?

 requestMortgage? enables requestSignOut?
 requestSignOut.Reply after requestSignOut?

Notice that the interactions are again named from the point of view of the party
concerned – the lender in the case at hand. The specified properties require the fol-
lowing:

• In the initial state, the lender is ready to engage in requestMortgage.
• After receiving the commitment to the mortgage proposal, the lender be-

comes ready to engage in requestSignOut.
• The reply to requestSignOut is always positive.

The language in which these properties are expressed uses a set of patterns that
capture commonly occurring requirements in the context of service-oriented interac-
tions. Their semantics have been defined in terms of formulas of the temporal logic
UCTL [6]. Intuitively, they correspond to traces of the form depicted in Figure 9:

– 22 –

Figure 9: The traces that correspond to the patterns

The intuitive semantics of these patterns is as follows:
• initiallyEnabled e: The event e is enabled (cannot be discarded) in the initial

state and remains so until it is executed.
• a after e: a holds forever after event e is executed.
• a enables e until b: The event e cannot be executed before a holds and remains

enabled after a becomes true until it is either executed or b becomes true (if
ever).

• a enables e: The event e cannot be executed before a holds and remains en-
abled after a becomes true until it is executed. It is easy to see that this pattern
is equivalent to a enables e until false.

• a ensures e: The event e cannot be published before a holds, and is published
sometime after a becomes true.

– 23 –

Business protocols are also used for modelling the behaviour that users can expect
from a service. This subsumes what, in [5], are called external specifications:

In particular, a trend that is gathering momentum is that of including, as part
of the service description, not only the service interface, but also the business
protocol supported by the service, i.e. the specification of which message ex-
change sequences are supported by the service, for example expressed in terms
of constraints on the order in which service operations should be invoked.

For instance, the provides-interface of GETMORTGAGE is typed by the following busi-
ness protocol:

BUSINESS PROTOCOL Customer is

 INTERACTIONS
 r&s getProposal
 idData:usrdata,
 income:moneyvalue,
 preferences:prefdata,
 proposal:mortgageproposal,
 cost:moneyvalue

 snd confirmation
 contract:loancontract
 SLA VARIABLES
 CHARGE:[0..100]
 BEHAVIOUR
 initiallyEnabled getProposal?
 getProposal.cost≤750*(CHARGE/100+1) after
 getProposal! ∧ getProposal.Reply
 getProposal? ensures confirmation!

This business protocol specifies that the service offered by GETMORTGAGE relies on
two asynchronous interactions — getProposal and confirmation. The properties
offered by the service are:

• A request for getProposal is enabled when the service is activated.
• The service brokerage has a base price that can be subject to an extra charge,

subject to negotiation.
• A confirmation carrying the loan contract will be issued upon receipt of the

commit to getProposal.

5.1.4 Layer protocols

A module in SRML may also declare one or more uses-interfaces. These provide
abstractions of components corresponding to resource actors as discussed in Section
3.1 – the components with which the service needs to interact in order to ensure per-
sistent effects.

Uses-interfaces are specified through what we call layer protocols. Like business
protocols, layer protocols are defined by a signature and a set of properties. However,
where the interactions used in business protocols are asynchronous, those declared in
a layer protocol can be synchronous and blocking.

– 24 –

As an example, consider the following specification of the layer protocol fulfilled
by a registry. It defines that a registry can be queried – through the interaction
getLenders – about the registered lenders that meet given users preferences, and is
able to register a new contract through the operation registerContract.

LAYER PROTOCOL Registry is

 INTERACTIONS
 rpl getLenders(prefdata):setids
 prf registerContract(loandata,loancontract)
 BEHAVIOUR

The properties of synchronous interactions are typically in the style of pre/post-
condition specifications of methods.

5.1.5 Interaction protocols

A module consists of a number of interfaces connected through wires. Wires are
labelled by connectors that coordinate the interactions in which the parties are jointly
involved. In SRML, we model the interaction protocols involved in these connectors
as separate, reusable entities.

Just like business roles and protocols, an interaction protocol is specified in terms
of a number of interactions. Because interaction protocols establish a relationship
between two parties, the interactions in which they are involved are divided in two
subsets called roles – A and B. The semantics of the protocol is provided through a
collection of sentences – what we call interaction glue – that establish how the inter-
actions are coordinated. This may include routing events, superposing protocols for
secure communication, or transforming sent data to the format expected by the re-
ceiver, inter alia.

As an example, consider the following protocol used in the wire that connects
MortgageAgent and Insurance:

INTERACTION PROTOCOL Straight.I(d1,d2)O(d3) is

 ROLE A
 s&r S1

 i1:d1, i2:d2
 o1:d3

 ROLE B
 r&s R1

 i1:d1, i2:d2
 o1:d3

 COORDINATION
 S1 ≡ R1
 S1.i1=R1.i1
 S1.i2=R1.i2
 S1.o1=R1.o1

This is a ‘straight’ protocol that connects directly two entities over two conversa-
tional interactions that have two -parameters and one -parameter. The property
S1 ≡ R1 establishes that the events associated with each interaction are the same, e.g.
that S1 is the same as R1.

– 25 –

The names used in interaction protocols are generic to facilitate reuse. In fact, the
specification itself is parameterised by the data sorts involved in the interactions.
Parameterisation (which is also available for business roles and protocols) provides
the means for defining families of specifications. The parameters are instantiated at
design time when the specifications are used in the definition of a module. This can
be seen in Section 5.1.6.

Two other families of straight protocols are presented below. These families de-
fine the connection of two synchronous interactions with two parameters; in the first
protocol, the interaction involves a return value.

INTERACTION PROTOCOL Straight.A(d1,d2)R(d3) is

 ROLE A
 ask S1(d1,d2):d3

 ROLE B
 rpl R1(d1,d2):d3

 COORDINATION
 S1(d1,d2)=R1(d1,d2)

INTERACTION PROTOCOL Straight.T(d1,d2) is

 ROLE A
 tll S1(d1,d2)

 ROLE B
 prf R1(d1,d2)

 COORDINATION
 S1(d1,d2)≡R1(d1,d2)

The first interaction protocol establishes that the values returned by the synchro-
nous interaction are the same, while the second protocol synchronises the two oper-
ations without any conversion of data.

Interaction protocols are first-class objects that can be (re)used to assign properties
to wires, which reflect constraints on the underlying run-time environment. These
may concern data transmission, synchronous/asynchronous connectivity, distribution,
and other non-functional properties such as security. In such cases, the specifications
are not as simple as those of straight protocols.

5.1.6 Connectors

After having chosen the protocols that coordinate the interactions between two par-
ties, we use them as the ‘glue’ (in the sense of [48]) of the connectors that label the
wires that link the corresponding parties. In a connector, the interaction protocol is
bound to the parties via ‘attachments’: these are mappings from the roles to the signa-
tures of the parties identifying which interactions of the parties perform which roles in
the protocol. The use of attachments allows us to separate the definition of the inter-
action protocols from their use in the wires, which promotes reuse: typically, one
defines a connector by choosing from a repository of (types of) protocols that have
proved to be useful in other situations.

Summarising, connectors are triples <μA,P,μB> where:

– 26 –

• P is an interaction protocol. We use roleAP and roleBP to designate its roles
and glueP for the role.

• μA and μB are attachments that connect the roles of the protocol to the signa-
tures of the entities (business roles, business protocols or layer protocols) be-
ing interconnected.

For instance, both Straight.A(prefdata)R(setids) and Straight.T(loandata, loancon-
tract) are used in the following wire to connect different interactions between Mort-
gageAgent and Registry:

BR
MortgageAgent

c4 BE d4
RE
Registry

ask getLenders S1 Straight.
A(prefdata)R(setids)

R1 rpl getLenders

tll regContract

S1

Straight.
T(loandata,loancontract)

R1

prf registerContract

Each row describes one connector. The first two columns define the attachment be-
tween roleA of the interaction protocol (specified in the middle column) and the sig-
nature of MortgageAgent. In the same way, the last two columns define the attach-
ment between roleB of the interaction protocol and the signature of Registry.

We use the same notation for specifying the wires that connect module compo-
nents to requires-interfaces. However, the specification of these wires is subject to
an additional correctness condition that restricts the signature of the requires-
interfaces to the interaction used in the corresponding wires. This is to ensure that all
the interactions of the services that are bound to the module through the requires-
interface have a corresponding co-party.

For instance, the only wire that connects LE in GETMORTGAGE is CL (with MA).
Its specification is as follows:

MA

MortgageAgent c1 CL d1
LE
Lender

s&r askProposal
 idData
 income
 proposal
 loanData
 accountIncluded
 insuranceRequired

S1

i1
i2

o1

o2

o3

o4

Straight.
I(usrdata,
moneyvalue)

O(mortgageproposal,
loandata,
bool,bool)

R1

i1
i2

o1

o2

o3

o4

r&s requestMortgage
 idData
 income
 proposal
 loanData
 accountIncluded
 insuranceRequired

r&s signOutLoan
 insuranceData
 accountData
 contract

S1

i1
i2

o1

Straight
I(insurancedata,

accountdata)
O(loancontract)

R1

i1
i2

o1

s&r requestSignOut
 insuranceData
 accountData
 contract

The correctness condition is satisfied because the signature of Lender is isomor-
phic to the sum of the interactions of the roles connected to it, i.e. all the interactions
of Lender are mapped to a port.

The specification of the wires that connect module components to the provides-
interface of the module uses a slightly different syntax. This is because what we need
to declare is the set of interactions that the components make available to the cus-
tomer of the service, and the protocols through which the corresponding events are

– 27 –

transmitted. In this sense, we do not model the customer proper, which in SRML is
reflected by omitting the corresponding column of the table that defines the wire.

For instance, the wire SW that interconnects Customer and MortgageAgent in
GETMORTGAGE module is specified as follows:

c1 CB d1
MA
MortgageAgent

S1

i1
i2

i3

o1

o2

Straight.
I(usrdata,

moneyvalue,prefdata)
O(mortageproposal,

moneyvalue)

R1

i1
i2

i3

o1

o2

r&s getProposal
 idData
 income
 preferences
 proposal
 cost

R1

i1
Straight.

O(loancontract)

S1

i1
snd confirmation
 contract

In this case, each row also describes one connector, whose interaction protocol is
specified in the second column. The difference is that the entities that will be con-
nected to the roleAs of their interaction protocols are unknown (these will belong to
the services that will bind to GETMORTGAGE). As before, the last two columns define
the attachment between roleB of the interaction protocol and the signature of Mort-
gageAgent.

5.2 Configuration policies

Whereas business roles, business protocols, layer protocols and interaction protocols
deal with functional aspects of the behaviour of a (complex) service or activity, con-
figuration policies address aspects that relate to processes of discovery, selection and
instantiation of services. In SRML, we distinguish between internal and external
configuration policies. The former concern aspects related with service instantiation
such as the initialization of service components and the triggering of the discovery of
required services. The latter address aspects related with the selection of partner
services and negotiation of contracts.

5.2.1 Internal configuration policy

The internal configuration policy of a service module concerns the triggering of the
discovery and selection process associated with its requires-interfaces, and the instan-
tiation of its component and wire interfaces.

A trigger is usually associated with the occurrence of one or more events and addi-
tional conditions on the state of the components in which the events occur. For in-
stance, GETMORTGAGE defines that the lender has to be discovered as soon as getPro-
posal is executed (by the workflow). There is a default trigger condition: the publi-
cation of the initiation event of the first interaction connected to the requires-interface.
In our example, this is the case of the bank and insurance external services.

– 28 –

 LE: Lender
 intLE trigger: getproposal?
 BA: Bank

 intBA trigger: default
 IN: Insurance

 intIN trigger: default

In a module, each service component has an associated initialisation condition,
which is guaranteed to hold when the component is instantiated, and a termination
condition, which determines when the component stops executing and interacting
with the rest of the components (in which case it can be removed from the state con-
figuration to which it belong). Typically, both conditions relate to the state variables
of the component, but they can also include the publication of given events. For in-
stance, in the case of MortgageAgent, these conditions are defined only in terms of
the local variable s:

 MA: MortgageAgent
 intMA init: s=INITIAL
 intMA term: s=FINAL

Notice that these conditions can be more underspecified, leaving room for further
refinement. For instance, we may force the termination of the component after a
certain date without specifying exactly when.

5.2.2 External policies

The external policy concerns the way the module relates to external parties: it declares
the set of variables that can be used for negotiation and establishing service level
agreement (SLA), and a set of constraints that have to be taken into account during
discovery and selection.

SLA variables include all the configuration variables declared in the specifications
(except in the provides-interface). For instance, in GETMORTGAGE, MortgageAgent
declares the configuration variable CHARGE. These variables are local to the inter-
faces to which they are attached and instantiated when the corresponding component
is created. Because constraints apply to the module as a whole, we refer to these
variables by preceding them with the name of the entity to which they belong. Hence,
in GETMORTGAGE, we refer to MA.CHARGE.

SRML also provides a set of standard configuration variables – availability, re-
sponse time, message reliability, service identification, inter alia. Some of them, e.g.
response time, are associated with requires or provides-interfaces, and other, e.g.
message reliability, apply to the wires.

The standard configuration variables used in GETMORTGAGE are:
• interaction, for every interaction of type r&s; its value is the length of

time the reply is valid after interaction is issued.
• wire.Delay, for every wire; it defines the maximum delivery delay for events

sent over that wire.
• ServiceId, for every external-interface; it represents the identification of the

service that is bound to that interface (for instance, a URI).

– 29 –

Notice that although these variables are standard they need to be declared in a mod-
ule if the designer wants them to be involved in the service discovery negotiation
process. For instance, in GETMORTGAGE we have:

 SLA VARIABLES
 MA.CHARGE, MA.getProposal,
 LE.ServiceId, LE.COST, LE.requestMortgage

The approach that we adopt in SRML for SLA negotiation is based on the con-
straint satisfaction and optimization framework presented in [8] in which constraint
systems are defined in terms of c-semirings. As explained therein, this framework is
quite general and allows us to work with constraints of different kinds – both hard and
‘soft’, the latter in many grades (fuzzy, weighted, and so on). The c-semiring ap-
proach also supports selection based on a characterisation of ‘best solution’ supported
by multi-dimensional criteria, e.g. minimizing the cost of a resource while maximiz-
ing the work it supports.

In this framework:
• A c-semiring is a semiring 〈A,+,×,0,1〉 in which A represents a space of de-

grees of satisfaction, e.g. the set {0,1} for yes/no or the interval [0,1] for
intermediate degrees of satisfaction. The operations × and + are used for
composition and choice, respectively. Composition is commutative, choice
is idempotent and 1 is an absorbing element (i.e. there is no better choice
than 1). That is, a c-semiring is an algebra of degrees of satisfaction. Notice
that every c-semiring S induces a partial order ≤S (of satisfaction) over A as
follows: a≤ Sb iff a+b=b. That is, b is better than a iff the choice between a
and b is b.

• A constraint system is a triple 〈S,D,V〉 where S is a c-semiring, V is a totally
ordered set (of configuration variables), and D is a finite set (domain of pos-
sible elements taken by the variables).

• A constraint consists of a selected subset con of variables and a mapping
def:D|con|→S that assigns a degree of satisfaction to each tuple of values taken
by the variables involved in the constraint.

The external configuration policy of a module involves a constraint system based
on a fixed c-semiring and a set of constraints over this constraint system. Because we
want to handle constraints that involve different degrees of satisfaction, it makes
sense that we work with the c-semiring <[0..1],max,min,0,1> of soft fuzzy con-
straints [8]. In this c-semiring, the preference level is between 0 (worst) and 1 (best).

For instance, the external configuration policy of GETMORTGAGE includes the fol-
lowing constraints:

C1: {MA.CHARGE,MA.getProposal},

def(c,t)=

€

1 if t ≤ 10 ∗c

1 + 2 ∗ c − 0.2 ∗ t if 10 ∗ c < t ≤ 5 + 10 ∗ c

0 otherwise

– 30 –

That is, the more CHARGE is applied to the base price of the brokerage service
the longer is the interval during which the proposal is valid.

C2: {LE.ServiceId}, def(s)=

€

1 if s ∈ BR .lenders

0 otherwise

That is, the choice of the lender is constrained by the service identifier, which
must belong to the set MA.lenders (recall that, according to the orchestration
of MortgageAgent, this set contains the identification of the services provided
by trusted lenders that were found to be appropriate for the request at hand).

C3: {MA.getProposal,LE.requestMortgage},

def(t1,t2)=

€

1 if t2 > t1+ CC.Delay + CL.Delay

0 otherwise

That is, the choice of the lender is also constrained by the period of validity as-
sociated with its loan proposals. This period must be greater than the sum of
the validity period offered by the brokerage service to its clients and the pos-
sible delays that may affect the transmission through the wires involved (no-
tice that CC.Delay and CL.Delay are not declared as SLA variables and,
hence, they are used like constants).

C4: {LE.COST,LE.requestMortgage}, def(c,t)=

€

1

c
+

t

100
 if c < 500

0 otherwise

That is, the cost to be paid by the brokerage service to the lender must be less
than 500, and the preference between lenders charging the same value will
take into account the validity period of the loan proposals.

The value of SLA variables is negotiated during the service discovery/binding.
Details on negotiation of constraints and SLAs are further discussed in Section 6.3.

5.3 Module declaration

SRML makes available a textual language for defining modules, which involves the
specification of the module external interfaces, service components, wires and poli-
cies, as discussed in the previous sections. The full definition of GETMORTGAGE can
be seen in Appendix B.

In the case of a service module, we also have to map the interactions and SLA
variables of the provides-interface to corresponding interactions and variables of the
entities that provide the service. This is because the business protocol that labels the
provides-interface represents the service that is offered by the module (behavioural

– 31 –

properties and negotiable SLA variables), not the activity to which the service will be
bound.

In the case of GETMORTGAGE, only MA is connected to CR, so the mapping is ac-
tually an identity. This is specified as follows:

PROVIDES

 CR: Customer
CR
Customer

MA
MortgageAgent

r&s getProposal
 idData
 income
 preferences
 proposal
 cost

r&s getProposal
 idData
 income
 preferences
 proposal
 cost

snd confirmation
 contract

snd confirmation
 contract

 SLA VARIABLES
 CHARGE

 SLA VARIABLES
 CHARGE

6 The Configuration-Management Model

6.1 Layered state configurations of global computers

As already mentioned, we take SOC to be about applications that can bind to other
applications discovered at run time in a universe of resources that is not fixed a priori.
As a result, there is no structure or ‘architecture’ that one can fix at design-time for an
application; rather, there is an underlying notion of configuration of a global computer
that keeps being redefined as applications execute and get bound to other applications
that offer required services. As is often the case (e.g. [48]), by ‘configuration’ we
mean a graph of components (applications deployed over a given execution platform)
linked through wires (e.g. interconnections between components over a given com-
munication network) in a given state of execution. Typically, wires deal with the
heterogeneity of partners involved in the provision of the service, performing data (or,
more, generally, semantic) integration. See Figure 10 for an example, over which we
will later recognise three business activities (instances).

Summarising, a state configuration F is defined to consist of:
• A simple graph G, i.e. a set nodes(F) and a set edges(F); each edge e is asso-

ciated with a (unordered) pair n↔m of nodes. We take nodes(F)⊆COMP (i.e.
nodes are components) and edges(F)⊆WIRE (i.e. edges are wires).

• A (configuration) state S as defined in 4.3.

– 32 –

Figure 10: The graph of a state configuration with 11 components and 10 wires

Every state configuration <G,S > can change because either the state S or the
graph G changes. Changes to the state result from computations executed by compo-
nents and the coordination activities performed by the wires that connect them as
defined in 4.3. However, the essence of SOC, as we see it in this paper, is not cap-
tured at the level of state changes (which is basically a distributed view of computa-
tion), but at the level of the changes that operate on configuration graphs: in SOC,
changes to the underlying graph of components and wires occur at run time when a
component performs an action that triggers the discovery and binding of a service.

An important aspect of our model is the fact that we view SOC as providing an ar-
chitectural layer that interacts with two other layers (see Figure 11). This can be
noticed in Figure 10 where shadows are used for indicating that certain components
reside in different layers: AliceRegUI, BobEstateUI and CarolEstateUI (three user
interfaces) in the top layer, and MyRegistry (a database) in the bottom layer. Layers
are architectural abstractions that reflect different levels of organisation and change,
i.e. one looks at a configuration as a (flat) graph as indicated above but, in order to
understand how such configurations evolve, it is useful to distinguish different layers.

In our model, the bottom layer consists of components that are persistent as far as
the service layer is concerned, i.e. those that in Section 3 we identified as resource-
actors. More precisely, when a new session of a service starts (e.g. a mortgage broker
starts putting together a proposal on behalf of a client), the components of the bottom
layer are assumed to be available so that, as the service executes, they can be used as
(shared) ‘servers’ – for instance the registry, which shared by all sessions of the mort-
gage broker, or a currency converter. In particular, the bottom layer can be used for
making persistent the effects of services as they execute.

– 33 –

Figure 11: A 3-layered architecture for configurations

The components that execute in the service layer are created when the session of
the corresponding service starts, i.e. as fresh instances that last only for the duration of
the session – for instance, the workflow that orchestrates the mortgage-brokerage
service for a particular client. In component-based development (CBD) one often
says that the bottom layer provides ‘services’ to the layer above. As we see it in this
paper, an important difference between CBD and SOC is precisely in the way such
services are procured, which in the case of SOC involves identifying (possibly new)
providers and negotiating terms and conditions for each new instance of the activity,
e.g. for each new user of a travel agent. SOA middleware supports this service layer
by providing the infrastructure for the discovery and negotiation processes to be exe-
cuted without having to be explicitly programmed as (part of) components.

The top layer is the one responsible for launching business activities in the service
layer. The user of a given activity – identified through a user-actor as discussed in
Section 3 – resides in the top layer; it can be an interface for human-computer interac-
tion, a software component, or an external system (e.g. a control device equipped with
sensors). When the user launches an activity, a component is created in the service
layer that starts executing a workflow that may involve the orchestration of services
that will be discovered and bound to the workflow at run time.

6.2 Business activities and configurations

In our model, state configurations change as a result of the execution of business
processes. More precisely, changes to the configuration graph result from the fact
that the discovery of a service is triggered and, as a consequence, new components are
added and bound to existing ones (and, possibly, other components and wires disap-
pear because they finished executing their computations). The information about the
triggers and the constraints that apply to service discovery and binding are not coded
in the components themselves: they are properties of the ‘business activities’ that are
active and determine how the configuration evolves. Thus, in order to capture the
dynamic aspects of SOC, we need to look beyond the information available in a state.

– 34 –

In our approach, we achieve this by making configurations ‘business reflective’,
i.e. by labelling the sub-configurations that correspond to instances of business activi-
ties by the corresponding activity module.

Figure 12: The sub-configurations corresponding to an instance of UPDATEREGISTRY

For instance, we should be able to recognise an activity in Figure 10 whose sub-
configuration is as depicted in Figure 12. Intuitively, it corresponds to an instance of
UPDATEREGISTRY. In order to formalise this notion of typed subconfiguration, we
start by providing a formal definition of activity modules. We denote by BROL the
set of business roles (see 5.1.2), by BUSP the set of business protocols (see 5.1.3), by
LAYP the set of layer protocols (see 5.1.4), and by CNCT the set of connectors (see
5.1.6).

An activity module M consist of:
• A graph graph(M).
• A distinguished subset of nodes requires(M)⊆nodes(M).
• A distinguished subset of nodes uses(M)⊆nodes(M).
• A node serves(M)∈ nodes(M) distinct from requires(M) and uses(M).
• A labelling function labelM such that

o labelM(n)∈BROL if n∈components(M), where by components(M) we de-
note the set of nodes(M) that are not serves(M) nor in requires(M) or
uses(M).

o labelM(n)∈BUSP if n∈requires(M)
o labelM(n)∈LAYP if n∈serves(M)∪uses(M)
o labelM(e:n↔m)∈CNCT.

• An internal configuration policy.
• An external configuration policy).

We denote by body(M) the (full) sub-graph of graph(M) that forgets the nodes in
requires(M) and the edges that connect them to the rest of the graph.

We can now formalise the typing of state configurations with activity modules that
we discussed around Figure 12, which accounts for the coarser business dimension
that is overlaid by services on global computers. That is, we define what corresponds
to a state configuration of a service overlay computer, which we call a business con-
figuration. We consider a space A of business activities to be given, which can be
seen to consist of reference numbers (or some other kind of identifier) such as the
ones that organisations automatically assign when a service request arrives.

– 35 –

A business configuration consists of:
• A state configuration F.
• A partial mapping B that assigns an activity module B(a) to each activity

a∈A – the workflow being executed by a in SF. We say that the activities in
the domain of this mapping are those that are active in that state.

• A mapping C that assigns an homomorphism C(a) of graphs body(B(a))→F
to every activity a∈A that is active in F. We denote by F(a) the image of
C(a) – the sub-configuration of F that corresponds to the activity a.

A homomorphism of graphs is just a mapping of nodes to nodes and edges to edges
that preserves the end-points of the edges. Therefore, the homomorphism C of a
business configuration <F, B, C > types the nodes (components) of F(a) with busi-
ness roles or layer protocols – i.e. C(a)(n):labelB(a)(n) for every node n – and the
edges (wires) with connectors – i.e. C(a)(e): labelB(a)(e) for every edge e of the body
of the activity. In other words, the homomorphism binds the components and wires
of the state configuration to the business elements (interfaces labelled with business
roles, layer protocols and connectors) that they fulfil in the activity.

In the example discussed above, we have activity – that we call Alice – such that
B(Alice) is UPDATEREGISTRY (as in Figure 3), F(Alice) is the sub-configuration in
Figure 12, and C maps RM to AliceRegUI, MC to AliceManag, RE to MyRegistry, MR
to AMR, and RM to ARM.

The fact that the homomorphism is defined over the body of the activity module
means that business protocols are not used for typing components of the state configu-
ration. Indeed, as discussed above, the purpose of the requires-interfaces is for identi-
fying dependencies that the activity has, in that state, on external services. In particu-
lar, this makes requires-interfaces different from uses-interfaces as the latter are in-
deed mapped through the homomorphism to a component of the state configuration.

In a sense, the homomorphism makes state configurations reflective in the sense of
[22] as it adds meta (business) information to the state configuration. This informa-
tion is used for deciding how the configuration will evolve (namely, how it will react
to events that trigger the discovery process). Indeed, reflection has been advocated as
a means of making systems adaptable through reconfiguration, which is similar to the
mechanisms through which activities evolve in our model.

6.3 Run-time discovery and binding

In order to illustrate how a business configuration evolves through service discov-
ery and binding, we are going to consider another business activity type that supports
the purchase of a house. The corresponding module is depicted in Figure 13.

– 36 –

Figure 13: The HOUSEBUYING activity module

That is, the orchestration of the purchase of a house is performed by a component
EA of type (business role) EstateAgent, which may need to discover and bind to a
mortgage dealer MO and a lawyer LA. Consider the configuration depicted in Figure
14, and the business configuration that consists of Alice (as defined in Section 6.2)
and of the activity Bob typed HOUSEBUYING mapped to the configuration by the
homomorphism that associates GH with BobEstateUI, EA with BobEstateAG and HE
with BEA.

Figure 14: A configuration

Assume that, in the current state, intMO trigger holds, i.e. that the execution of the
workflow associated with EA requires the discovery of a mortgage dealer. Let us
consider what is necessary for GETMORTGAGE to be selected and bound to HOUSEBUY-
ING as a result of the trigger (see Figure 15).

– 37 –

Figure 15: The elements involved in unification

In our setting, this process involves three steps, outlined as follows:
• Discovery. For GETMORTGAGE to be discovered, it is necessary that the prop-

erties of its provides-interface Customer entail the properties of the requires-
interface Mortgage, and that the properties of the interaction protocol of CC
entail those of EM.

• Ranking. If it is discovered, GETMORTGAGE is ranked among all services that
are discovered by calculating the most favourable service-level agreement that
can be achieved – the contract that will be established between the two parties
if GETMORTGAGE is selected. This calculation uses a notion of satisfaction that
takes into account the preferences of the activity HOUSEBUYING and the service
GETMORTGAGE.

• Selection. Finally, GETMORTGAGE can be selected if it is one of the services
that maximises the level of satisfaction offered by the corresponding contract.

These steps are formalised in [27]. If GETMORTGAGE is selected then it is unified
with HOUSEBUYING, giving rise to another activity module. As depicted in Figure 16,
the resulting activity module is obtained by replacing the requires-interface and cor-
responding wire of HOUSEBUYING by those that connect the provides-interface of
GETMORTGAGE to its body.

At the level of the configuration, we add the new instances of the components of
GETMORTGAGE and corresponding wires, making sure that instances of the uses-
interfaces are components of the bottom layer (already present in the configuration).
This can be witnessed in Figure 17 where the instance of RE is the component
MyRegistry, which is shared with other activities. Notice that the type of the activity
Bob is now the activity module in Figure 17, and that the homomorphism now maps
MA to BobMortBR, RE to MyRegistry, EM to BAM and BE to BCR. It is in this sense
that the activity is reconfigured as new services are discovered and bound to its re-
quires-interfaces. See [27] for a full formalisation of this process of reconfiguration.

– 38 –

Figure 16: The result of the unification

Figure 17: The result of the binding

7 Related Approaches

One of the main aspects that distinguishes the approach that we proposed from other
work on Web Services (e.g. [5]) and SOC in general (e.g. [55]) is that we address not
the middleware architectural layers (or low-level design issues in general), but what
we call the ‘business level’. For instance, the main concern of the Service Compo-

– 39 –

nent Architecture (SCA) [55], from which we have borrowed concepts and notations,
is to provide an open specification “allowing multiple vendors to implement support
for SCA in their development tools and runtimes”. This is why SCA offers a
middleware-independent layer for service composition and specific support for a
variety of component implementation and interface types (e.g. BPEL processes with
WSDL interfaces, or Java classes with corresponding interfaces). Our work explores
a complementary direction: our research aims for a modelling framework supported
by a mathematical semantics in which business activities and services can be defined
in a way that is independent of the languages and technologies used for programming
and deploying the components that will execute them. The fact that the modelling
framework is equipped with a formal semantics makes it possible to support the an-
alysis of services, service compositions and activities, a direction that we are pursuing
through the use of model-checking [4].

Another architectural approach to SOC has been designed [50] that follows SCA
very closely. However, its purpose is to offer a meta-model that covers service-
oriented modelling aspects such as interfaces, wires, processes and data. Therefore,
as in SCA, interfaces are syntactic and bindings are established at design time,
whereas our interfaces are behavioural and binding occurs at run time. Other ap-
proaches to service modelling have considered richer interfaces that encompass busi-
ness protocols, e.g. [7,13,23,45,46], but not the dynamic aspects – discovery and
binding – offered by SRML as illustrated in this paper.

Indeed, a characteristic that distinguishes our approach from other formal models
of services such as [17] is the fact that we address the dynamic aspects of SOC,
namely run-time discovery and binding. Formalisms for modelling (web) services
tend not to address these. For example, in BPEL, service compositions are created
statically and are governed by a centralised engine. This also holds for approaches
that focus on choreography (e.g. [20, 45]), where it is possible to calculate which are
the partners that can properly interact with a service but the actual discovery and
binding processes are not considered. Exceptions can be found among some of the
process calculi that have been developed for capturing semantic foundations of SOC
(e.g. [14,19,34]). However, such process calculi tend not to address dynamic recon-
figuration separately from computation, i.e. the process of discovery and binding is
handled as part of the computation performed by a service. As far as we know,
SRML is the first service-modelling language to separate these two concerns.

Indeed, in our opinion, what makes SOC different from other paradigms is the fact
that it concerns run-time, not design-time complexity. This is also the view exposed
in [24] – a very clear account of what distinguishes SOC from CBD (Component
Based Development). For instance, starting from a universe of (software) compo-
nents as “structural entities”, [17] views a service as a way of orchestrating interac-
tions among a subset of components in order to obtain some required functionality –
“services coordinate the interplay of components to accomplish specific tasks”.
Whereas in CBD component selection is either performed at design time or pro-
grammed over a fixed universe of components, SOC provides a means of obtaining
functionalities by orchestrating interactions among components that are procured at
run time according to given (functional) types and service level constraints.

– 40 –

Another area related to the work that we have presented concerns the non-
functional aspects of services, namely the policies and constraints for service level
agreement that have to be taken into account in the composition of services. Most of
the research developed in this area has been devoted to languages for modelling spe-
cific kind of policies (over specific non-functional features) and of selection algor-
ithms, e.g. SCA Policy [55] and several others [36,37,38,53,54]. These languages
have been primarily designed to be part of the technology available for implementing
and executing services. As such, they are tailored to the technological infrastructure
that is currently enabling web services and are not appropriate for being used at high-
levels of business modelling.

8 Concluding Remarks and Further Work

We presented a formal approach for modelling service-oriented application. This is
part of an on-going effort that we are pursuing within the SENSORIA project towards
a methodological and mathematical characterisation of the service-oriented comput-
ing paradigm [47].

The approach is built around a prototype language called SRML – the SENSORIA
Modelling Reference Language – and offers an engineering environment that includes
abstraction mappings from workflow languages (such as BPEL [12]) and policy lan-
guages (such as StPowla [11]), and model-checking techniques that support qualita-
tive analysis [4]. A mathematical semantics is available for all aspects of the ap-
proach as partially illustrated in the paper (see [1,3,25,26,27,28] for a more compre-
hensive account).

The overall methodology that we have in mind for developing software for global
computers was also discussed and illustrated through a fragment of the financial case
study being investigated in SENSORIA, namely the aspects that relate to a mortgage
brokering service and registry activity. A novel aspect of SRML is the separation that
it provides for services in the sense of component-based development (CBD) and
service-oriented computing (SOC). This separation is reflected in the use of different
kinds of actors in the proposed extension of use-case diagrams and different model-
ling primitives in SRML [10]. SENSORIA is also producing a more global approach
to modelling service orchestrations in UML2 – called UML4SOA – and utilising
these models for code generation (including BPEL code) [35,52].

Acknowledgments

We would like to thank our colleagues in the SENSORIA project for many useful
discussions on the topics covered in this paper. We are also indebted to Colin Gil-
more from Box Tree Mortgage Solutions (Leicester) for taking us through the mort-
gage business.

– 41 –

References

 1. J. Abreu (2009) A Formal Framework for Modelling Service Component Architectures.
PhD thesis. Forthcoming.

 2. J. Abreu, L. Bocchi, J. L. Fiadeiro, A. Lopes (2007) Specifying and composing interaction
protocols for service-oriented system modelling. In: J. Derrick, J. Vain (eds) Formal
Methods for Networked and Distributed Systems. LNCS, vol 4574. Springer, pp 358–373

 3. J. Abreu, J. Fiadeiro (2008) A coordination model for service-oriented interactions. In: D
Lea, G. Zavattaro (eds) Coordination Languages and Models. LNCS, vol 5052. Springer,
pp 1–16

 4. J. Abreu, F. Mazzanti, J. Fiadeiro, S Gnesi (2009) A Model-Checking Approach for Service
Component Architectures. In: D. Lee, A. Lopes, A. Poetzsch-Heffter FMOODS-
FORTE’09. LNCS, vol 5522, Springer, 212–217

 5. G. Alonso, F. Casati, H. Kuno, V. Machiraju (2004) Web Services. Springer
 6. M. ter Beek, A. Fantechi, S. Gnesi, F. Mazzanti (2008) An action/state-based model

checking approach for the analysis of communication protocols for Service-Oriented Ap-
plications. In: S. Leue, P. Merino (eds) Formal Methods for Industrial Critical Systems,
LNCS, vol 4916. Springer, pp 133–148

 7. B. Benatallah, F. Casati, F. Toumani (2004) Web services conversation modeling: A
cornerstone for e-business automation. IEEE Internet Computing 8(1): 46–54

 8. S. Bistarelli, U. Montanari, F. Rossi (1997) Semiring-based constraint satisfaction and
optimization. Journal of the ACM 44(2): 201–236

 9. L. Bocchi, J. Fiadeiro, S. Gilmore, J. Abreu, M. Solanki, V. Vankayala (2009) A Formal
Model for Timing Aspects of Service-Oriented Systems. Research Report.

10. L. Bocchi, J. Fiadeiro, A. Lopes (2008) A use-case driven approach to formal service-
oriented modelling. In: T. Margaria, B Steffen (eds) Leveraging Applications of Formal
Methods, Verification and Validation. CCIS, vol 17. Springer, pp 155–169

11. L. Bocchi, S. Gorton, S. Reiff-Marganiec (2008) Engineering service-oriented applica-
tions: From StPowla processes to SRML models. In: J. Fiadeiro, P. Inverardi (eds)
Fundamental Aspects of Software Engineering. LNCS, vol 4961. Springer, pp 163–178

12. L. Bocchi, Y. Hong, A. Lopes, J. Fiadeiro (2007) From BPEL to SRML: a formal trans-
formational approach. In: M. Dumas, R. Heckel (eds) Web Services and Formal Methods.
LNCS, vol 4937. Springer, pp 92–107

13. L. Bordeaux et al (2005) When are two web services compatible? In: Technologies for E-
Services. LNCS, vol 3324. Springer, pp 15–28

14. M. Boreale et al (2006) SCC: a service centered calculus. In: M. Bravetti, M. Nunez, G.
Zavattaro (eds) Web Services and Formal Methods. LNCS, vol 4184. Springer, pp 38–57

15. D. Box et al (2003) Simple Object Access Protocol (SOAP) 1.2. W3C Recommendation
available at www.w3.org/TR/SOAP/, 24 June 2003

16. D. Box et al (2006) Web Services Policy Framework. Available at down-
load.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-polfram/ws-policy-2006-03-01.pdf

17. M. Broy, I. Krüger, M. Meisinger (2007) A formal model of services. ACM TOSEM 16(1):
1–40

18. R. Bruni, A. Lluch Lafuente, U. Montanari, E. Tuosto (2007) Service oriented architectural
design. In: G. Barthes, C. Fournet (eds) Trustworthy Global Computing. LNCS, vol 4912.
Springer, pp 186–203

19. M. Buscemi, U. Montanari (2007) CC-Pi: A constraint-based language for specifying
service level agreements. In: R. De Nicola (ed) ESOP’07. LNCS, vol 4421. Springer, pp
18–32

– 42 –

20. M. Carbone, K. Honda, N. Yoshida (2007) Structured communication-centred program-
ming for web services. In R. De Nicola (ed) ESOP’07. LNCS, vol 4421. Springer, pp 2–17

21. E. Christensen, F. Curbera, G. Meredith, S. Weerawarana (2001) Web Services Descrip-
tion Language (WSDL) 1.1. Technical report, W3C, available at www.w3.org/TR/wsdl/

22. G. Coulson et al (2008) A generic component model for building systems software. ACM
TOCS 26(1): 1–42

23. R. M. Dijkman and M. Dumas (2004) Service-oriented design: a multi-viewpoint ap-
proach. International Journal of Cooperative Information Systems 13(4): 337–368.

24. A. Elfatatry (2007) Dealing with change: components versus services. Communications of
the ACM 50(8): 35–39

25. J. L. Fiadeiro, A. Lopes, L. Bocchi (2006) A formal approach to service-oriented architec-
ture. In: M. Bravetti, M. Nunez, G. Zavattaro (eds) Web Services and Formal Methods.
LNCS, vol 4184. Springer, pp 193–213

26. J. L. Fiadeiro, A. Lopes, L. Bocchi (2007) Algebraic semantics of service component
modules. In: J. L. Fiadeiro, P. Y. Schobbens (eds) Algebraic Development Techniques.
LNCS, vol 4409. Springer, pp 37–55

27. J. L. Fiadeiro, A. Lopes, L. Bocchi (2008) An Abstract Semantics of Service Discovery and
Binding. Submitted. (Available from www.cs.le.ac.uk/jfiadeiro)

28. J. L. Fiadeiro, V. Schmitt (2007) Structured co-spans: an algebra of interaction protocols.
In T. Mossakowski, U. Montanari, M. Haveraaen (eds) Algebra and Coalgebra in Com-
puter Science. LNCS, vol 4624. Springer, pp 194–20

29. I. Foster, C. Kesselman (eds) (2004) The Grid 2: Blueprint for a New Computing Infra-
structure. Morgan Kaufmann

30. Global Computing Initiative, http://cordis.europa.eu/ist/fet/gc.htm
31. Q. Gu, P. Lago (2007) A stakeholder-driven service life-cycle model for SOA. In IW-

SOSWE’07. ACM Press 1–7
32. J. Hillston (1996) A Compositional Approach to Performance Modelling. Cambridge

University Press
33. D. Hirsch, U. Montanari (2001) Two graph-based techniques for software architecture

reconfiguration. Electronic Notes in Theoretical Computer Science 51:177–190
34. A. Lapadula, R. Pugliese, F. Tiezzi (2007) Calculus for orchestration of web services. In:

R. De Nicola (ed) ESOP’07. LNCS, vol 4421. Springer, pp 33–47
35. P. Mayer, N. Koch, A. Schröder (2008) A Model-Driven Approach to Service Orchestra-

tion. In: Proceedings of IEEE International Conference on Services Computing (SCC
2008). IEEE Press, in print

36. A. Mukhija, A. Dingwall-Smith, D. Rosenblum (2007) QoS-aware service composition in
Dino. In: ECOWS 2007. ACM Press, pp 3–12

37. N. Mukhi, P. Plebani, I. Silva-Lepe, T. Mikalsen (2004) Supporting policy-driven behav-
iours in web services: experiences and issues. In: Proceedings ICSOC’04. ACM Press, pp
322–328

38. V. Myllärniemi et al (2008) Approach for dynamically composing decentralised service
architectures with cross-cutting constraints. In: D. Morrison et al (eds) Software Architec-
ture. LNCS, vol 5292. Springer, pp 180–195

39. OASIS WSBPEL TC (2007) Web Services Business Process Execution Language Version
2.0. Technical report, OASIS.

40. C. Ouyang, E. Verbeek, W.M.P. van del Aalst, M. Dumas, A.H.M. ter Hofstede (2007)
Formal semantics and analysis of control flow in WS-BPEL. Science of Computer Pro-
gramming 67(2-3): 162–198

– 43 –

41. K. Pahl (2007) An ontology for software component matching. International Journal on
Software Tools and Technology Transfer 9: 169–178

42. M. Papazoglou, P. Traverso, S. Dustdar, F. Leymann (2007) Service-oriented computing:
state of the art and research challenges. IEEE Computer 40(11): 38–45

43. C. Peltz (2003) Web services orchestration and choreography. IEEE Computer 36(10):46–
52

44. J. Rao, X. Su (2004) A survey of automated web service composition methods. In: J.
Cardoso, A. Sheth (eds) Semantic Web Services and Web Process Composition. LNCS, vol
3387. Springer, pp 43–54

45. W. Reisig (2005) Modeling and analysis techniques for web services and business pro-
cesses. In: FMOODS 2005, LNCS, vol 3535. Springer, pp 243–258

46. W. Reisig (2008) Towards a Theory of Services. In: UNISCON 2008, pp 271–281
47. SENSORIA consortium (2007) White paper available at http://www.sensoria-

ist.eu/files/whitePaper.pdf
48. M. Shaw, D. Garlan (1996) Software Architecture: Perspectives on an Emerging Disci-

pline. Prentice Hall, London
49. UDDI Spec TC (2004) UDDI Specification Technical Committee Draft. Technical report,

OASIS, available at uddi.org/pubs/uddi v3.htm/
50. W. van der Aalst, M. Beisiegel, K. van Hee, D. Konig (2007) An SOA-based architecture

framework. Journal of Business Process Integration and Management 2(2): 91–101
51. M. Wermelinger, J. L. Fiadeiro (1998) Towards an algebra of architectural connectors: a

case study on synchronization for mobility. In: Proceedings IWSSD’98. ACM Press, pp
135–142

52. M. Wirsing, A. Clark, S. Gilmore, M. Hölzl, A. Knapp, N. Koch, A. Schröder (2006)
Semantic-based development of service-oriented systems. In: E. Najn et al. (eds) Formal
Methods for Networked and Distributed Systems. LNCS, vol 4229. Springer, pp 24–45

53. T. Yu, K-J. Lin (2005) A broker-based framework for QoS-aware web service compo-
sition. In: Proc. of the Intl. Conf. on e-Technology, e-Commerce and e-Service, IEEE
Computer Society, pp 22–29

54. L. Zeng et al (2004) QoS-aware middleware for web services composition. IEEE Transac-
tions on Software Engineering 30(5):311–327

55. The Open Service Oriented Architecture collaboration. Whitepapers and specifications
available from www.osoa.org (see also oasis-opencsa.org/sca)

56. W3C Semantic Web Activity. Publications and specifications available from
www.w3.org/2001/sw/

– 44 –

Appendix A – The Iconography

icon represents type sections

component interface
(instantiated when a new
session starts; the lifetime
is that of the session)

business role
(orchestration of inter-
actions)

requires-interface
(bound during service
execution after discovery)

business protocol
(properties required of
external services)

provides-interface
(bound when a new ses-
sion starts)

business protocol
(properties offered by
the service)

uses/serves-interface
(bound to a component in
the bottom/top layer when
a new session starts)

layer protocol (proper-
ties assumed of the
components in the
bottom or top layer)

wire interface
(instantiated together with
the second party)

connector (interaction
protocol and attach-
ments)

external configuration
policy

constraint system

internal configuration
policy

state conditions

– 45 –

Appendix B – The Example

MODULE GETMORTGAGE is

DATATYPES

sorts: usrdata, prefdata,
 moneyvalue, mortgageproposal,
 loandata, loancontract,
 insurancedata, accountdata,
 setids, bool, nat

PROVIDES

 CR: Customer
CR
Customer

MA
MortgageAgent

r&s getProposal
 idData
 income
 preferences
 proposal
 cost

r&s getProposal
 idData
 income
 preferences
 proposal
 cost

snd confirmation
 contract

snd confirmation
 contract

 SLA VARIABLES
 CHARGE

 SLA VARIABLES
 CHARGE

REQUIRES

 LE: Lender
 intLE trigger: getproposal?
 BA: Bank

 intBA trigger: default
 IN: Insurance

 intIN trigger: default

– 46 –

COMPONENTS

 MA: MortgageAgent
 intMA init: s=INITIAL
 intMA term: s=FINAL

USES

 RE: Registry

EXTERNAL POLICY

 SLA VARIABLES
 MA.CHARGE, MA.getProposal,
 LE.ServiceId, LE.COST, LE.requestMortgage

 CONSTRAINTS

 C1: {MA.CHARGE,MA.getProposal}

 def(c,t)=

€

1 if t ≤ 10 ∗c

1 + 2 ∗ c − 0.2 ∗ t if 10 ∗ c < t ≤ 5 + 10 ∗ c

0 otherwise

 C2: {LE.COST,LE.requestMortgage}

 def(c,t)=

€

1

c
+

t

100
 if c < 500

0 otherwise

 C3: {LE.ServiceId}

 def(s)=

€

1 if s ∈ WF .lenders

0 otherwise

 C4: {MA.getProposal,LE.requestMortgage},

def(t1,t2)=

€

1 if t2 > t1+ CC.Delay + CL.Delay

0 otherwise

WIRES

MA

MortgageAgent
c4 BE d4

RE
Registry

ask getLenders S1 Straight.
A(prefdata)R(setids)

R1 rpl getLenders

tll regContract

S1

Straight.
T(loandata,loancontract)

R1

prf registerContract

MA

MortgageAgent c1 CB d1
BA
Bank

s&r openAccount
 idData
 loanData
 accountData

S1

i1
i2

o1

Straight.
I(usrdata,
loandata)

O(accountdata)

R1

i1
i2

o1

r&s newMortgageAccount
 idData
 loanData
 accountData

– 47 –

MA
MortgageAgent

c1 CI d1
IN
Insurance

s&r getInsurance
 idData
 loanData
 insuranceData

S1

i1
i2

o1

Straight.
I(usrdata,
loandata)

O(insurancedata)

R1

i1
i2

o1

r&s newMortgageInsurance
 idData
 loanData
 insuranceData

MA

MortgageAgent
c1 CL d1

LE
Lender

s&r askProposal
 idData
 income
 proposal
 loanData
 accountIncluded
 insuranceRequired

S1

i1
i2

o1

o2

o3

o4

Straight.
I(usrdata,
moneyvalue)

O(mortgageproposal,
loandata,
bool,bool)

R1

i1
i2

o1

o2

o3

o4

r&s requestMortgage
 idData
 income
 proposal
 loanData
 accountIncluded
 insuranceRequired

r&s signOutLoan
 insuranceData
 accountData
 contract

S1

i1
i2

o1

Straight
I(insurancedata,

accountdata)
O(loancontract)

R1

i1
i2

o1

s&r requestSignOut
 insuranceData
 accountData
 contract

c1 CB d1

MA
MortgageAgent

S1

i1
i2

i3

o1

o2

Straight.
I(usrdata,

moneyvalue,prefdata)
O(mortageproposal,

moneyvalue)

R1

i1
i2

i3

o1

o2

r&s getProposal
 idData
 income
 preferences
 proposal
 cost

R1

i1
Straight

O(loancontract)

S1

i1
snd confir-
mation
 contract

END MODULE

– 48 –

SPECIFICATIONS

LAYER PROTOCOL Registry is

 INTERACTIONS
 rpl getLenders(prefdata):setids
 prf registerContract(loandata,loancontract)
 BEHAVIOUR

BUSINESS ROLE MortgageAgent is

INTERACTIONS
 r&s getProposal
 idData:usrdata,
 income:moneyvalue,
 preferences:prefdata,
 proposal:mortgageproposal
 cost:moneyvalue

 s&r askProposal
 idData:usrdata,

 income:moneyvalue,
 proposal:mortgageproposal
 loanData:loandata,
 accountIncluded:bool,
 insuranceRequired:bool
 s&r getInsurance
 idData:usrdata,
 loanData:loandata,
 insuranceData:insurancedata
 s&r openAccount
 idData:usrdata,
 loanData:loandata,
 accountData:accountdata
 s&r signOutLoan
 insuranceData:insurancedata,
 accountData:accountdata,
 contract:loancontract
 snd confirmation

 contract:loancontract
 ask getLenders(prefdata):setids
 tll regContract(loandata,loancontract)

 SLA VARIABLES
 CHARGE:[0..100]

 ORCHESTRATION

local s:[INITIAL, WAIT_PROPOSAL, WAIT_DECISION,
 PROPOSAL_ACCEPTED, SIGNING, FINAL],
 lenders:setids,
 needAccount, needInsurance:bool,
 insuranceData:insurancedata, accountData:accountdata

– 49 –

transition GetClientRequest
triggeredBy getProposal
guardedBy s=INITIAL
effects s’=WAIT_PROPOSAL
 ∧ lenders’= getLenders(prefdata)
sends askProposal
 ∧ askProposal.idData=getProposal.idData
 ∧ askProposal.income=getProposal.income

 transition GetProposal
triggeredBy askProposal
guardedBy s=WAIT_PROPOSAL
effects needAccount’=askProposal.accountIncluded
 ∧ needInsurance’=askProposal.insuranceRequired
 ∧ askProposal.Reply ⊃ s’=WAIT_DECISION
 ∧ ¬askProposal.Reply ⊃ s’=FINAL
sends getProposal
 ∧ getProposal.Reply=askProposal.Reply
 ∧ getProposal.proposal=askProposal.proposal
 ∧ getProposal.cost=(CHARGE/100+1)*750

 transition TimeoutProposal
triggeredBy now>getProposal.UseBy
guardedBy s=WAIT_DECISION
effects s’=FINAL
sends askProposal

 transition ProposalNotAccepted
triggeredBy getProposal
guardedBy s=WAIT_DECISION
 ∧ now<askProposal.UseBy
effects s’=FINAL
sends askProposal

 transition ProposalAccepted
triggeredBy getProposal
guardedBy s=WAIT_DECISION
 ∧ now<deadline
effects needAccount ∨ needInsurance ⊃ s’=PROPOSAL_ACCEPTED
 ∧ ¬needAccount ∧ ¬needInsurance ⊃ s’=SIGNING
sends askProposal
 ∧ needAccount ⊃ openAccount
 ∧ openAccount.idData=getProposal.idData
 ∧ openAccount.loanData=getProposal.loanData
 ∧ needInsurance ⊃ getInsurance
 ∧ getInsurance.idData=getProposal.idData
 ∧ getInsurance.loanData=getProposal.loanData
 ∧ ¬needAccount ∧ ¬needInsurance ⊃ signOutLoan
 ∧ signOutLoan.insuranceData=insuranceData
 ∧ signOutLoan.accountData=accountData

 transition GetAccount
triggeredBy openAccount
guardedBy s=PROPOSAL_ACCEPTED
effects needAccount’=false
 ∧ ¬needInsurance ⊃ s’=SIGNINING
 ∧ accountData=openAccount.accountData
sends ¬needInsurance ⊃ signOutLoan
 ∧ signOutLoan.insuranceData=insuranceData
 ∧ signOutLoan.accountData=accountData

– 50 –

 transition GetInsurance
triggeredBy getInsurance
guardedBy s=PROPOSAL_ACCEPTED
effects needInsurance’=false
 ∧ ¬needAccount ⊃ s’=SIGNING
 ∧ insuranceData=getInsurance.insuranceData
sends ¬needAccount ⊃ signOutLoan
 ∧ signOutLoan.insuranceData=insuranceData
 ∧ signOutLoan.accountData=accountData

 transition Conclude
triggeredBy signOutLoan
guardedBy s=SIGNING
effects s’=FINAL
sends confirmation
 ∧ confirmation.contract=signOutLoan.contract
 ∧ regContract(askProposal.loanData,signOutLoan.contract)

BUSINESS PROTOCOL Lender is

 INTERACTIONS
 r&s requestMortgage
 idData:usrdata,

 income:moneyvalue,
 proposal:mortgageproposal
 loanData:loandata,
 accountIncluded:bool,
 insuranceRequired:bool
 r&s requestSignOut
 insuranceData:insurancedata,
 accountData:accountdata,
 contract:loancontract
 BEHAVIOUR
 initiallyEnabled requestMortgage?

 requestMortgage? enables requestSignOut?
 requestSignOut.Reply after requestSignOut?

BUSINESS PROTOCOL Bank is

 INTERACTIONS
 r&s newMortgageAccount
 idData:usrdata,
 loanData:loandata,
 accountData:accountdata

 BEHAVIOUR
 initiallyEnabled newMortgageAccount?
 newMortgageAccount.Reply after newMortgageAccount!

– 51 –

BUSINESS PROTOCOL Insurance is

 INTERACTIONS
 r&s newMortgageInsurance
 idData:usrdata,
 loanData:loandata,
 insuranceData:insurancedata

 BEHAVIOUR
 initiallyEnabled newMortgageInsurance?
 newMortgageInsurance.Reply after newMortgageInsurance!

BUSINESS PROTOCOL Customer is

 INTERACTIONS
 r&s getProposal
 idData:usrdata,
 income:moneyvalue,
 preferences:prefdata,
 proposal:mortgageproposal
 cost:moneyvalue

 snd confirmation
 contract:loancontract
 SLA VARIABLES
 CHARGE:[0..100]
 BEHAVIOUR
 initiallyEnabled getProposal?
 getProposal.cost≤750*(CHARGE/100+1) after getProposal!
 getProposal? ensures confirmation!

END SPECIFICATIONS

