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Abstract. We present a formal model for the coordination of inter-
actions in service-oriented systems. This model provides a declarative
semantics for the language SRML that is being developed under the
FET-GC2 project SENSORIA for modelling and reasoning about com-
plex services at the abstract business level. In SRML, interactions are
conversational in the sense that they involve a number of correlated
events that capture phenomena that are typical of SOC like committing
to a pledge or revoking the effects of a deal. Events are exchanged across
wires that connect the parties involved in the provision of the service.

1 Introduction

One of the challenges raised by service-oriented computing (SOC) is to develop
a semantic model that is rich enough for capturing the new kinds of interac-
tions that it introduces but also abstract enough to support the modelling of
systems at the ”business level”, i.e. independently of the middleware program-
ming model. It is fair to say that the bulk of the research that is being published
in this area is directed to the languages and infrastructures that support Web
Services [2], which is understandable because this is the area where industry
has its most immediate interests. Our research is being developed within a FET
(Future Emerging Technologies) project — SENSORIA [17] — so as to provide
foundations for SOC as a paradigm and not just a technology.

In particular, we have been developing a reference modelling language (SRML)
through which we would like to support building systems with service-oriented
architectures in ”technology agnostic” terms. SRML is based on a semantic
model (discussed in this paper) that provides a layer of abstraction above the
languages in which services are programmed and the middleware that supports
the coordination of interactions [2]. In [7] we have shown that SRML is expressive
enough to accommodate orchestrations programmed in languages such as BPEL.
In previous papers we have provided an overview of the SRML language [10] and
of the algebraic semantics of service composition [11]. In this paper, we present
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a formal model for the primitives that we are using for the coordination of
interactions in service-oriented systems.

SRML supports three different levels of ”coordination” in SOC. One concerns
the process of discovery of external services that may be required for a certain
computation. In SRML, this process is not programmed as part of the computa-
tional process performed by services but handled separately; one of the novelties
of SOC is precisely in the externalisation of discovery — see [6] for more de-
tails about the discovery and binding of new services in SRML. Another level
concerns the coordination (orchestration) of the various parties that, together,
deliver a complex service. In SRML, we adopt a ”classical” architectural ap-
proach in which this type of coordination is performed by connectors (in the
sense of REO [3]) that link together the different parties involved in the delivery
of the service. Other approaches adopt workflow models [16]. We have discussed
this level of coordination in [1] and, although briefly discussed in Section 2, it is
not the core of our paper.

Our main contribution in this paper is at the third level of coordination: the
one that needs to be established between the different events that are involved
in interactions. In our model, interactions are conversational in the sense that
they involve a number of correlated events between two parties. To the best of
our knowledge, this is the first formal model proposed for SOC that adopts a
rich ontology of interactions.

In section 2 we give an overview of the SRML approach to the specification of
service-oriented architectures and the intuitive semantics that is associated with
it; we illustrate it with examples taken from the specification of a travel booking
service. In section 3 we formalize the notions presented in section 2 by defining
our model of service-oriented architectures and computation, over which SRML
specifications should be interpreted. Finally, section 4 concludes and outlines
further work already being carried out.

2 Modelling Complex Services in SRML

2.1 The Compositional Model

Our approach to service-oriented specification follows recent proposals by the
Service Component Architecture (SCA) initiative — for a deeper discussion on
the relation between SRML and SCA refer to [10]. Like in SCA, the architectural
unit for specifying a complex service in SRML is the module. Modules specify
how a set of independent parties are interconnected and interact to provide the
behaviour of the service. A module consists of an architecture, i.e. the definition
of which pairs of parties are connected through wires, and a specification for
each of the parties and each of the wires. Figure 1 shows the structure of the
module TravelBooking, which models a service that manages the booking of a
flight and a hotel.

The service is assembled by connecting an internal component BookingAgent
to the external services PayAgent, HotelAgent and FlightAgent and the persis-
tent component (a database of users) UsrDB. The difference between the three
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Fig. 1. The structure of the module TravelBooking

kinds of entities is intrinsic to SOC: internal components are created each time
the service is invoked and killed when the service terminates; external services
are procured and bound to the other parties at run time; persistent components
are part of the business environment in which the service operates — they are not
created nor destroyed by the service, and they are not discovered but directly in-
voked as in component-based systems. Customer is the interface through which
service requesters interact with the TravelBooking service. In SRML, interac-
tions are peer-to-peer between pairs of entities connected through wires — CB,
CP , BP , BH , BF and BD are the wires in TravelBooking. Complex services
like TravelBooking establish multi-party collaborations by orchestrating their
interactions.

The specification of each of the parties contains a declaration of the inter-
actions the party can be involved in and a specification of the properties that
can be observed of these interactions during a session. If the party is an internal
component of the service, this specification is an orchestration given in terms
of state transitions — the language of business roles. If the party is the inter-
face of an external service or persistent component, the specification consists
of a set of temporal properties expressed in temporal logic — the language of
business protocols. Figure 2 shows part of the specification of the component
BookingAgent - the orchestration resorts to a set of locally declared variables
in order to define the state transitions the component is involved in. Figure 3
shows the specification of the business protocol that the hotel agent service is
expected to engage in — the language involves abbreviations of temporal logic
formulae. The use of temporal logic has also been adopted by workflow-based
approaches to SOC; in [16] constraint templates based on linear temporal logic
are used to capture common specification patterns for service flows. In order
to capture patterns of service-oriented interactions we use abbreviations of an
action/state branching time logic based on UCTL [12]. This new logic is being
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developed within SENSORIA together with our partners at ISTI-CNR (Pisa).
Details about this logic and on how it encodes the patterns of service-oriented
interactions used in SRML specifications will be presented in forthcoming pub-
lications.

The specification of each wire consists of a set of connectors [1] that are respon-
sible for binding and coordinating, through interaction protocols, the complex
interactions that are declared locally in the specifications of the two parties that
the wire connects (much in the sense of [14]). Figure 4 shows the specification of
the wire BH that connects BookingAgent to HotelAgent. The only interaction
that exist between these two parties is named bookHotel from the point of view
BookingAgent and is named lockHotel from the point of view of HotelAgent.
The reason that interactions can be named differently in the two parties is pre-
cisely due to the fact that complex services are put together at run time without
a-priori knowledge of the parties that will be involved. Because of this, we need
to rely on the interaction protocols of the wires to establish how these interac-
tions are related and coordinated. In this paper, we will not discuss interaction
protocols in any great length; see [1] instead. This is because such connector-
based coordination is by now well understood. The contribution of this paper is
in the coordination model that we propose for the different events that occur as
part of the interactions. The following sections will clarify the examples shown
in figures 2, 3 and 4 — in particular, the meaning of the icons and symbols that
are used will be explained.

2.2 Service-Oriented Interactions and Events

In service-oriented systems, typical interactions are of a conversational type and
cannot be modelled as simple state transitions because they involve a durative
asynchronous exchange of correlated events. In SRML, two-way interactions cap-
ture a pattern of dialogue that is prevalent in service-oriented systems: a party
sends a request to a co-party that replies either positively by making a pledge
to deliver a set of properties (i.e. it gives some kind of guarantee) or negatively,
in which case the interaction ends; if the answer is positive the party that made
the request can commit by accepting the pledge or refuse the pledge and cancel
the interaction. If and after the requester commits, a revoke may be available
that compensates for the effects of the pledge. One-way interactions are also
supported in SRML: they capture situations in which a party sends a single
event and does not expect a reply from the co-party. This type of interaction
has only this one event associated with it. The set of events associated with an
interaction a is shown in the following table:

a� The initiation-event of a.
aB The reply-event of a.
a� The commit-event of a.
a✗ The cancel-event of a.
a✞ The revoke-event of a.
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BUSINESS ROLE BookingAgent is

INTERACTIONS

r&s bookTrip
from,to:airport; out,in:date
fconf:fcode; hconf:hcode; amount:moneyvalue

s&r bookFlight
from,to:airport; out,in:date; traveller:usrdata
fconf:fcode; amount:moneyvalue;
beneficiary:accountn; payService:serviceId

s&r payment
amount:moneyvalue; beneficiary:accountn
originator:usrdata; cardNo:paydata
proof:pcode

s&r bookHotel
checkin,checkout:date,
traveller:usrdata

 hconf:hcode
…

ORCHESTRATION

local
s:[START, LOGGED, QUERIED, FLIGHT_OK, HOTEL_OK,

CONFIRMED, END_PAYED, END_UNBOOKED, COMPENSATING,
END_COMPENSATED]; login:Boolean;
traveller:usrdata; travcard:paydata

transition Request
triggeredBy bookTrip ?
guardedBy s=LOGGED 
effects bookTrip .out>today  s’=QUERIED

 bookTrip .out today  s’=END_UNBOOKED 
sends bookTrip .out>today  bookFlight !

 bookFlight .from=bookTrip .from
 bookFlight .to=bookTrip .to
 bookFlight .out=bookTrip .out
 bookFlight .in=bookTrip .in
 bookFlight .traveller=traveller

bookTrip .out today bookTrip !
 bookTrip .Reply=False

transition TripCommit
triggeredBy bookTrip ?
guardedBy s=HOTEL_OK
effects s’=CONFIRMED
sends bookFlight !  bookHotel !  payment !

 payment .amount=bookFlight .amount
 payment .beneficiary=

bookFlight .beneficiary
 payment .originator=traveller
 payment .cardNo=travcard

Fig. 2. An extract from the specification of the component BookingAgent written in
the language of business roles. Some of the interactions in which BookingAgent is
involved in — bookTrip, bookF light, payment and bookHotel — are declared. A set of
local state variables is also declared and the specifications of transitions Request and
TripCommit are shown.

Associated with every positive reply there is a deadline, a.useBy, for the party
to reply within which the co-party offers a pledge. After the deadline is over there
is no guarantee that the co-party will interact with the party any longer. Figure 5
represents the intuitive semantics of a two-way interaction when the co-party
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BUSINESS PROTOCOL HotelAgent is

INTERACTIONS

r&s lockHotel
checkin,checkout:date; name:usrdata
hconf:hcode

BEHAVIOUR

initiallyEnabled lockHotel ?
lockHotel ? enables lockHotel ? until

 today < lockHotel .checkin

Fig. 3. The specification of the external interface HotelAgent written in the language
of business protocols. HotelAgent is involved in one interaction named lockHotel that
models the booking of a room in a hotel. Some properties of this interaction are spec-
ified: a room booking can be initiated once the service is instantiated and a room
reservation can be canceled up until the check-in date.

BA
BookingAgent

c3 BH d3
HA
HotelAgent

s&r bookHotel
checkin
checkout

      traveller
hconf

S
i1
i2
i3
o1

R
i1
i2
i3
o1

r&s lockHotel
checkin
checkout

      name
hconf

Fig. 4. The specification of the wire BH that connects BookingAgent to HotelAgent.
≡ denotes a straight interaction protocol [1] that binds interaction bookHotel (de-
clared in the specifications of BookingAgent) to interaction lockHotel (declared in the
specification of HotelAgent).

PartyA PartyB

useBy

Fig. 5. The intuitive semantics of two-way interactions
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replies positively. In the case on the left, the initiator commits to the pledge;
a revoke may occur later on, compensating the effects of the commit-event. In
the middle, there is a cancellation; in this situation, a revoke is not available.
In the case on the right, the deadline occurs without a commit or cancel having
occurred.

In specifications one-way interactions are typed by either snd or rcv to distin-
guish between the points of view of the sending party and the receiving co-party,
respectively. The equivalent types for two-way interactions are s&r (send and
receive) and r&s (receive and send). For instance, the specification of HotelA-
gent, shown in figure 3, declares a two-way interaction lockHotel typed with r&s
to mean that the co-party that engages with hotel agent in this interaction is
responsible for initiating it by requesting a hotel booking.

2.3 Asynchronous Coordination

Parties engage in interactions independently of their co-parties, i.e. the workflow
that determines when a party interacts, by publishing an event or processing it,
is independent of the way these events are transmited [1]. Wires are responsible
for establishing and coordinating interactions between parties; events are carried
from one party to the other by the wire that connects them. Associated with
each wire there is a delay that represents the maximum time that the wire takes
to deliver each event to the receiving party after it is sent. The delay of each
wire is set at run time as part of the service level agreement that is negotiated
when external services need to be procured [6].

We use e! to refer to the publishing of event e and e? to refer to its processing.
In the specification of component BookingAgent, shown in figure 2, there is
a transition named TripCommit that is triggered by the processing of event
bookT rip�. The effect of this transition is that of publishing events bookF light�,
bookHotel� and payment�.

It is also important to distinguish between the notion of processing an event
and that of executing it. Parties are not always in a state in which they are ready
to engage in a given interaction. For instance, in order for the processing of event
bookT rip� to have the effect described in transition TripCommit, shown in
figure 2, the BookingAgent needs to be in a state in which the local variable s is
set to HOTEL OK; we say that bookT rip� is enabled in such states. If the event
is processed in a state in which BookingAgent is not ready to execute it, then the
event is discarded. In the case of interaction lockHotel in HotelAgent, shown
in figure 3, the revoke-event lockHotel✞ becomes enabled by the execution of
the commit event lockHotel� that confirms a reservation, but it is enabled only
before the check-in - this is specified through the second property of HotelAgent.

3 The Semantic Model Underlying SRML

In this section we formalize the notions that were given informally in section
2. Throughout the rest of the paper we assume a fixed data signature Σ =
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〈D, F 〉, where D is a set of sorts and F is a D∗ × D-indexed family of sets of
operations. We further assume that time, boolean ∈ D are sorts that represent
the usual concepts of time and truth values. We also assume a fixed algebra U
for interpreting Σ.

3.1 Signatures

We use the notion of signature to characterize a service-oriented architecture
and as the basis for defining the models of behavior that are valid for that
architecture.

Definition 1 (SRML Interaction Signature)
A SRML interaction signature (signature for short) is a tuple 〈COMP,

WIRE, 2WAY, 1WAY 〉 where:

– 〈COMP, WIRE〉 is a simple graph (undirected, without self-loops or multi-
ple edges) where COMP is the set of nodes (the parties that form the service)
and WIRE is the set of edges (the wires that connect the parties).

– 2WAY and 1WAY are COMP × COMP -indexed families of mutually dis-
joint sets of names of asynchronous two-way and one-way interactions, re-
spectively, each taking place between a pair of parties; we use INT to refer
to 2WAY ∪ 1WAY .

– For every c, c′ ∈ COMP , INT〈c,c′〉 = ∅ if 〈c, c′〉 /∈ WIRE, i.e. there are no
interactions between components that are not connected by a wire.

The graph 〈COMP, WIRE〉 defines the set of parties that compose the service
and how they are interconnected by wires. The graph does not have multiple
edges, meaning that for every two parties there is either a single wire connecting
them or they are not directly connected. Also the graph does not have loops,
meaning that a party cannot be connected to itself. The graph is undirected
because wires do not have a direction associated with them; wires are able to
transmit events both ways. Interactions are directed: if interaction i belongs to
INT〈c,c′〉 this means that the interaction is initiated by party c. Obviously, in
this case, there needs to be a wire between parties c and c′ for the interaction
to take place; this is captured by the last condition of the definition.

Throughout the rest of the paper we will consider a fixed signature S =
〈COMP, WIRE, 2WAY, 1WAY 〉 over which all definitions will be given.

3.2 Events and Pledges

A signature defines which interactions are established between the parties of the
system. This information allows us to formalize the notion of event that was
introduced in 2.2. We do this by defining which events can be sent and received
by each of the parties.

Definition 2 (Events)
For every a ∈ INT and x ∈ COMP , the set Ex(a) of events associated with

interaction a that are received by a party x is defined as follows:



A Coordination Model for Service-Oriented Interactions 9

If a ∈ 2WAY〈c,c′〉 then

Ec(a) = {aB}
Ec′(a) = {a�, a�, a✗, a✞}
Ec′′(a) = ∅ for any other c′′ ∈ COMP

If a ∈ 1WAY〈c,c′〉 then
Ec(a) = ∅
Ec′(a) = {a�}
Ec′′(a) = ∅ for any other c′′ ∈ COMP

We also define the following sets:

– Ec =
⋃

{Ec(a) : a ∈ INT } is the set of all events that can be received by
party c.

– E(a) = Ec(a) ∪ Ec′(a) where a ∈ INT〈c,c′〉 is the set of events associated
with interaction a.

– E〈c,c′〉 =
⋃

{E(a) : a ∈ INT〈c,c′〉 ∨ a ∈ INT〈c′,c〉} is the set of all events that
are carried by wire 〈c, c′〉.

– E =
⋃

{E(a) : a ∈ INT } is the set of all events that can happen in the
system.

We see E as a WIRE-indexed or a COMP -indexed family of sets when
convenient. Given EV ⊆ E we use EVw ⊆ Ew with w ∈ WIRE or EVc ⊆ Ec

with c ∈ COMP to refer to the members of those families.

Associated with every one-way interaction a there is one and only one event,
a�. Each two-way interaction a has associated with it the set of five events
{a�, aB, a�, a✗, a✞}. Each event has a direction associated with it; an event is
sent from one party to a co-party that receives it. For every two-way interaction
a between party c and party c′, the events a�, a�, a✗ and a✞ are sent by party c
and received by party c′, while the event aB is sent by c′ and received by c. As
it also described in 2.2, the events associated with a two-way interaction have
specific roles and are correlated to each other. This correlation will be formalized
further ahead. Also associated with the reply of two-way interactions there is a
pledge that is guaranteed to hold within the deadline.

Definition 3 (Pledges). The set PP of pledges is {a.pledge : a ∈ 2WAY }.

The reply of a two-way interaction can be either negative or positive. In the last
case there is a deadline before which the party that initiated the interaction can
commit or cancel. We capture this through the notion of reply interpretation.

Definition 4 (Reply interpretation). A reply interpretation RI assigns to
every interaction a ∈ 2WAY

– a parameter a.replyRI ∈ booleanU , indicating if the reply is positive.
– a deadline a.useByRI ∈ timeU for committing or cancelling.
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3.3 Computation States and Steps

As mentioned in 2.3, every wire has a time delay that defines the maximum time
that an event takes to be delivered.

Definition 5 (Wire interpretation). A wire interpretation Ψ assigns to every
w ∈ WIRE an element w.delayΨ ∈ timeU .

We will adopt a discrete state based model in which for every state of the system
there are several possible activities each leading to a different state.

Definition 6 (Computation state)
A computation state for S is a tuple

〈PND, INV, ENB, T IME, PLG, RI〉 where:

– PND ⊆ E is the set of events pending in that state, i.e. the events that are
waiting to be delivered by the corresponding wire.

– INV ⊆ E is the set of events invoked in that state, i.e the events that have
been delivered and are waiting to be processed.

– ENB ⊆ E is the set of events that are enabled in that state, i.e. the events
that will be executed if they are processed.

– TIME ∈ timeU is the time at that state.
– PLG ⊆ PP the set of pledges that hold in that state.
– RI is a reply interpretation.

In any state of the system there is a set of events that are pending in the wires,
i.e. events that have been published, but haven’t yet been delivered by the wires
to the corresponding parties; this is represented by the set PND. INV is the
set of events that were delivered by the wires and stored locally by each party
where they are waiting to be processed. In any given state there is a set ENB
of events that each party is ready to execute. Associated with each state there
is also a time instant TIME, the set of pledges that are true in that state PLG
and a reply interpretation for two-way events. The way the system changes from
one state to another is given by the notion of computation step.

Definition 7 (Computation step)
A computation step for S is a tuple 〈SRC, TRG, DLV, PRC〉S where:

– SRC and TRG are computation states
– DLV ⊆ PNDSRC is the set of events that are selected for delivery during

that step.
– PRC is a partial function that selects for each party c such that INV SRC

c 	= ∅
an element of this set, i.e. it’s the function that selects the event that will be
processed.

– There is a set of actually-delivered events ADLV ⊆ DLV such that for every
c ∈ COMP :

• If PRC(c) is defined then INV TRG
c = (INV SRC

c \ {PRC(c)})∪ADLVc

• If PRC(c) is undefined then INV TRG
c = INV SRC

c ∪ ADLVc
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– PNDTRG = (PNDSRC \ DLV ) 
 PUB where PUB ⊆ E, i.e. the events
that were selected for delivery will no longer be pending in the target state;
the new events that become pending in the target state are those that are
published during the step

For each step 〈SRC, TRG, DLV, PRC〉 we also define the following set:

– EXC = {PRC(c) : PRC(c) ∈ ENBSRC
c } are the events that are executed

during that step; those that are selected for processing and are enabled in the
source state.

The set of events that are pending in wires is updated during each computation
step by removing the events that the wire delivers during that step — DLV
— and adding the events that each party publishes — PUB. At each step,
parties may choose to process one of the events waiting to be processed; this is
captured by the function PRC. The fact each party can only process one event
at a time is justified by the assumption that the internal state of the parties is
not necessarily distributed and therefore no concurrent changes can be made to
their states. We assume that not all of the events that are delivered are actually
delivered to the receiving party; each wire may not be reliable, i.e. it may loose
some of these events. The subset of delivered events that are actually delivered is
given by ADLV . The set of events that are waiting to be processed in each party
is updated in each step by removing the event that is processed and adding the
events that are actually delivered to that party. The events that are executed on
a computation step — EXC — are those that are processed during that step
and are enabled in the source state.

Figure 6 is a graphical representation of the event flow during a computation
step from the point of view of parties A and B connected by a wire W. Events
e ∈ INVA and e′ ∈ INVB that are waiting to be processed in the source state
are selected for processing during the step (PRC(A) = e and PRC(B) = e′)
and therefore removed from these sets in the target state. The subset of pending
events that is selected for delivery during the step is shown in light grey; some of
these events are delivered to party A and enter the set INVA while the rest are
delivered to party B and enter INVB. The set of events that are published by
each party during the step is given by PUBA and PUBB; these events become
pending in the wire in the target state. The notion of reliability for wires is given
by the following definition:

Definition 8 (Reliable wire)
A wire w is said to be reliable for a computation step if DLVw = ADLVw.

The following property will necessarily hold for that step:

– DLVw = ADLVw = INV TRG
w \ INV SRC

w .

That is, a wire is said to be reliable for a computation step if no event is lost by
the wire on that step; each event in a reliable wire is either actually delivered to
the destination party or it remains pending in the wire.
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PARTY A PARTY B

INVA INVBPNDw

WIRE
We

e'

TRG

PARTY A PARTY B

INVA INVBPNDw

WIRE
W

SRC

PUBA PUBB

PRC(B)
DLVBDLVA

PRC(A)

Fig. 6. A graphical representation of the event flow during a computation step from
the point of view of a wire w between a pair of parties A and B. The system changes
from state SRC to state TRG during the step.

3.4 Computation Trees

The different possible evolutions of a service-oriented system are given by a
computation tree. In this paper we will consider only computations for which all
wires are reliable for all steps.

Definition 9 (SRML tree)
A SRML tree for a signature S is of the form 〈N, R, q0, G〉 where N is the

set of nodes, R ⊆ N × N is the set of edges, q0 ∈ N is the root node and
G is a labelling function that assigns a computation state to every node and a
computation step to every edge. We use n −→ n′ to refer to an edge (n, n′) ∈ R.
Also, we use the following notation to refer to the elements of the labels:

– If n is a node we use the names PNDn, INV n, ENBn, T IMEn,
PLGn, RIn to refer to the elements of the computation state G(n) (in ac-
cordance with the names used in definition 6)

– If r is an edge we use the names SRCr, TRGr, DLV r, PRCr, EXCr,
PUBr to refer to the elements of the computation step G(r) (in accordance
with the names used in definition 7)

Also, for every node n ∈ N we define the set UNPUB(n) = {e ∈ E : there is
no r ∈ R such that r < n and e ∈ PUBr}, i.e. the events unpublished between
the root and node n. We use < as a partial order relation on the sets of nodes
and steps, N ∪R, based on the distance to the root node (e.g. n < n′ means that
there is a path from the root node to n′ that passes through n).
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Not all trees represent valid evolutions. Many of the properties of service-oriented
systems, described intuitively in section 2, like the sequence of events in a two-
way interaction, concern the evolution of the system across several states. The
definition of computation tree captures what are considered to be the valid
models of service-oriented computation in SRML.

Definition 10 (Computation tree)
A computation tree for a signature S and a wire interpretation Ψ is a SRML

tree 〈N, R, q0, G〉 that satisfies the following rules:

Time elapsion. For every edge n −→ n′, TIMEn < TIMEn′
(time moves

forward)
Single session. For every event e ∈ E if there is an edge r ∈ R such that

e ∈ PUBr, i.e. e is published in r, then there is no edge r′ < r such that
e ∈ PUBr′

(events cannot be published more than once during a session —
a computation tree models the evolution of a session).

Wire delay. For every event e ∈ Ew and edge r ∈ R, if e ∈ PUBr, i.e. if e
is published in r, then for every subsequent node n ∈ N such that r < n
and TIMESRCr

+ w.delayΨ < TIMEn, e /∈ PNDn, i.e. e is not pending
anymore in nodes where the time delay of the wire has elapsed (If an event
is published then it will be delivered with a maximum delay)

Event correlation. For every two-way interaction a ∈ 2WAY , every node n ∈
N and every edge r ∈ R the following properties hold:
1. aB∈ ENBn if there is r ∈ R such that r < n and a�∈ PUBr and there

is no r′ ∈ R such that r′ < n and aB∈ EXCr (the publication of the
initiation-event enables the execution of the reply-event)

2. a� ∈ EXCr iff for all r < r′ there is r′′ such that either:
– r′′ < r′ and aB∈ PUBr′′

or
– r′ < r′′ and aB∈ PUBr′′

(the reply-event of any interaction will be published after and only after
the initiation-event was executed)

3. If aB∈ PUBr then for every node n, n′, n′′ ∈ N such that r = n −→ n′

and n′ < n′′, RIn′
= RIn′′

(The value of the reply, either positive or
negative, and the associated deadline become fixed once the reply-event
is published)

4. a�and a✗ ∈ ENBn if:
– there is an edge r′ ∈ R such that r′ < n, aB∈ PUBr′

– a.replyRIn

= true
– there is no r′′ ∈ R such that r′′ < n and a�∈ EXCr′′

or a✗ ∈
EXCr′′

– TIMEn < a.useByRIn

(the publication of a positive reply-event guarantees that the execution of
the commit-event and the cancel-event becomes enabled until either one
of them is executed or the deadline expires)

5. a.pledge ∈ PLGn if the following conditions hold:
– there is an edge r′ ∈ R such that r′ < n and aB∈ PUBr′

– a.replyRIn

= true
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– there is no r′′ ∈ R such that r′′ < n and a�∈ EXCr′′
or a✗ ∈

EXCr′′

– TIMEn < a.useByRIn

(The pledge must be true from the moment a positive reply is published
until either the commit or the cancel are executed or the deadline expires)

6. If a�∈ PUBr where r = n −→ n′ then:
– there is r′ < r such that aB ∈ EXCr′

– a.replyRIn

= true
– there is no r′′ < r such that a✗ ∈ PUBr′′

(The commit-event can only be published if the reply-event was executed,
the reply was positive and the cancel-event was not published)

7. If a✗ ∈ PUBr where r = n −→ n′ then:
– a.replyRIn

= true
– there is r′ < r such that aB ∈ EXCr′

– there is no r′′ < r such that a� ∈ PUBr′′

(The cancel-event can only be published if the reply-event was executed,
the reply was positive and the commit-event was not published)

8. If a✞ ∈ ENBn then there is r ∈ R such that r < n and a�∈ EXCr and
there is no r′ ∈ R such that r′ < n and a✞ ∈ EXCr (the revoke-event
can only be enabled after the execution of the commit-event)

9. If a✞ ∈ PUBr then there is r′ < r such that a�∈ PUBr′
(The revoke-

event can only be published after the commit-event was published)

4 Concluding Remarks and Further Work

The primitives that we are proposing take into account proposals that have
been made for Web-Service Conversation [5], in other modelling languages such
as ORC [15], and in calculi such as Sagas [8]; they take into account that inter-
actions are stateful and provide first-class notions such as reply, commit, com-
pensation and pledge. The richness of the conversational model that we propose
is reflected in the computational model. On the one hand, we need to account
for the correlation that needs to be enforced among the different events involved
in an interaction. On the other hand, we need to reflect the fact that events are
transmitted through ”wires” that enforce the interaction protocols that coordi-
nate the joint behaviour of the parties involved in the delivery of the service.

The computational model we have defined captures the properties that are
common to all SRML service-oriented systems independently of their specifi-
cations and any other interpretation constraints. SRML specifications have the
role of defining the properties that are particular to a specific service-oriented
system, i.e. restricting the set of trees that represent valid computations for that
system. Further work is being carried out to give a complete formalization of
the syntax and semantics of the SRML specification languages: the language of
business roles, the language of business protocols and the language of interaction
protocols. In this paper we have presented the work we have done so far towards
formalising the semantic domain of these languages.
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In connection with the previous we are working on applying the UCTL branch-
ing time temporal logic to the SRML framework. UCTL is an action/state based
logic that was originally introduced to express the properties of UML statecharts
[12]. The formal power that is attained with an action/state logic is crucial in
order to reason about SRML models that, as we have seen in section 3, possess
information related to the state of the system and the behaviour that changes the
state. UCTL is also being used in other approaches to service-oriented comput-
ing: in [4] UCTL is used to reason about an asynchronous protocol for service-
oriented applications; in [9] the UCTL framework is adapted in order to reason
about a calculus for the orchestration of web services.

By defining the formal grounds over which UCTL can be applied to our mod-
els of service-oriented computation we accomplish several objectives. First we
can validate the soundness of our computational model by defining the tools
that allow us to reason about the model itself and axiomatize it. Second, these
same tools will allow reasoning about service-oriented architectures both using
proof strategies and automatic model-checking [12]. Finally, we lay the basis for
defining the language of business protocols that is used to specify the behaviour
of interfaces and that consists essentially of abbreviations of the UCTL temporal
logic.

We have introduced time as a property of states, but gave no further insight
into what kind of time model we will be using. We are currently investigating the
best way to integrate time in our service-oriented model of computation taking
into account the expressiveness, verifiability and model-checking requirements of
the SRML framework [13].
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