
J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 358–373, 2007.
© IFIP International Federation for Information Processing 2007

Specifying and Composing Interaction Protocols for
Service-Oriented System Modelling∗

João Abreu1, Laura Bocchi1, José Luiz Fiadeiro1, and Antónia Lopes2

1 Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK

{abreu,bocchi,jose}@mcs.le.ac.uk
2 Department of Informatics, Faculty of Sciences, University of Lisbon

Campo Grande, 1749-016 Lisboa, Portugal
mal@di.fc.ul.pt

Abstract. We present and discuss a formal, high-level approach to the specifi-
cation and composition of interaction protocols for service-oriented systems.
This work is being developed within the SENSORIA project as part of a lan-
guage and formal framework supporting the modelling of complex services at
the business level, i.e. independent of the underlying platform and the lan-
guages in which services are programmed and deployed. Our approach is based
on a novel language and logic of interactions, and a mathematical semantics of
composition based on graphs. We illustrate our approach using a case study
provided by Telecom Italia, one of our industrial partners in the project.

1 Introduction

SENSORIA – an IST-FET Integrated Project on Software Engineering for Service-
Oriented Overlay Computers – is defining a formal framework for modelling service-
oriented systems in a broad sense that encompasses and generalises the methods and
techniques that are either available or envisioned for Web Services [1], as well as other
platforms such as Grid Computing [9]. One of the strands of the project is the defini-
tion of a reference modelling language – SRML – that can address the higher levels of
abstraction of “business modelling” by providing modelling primitives that are inde-
pendent of the languages and the middleware infrastructure over which services are
programmed. This includes a mathematical semantics that can support different kinds
of analysis and in relation to which techniques for the deployment, publication, discov-
ery and binding of services can be defined and proved to be correct.

In [6], we presented a preliminary account of our approach and the way it relates to
the Service Component Architecture (SCA) [13], namely the notion of module that
we adopt for describing complex services and support service discovery and composi-
tion. An algebraic semantics of SRML modules and module composition can be

∗ This work was partially supported through the IST-2005-16004 Integrated Project SENSORIA:

Software Engineering for Service-Oriented Overlay Computers, and the Marie-Curie TOK-IAP
MTK1-CT-2004-003169 Leg2Net: From Legacy Systems to Services in the Net.

jfiadeiro
Note
'Engineering' should be in italics

 Specifying and Composing Interaction Protocols 359

found in [7]. In this paper, we report in more detail on one of the key ingredients of
service description and composition: the interaction protocols that are responsible for
interconnecting the different parties that are involved in a composite service. The
challenge here is twofold. On the one hand, to provide a formal model that is rich
enough to capture the characteristics of interactions that are typical of service-oriented
systems. This includes interactions that are ‘conversational’, i.e. that cannot be char-
acterised by a transition involving only initial and final states. On the other hand, to
make the interaction protocols independent of the way the parties involved in them
engage in the interactions, for instance the workflows that determine when the parties
actually interact. This is important for dynamic, run-time service discovery and bind-
ing, and also for reuse.

In Section 2, we discuss and justify the role that, in our approach, we assign to in-
teraction protocols. In Section 3, we present the language that we use for describing
and using interaction protocols in the connectors that establish wires between parties
of a complex service. Finally, in Section 4, we present an algebraic semantics for
interaction protocols. Throughout the paper, we use examples from a case study de-
veloped with Telecom Italia, one of our industrial partners in SENSORIA: the “Call
and Pay Taxi through SMS” scenario.

2 Modelling Complex Services in SRML

From the more abstract point of view of systems modelling, i.e. once we abstract from
the nature of the languages and platforms over which services are deployed, the main
challenge raised by service-oriented systems is in the number of autonomic entities in-
volved and the complexity of the interactions within them. That is, the complexity that
matters is not so much in the “size” of the code through which such entities are pro-
grammed (size is a design time issue) but on the number, intricacy and dynamicity of the
interactions in which they will be involved, what in [4] we have called social complexity.

This is why it is so important to put the notion of interaction at the centre of
research in service-oriented system modelling. This is also why new methods and
formal techniques become necessary. For instance, from an algebraic point of view,
social complexity raises new challenges in that it does not make sense to see service-
oriented systems as being compositions, in an algebraic sense, of simpler components:
there is not a notion of whole to which the parts contribute but, rather, a number of
autonomic entities that interact with each other through “interaction protocols” that
are external to and independent from those entities.

2.1 The Module Structure

In what concerns the definition of a modelling language that can tackle these new
challenges, our approach within SENSORIA is based on a notion of module through
which we specify complex services and break the complexity of running systems by
recognising larger chunks (sub-configurations) that have a meaning in the application
domain, i.e. correspond to “business activities”. This notion of module, which is in-
spired by recent work of Service Component Architecture (SCA) [13], supports the
modelling of composite services as entities whose business logic involves a number
of interactions among more elementary service components as well as the invocation

360 J. Abreu et al.

of services provided by other parties. As in SCA, interactions are supported on the
basis of service interfaces defined in a way that is “independent of the hardware plat-
form, the operating system, hosting middleware and the programming language used
to implement the service”.

In order to illustrate our approach, we are going to use the Call and Pay Taxi ser-
vice scenario used by Telecom Italia, one of the partners of SENSORIA, within its
R&D activities on Parlay X telecommunications web services [1]. This is a complex
service that involves different telecommunication services provided by mobile net-
works and other external parties in order to provide users the ability to call a taxi and
pay for the ride by sending SMS’s to a specified number (4777 in [1]). The business
process enacted by the service consists of the following steps:

• The user sends an SMS to 4777 to ask for a taxi at his/her current location.
• The service retrieves information about the user from User Profiler, and its

location from User Locator Service.
• The service selects a taxi company at the user’s location.
• The service uses a Call Agent to set up a voice call between the user and the

taxi company.
• The service sends the user and taxi driver an SMS with the taxi number and a

“call-code” identifying the transaction.
• After the taxi ride, and in order to authorise the payment, the user sends an

SMS with the information previously received and the amount to be paid.
• The service sends a charging request to a Payment Service.
• The taxi driver and the user receive a notification of the outcome of the pay-

ment via another SMS.

In order to model the Call&PayTaxi service through a module in SRML, we need
to decide which entities of the scenario description are to be represented as internal
components – in the sense that they are deployed when the module is instantiated –
and which correspond to parties that need to be procured externally at run-time, in
which case they are modelled by what we call external interfaces.

The module that we propose has the following structure:

 Specifying and Composing Interaction Protocols 361

2.2 The Provides-Interface

Every service module in SRML has one distinguished external interface, what we call
a provides-interface or EX-P for short. The EX-P declares the interactions and proto-
col that are supported between the service and any service requester. The EX-P of
Call&PayTaxi is declared to be CR of type Customer – a business protocol that con-
sists of a set of interactions and a specification of the dependencies that exist between
them, including the order in which they are expected to occur. This subsumes what, in
[2], are called external specifications i.e., the specification of which message ex-
change sequences are supported by the service, for example expressed in terms of
constraints on the order in which service operations should be invoked.

This is how we specify a business protocol in SRML:

BUSINESS PROTOCOL Customer(myNumber:phoneNum) is

INTERACTIONS

snd callTaxiOUT
rcv callTaxiIN

text:string
snd payTaxiOUT

text:string
rcv payTaxiIN

text:string

BEHAVIOUR

initiallyEnabled callTaxiOUT ?
P_callTaxiOUT ? ensures callTaxiIN !
P_callTaxiIN ! callTaxiIN.text ’NA’ enables payTaxiOUT ?
P_payTaxiOUT ? ensures payTaxiIN !

A business protocol declares the interactions maintained by the service under what
we call an interaction signature (or signature, for short). In the example above, we
use one-way asynchronous interactions that correspond to the SMS’s sent (OUT) and
received (IN) by the customer. Notice that there is no declaration of which compo-
nents inside the service are co-parties in these interactions; co-parties are identified
through wires as discussed below, which also specify the protocol that coordinates the
interaction between the two parties.

One-way interactions may have parameters, which are declared under . In the
example above, these correspond to the text of the SMS. The business protocol itself
has a parameter: myNum of type phoneNum. This parameter is instantiated with the
phone number of the customer when the actual customer is bound to the
Call&PayTaxi service.

Further to a signature, a business specification includes the properties of the conver-
sation that any customer can have with the service. The first property declares that,
initially (i.e. when the service is bound to the customer), the co-party is ready to accept
a call for callTaxiOUT. The second property declares that the fact that the co-party has
received a call for callTaxiOUT ensures that the service will issue a callTaxiIN. The
third property declares that, if the callTaxiIN has been issued with a text other than ‘No
taxi available’, the service is ready to receive a payment payTaxiOUT. Finally, the
fourth property ensures that, having received a payTaxiOUT, the service will issue an

362 J. Abreu et al.

acknowledgment payTaxiIN. The language in which these properties are expressed
uses abbreviations of a temporal logic that we briefly discuss in Section 3.

2.3 Requires-Interfaces

The service provided through CR results from a business process that involves a num-
ber of internal components that may need to invoke external services specified in the
module through what we call requires-interfaces (EX-R’s for short). The discovery
process for any given EX-R takes place at run-time when given declared triggers oc-
cur, and returns a service that implements a module whose EX-P matches the EX-R.
Through the binding mechanisms of the underlying middleware, the components
through which the discovered service is implemented become connected to those of
the client service through the interaction protocols specified in the wires. The system
thus assembled executes according to the orchestration that results from the assembly.

The external parties defined in our example are:

• The user locator LC.
• The call agent CA responsible for establishing phone calls.
• The payment agent PY.
• The taxi driver DR.
• The taxi company TX.

The specification of an EX-R is given by a business protocol much in the same
way as for the provides-interface. As an example, consider the conversation with the
taxi company TX:

BUSINESS PROTOCOL TaxiCo is

INTERACTIONS

r&s contactCompany
userNum:phoneNum, language:lang
taxiNum:reference, callCode:reference,
driverNum:phoneNum

snd requestCall
operatorNum

BEHAVIOUR

initiallyEnabled contactCompany ?
P_contactCompany ? ensures requestCall !

We use a two-way interaction – contactCompany of type r&s – which means that
the taxi company is required to be able to engage in an interaction that is initiated by
the co-party and issues a reply. The parameters of the reply event are declared under

; in our case, they consist of the taxi number, a code, and the phone number of the
driver. The signature of this business protocol also includes a one-way interaction of
type snd: the taxi company is required to request a phone call with the customer.

The properties required of the taxi company are as follows: when bound to the
module, this external service should be ready to accept the event contactCompany ?,
after which it is required to issue a requestCall.

 Specifying and Composing Interaction Protocols 363

2.4 Service Components

A component in SRML corresponds to a resource that is used internally in the sense
that it is not visible to whatever client becomes bound through the EX-P. Such re-
sources are tightly bound inside the implementations of the module; they can be web-
services, Java components, interfaces to databases, legacy systems, and so on.

The internal components that we decided to include are:

• A user profiler PF, which can be seen to correspond to a database of users
owned and managed by the company providing the Call&PayTaxi service.

• The SMS centre SM, which is made available via a fixed phone number –
4777 in the case at hand.

• A component BA of type BookAgent that is responsible for orchestrating the
interactions between all the elements of the module.

• The company selector CS that is used by BA to choose the most suitable taxi
company for a given location and language.

Notice that, in SRML, the orchestration of the module is not necessarily delegated
to a single internal component. The overall workflow of the business process
emerges from the interconnections between the components of the module as captured
through the interaction protocols of the wires that connect them.

Service components are specified through what we call business roles. These in-
clude a signature as for business protocols but, instead of a set of properties, we spec-
ify a transition system that captures the execution pattern of the component; we refer
to this pattern as the orchestration of the component. For instance, consider the busi-
ness role that models the SMS centre:

BUSINESS ROLE SMSCentre(serviceNum:phoneNum) is

INTERACTIONS

snd sendSMS[k:int]
origin:phoneNum, destination:phoneNum, text:string

rcv receiveSMS[k:int]
origin:phoneNum, destination:phoneNum, text:string

snd forwardIN[k:int]
origin:phoneNum, text:string

rcv forwardOUT[k:int]
destination:phoneNum, text:string

ORCHESTRATION

transition inForward
triggeredBy receiveSMS[i] ?
guardedBy receiveSMS[i].destination=serviceNum
sends forwardIN[i] !

forwardIN[i].origin=receiveSMS[i].origin
forwardIN[i].text=receiveSMS[i].text

transition outForward
triggeredBy forwardOUT[i] ?
sends sendSMS[i] !

sendSMS[i].origin=forwardOUT[i].origin
sendSMS[i].destination=serviceNum
sendSMS[i].text=forwardOUT[i].text

364 J. Abreu et al.

In this example, interactions have key-parameters in addition to the normal ones.
This allows us to handle occurrences of multiple interactions of the same type; in this
case, sending and receiving SMS’s. The wires that connect the SMS centre to other
parties are responsible for deciding which key parameter is used for handling the rele-
vant interactions. This is discussed in Section 3.

The business role has itself a parameter – serviceNum of type phoneNum. The idea
is to define not one but a family of business roles, each modelling a component that
operates a particular SMS service. Because SMS centres handle interactions in a way
that is independent of the service number, it makes sense to parameterise their speci-
fication. Such parameters are fixed when we need a specific business role in a
module; for instance, in Call&PayTaxi, we declare SM:SMSCentre(4777), i.e. the
component SM is of type SMSCentre(4777).

Notice that no relative ordering is specified on the transitions; the orchestration of
business roles can be much more complex, precisely to capture the richness of work-
flows that arise in business modelling [6].

3 The Role of Interaction Protocols in SRML

As mentioned several times in the previous section, we rely on what we call wires to
establish and coordinate interactions between parties. More concretely, we have
seen how components and external parties are modelled without any direct reference
to the co-parties involved in the interactions. This is because, on the one hand, we
want the interconnections between components and external parties to be established
at run-time as a result of service discovery and binding and, on the other hand, we
want to promote reuse at design time. Therefore, we treat all names as being local
and rely on explicit name bindings to establish which are the peers involved in each
interaction.

3.1 The Logic of Interactions

Before explaining how wires are specified in SRML, it is important to make a few
remarks about the logic that is being developed for interactions. Our logic is based
on μUCTL, a formalism being developed within SENSORIA for qualitative analysis
[11]. This formalism is based on doubly-labelled transition systems which consist
of:

• a set Q of states;
• an initial state q0;
• a set Act of observable events;

• a transition relation q q' where α is a subset of Act! Act? with
Act!={e! | e Act} and Act?={e? | e Act};

• a labelling function assigning to every atomic proposition p the set of states
in which p is true.

 Specifying and Composing Interaction Protocols 365

By e! we denote the action of the initiating party sending the event e and by e? the
action of its co-party processing it. In SRML, the set Act has more structure in that
the events are generated from asynchronous interactions according to their type as
shown in the figure below. We also allow synchronous interactions but, for simplic-
ity, we do not discuss them in the paper. See [6] instead.

Interactions involve two parties and can be in both directions, i.e. they can be con-
versational. Interactions are described from the point of view of the party in which
they are declared, i.e. “receive” means invocations received by the party and sent by
the co-party, and “send” means invocations made by the party. We distinguish sev-
eral events that can occur during such interactions:

interaction The event of initiating interaction

interaction The reply-event of interaction (r&s and s&r only)

interaction The commit-event of interaction (r&s and s&r only)

interaction The cancel-event of interaction (r&s and s&r only)

interaction The revoke-event of interaction (r&s and s&r only)

The reply, commit, cancel and revoke events capture the conversational aspects of
interactions. They are discussed in more detail in [6] together with the handling of
deadlines, pledges and compensations. Being asynchronous, interactions do not re-
quire the party that initiates an event to block until the co-party receives it. As dis-
cussed in the next sub-section, there is a delay between sending and receiving an
event that depends on the wire that connects the two parties. Notice that by e? we do
not denote the act of receiving but of processing the event. This is because the co-
party may not be in a state in which it can process the event e; if that is the case, e!
occurs but e? does not. For instance, in the orchestration of the SMS centre we speci-
fied that events receiveSMS[i] are only processed when their destination is the
number of the SMS service.

Because interactions are asynchronous, the sender never blocks; however, there is
no guarantee that the co-party will process an event. This is why it is important to
state in the business protocols when the co-party is ready to process the events initi-
ated by the party. For instance, in Customer we declared that the service is ready to
process callTaxiOUT , and that it is ready to process payTaxiOUT after sending
callTaxiIN with a positive reply. If the customer calls these events in other circum-
stances, there is not guarantee that the service will process them.

The logic μUCTL uses the typical minimal fixed point operator based on a strong
next operator [11]. In support of modelling, we tend to use abbreviations, as illus-
trated in the business protocols of Section 2, which can be defined as in [6].

3.2 Connectors

Wires bind the names of the interactions and specify the protocols that coordinate the
interactions between two parties. For instance, this is how we declare the wire CS
that connects the customer CR and the SMS centre SM:

366 J. Abreu et al.

WIRES

CR
Customer(my)

CS SM
SMSCentre(4777)

snd callTaxiOUT S1

SendEmptySMS
(my,4777)

R1

i1

i2

i3

rcv receiveSMS[1]
origin
destination
text

rcv callTaxiIN
text

R1

i1 SendSMS
(my,4777)

S1

i1

i2

i3

snd sendSMS[1]
origin
destination
text

snd payTaxiOUT
text

S1

i1 SendSMS
(my,4777)

R1

i1

i2

i3

rcv receiveSMS[2]
origin
destination
text

rcv payTaxiIN
text

R1

i1 SendSMS
(my,4777)

S1

i1

i2

i3

snd sendSMS[2]
origin
destination
text

Every wire is composed of one or more connectors each of which corresponds to a
row of the table above. In SRML, connectors are specified independently of each
other so as to increase reusability at design time. Every connector consists of an in-
teraction protocol and two bindings. As an example, consider the connector:

CR
Customer(my)

CS SM
SMSCentre(4777)

snd callTaxiOUT S1 SendEmptySMS
(my,4777)

R1

i1

i2

i3

rcv receiveSMS[1]
origin
destination
text

The interaction protocol of this connector is specified as follows:

INTERACTION PROTOCOL SendEmptySMS(cn,sn:phoneNum) is

ROLE A

snd S1

ROLE B

rcv R1

i1:phoneNum
i2:phoneNum
i3:string

COORDINATION

R1 S1

R1.i1=cn
R1.i2=sn
R1.i3=’’

Just like business roles and protocols, an interaction protocol is specified in terms
of a number of interactions. Because interaction protocols establish a relationship
between two parties, the interactions in which they are involved are divided in two
subsets called roles – A and B. The “semantics” of the protocol is provided through a

 Specifying and Composing Interaction Protocols 367

collection of properties – what we call the interaction glue – that establish how the
interactions are coordinated. This may include routing events and transforming sent
data to the format expected by the receiver.

For instance, in the example above, the roles are quite simple: each consists of a
single interaction. The properties established by the glue are as follows:

• The first declares that the interactions declared in both roles are identical, i.e.
that their corresponding events are the same. More precisely, this is an ab-
breviation for R1!≡ S1! ∧ R1?≡ S1?.

• The other three properties identify the parameters of the interaction of role B:
they are all fixed by the parameters of the protocol and the fact that the text
message is empty.

In addition, every wire W has an attribute W.delay that determines the maximum
delay that can take place in the transmission of events between the parties, i.e. be-
tween sending and receiving.

The interaction protocol used in the remaining connectors is quite straightforward:

INTERACTION PROTOCOL SendSMS(cn,sn:phoneNum) is

ROLE A

snd S1

i1:string
ROLE B

rcv R1

i1:phoneNum
i2:phoneNum
i3:string

COORDINATION

R1 S1

R1.i1=cn
R1.i2=sn
R1.i3=S1.i1

That is, the protocol just copies the text of the message.
In a connector, the interaction protocol is bound to the parties via mappings from

its roles to the signatures of the parties, which is indicated in the rows of the table.
The advantage of separating the definition of the interaction protocols from their use
in the wires is that it promotes reuse.

As another example, consider the following connectors that are part of the wire that
connects the booking agent BA and the SMS centre SM:

BA
BookAgent

BM SM
SMSCentre(4777)

snd informCustomer
driverPhone
taxiNum
callCode
location

S1

i1

i2

i3

i4

Internal2SMS

R1

i1

i2

rcv forwardOUT[1]
destination
text

rcv payTaxi
amount
taxiNum
callCode

R2

i1

i2

i3

SMS2Internal
S1

i1

i2

snd forwardIN[2]
origin
text

368 J. Abreu et al.

The first connector concerns the SMS that the booking agent needs to send to the
customer with information about the taxi. According to the business role SMSCentre,
forwardOUT[1] ? triggers sendsSMS[1] ! which we have just seen is the event
callTaxiIN ! of the customer CR. The corresponding business protocol needs to con-
vert the data received from BA into a text message that can then be sent to CR:

INTERACTION PROTOCOL Internal2SMS is

ROLE A

snd S1

i1:phoneNum
i2:reference
i3:string
i4:geoData

ROLE B

rcv R1

i1:phoneNum
i2:string

LOCAL

textify:reference,string,geoData string

COORDINATION

S1 R1

S1.i1=R1.i1

R1.i2=textify(S1.i2,S1.i3,S1.i4)

The conversion is performed by an operation textify that is internal to the interac-
tion protocol in the sense that the implementation of the interaction protocol needs to
provide a method call to an object that can perform the operation.

The other connector performs a dual operation: it forwards the SMS received from
the customer via payTaxiIN ! to the booking agent, for which it needs to parse the
text message received from CR:

INTERACTION PROTOCOL SMS2Internal is

ROLE A

snd S1

 i1:phoneNum
 i2:text

ROLE B

rcv R1

 i1:moneyValue
 i2:reference
 i3:string

LOCAL

parseMV:string→moneyValue
 parseRF:string→reference
 parseST:string→string

COORDINATION

S1 ≡ R1

R1.i1=parseMV(S1.i2)
R1.i2=parseRF(S1.i2)
R1.i3=parseSR(S1.i2)

All these examples specify very simple interaction protocols but the formalism is
expressive enough to handle more complex connectors, especially through the use of

 Specifying and Composing Interaction Protocols 369

state variables. This is particularly relevant when we are reusing existing component
to define the module and we need to interconnect them without changing their code.

3.3 Algebraic Semantics of Connectors

An algebraic formalisation of this notion of module and module composition has been
given in [7] from the point of view of a notion of correctness defined based on the
theory of institutions [12]. In this section, we explore the algebraic structure of con-
nectors in more detail and in a more general setting that does not require the level of
detail that we used in [7].

As motivated in Section 2, interactions constitute the core and the unifying element
of the proposed approach to systems modelling: all the models that we work with –
business roles, business protocols and interaction protocols – are based on structures
of interactions. These structures are organised in a category SIGN (of signatures)
whose morphisms capture “part-of” relationships, i.e. a morphism σ:S1→S2 formal-
ises the way a signature (structure of interactions) S1 is part of S2 up to a possible re-
naming of the interactions and corresponding parameters. SIGN can be proved to be
finitely co-complete, which allows us to use colimits to express composition.

The other structure that is important for interaction protocols is that of the glues;
because we are working with an institution [12], glues can themselves be organised in
a category IGLU and a functor sign:IGLU→SIGN returns, for every glue, the struc-
ture of interactions (signature) that are being coordinated by the protocol. As a con-
sequence, a morphism σ:G1→G2 of glues captures the way G1 is a sub-protocol of G2,
again up to a possible renaming of the interactions and corresponding parameters.
That is, σ identifies the glue that, within G2, captures the way G1 coordinates the in-
teractions sign(G1) as a part of sign(G2). IGLU is also a finitely co-complete cate-
gory, meaning that we can use colimits to compose interaction protocols. Basically,
colimits compute unions of specifications. We also know that signIGLU is a functor
that makes IGLU coordinated over SIGN in the sense of [3]. We denote by iglu its
left-adjoint, which returns an “empty” glue, i.e. one that does not introduce any re-
quirements on the way interactions need to be coordinated.

In this formal setting, every interaction protocol P consists of an interaction glue G
and two signature morphisms πA:roleA→signIGLU(G) and πB:roleB→signIGLU(G).
That is, an interaction protocol is a structured co-span in the sense of [8]:

Because a wire interconnects two parties of the module, we need some means of
relating the interaction protocols used by the wire with the specifications (business
roles or protocols) of the parties. The connection for a given party n and interaction
protocol P is characterised by a morphism μn that connects one of the roles (A or B) of
P and the signature sign(n) associated with the node. These morphisms correspond to

370 J. Abreu et al.

the mappings defined by the rows of the tables that define the connector, as discussed
in Section 3.2.

In this formal setting, a connector for a wire n↔m between entities n and m in a
module, is a structure <μn,πA,G,πB,μm> where <πA,G,πB> is an interaction protocol P
and <μn,μm> are the morphisms that connect the roles of P to the entities n and m.
Such a connector defines the following diagram in SIGN:

The interaction protocol <πA,G,πB> corresponds to the shadowed part of the dia-
gram. Given this, we take a module M to consist of:

• A graph, i.e. a set nodes(M) and a set wires(M) of pairs n m of nodes
• A distinguished subset of nodes requires(M) nodes(M).
• At most one distinguished node provides(M) nodes(M)\requires(M).
• A labelling function L such that:

o L (provides(M)) is a business protocol if provides(M) is defined
o L (n) is a business protocol for every n requires(M)
o L (n) is a business role for every other node n nodes(M)
o L (n m) is a connector <μn,πA,G,πB,μm>.

An advantage of this algebraic characterisation is that we can easily explain how
interaction protocols can be composed in support for run-time service discovery and
binding. If we consider two interaction protocols with a common role:

we compute the following pushout in IGLU:

 Specifying and Composing Interaction Protocols 371

We define the composition of <πA,G,πB> and <μB,H,μC> to be <πA;sign(π’B),G+
BH,μC;sign(μ'B)>.

Consider now module composition. A binding between modules Mn and Mk
consists of:

• A node r∈requires(Mn), i.e. one of the requires-interfaces of Mn. Let this
node be labelled with a business protocol Sr.

• A morphism ρ:sign(Sr)→sign(Sp) where Sp is the business protocol of pro-
vides(Mk), i.e. of the provides-interface of Mk, such that all the properties re-
quired by Sr are entailed by those provided by Sr.

The module M that results from this process is defined by composing the wires Wr
and Wk through the morphism ρ. This is achieved through the composition of the
three co-spans that correspond to the interaction protocols of the wires Wr and Wk
and, between them, the “external wire” established by the morphism ρ. Formally,
the glue of this external wire, which is returned by the free functor iglu, is “empty”
in the sense that the protocol reduces to the syntactic binding established by the
morphism.

This composition is defined by the following diagram:

A new connector is defined by the composition of the morphisms that connect the
roles to the new interaction glue:

372 J. Abreu et al.

This connector is now used for the wire that results from the composition:

4 Concluding Remarks and Further Work

In this paper, we presented the approach that we are developing within the
SENSORIA project for modelling complex services. More precisely, we focused on
the way we specify the protocols that are used for coordinating the interactions
among the different parties that compose a service. This includes a logic adapted
from μUCTL, a formalism being developed within SENSORIA for supporting quali-
tative analysis [11]. Our version of the logic uses a richer language of events that
results from a conversation model of interactions: interactions are not specified in
terms of pre and post-conditions but, rather, on properties that concern transactional
behaviour, including pledges, deadlines and compensations. We are currently work-
ing on the axiomatisation of the primitives that capture such properties based on a
semantic domain of doubly-labelled transition systems. We are also investigating
the use of the ‘on the fly’ model checker UMC for supporting verification and vali-
dation [10].

Another important aspect of our model is an algebraic semantics that accounts for
interaction protocols as structured co-spans, the full mathematical characterisation of
which can be found in [8]. In the paper, we illustrated how this semantics provides a
model for the composition of interaction protocols, connectors and wires, which is
required for service discovery and binding.

In this paper, we addressed almost only the functional properties of service behav-
iour. The exception was the delay parameter that is associated with every wire. In
fact, the composition of wires involves non-functional properties: for instance, we
have (Wr+ρWm).delay=Wr.delay+Wm.delay because the external wire corresponding
to ρ has no delay – it just binds names. Other non-functional properties are addressed
in another report [5], including a constraint-based approach to SLAs.

 Specifying and Composing Interaction Protocols 373

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Springer, New York
(2004)

2. Baïna, K., Benatallah, B., Casati, F., Toumani, F.: Model-driven web service development.
In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 290–306. Springer,
Heidelberg (2004)

3. Fiadeiro, J.L.: Categories for Software Engineering. Springer, New York (2004)
4. Fiadeiro, J.L.: Designing for software’s social complexity. IEEE Computer 40(1), 34–39

(2007)
5. Fiadeiro, J.L., Lopes, A., Bocchi, L.: The SENSORIA Reference Modelling Language:

Primitives for Configuration Management (2006) Available from www.sensoria-ist.eu
6. Fiadeiro, J.L., Lopes, A., Bocchi, L.: A formal approach to service-oriented architecture.

In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp.
193–213. Springer, Heidelberg (2006)

7. Fiadeiro, J.L., Lopes, A., Bocchi, L.: Algebraic semantics of service component modules.
In: Fiadeiro, J.L., Schobbens, P.Y. (eds.) Algebraic Development Techniques, pp. 37–55.
Springer, Heidelberg (2007)

8. Fiadeiro, J.L., Schmitt, V.: Structured co-spans: an algebra of interaction protocols. In:
CALCO’07. LNCS. Springer, Berlin, Heidelberg, New York (In print 2007)

9. Foster, I., Kesselman, C. (eds.): The Grid 2: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann, San Francisco, CA (2004)

10. Gnesi, S., Mazzanti, F.: On the fly model checking of communicating UML state ma-
chines. In: Second ACIS International Conference on Software Engineering Research,
Management and Applications (SERA2004), pp. 331–338 (2004)

11. Gnesi, S., Mazzanti, F.: A model checking verification environment for UML Statecharts.
In: Proceedings of XLIII Congresso Annuale AICA Comunita’ Virtuale dalla Ricerca
all’Impresa dalla Formazione al Cittadino. University of Udine – AICA (2005) (paper
available from fmt.isti.cnr.it)

12. Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and pro-
gramming. Journal ACM 39(1), 95–146 (1992)

13. SCA Consortium (2005) Building Systems using a Service Oriented Architecture. White-
paper available from www-128.ibm.com/developerworks/library/specification/ws-sca/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

