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Abstract. We present a strategy for model-checking behavioural cor-
rectness of complex services within service-oriented architectures. We do
so in the context of SRML, a formal modelling framework for service-
oriented computing being defined within the SENSORIA project. We in-
troduce a methodology for encoding patterns of typical service-oriented
behaviour with UML state machines and present a strategy for checking
SRML specifications of complex services based on such patterns. For that
purpose, we use the action-state branching time temporal logic UCTL
and the UML state machine based model-checker UMC.

1 Introduction

SENSORIA [18] is an integrated project funded under the FET Global Com-
puting initiative, which is developing a software engineering approach to service-
oriented computing (SOC) based on formal foundations. In this context, a num-
ber of languages and calculi are being investigated that address different levels of
abstraction of the software engineering process. In this paper, we are concerned
with the SENSORIA Reference Modelling Language – SRML [13] – which pro-
vides primitives for modelling composite services whose business logic involves
the orchestration of interactions among more elementary components and the
invocation of services provided by external parties. SRML is inspired by the
Service Component Architecture – SCA [21] – and makes available a modelling
framework that is independent of the languages and platforms that are currently
being provided for web [4] (or grid [15]) services.

In Fig.1, we provide an example of a service module – the primitive that
SRML offers for modelling complex services. In a nutshell, a service module
prescribes a distributed orchestration for a type of services through a configu-
ration of components and wires. The components can be internal to the service
(in the sense that they are created each time the service is invoked and killed
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when the service terminates), in which case they are represented in the mod-
ule by what we call a component-interface (like BA). They can be persistent
components (like databases) that are part of the business environment in which
the service operates, in which case they are represented in the module by what
we call a uses-interface (like DB). Modules may also declare a number of (ex-
ternal) services that need to be discovered and bound on the fly to the other
components, in which case they are represented in the module by what we call
a requires-interface (like PA, HA and FA).

Fig. 1. The service module TravelBooking.

Component- and uses-interfaces are typed by models of the behaviour of the
actual components that will execute during service delivery. Requires-interfaces
are typed by what we call business protocols – patterns of behaviour that need
to be matched by the behaviour offered by the discovered services. Every ser-
vice module has a provides-interface (like CR) that is also typed by a business
protocol declaring the properties that can be expected from the behaviour of
the service. Hence, every instance (session) of service TravelBooking is assem-
bled by connecting an internal component of type BookingAgent to a persistent
component (a database of users) of type UsrDB and, when required, to external
services of type PayAgent, HotelAgent and FlightAgent.

Service modules also declare service-level agreement (SLA) constraints (indi-
cated in the example as SLATB) that are used for service selection and ranking,
as well the conditions that trigger the discovery of external services (indicated in
the example as trigPA, trigHA and trigHA). Such dynamic and non-functional
aspects of SOC are outside the scope of this paper (see [14] instead).

Our purpose in this paper is to present an approach for analysing the proper-
ties that can emerge from the orchestration of service behaviour in general, and



the correctness of service modules in particular, i.e. the property that establishes
that the properties declared in the provides-interface of a module are actually
guaranteed by the orchestration performed by the configuration of components
and wires on the assumption that the external services that are discovered and
bound to components satisfy the requires-interfaces. Several approaches have
been proposed for the verification of service-oriented systems, essentially for or-
chestration languages like BPEL [25] or in the context of service publication and
discovery (e.g. [23]). However, such approaches are usually based on concepts
like pre- and post-conditions, which offer specifications of service behaviour that
are confined to static/transformational aspects of black-box behaviour that only
take into account initial and final states of service execution. SRML adopts in-
stead a sophisticated notion of two-party interaction that is conversational in
the sense that it involves a number of correlated events that need to obey a
well-defined protocol. These events include typical notions of service-oriented
business protocols such as committing to, cancelling, and revoking deals.

This is why we decided to adopt instead verification techniques used for con-
current and distributed processes, namely model-checking of temporal specifica-
tions that can capture the conversational properties of services. The particular
approach that we adopted is based on the model-checker UMC [19], which is
being used in SENSORIA in conjunction with service calculi such as COWS
[12]. UMC works over UML state machines and UCTL [5], a temporal logic
that is interpreted over transition systems in which both states and transitions
are labelled, thus making it easier to express properties of stateful interactions
as required by SRML. One of the novelties of our work, and one of the main
contributions that we make to SOC in general, is in the way we use these model-
checking techniques for analysing service modules. The particular challenges that
we address in the paper concern:

– The encoding of the conversational protocols that service interactions are
required to exhibit as UML state machines and UCTL properties;

– The encoding of the behavioural patterns used in business protocols again
as UML state machines and UCTL properties.

The double encoding, as UML state machines and UCTL, is justified by the fact
that UML state machines are used for expressing the (distributed) orchestration
defined by the module and UCTL is used for verifying properties of the service
thus orchestrated. More precisely, in what concerns the former, the strategy is to
use UML state machines as models for the internal components, the persistent
components, the external services and the connecting wires.

In summary, the main emphasis of the paper is on the way our model-checking
approach addresses the notion of interaction available in SRML, the methodol-
ogy of encoding patterns of typical service-oriented behaviour with UML state
machines, and the strategy for checking the correctness of SRML service mod-
ules based on such patterns. In section 2 we give an overview of the background
material that underlies the approach: SRML as a modelling approach, the logic
UCTL and the model-checker UMC. In section 3 we explain how we use the logic



UCTL to reason about service-oriented architectures within the SRML frame-
work. Section 4 presents our methodology for encoding a SRML module as a
set of communicating UML state machines. In section 5 we illustrate how our
approach works in practice by model-checking the module TravelBooking (see
Fig.1). Finally, section 6 wraps up the paper and discusses further work.

2 Background

2.1 Modelling interactions in SRML

As already mentioned, SRML models complex services in terms of two-way in-
teractions that capture a pattern of dialogue that is prevalent in service-oriented
systems: a party sends a request to a co-party that replies either positively by
making a pledge to deliver a set of properties, or negatively, in which case the
interaction ends; if the answer is positive the party that made the request can
commit by accepting the pledge or refuse the pledge and cancel the interaction.
If and after the requester commits, a revoke may be available that compensates
for the effects of the pledge. The set of events associated with an interaction a
is shown in the following table:

a
 The initiation-event of a.
aB The reply-event of a.
a� The commit-event of a.
a7 The cancel-event of a.
a> The revoke-event of a.

Interactions are peer-to-peer between pairs of entities connected through
wires – CB, CP, BP, BH, BF, and BD are the wires in TravelBooking. Wires are
typed by connectors, which provide a model of the protocol that coordinates the
interactions between the two parties. This is indicated in the module through
triples of the form 〈c, P, d〉 where P is an interaction protocol and c and d attach
the protocol to the parties at the ends of the wires. By ≡ we denote a straight
interaction protocol [2] that binds together two interactions. For example, the
existence of a a straight protocol between interactions bookHotel (declared in
BookingAgent) and lockHotel (declared in HotelAgent) means that the wire
simply forwards the events of these interactions.

Parties engage in interactions independently of their co-parties, i.e. the work-
flow that determines when a party interacts, by publishing an event or processing
it, is independent of the way these events are transmitted. Transmission of events
follows a number of phases, independently of the protocol enforced by the wire:
when an event is published by a party, it is picked by the wire for delivery, which
is subject to a delay (negotiable as part of an SLA). Once delivered (according
to the interaction protocol of the connector), it is eventually processed by the
co-party, which either executes or discards it, depending on whether the event is
enabled or not in the current state of the co-party. We use e! to refer to the action
of publishing event e, e? to refer to the action of executing it and e¿ to refer to



the action of discarding it. These actions are used for expressing and reasoning
about properties of services as discussed further on. More detailed information
on the computational model of SRML can be found in [3].

Complex services like TravelBooking establish multi-party collaborations by
orchestrating their interactions. Orchestration is performed in a distributed way
by the given configuration of components and wires. Each component provides a
model (called business role) of the local orchestration that it performs over the
events that the component can engage in. SRML provides a declarative orchestra-
tion language based on states and transitions that allows for underspecification
of the effects that transitions have on states and of the events that are published
[13]. This is because SRML is being defined to support a design methodology in
which service modules can accommodate different levels of development.

SRML also supports a process of stepwise refinement that can lead to busi-
ness roles that are executable, in which case it supports the use of notations and
languages that are more procedural such as BPEL (for which a translation into
SRML has been defined [6]) and, in the case of this paper, UML state machines.
The same applies to the interaction protocols that model the coordination per-
formed by the connectors. In Fig.2 we show the UML state machine (business
role) corresponding to the workflow associated with BookingAgent.

Start

Logged Queried

Confirmed

FlightOK

HotelOK

PayedCompensating

login /
login(true)

bookTrip /
bookFlight

bookFlight(true) /
bookHotel

login /
login(false)

bookTrip /
bookTrip(false)

bookHotel(true) /
bookTrip(true)

bookHotel(false) /
bookFlight

bookTrip(false)

bookFlight(false) /
bookTrip(false)

bookTrip /
bookFlight
bookHotel
payment

bookTrip /
bookFlight
bookHotel

payment(true) /
payAck(true)

payment(false) /
payAck(false)bookTrip /

bookFlight
bookHotel

ackRefundRcv /
ackRefundSnd

Fig. 2. The statechart that models the orchestration performed by BookingAgent. Pa-
rameters that do not affect the workflow are not shown.

We have already mentioned that requires- and provides-interfaces specify
properties that involve a number of patterns, which in SRML are expressed
in the language of business protocols. In Fig.3 we present the business protocol
that specifies the requires-interface of FA. In sections 3 and 4, we formalise these
patterns in terms of the logic UCTL and UML state machines, respectively. The
idea behind this dual view is that, for provides-interfaces, we use the UCTL
encoding and, for requires-interfaces, we use the UML state machine encoding
so that, in conjunction with the UML state machines that correspond to the
business roles (components) and interaction protocols (wires) we have a set of



communicating UML state machines over which we can model-check the UCTL
encoding of the provides-interface. 
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BUSINESS PROTOCOL FlightAgent is  

 INTERACTIONS 
   r&s lockFlight 

    from,to:airport,  
    out,in:date, 

     traveller:usrdata 
     fconf:fcode 

      amount:moneyvalue, 
     beneficiary:accountn, 
         payService:serviceId 
   rcv payAck  
     proof:pcode 
     status:bool 
   snd payRefund 
     amount:moneyvalue 

 BEHAVIOUR  
  initiallyEnabled lockFlight?  
  lockFlight! ∧ lockFlight.Reply enables payAck? 
  payAck? ∧ payAck.status enables lockFlight? 
  lockFlight? ensures payRefund! 

END BUSINESS PROTOCOL 

 

 

BUSINESS PROTOCOL Customer is  

 INTERACTIONS 
   s&r login  

    usr:username, pwd:password 
  s&r bookTrip 

     from,to:airport, 
     out,in:date 
     fconf:fcode, 
     hconf:hcode, 
     amount:moneyvalue  
   rcv payNotify 
     status:boolean  
   rcv refund 
     amount:moneyvalue  
  BEHAVIOUR  

  initiallyEnabled login?  
   login! ∧ login.Reply enables bookTrip? 
   bookTrip? ensures payNotify!  

  payNotify! ∧ payNotify.status enables bookTrip? 
  bookTrip? ensures refund! 
 

END BUSINESS PROTOCOL 

Fig. 3. The specification of the requires-interface FlightAgent written in the language
of business protocols. Services of this type are required to be involved in three kinds
of interaction with a number of parameters that carry data required for booking a
flight and processing payments. Some properties of this interaction are specified: a
flight booking can be initiated once a session of the service is created, the service will
accept an acknowledgment of payment after (and only after) sending a positive reply
to the customer, a flight reservation can be revoked anytime after payment has been
confirmed, and revoking a booking guarantees a refund.

2.2 UCTL and UMC

Recently various logics have been introduced ([7, 17] are examples) that allow one
to reason about both action-based and state-based properties. The advantage of
all these logics lies in the availability of operators that make it easier to formulate
properties that, in pure action-based or pure state-based logics, can be quite
cumbersome to write down. This is especially useful when logics are to be used
in conjunction with languages and notations that–like the UML–allow both
action and state changes to be expressed. In such cases, the use of combined
action and state operators has the additional advantage of often leading to a
reduced state space, smaller memory, and less time spent during verification.

In this paper, we will use UCTL [5], which includes both the branching-time
action-based logic ACTL [9] and the branching-time state-based logic CTL [11].
The models of UCTL are doubly labelled transition systems (L2TS for short)
which are transition systems whose states are labelled by atomic propositions
and whose transitions are labelled by sets of actions [10]. The syntax of UCTL



formulas is defined as follows:

φ ::= true | p | φ ∧ φ′ | ¬φ | Eπ | Aπ
π ::=Xχφ | φ χU φ′ | φ χUχ′ φ′ | φ χW φ′ | φ χWχ′ φ′

where p ranges over state predicates, χ over actions, φ over state formulae,
and π over path formulae. E and A are “exists” and “for all” path quantifiers
respectively. The next operator X says that in the next state of the path, reached
by an action satisfying χ, the formula φ holds. The intuitive meaning of the
doubly-indexed until operator U on a path is that φ′ holds at some future state
of the path reached by a last action satisfying χ′, while φ has to hold from
the current state until that state is reached and all the actions executed in the
meanwhile along the path either satisfy χ or τ . Finally, the weak until operatorW
holds on a path either if the corresponding strong until operator holds or if for all
states of the path the formula φ holds and all the actions of the path either satisfy
χ or τ . It is straightforward to derive the well-known temporal logical operators
EF (“possibly”), AF (“eventually”) and AG (“always”) and the diamond and
box modalities <> (“possibly”) and [] (“necessarily”). In particular, < χ > φ
stands for EXχ φ, meaning that there is transition that satisfies χ which leads
to a state that satisfies φ; and [χ]φ stands for ¬ < χ > ¬φ, meaning that every
transition that satisfies χ leads to a state that satisfies φ.

UMC [19] is an on-the-fly model-checker developed for efficient verification
of UCTL formulae over a set of communicating UML state machines [22]. A
UMC model description consists of a set of UML class definitions and a static
set of object instantiations – the actual state machines that form the system
under analysis. A UMC model must represent an input-closed system, i.e. the
input sources must be modelled as active objects interacting with the rest of
the system. Each state machine has a pool that buffers the set of signals that
have been received from other machines and are waiting to be processed by that
machine. According to its class definition, each state machine has at any given
time a set of values for each local attributes and a set of currently active sub
states as specified by the statechart diagram of the class.

3 The UCTL patterns of service-oriented behaviour

SRML models correspond to L2TSs in which the several stages of events propa-
gation (publish, deliver, execute or discard) are the actions that label the tran-
sitions, and the pledges (i.e. the properties that hold after positive replies) and
the history of events are the state predicates (the history of events is modelled
as state predicates because UCTL does not have past operators).

In SRML the properties that are required from the external services that
form the module, and also the properties that the module provides, are ex-
pressed through a business protocol in two ways: by declaring a set of typed
interactions and by declaring a set of constraints that correlate the events of
those interactions. The type that is associated with each interaction defines not



only the set of events the external service can engage in as part of that inter-
action, but also the conversational protocol that the service follows to engage
in those events. The additional constraints that are specified in the business
protocol – the behaviour – are used to impose further restrictions on that con-
versation or to correlate events of different interactions. Both types of properties
need to be model-checked for the provides-interface (Customer in the running
example) because they depend on the correct orchestration of the components
when connected to the required services. Therefore, both need to be encoded
as UCTL formulas. We will first address the encoding of the patterns that are
used to specify behaviour constraints and then we will address the encoding of
the conversational protocol that is associated with the interaction types.
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    from,to:airport,  
    out,in:date, 

     traveller:usrdata 
     fconf:fcode 

      amount:moneyvalue, 
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BUSINESS PROTOCOL Customer is  

 INTERACTIONS 
   s&r login  

    usr:username, pwd:password 
  s&r bookTrip 

     from,to:airport, 
     out,in:date 
     fconf:fcode, 
     hconf:hcode, 
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   rcv payNotify 
     status:boolean  
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   bookTrip? ensures payNotify!  

  payNotify! ∧ payNotify.status enables bookTrip? 
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END BUSINESS PROTOCOL Fig. 4. The provides-interface Customer.

3.1 Behaviour constraints

In order to specify behaviour constraints SRML relies on a set of pre-defined pat-
terns of behaviour that are encoded by abbreviations of UCTL formulas. These
patterns capture how the events of different interactions are typically correlated
in service-oriented architectures. The following table presents the abbreviations
that encode three of the most commonly used patterns that we have identified
in a number of case studies:

initiallyEnabled e A
true{¬e¿}W{e?}true


a enables e

AG[a]¬EF < e¿ > true
 ∧A[true{¬e?}W{a}true


a ensures e

AG[a]AF [e!]true
 ∧A[true{¬e!}W{a}true]





The abbreviation ”initiallyEnabled e” states that the event e will never be
discarded (until it is actually executed) — this abbreviation is typically used
to define the first interaction to take place during a session with a service. For
instance Customer (shown in figure 4), the provides-interface of TravelBooking,
declares that the event login
 is ready to be executed as soon as a session is
created. The abbreviation ”a enables e” states that after a happens the event e
will not be discarded and that before a it will never be executed. In Customer this
pattern is used to declared that, after the login is accepted (but not before), the
service will be ready to execute a request to book a trip. Finally the abbreviation
”a ensures e” states that after a happens the event e will for certain be published,
but not before. This abbreviation is used in Customer to declare that after a
request to revoke a booking is executed (but not before), a refund will be sent.

3.2 The two-party interaction pattern

In the interaction declaration of a business protocol, two-way interactions are
typed by s&r (send and receive) or r&s (receive and send) to define that the ser-
vice being specified engages in the interaction as the requester or as the supplier,
respectively. Each of these two roles, requester and supplier, has a set of prop-
erties associated with it. The following two tables, present the UCTL encoding
of some of the properties associated with the types s&r and r&s, respectively.

s&r — Requester
The reply-event becomes enabled by the
publication of the initiation-event and not before. i
! enables iB?
r&s — Supplier
The reply will be published after and only
after the initiation-event was executed. i
? ensures iB!
The revoke-event cannot be enabled before the
execution of the commit-event. A[true{¬i>?}W{i�?}true]

The service module TravelBooking, declares, through its provides-interface
Customer, that it engages in interactions login and bookTrip following the r&s
protocol (notice that the type declaration in the provides-interface is actually
done from the symmetrical point of view of the client). In order to verify the
correctness of TravelBooking, the set of properties that is associated with the
type r&s (two of which are shown in the table) will have to be model-checked
for each of these two interactions.

4 From SRML Modules to UML state machines

We have already mentioned that, in order to be able to model-check properties
of service behaviour in the context of SRML in general, and the correctness of
service modules in particular, we restrict ourselves to those modules in which
state machines are used for modelling the internal components, the persistent



components, the protocols performed by the wires, and the required behaviour of
external services. This is because UMC takes as input a set of communicating
state machines, with which it associates a L2TS that represents the possible
computations of that system. Model-checking is then performed over this L2TS.

Using UML state machines for defining workflows is quite standard. However,
the case of wires and requires-interfaces is not as simple. In the case of wires,
we need to ensure that the SRML computational model is adhered to in what
concerns event propagation and related phenomena as discussed in 2.1. In the
case of requires-interfaces, we need to discuss how the patterns defined in section
3 can be represented with state machines.

4.1 Encoding external-required services

In SRML, requires-interfaces are specified, through business protocols, with the
patterns of temporal logic that we discussed in section 3. Such a specification
defines not one particular service, but a family of services that can be discovered,
ranked and selected according to the way they optimise SLAs. By associating
a specific state machine with a requires-interface we are choosing a canonical
model of the required behaviour.

As illustrated in Fig. 3 and discussed in section 3, the specification of a
requires-interface consists of a typed declaration of the interactions that the se-
lected service should be ready to engage in and a set of behaviour constraints that
correlate the events of those interactions. Our strategy for encoding a requires-
interface as a state machine entails creating a concurrent region for each of
the interactions that the external service is required to be involved in – the
interaction-regions – and a concurrent region for all of the behaviour constraints
– the constraint-regions – except for the constraints defined with the pattern
”initiallyEnabled e”: as discussed further ahead, these are modelled by the in-
stantiation of a state attribute.

The role of each of the interaction regions is to guarantee that the conver-
sational protocol that is associated with the type of the interaction is respected
as discussed in section 3.2. Events of a given interaction are published, executed
and discarded exclusively by the interaction-region that models it. The role of
the constraint-regions is to flag, through the use of special state attributes, when
events become enabled and when events should be published – the evolution of
the interaction-regions, and thus the actual execution, discard and publication
of events, is guarded by the value of those flags. Constraint-regions cooperate
with interaction-regions to guarantee the correlation of events expressed by the
behaviour constraints (discussed in section 3.1). We illustrate this methodology
by presenting the encoding of the requires-interface FlightAgent in Fig. 5.

Following our methodology, each interaction declaration and each behaviour
constraint encodes part of the final state machine in a compositional way. Asso-
ciated with each interaction type, there is a particular statechart structure that
encodes it. Each of the patterns of behaviour constraints is also associated with
a particular statechart structure. A complete mapping from interactions types
and behaviour patterns to their associated statechart structure can be found in



a1

a2
lockFlight /

a3

lockFlight /

payAck(status)
[payAck_enabled] / 
payAck_executed := true
payAck_status := status

[payRefund_ensured] / 
BF2.payRefund

[lockFlight_sent & lockFlight_Reply] /
payAck_enabled := true [payAck_executed & payAck_status] / 

lockFlight_enabled := true

[lockFlight_executed] / 
payRefund_ensured := true

A

B C

Y X

Z

lockFlight
[lockFlight_enabled] /
BF1.lockFlight(false)
lockFlight_Reply := false
lockFlight_sent := true

lockFlight
[lockFlight_enabled] / 
BF1.lockFlight(true)
lockFlight_Reply := true
lockFlight_sent := true

lockFlight
[lockFlight_enabled] /
lockFlight_executed := true

Fig. 5. The UML statechart encoding of the requires-interface FlightAgent. FlightAgent
is involved in the three interactions lockFlight, payAck and payRefund that are encoded
by interaction-regions A, B and C, respectively; these three interactions are correlated
by four behaviour constraints that originate the three constraint-regions Y , X, and
Z. The constraint “initiallyEnabled lockFlight
?” does not originate a region in the
state machine; instead it determines that the flag lockFlight
 enabled is initially set to
true and therefore when the event lockFlight
 is processed it will be executed (and not
discarded) by interaction-region A. When lockFlight
 is executed, interaction-region A
evolves from state a1 to state a2 by publishing a positive reply or alternatively from
a1 to the final state by publishing a negative reply. When this reply is published the
flag lockFlightB sent is set to true so that the other regions of the state machine are
informed that this event was published — the constraint-region Y , for instance, that
encodes the constraint ”lockFlightB! ∧ lockFlight.Reply enables payAck
?” reacts to
the publication of a positive reply by setting the flag payAck
 enabled to true thus
enabling the execution of event payAck
 by interaction-region B. When payAck
 is
executed by interaction-region B the flag payAck
 executed becomes true and as a
consequence the constraint-region X evolves (if the parameter payAck.status is true) by
setting lockFlight> enabled to true, thus enabling the execution of event lockFlight> by
interaction-region A. Finally, when lockFlight> is executed the flag lockFlight> executed
is set to true and as a consequence the interaction-region C will publish the event
payRefund
.



[1]. Naturally, the encoding we propose for specifications of requires-interfaces
is defined in such a way that the transition system that is generated for a ser-
vice module satisfies the UCTL formulas that are associated with each of the
requires-interfaces of that module.

4.2 Encoding wires

In SRML the coordination of interactions, which are declared locally for each
party of the module, is done by the wires. For each wire, there is a connector
that defines an interaction protocol with two roles and binds the interactions
declared in the roles with those of the parties at the two ends of the wire [2].
With our methodology for encoding wires with UML state machines, every
connector defines a state machine for each interaction. This state machine is
responsible for transmitting the events of that interaction from the sending party
to the receiving co-party. Parties publish events by signaling them in the state
machine that corresponds to the appropriate connector; this state machine in
turn guarantees that these events are delivered by signaling them in the state
machine that is associated with the co-party. The relation between parameter
values that is specified by the interaction protocol of the connector is ensured
operationally by the state machine that encodes that connector – data can be
transformed before being forwarded. The statechart contains a single state and
as many loops as the number of events that the connector has to forward.

In the TravelBooking module two-way interactions are coordinated by straight
interaction protocols that bind the names and parameters of s&r and r&s in-
teraction declarations directly (i.e. events and parameter values are the same
from the point of view of the two parties connected). Figure 6 shows the state
machine that encodes this connector for the single interaction that takes place
between BA and HA — there is only one persistent state in which the machine
waits to receive events and forward them with the same parameter values.

bookHotel(a,b,c) / 
HA.lockHotel(a,b,c)

bookHotel / 
HA.lockHotel

bookHotel / 
HA.lockHotel

bookHotel / 
HA.lockHotel

lockHotel(a) / 
BA.bookHotel(a)

Fig. 6. The UML encoding of the connector that coordinates the single, two-way,
interaction between BA and HA which is named bookHotel and lockHotel from the
point of view of each party respectively.



5 Model-Checking the module TravelBooking

In order to model-check the module TravelBooking we have encoded each of its
external-required interfaces and each of its connectors using the methodology
described in the previous section. Adding the two components that orchestrate
the system, we ended up with a set of fifteen communicating UML state ma-
chines. Because every input source of a UMC model must also be modelled
via an active object, we had to define a machine that initiates the interactions
advertised in the provides-interface Customer, thus modelling a generic client
of the service. Using this system as input to the UMC model-checker, we can
verify if the doubly labelled transition system that is generated — we will refer
to it as T — does satisfy the properties associated with the provides-interface
Customer, shown in figure 4. As discussed in section 3, these consists of the con-
straints associated with the types of the declared interactions (see section 3.2)
and those that derive from the patterns of behaviour (see section 3.1). If T does
not satisfy any of the previous formulas, than there is something in the module
TravelBooking that needs to be corrected.

Having used UMC to model-check TravelBooking, we found out that all the
constraints were satisfied by T except one: ”payNotify
! ∧ payNotify.status en-
ables bookTrip>?”. This is because there is a path in T on which the event book-
Trip> is discarded after the event payNotify
 is published with a positive value
for the payNotify.status parameter. This means that the publication of event
payNotify
 with a positive payNotify.status by the service does not guarantee
that the revoke event of interaction payNotify becomes enabled for execution. If
the current system was implemented as it is, it would be possible for a client to
ask for a booking to be revoked and have this request ignored by the service.

After analysing the path of T that leads to the failure of the property, we
understood that the problem is that, because PA interacts directly with CR
through the wire CP, it is possible for the payment notification (represented by
payNotify
) to be received by CR before BA receives the confirmation for the
payment (through paymentB). If CR tries to revoke the booking immediately,
BA will not accept it because it does not yet know that the payment of the
booking has been accepted by PA.

In order to fix this problem we have redesigned the architecture of the module
TravelBooking by removing the wire CP. In the new architecture PA does not
interact directly with CR anymore. When the payment is executed by PA, the
component BA is notified and is in turn responsible for notifying CR. Only then
can the customer choose to revoke the booking.

6 Concluding Remarks and Further Work

In this paper, we have presented a strategy for model-checking properties of spec-
ifications of complex services in the SENSORIA Reference Modelling Language
– SRML. We have focused in particular on the use of model-checking for validat-
ing the correctness of service modules, which corresponds to checking that the



properties declared in the provides-interface of the module (which corresponds
to the description of the functional properties of the service) are enforced by
the orchestration defined in the model provided that required services discov-
ered and bound during the orchestration satisfy their requires-interfaces. For this
purpose, we have used the UCTL temporal logic [5] for expressing behavioural
properties of services and UML state machines to model their orchestration. For
model-checking service modules with UMC [19] we have defined a methodology in
which the behaviour of required-services is encoded with UML state machines.
Our methodology poses no problems of scalability because the translation of
modules into UML state machines is linear in their size and the complexity of
the model checker is linear in the size of the model and in length of the formula
being checked. The actual complexity of model-checking a SRML module clearly
depends on the size of the generated state space, which results strictly from the
interactions that can occur between the components of the module.

In the literature, we can find other formalisms for describing services, nor-
mally associated with an orchestration language like BPEL [25] or the use of
repositories for service publication and discovery [23]. Dynamic logic [16] is of-
ten adopted, reflecting an approach to service description based on pre/post-
conditions, i.e. on the transformation that they operate over data or state, much
in the same way as for method specification in design by contract [20]. In our
opinion, such approaches miss one of the distinguished aspects of service-oriented
computing, which is the conversational nature of the interactions. This is why
SRML provides a set of primitives for modelling such kind of interactions and we
decided to adopt a branching-time temporal logic like UCTL for reasoning about
their properties. One of the contributions of our work is to offer a more expres-
sive means of service analysis that relies on a number of patterns of behaviour
validated on several case studies. A more systematic study of useful patterns
is underway that includes recent studies in workflow modelling [26]. The use of
description logic as in [23] also serves an important role in service publication
and discovery, as demonstrated by their use in support of the Semantic Web.
Extensions of SRML are being planned in order to incorporate an ontological
component that can support matchmaking.

The other advantage of SRML over approaches based on dynamic logic or
process algebras [24] is that the models that we provide are more abstract:
where dynamic logic and process algebras are compositional over program or
process structures, SRML is compositional over the business structure. That is,
the notion of service module in SRML reflects dependencies between services
that derive from the way services need to fulfil business goals. As a consequence,
our model-checking approach involves a number of UML state machines that
reflect the roles that different entities play in service delivery.

Certain aspects of the approach that we have presented here are still being
further investigated. From a theoretical point of view, we are developing a for-
mal characterisation of the relationship between the encoding of the patterns in
a UCTL and in UML state machines (beyond the fact that the latter model-
checks the former, of course!). Another important investigation at the moment



concerns the relationship between the operational semantics that UMC imple-
ments for UML state machines and the computational model defined for SRML
in [3]. From a pragmatic point of view, we are currently addressing the way pa-
rameters of SRML interactions can be handled by UMC. More precisely, we
are considering adding to UMC the possibility of using symbolic parameters [8].
Another important aspect concerns the support for the primitives that SRML
provides for modelling quantitative aspects of time in SOC, which the current
version of UMC cannot handle. This should also lead us to consider stochastic
approaches which are already being used in SENSORIA.
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