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Abstract. We present and evaluate an approach for the run-time conformance
checking of Java classes against property-driven algebraic specifications. Our
proposal consists in determining, at run-time, whether the classes subject to anal-
ysis behave as required by the specification. The key idea is to reduce the confor-
mance checking problem to the runtime monitoring of contract-annotated classes,
a process supported today by several runtime assertion-checking tools. Our ap-
proach comprises a rather conventional specification language, a simple language
to map specifications into Java types, and a method to automatically generate
monitorable classes from specifications, allowing for a simple, but effective, run-
time monitoring of both the specified classes and their clients.

1 Introduction

The importance of formal specification in software development is widely recognized.
Formal specifications are useful for developers to reuse existing software. They also
help programmers in understanding what they have to provide. Furthermore, they can
be used as test oracles, i.e., system behavior can be checked against the specification.

Currently, Design by Contract (DBC) [18] is the most popular approach for formally
specifying OO software. In this approach, specifications are class interfaces (Java inter-
faces, Eiffel abstract classes, etc.) annotated with pre/post conditions pairs expressed in
a particular assertion language. At runtime, the implementation can be tested against its
specification by means of contract monitorization.

Although the DBC methodology has become very popular, programmers rarely
specify contracts—the strong restrictions to the kind of properties that are both express-
ible and monitorable, contribute to the frustration of being left with very poor specifi-
cations. Furthermore, as argued by Barnett and Schulte [3], contract specifications do
not allow the level of abstraction to vary and do not support specifying components
independently of the implementation language and its data structures.

Algebraic specification [2, 6, 10] is another well-known approach to the specifi-
cation of software systems that supports a higher-level of abstraction. Algebraic ap-
proaches can be divided into two classes: model-oriented and property-driven.

From the two, model-oriented approaches to specification, like the ones promoted
by Z [20], Larch [11] and JML [17], definitely prevail within the OO community. In
most of these approaches, the behavior of a class is specified through a very abstract
implementation, based on primitive elements available in the specification language.
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Implementations can be tested against specifications by means of runtime assertion-
checking tools. This requires an abstraction function to be explicitly provided. In JML,
for instance, a concrete implementation is expected to include JML code defining the
relation between concrete and abstract states. Although we recognize the important
role played by model-based approaches, we believe that, for a significant part of pro-
grammers, understanding or writing this kind of specifications can be rather difficult.
Moreover, programmers implementing a specification have to define the appropriate
abstraction mapping, which can also be rather difficult to obtain.

In contrast, for a certain class of programs, in particular for Abstract Data Types
(ADTs), property-driven specifications [6, 8] can be very simple and concise: the ob-
servable behavior of a program is specified simply in terms of a set of abstract proper-
ties. The simplicity and expressive power of property-driven specifications may encour-
age more programmers to use formal specifications. However, the support for check-
ing OO implementations against property-driven specifications is far from being satis-
factory. As far as we know, it is restricted to previously-presented approaches [1, 13],
whose limitations are discussed in detail in Section 8.

This paper presents a new approach for runtime checking OO implementations
against property-driven specifications. The key idea is to reduce the problem to the run-
time monitoring of contracts, which is supported by many runtime assertion checking
tools (e.g., [5, 15–17, 21]). The classes under testing become wrapped by automatically
generated classes. The wrapper classes are annotated with run-time checkable contracts
automatically generated from the corresponding specifications.

A distinguishing feature of the approach is that our module specifications not only
specify behavioral properties required from implementations, but they also define the
required architecture of the implementations, i.e., how the implementation should be
structured in terms of classes. This is important to support reuse: it allows to enforce
that the implementation of a module M is achieved in terms of classes that can be
reused in the implementation of other modules that have elements in common with M .

The approach is tailored to Java and JML [17] but it could as well be defined towards
other OO programming and assertion languages (or other programming languages with
integrated assertions [4, 18]). It comprises a specification language that allows auto-
matic generation of JML contracts, and a language for defining refinement mappings
between specification modules and collections of Java classes. Refinement mappings
define how sort names are mapped to class names and operation signatures are mapped
to method signatures. Because this activity does not require any knowledge about the
concrete representation of data types or component states, refinement mappings are
quite simple to define. Our approach offers several benefits. More significantly:

– Specifications are easier to write and understand since they are written in a more
abstract, implementation independent, language. The same applies to refinement
mappings, whose definition does not require any knowledge about the concrete
representation of data types or component states, as happens for instance in JML.

– Several Java classes or packages can be tested against the same specification. This
contrasts with, for example, the JML approach in which different implementations
may require different JML specifications. For instance, JML contract specifications
appropriate for immutable classes are not suitable for mutable classes.
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Fig. 1. Approach overview

– The same Java class or package can be tested against several specifications without
requiring any additional effort.

In Section 2 we present a quick overview of our approach. Section 3 describes the
structure of specification modules and our specification language. In Section 4 the world
of specifications and that of implementations are related through the notion of refine-
ment mappings. In Section 5 we describe the wrapper and immutable classes equipped
with contracts that are generated, and illustrate their use through an example. In Sec-
tion 6 we focus on the methodology for generating contracts from specification axioms.
Section 7 reports on the results of our experiments. Section 8 presents related work,
and Section 9 concludes, describing limitations of our approach, and topics that need
further work.

2 Approach Overview

The process of checking the conformance of a collection of Java classes against a spec-
ification module consists in inspecting, during execution, the variances between actual
and required behavior. This presumes that the implementation is structurally consistent
with the specification module which, in our approach, means that there is a refinement
mapping between the module specification and the collection of Java classes, defining
which class implements each sort, and which method implements each operation.

For the purpose of this overview, we start by considering a simplified scenario in
which we want to check a single Java class MyT against a single specification T. In this
case, the user must supply the refinement mapping defining the relationship between
the operation and predicate symbols of T and the method names of MyT.

Figure 1 illustrates the several entities involved in our approach. The left part in-
cludes the entities that the user must supply. The right part shows the classes that are
generated—MyT$Original which is just MyT after renaming, MyT$Immutable equipped
with the contracts generated from the axioms in specification T, and finally MyT which
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is the generated wrapper class. This last one uses MyT$Original, and MyT$Immutable in
order to achieve validation, by contract inspection, of the results of invoking the original
methods.

The approach consists in replacing class MyT by an automatically generated wrap-
per class. The wrapper class is client to other classes, automatically generated from
specification T, one of which annotated with contracts. In this way, during the execu-
tion of a system involving classes that are clients of MyT, we have that:

1. The behavior of MyT objects is checked (monitored) against specification T;
2. The correctness of clients’ behavior with respect to MyT operations is monitored;

provided that the system is executed under the observation of a contract monitoring
tool. In both cases violations are reported. Underlying these conditions are the fol-
lowing notions of correction, applicable whenever consistency between class MyT and
specification T is ensured by the existence of a refinement mapping.

Behavioral correctness. This condition assumes the following notion of behav-
ioral correctness of class MyT with respect to the specification: class MyT
is correct if every axiom of T (after the translation induced by the refine-
ment mapping) is a property that holds in every execution of a system in
which MyT is used. Consider, for instance, that Stack is a specification of
stacks including the axiom pop(push(s , e )) = e and that MyStack is an imple-
mentation of integer stacks with methods void push(int) and int pop(). Class
MyStack is a correct implementation of specification Stack only if the property
let t = s in (s.push(i ); s.pop(); s.equals(t )) holds for all objects MyStack dur-
ing their entire life. Axiom translation is addressed in detail in Section 6.

Client’s correction. This condition relies on a notion of correctness targeted at the
clients’ classes. As we shall see in Section 3, specifications may include condi-
tions under which the interpretations of some operations are required to be defined.
These are called the domain conditions. A client class is a correct user of MyT, if
it does not invoke MyT methods in states that do not satisfy the domain conditions
of the corresponding operations. For instance, if Stack is a specification of stacks
including a domain condition saying that operation pop(s) is required to be defined
if not isEmpty(s), then a class C is a correct client only if it never invokes method
pop on objects o of type MyStack, such that o.isEmpty() is true.

As mentioned before, a class is generated that has the same name as the original
one—MyT. This class has exactly the same interface as, and their objects behave the
same as those of, the original MyT class, as far as any client using MyT objects can
tell. The generated MyT class is what is usually called a wrapper class because each
of its instances hides an instance of the original MyT class, and uses it when calling
the methods of an immutable version of MyT—the generated class MyT$Immutable—in
response to client calls. MyT clients must become clients of the wrapper instead. To
avoid modifying them, the original class MyT is renamed—its name is postfixed with
$Original— making the wrapping of the original class transparent to client classes.

MyT$Immutable is the class that gets annotated with contracts automatically gen-
erated from specification T: pre-conditions are generated from domain conditions, and
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import IntegerSpec
sort I n tS tack
operations and predicates

constructors
c l ea r : I n tS tack −−> I n tS tack ;
push : In tS tack In tege r −−>

I n tS tack ;
observers

top : In tS tack −−>? In tege r ;
pop : In tS tack −−>? In tS tack ;
s i ze : In tS tack −−> I n t ege r ;

derived
isEmpty : In tS tack ;

domains
s : Stack ;
top ( s ) , pop ( s ) i f not isEmpty ( s ) ;

axioms
s : Stack ; i : I n tege r ;
top ( push ( , i ) = i ;
pop ( push ( s , ) ) = s ;
s i ze ( c l ea r ( ) ) = zero ( ) ;
s i ze ( push ( s , ) ) = suc ( s ize ( s ) ) ;
isEmpty ( s ) i f f s ize ( s ) = zero ( ) ;

sort I n t ege r
operations and predicates

constructors
zero : I n tege r −−> I n t ege r ;
suc : I n tege r −−> I n t ege r ;
pred : I n tege r −−> I n t ege r ;

observers
l t : I n t ege r −−> I n t ege r ;

axioms
i , j : I n tege r
l t ( zero ( ) , suc ( zero ( ) ) ) ;
l t ( suc ( i ) , suc ( j ) ) i f l t ( i , j ) ;
l t ( pred ( zero ( ) ) , zero ( ) ) ;
l t ( pred ( i ) , j ) i f l t ( i , j ) ;
l t ( pred ( suc ( i ) ) , i ) ;
pred ( suc ( i ) ) = i ;
suc ( pred ( i ) ) = i ;

Fig. 2. Specification of (a) integer stacks, (b) integers.

post-conditions from the axioms that give semantics to the specification operations.
Monitoring these contracts correspond to checking (i) whether the properties obtained
by translating the specification axioms hold in some particular situations, for some par-
ticular objects (these are determined by the contract generation process which is de-
scribed in Section 6), and (ii) whether client objects do not invoke methods in states that
do not satisfy the domain conditions. The fact that MyT$Immutable is, by construction,
immutable is essential to ensure that the contracts that are generated are monitorable.
Section 5 describes the generated wrapper and immutable classes in more detail.

This approach overcomes the limitations of the direct use of DBC that were men-
tioned in the introduction. All properties are expressible and monitorable because they
are translated into pre- and post-conditions involving only calls to methods that do not
change the objects under monitorization.

3 Specifications and Modules

The specification language is, to some extent, similar to many existing languages. In
general terms, it supports the description of partial specifications with conditional ax-
ioms. It has, however, some specific features, such as the classification of operations in
different categories, and strong restrictions on the form of the axioms. It was conceived
so that conformance checking with respect to OO implementations can be supported
through run-time monitoring of automatically derived contracts. Figure 2 a) presents a
typical example in this setting [1, 13, 14]: the ADT integer stack. Figure 2 b) illustrates
a specification for integers.
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A specification defines exactly one sort and the first argument of every operation
and predicate in the specification must belong to that sort. Furthermore, operations are
classified as constructors , observers or derived . These categories comprise, respec-
tively, the operations from which all values of the type can be built, the operations that
provide fundamental information about the values of the type, and the redundant (but
potentially useful) operations. Predicates can only be classified as either observers or
derived .

Specifications are partial because operation symbols declared with −−>? can be
interpreted by partial functions. In the section domains, we describe the conditions
under which interpretations of these operations are required to be defined. For instance,
in the specification of integer stacks, both top and pop are declared as partial operations.
They are, however, required to be defined for all non empty stacks.

As usual in property-driven specifications, other properties of operations and pred-
icates can be expressed through axioms, which in our case are closed formulæ of first-
order logic restricted to the following specific forms:

– ∀~y(φ ⇒ op′c(opc(~x),~t) = t) (relating constructors)
– ∀~y(φ ⇒ opo(opc(~x),~t) = t), ∀~y(φ ⇒ predo(opc(~x),~t)),
∀~y(φ ⇒ ¬predo(opc(x),~t)) (defining the result of observers on constructors)

– ∀~y(φ ⇒ opd(~x) = t), ∀~y(φ ⇒ predd(~x)), ∀~y(φ ⇒ ¬predd(~x)) (describing the
result of derived operations/predicates on generic instances of the sort).

– ∀~y(φ ⇒ x = x′) (pertaining to sort equality).

where ~y, ~x are lists of variables, x, x′ are variables, φ is a quantifier free-formula, ~t is a
list of terms over ~y, t is a term over ~y. We use the indexes c, o, d to indicate the kind of
operations and predicates that are allowed (constructors, observers, derived).

Notice that, because operations may be interpreted by partial functions, a term may
not have a value. The equality symbol used in the axioms represents strong equality,
that is to say, either both sides are defined and are equal, or both sides are undefined.

The structure of axioms that is imposed is not only intuitive and easy to understand
and to apply, but it is also effective in driving the automatic identification of contracts
for classes. In what concerns the expressive power of the language, it is only limited by
the fact that we require the sort of the first argument of every operation and predicate in
a specification to be the sort introduced in that specification. This rule forces a specific
method of organizing specifications which, per se, does not constitute a limitation in the
expressive power of the language. The problem is that the rule forbids specifications
with constant constructors to be described. Although these constructors are prevalent
in algebraic specifications, this limitation has short impact in our approach because
it is not possible to provide OO implementations for 0-ary constructors in terms of
object methods. Object creation, with a default initialization, is natively supported by
OO languages and is not under the control of programmers. These can only define
constructors (which are not methods) overriding the default initialization.

Specifications may declare, under import, references to other specifications, and
may use external symbols, i.e., sorts, operations and predicates that are not locally de-
clared. For instance, the specification of integer stacks imports IntegerSpec and uses
sort Integer and operation symbols zero and suc, which are external symbols. Notice
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public class I n tA r rayS tack implements Cloneable {
private s t a t i c f i n a l i n t INITIAL CAPACITY = 10;
private i n t [ ] elems = new i n t [ INITIAL CAPACITY ] ;
private i n t s ize = 0;
public void c l ea r ( ) { s ize = 0; elems = new i n t [ INITIAL CAPACITY ] ; }
public void push ( i n t i ) {

i f ( elems . leng th == s ize ) r e a l l o c a t e ( ) ;
elems [ s ize ++] = i ;

}
public void pop ( ) { size−−; }
public i n t top ( ) { return elems [ s ize − 1 ] ; }
public i n t s ize ( ) { return s ize ; }
public boolean isEmpty ( ) { return s ize == 0; }
public boolean equals ( Object o ther ) { . . . }
public Object c lone ( ) { . . . }
private void r e a l l o c a t e ( ) { . . . }

}

Fig. 3. Java implementation of an integer stack.

that the specification of integers is self-contained since it does not import any specifi-
cation. We call it a closed specification.

The meaning of external symbols is only fixed when the specification is embedded,
as a component, in a module. A module is simply a surjective function from a set N (of
names) to a set of specifications, such that, for every specification: (i) the referenced
specification names belong to N and (ii) the external symbols are provided by the cor-
responding specifications in the module. The set N defines the set of components of the
module. For instance, by naming the two specifications presented in Figure 2a) and b)
as IntStackSpec and IntegerSpec , respectively, we obtain a module IntegerStack .

4 Refinement Mappings

In order to check Java classes against specification modules, a user of our approach
must supply a refinement mapping that bridges the gap between the two worlds. These
mappings provide the means for explicitly defining which class implements each type
and which method implements each operation and predicate.

A refinement mapping R between a module and a collection of Java classes identi-
fies the type (class or primitive) that implements each module component, as well as the
binding between the operations and predicates of the corresponding specification in the
module and the methods of the class. Only closed specifications can be implemented
by primitive types. Furthermore, bindings are subject to some constraints: predicates
must be bound to methods of type boolean; every n + 1-ary operation or predicate
opp(s, s1, . . . , sn) must be bound to an n-ary method m(t1, . . . , tn) such that ti is the
type of the class that, according toR, implements sort si. Furthermore, for components
that are implemented by primitive types, the binding defines how operations and pred-
icates are expressed in terms of built-in Java operations. Within the structure imposed
by the specification, there are several implementation styles that can be adopted.

For instance, the most common implementation of stacks in Java is through a class
such as IntArrayStack, presented in Figure 3, where instance methods provide the pred-
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IntegerSpec is pr imi t ive i n t
zero ( x : I n tege r ) : I n tege r is 0;
suc ( x : I n tege r ) : I n tege r is x + 1;
pred ( x : I n tege r ) : I n tege r is x − 1;
l t ( x : In teger , y : I n tege r ) is x < y ;

IntStackSpec is class I n tA r rayS tack
c l ea r ( s : I n tS tack ) : I n tS tack is void c l ea r ( ) ;
push ( s : In tS tack , e : Elem ) : In tS tack is void push ( i n t e ) ;
pop ( s : In tS tack ) : I n tS tack is void pop ( ) ;
top ( s : In tegerStack ) : Elem is i n t top ( ) ;
s i ze ( s : I n tS tack ) : I n tege r is i n t s ize ( ) ;
isEmpty ( s : I n tS tack ) is boolean isEmpty ( ) ;

Fig. 4. An example of a refinement mapping.

icates and mutable implementations for operations. In this case, the first argument of
operations and predicates is implicitly provided—it is the target object of the method
invocation—and the application of an operation whose result type is IntegerStack in-
duces a state change of the current object. Methods implementing these operations
are usually procedures (void methods) but in some cases programmers decide that the
method should also return some useful information about the object (for example, the
pop method in the Sun’s JDK java.util.Stack class, returns the top element). Although
less common, stacks can also be implemented by immutable classes. The difference
in this case is that the methods that implement the operations whose result type is
IntegerStack return an object of the class; the state change in the current object, if it
exists, is not relevant. Another dimension of variability in the implementation of the
IntegerStack module is related to the choice of the implementation for integers: there
is still the possibility of choosing a (Java) primitive type to implement the type.

An admissible refinement mapping for the module IntegerStack is presented in
Figure 4. It expresses the fact that specification IntStackSpec is implemented by the
class IntArrayStack whereas sort Integer is implemented by the Java primitive type int.

Refinement mappings are quite simple to define because they only involve the inter-
faces of Java classes, that is to say, no knowledge about the concrete representation of
data types or component states is needed. The independence from concrete representa-
tion makes it possible to test several Java classes or packages against a same specifica-
tion module—we just have to create the corresponding refinement mappings. Contracts
are automatically generated. The approach also allows a refinement mapping to define
a mapping from two different components into the same type (class or primitive). This
promotes the writing of generic specifications that can be reused in different situations.

5 The Architecture of Wrapped Implementations

As explained in Section 2, our approach for checking Java implementations against
specifications comprises wrapping these classes with other, automatically generated,
classes. In this section we describe this process in more detail.

Let again T be a specification, MyT a given class, and MyRef describe a refinement
mapping between specification T and class MyT. From these, a series of classes are
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generated that allow a client class ClientC to invoke methods of MyT while checking
whether MyT correctly implements T. Remember that the wrapper class gets its name
from the original MyT class, while this is renamed to MyT$Original.
The immutable class equipped with contracts. For each MyT method void m(~p), class
MyT$Immutable defines a static method:

s t a t i c MyT$O r i g i n a l m (MyT$O r i g i n a l o , ~p ) {
MyT$O r i g i n a l aClone = (MyT$O r i g i n a l ) c lone ( o ) ;
aClone .m(~p ) ;
return aClone ;

}

and for each MyT method SomeType m(~p), class MyT$Immutable defines a method:
s t a t i c SomeType$Pai r m (MyT$O r i g i n a l o , ~p ) {

MyT$O r i g i n a l aClone = (MyT$O r i g i n a l ) c lone ( o ) ;
return new SomeType$Pai r ( aClone .m(~p ) , aClone ) ;

}

where SomeType$Pair is a generated class that declares two public final attributes—
MyT$Original state and SomeType value—and a constructor that receives the values to
initialize those attributes. Contracts are generated for the methods in MyT$Immutable
that are a translation (see Section 6) of the axioms of the corresponding specification.
The wrapper class MyT defines a single attribute MyT$Original wrappedObject, imple-
ments each method void m(~p) with the following code:
{wrappedObject = MyT$Immutable .m( wrappedObject , ~p ) ;}

and implements each method SomeType m(~p) with the following code:
{SomeType$Pai r p a i r = MyT$Immutable .m( wrappedObject , ~p ) ;

wrappedObject = p a i r . s t a t e ;
return p a i r . value ;

}

The wrapper class uses the value part of the pair to return the value to the client,
and retains the state part in its only attribute (in order to account for methods that, in
addition to returning a value, also modify the current object).

Whenever a class, client to the original class, is executed within the context of this
framework, every call to a method m in the original class is monitored since the wrapper
redirects the call through the corresponding method in the immutable class, forcing the
evaluation of the pre and post-conditions. These are such that the original methods
behavior is monitored without any side effect on the objects created by client classes.
An Example. Figures 5, 6, and 7 illustrate the classes that are generated according
to our approach in the context of the Stack example used throughout the paper—the
specification in Figure 2, the class in Figure 3, and the refinement mapping in Figure 4.
Consider the following code snippet in a client of IntArrayStack class:

I n tA r rayS tack s = new I n tA r rayS tack ( ) ;
s . push ( 3 ) ;

Figures 8 and 9 present UML interaction diagrams showing the interaction be-
tween the several objects that participate in the realization of the above instructions.
The value of aClone (the return value of the push(stack, 3) operation invoked in 2.1,
Figure 9) is monitored by checking the contracts associated with method push in class
IntArrayStack$Immutable. The post-condition of push invokes methods size, top, and
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public class I n tA r rayS tack implements Cloneable {
private I n tA r rayS tack$Or i g i na l s tack = new I n tA r rayS tack$Or i g i na l ( ) ;
public void c l ea r ( ) { stack = IntArrayStack$Immutable . c l ea r ( s tack ) ; }
public void push ( i n t i ) { stack = IntArrayStack$Immutable . push ( stack , i ) ; }
public void pop ( ) { stack = IntArrayStack$Immutable . pop ( stack ) ; }
public i n t s ize ( ) {

i n t $ P a i r p a i r = IntArrayStack$Immutable . s ize ( s tack ) ;
s tack = p a i r . s t a t e ;
return p a i r . value ;

}
public i n t top ( ) {

i n t $ P a i r p a i r = IntArrayStack$Immutable . top ( s tack ) ;
s tack = p a i r . s t a t e ;
return p a i r . value ;

}
. . .

}

Fig. 5. Partial view of the wrapper class that results from applying our approach to the specifica-
tion IntStackSpec and the original IntArrayStack class.

public class i n t $ P a i r {
public f i n a l i n t value ;
public f i n a l I n tA r rayS tack$Or i g i na l s t a te ;
public i n t $ P a i r ( i n t value , I n tA r rayS tack$Or i g i na l s t a t e ) {

th is . value = value ; th is . s t a t e = s ta te ;
}

}

Fig. 6. The auxiliary class int$Pair composed of an integer and an original IntArrayStack.

pop of the immutable class on object aClone. These methods do not change object
aClone since they invoke the original versions of size, top, and pop on a clone of aClone.
The contracts for these methods are not monitored: the contracts of methods invoked
from contracts are not monitored—this is a feature of JML, crucial to our approach
since it prevents infinite invocation chains.

This example also illustrates what happens in situations where a primitive type is
chosen to implement a specification (in the example, integers are implemented by int).
While monitoring a given implementation for a module, situations may arise where a
class MyT is accused of not correctly implementing specification T because a closed
specification T’ was mapped to a Java primitive type that does not correctly implement
it. This is due to the fact that our approach does not check the conformance of specifica-
tions that are mapped into primitive types. However, this problem can only be overcome
with client-invasive approaches, i.e., that require the modification of client classes.

We experienced the situation just described in one of the modules we used to eval-
uate our approach—a Rational module consisting of specifications of integers and ra-
tional numbers, available elsewhere [7]. A traditional immutable implementation of
rationals was found to be incorrect during the manipulation of fractions with large nu-
merators and denominators, involving cross-products greater than 231 − 1. This is due
to the fact that Java int type does not correctly implements the integer specification,
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public class In tArrayStack$Immutable {
/ /@ ensures s ize (\ resul t ) . value == 0;
s t a t i c public I n tA r rayS tack$Or i g i na l c l ea r ( I n tA r rayS tack$Or i g i na l s ) {

I n tA r rayS tack$Or i g i na l aClone = ( I n tA r rayS tack$Or i g i na l ) c lone ( s ) ;
aClone . c l ea r ( ) ;
return aClone ;

}
/ /@ ensures s ize (\ resul t ) . value == s ize ( s ) . value + 1;
/ /@ ensures top (\ resul t ) . value == i ;
/ /@ ensures equal ( pop(\ resul t ) . s ta te , s ) . value ;
s t a t i c public I n tA r rayS tack$Or i g i na l push ( I n tA r rayS tack$Or i g i na l s , i n t i ) {

I n tA r rayS tack$Or i g i na l aClone = ( I n tA r rayS tack$Or i g i na l ) c lone ( s ) ;
aClone . push ( i ) ;
return aClone ;

}
/ /@ requires ! isEmpty ( s ) . value ;
s t a t i c public I n tA r rayS tack$Or i g i na l pop ( I n tA r rayS tack$Or i g i na l s ) {

I n tA r rayS tack$Or i g i na l aClone = ( I n tA r rayS tack$Or i g i na l ) c lone ( s ) ;
aClone . pop ( ) ;
return aClone ;

}
s t a t i c public i n t $ P a i r s i ze ( I n tA r rayS tack$Or i g i na l s ) {

I n tA r rayS tack$Or i g i na l aClone = ( I n tA r rayS tack$Or i g i na l ) c lone ( s ) ;
return new i n t $ P a i r ( aClone . s ize ( ) , aClone ) ;

}
/ /@ ensures (∗ See Sect ion 6 ∗ ) ;

s t a t i c public boolean equals ( I n tA r rayS tack$Or i g i na l s , Object t ) {
I n tA r rayS tack$Or i g i na l aClone = ( I n tA r rayS tack$Or i g i na l ) c lone ( s ) ;
return new boolean$Pair ( aClone . equals ( t ) , aClone ) ;

}
. . .

}

Fig. 7. Partial view of the immutable class that results from applying our approach to the Inte-
gerStack module and the original IntArrayStack class.

namely properties such as (i < suc(i)) and (n 6= 0 ∧ m 6= 0 ⇒ n×m 6= 0) do not
hold (for example, 231 − 1 + 1 is a negative number).

6 Contract Generation

In this section we discuss how contracts are generated from specifications. This process
can be described in two parts: translation of domain-specific properties described by
axioms, and translation of generic properties of equational logic.

6.1 From Axioms to Contracts

Contract generation that captures the properties that are explicitly specified in a given
specification T, is such that:

– a domain restriction for an operation op generates a pre-condition for the method
that implements op;

– axioms which relate constructors opc and op′c, and axioms that specify the result of
observers on a given constructor opc generate post-conditions for the method that
implements opc;
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Fig. 8. Creating an IntArrayStack. 
 

 
 

:Client 
Class 

s:Array 
Stack 

aClone:Array 
Stack$Original 

ArrayStack
Immutable 

2: s.push(3) 2.1: stack = push(stack,3) 

2.1.1: aClone = clone(stack) 

2.1.2: aClone.push(3) 

returns aClone 

This is the wrapper class 

Fig. 9. Invoking a method upon an IntArrayStack.

– axioms that describe the result of a given derived operation/predicate oppd on
generic instances of the sort, generate post-conditions for the method that imple-
ments oppd;

– axioms that pertain to sort equality generate post-conditions for the equals method.

A refinement mapping induces a straightforward translation of formulæ and terms
into Java expressions. There are a few points of complexity however: (1) the translation
of terms op(t1, . . . , tn) into method invocations; (2) the translation of strong equality
used in axioms; (3) avoiding calls to methods, within contracts, in cases where their
arguments are undefined.

In what concerns point (1), the return type of the method that implements op of
specification T dictates the form of the translation: (i) if method m of class MyT that
implements op is void, then op(t1, . . . , tn) is translated into an expression of the form
MyT$Immutable.m(...); (ii) if method m of class MyT that implements op is not void,
then a pair <value, state> must be returned by the MyT$Immutable version of method
m, where value stands for the result of the method, and state stands for the target object
state after m’s invocation. op(t1, . . . , tn) is translated into an expression of the form
MyT$Immutable.m(...).state if the sort of op is T, and MyT$Immutable.m(...).value in all
other cases.
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IntegerSpec is pr imi t ive i n t
zero ( x : I n tege r ) : I n tege r is 0;
suc ( x : I n tege r ) : I n tege r is x + 1;
pred ( x : I n tege r ) : I n tege r is x − 1;
l t ( x : In teger , y : I n tege r ) is x < y ;

ElemSpec is class S t r i n g ;
StackSpec is class St r ingAr rayStack

c l ea r ( s : Stack ) : Stack is void c l ea r ( ) ;
push ( s : Stack , e : Elem ) : Stack is void push ( S t r i n g e ) ;
pop ( s : Stack ) : Stack is S t r i n g pop ( ) ;
top ( s : Stack ) : Elem is S t r i n g top ( ) ;
s i ze ( s : Stack ) : I n tege r is i n t s ize ( ) ;
isEmpty ( s : Stack ) is boolean isEmpty ( ) ;

Fig. 10. A refinement mapping for GenericStack.

public class St r ingAr rayStack implements Cloneable {
. . .
public void c l ea r ( ) { . . . }
public void push ( S t r i n g i ) { . . . }
public S t r i n g pop ( ) { . . . }
public S t r i n g top ( ) { . . . }
public i n t s ize ( ) { . . . }
public boolean isEmpty ( ) { . . . }
public boolean equals ( Object o ther ) { . . . }
public Object c lone ( ) { . . . }

}

Fig. 11. Java implementation of a String array stack.

In what concerns point (2), the meaning of an equality t1 = t2 in the axioms of
a specification is that the two terms are either both defined and have the same value,
or they are both undefined. To be consistent with this definition, the evaluation of
equals(t1, t2) within contracts should only be performed if t1 and t2 are both defined.
If t1 and t2 are both undefined then the equality t1 = t2 is considered to hold and if just
one of them is undefined, then the equality is false.

Finally, point (3) has to do with the fact that contracts of methods invoked within
contracts are not monitored by the JML runtime assertion checker. Thus, we have to
avoid making, in our contracts, method invocations with undefined arguments. A def
function is defined and used in the translation process that supplies the definedness con-
ditions for both terms and formulæ of our specification language (see [19] for the defi-
nition). As an example, the definedness condition for an operation call op(t1, . . . , tn) is
the conjunction of the definedness conditions of terms t1 to tn with the domain condi-
tion of op.

We now present in more detail, for each type of axiom, the contract that result from
applying the automatic translation process rules. A more complete description of the
translation process can be found elsewhere [19]. We use [φ] to denote the translation of
a formula φ, and def(φ) to denote the definedness condition for φ.

We illustrate the translation rules with a module GenericStack, with three compo-
nents: the specification of integers presented in Figure 2 under the name IntegerSpec , a
specification that simply declares the sort Elem under the name ElemSpec and a speci-
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fication of stacks, under the name StackSpec, that only differs from the one in Figure 2
by the sort of its elements, which is the external sort Elem belonging to the imported
specification ElemSpec. We choose the classes StringArrayStack and java.lang.String to
refine module GenericStack through the refinement mapping of Figure 10.
Translation of Domain Restrictions. A domain restriction φ for an operation op gen-
erates a pre-condition for the method that implements op. In JML, pre-conditions are
preceded by keyword requires and, thus, the pre-condition that results from translating
the domain condition is requires [def(φ) ⇒ φ].
Example: Domain restriction top(s ): if not isEmpty(s) in specification StackSpec,
Figure 2, produces pre-condition

requires true ==> ! isEmpty ( s ) . value ;

in method String$Pair top(StringArrayStack$Original s) of class StringArrayStack$Im
mutable. The expression true is the definedness condition of variable s.
Translation of Axioms about Constructors and Observers. Axioms that specify the
result of both constructors and observers on a given constructor opc generate post-
conditions for the method that implements opc. In JML, post-conditions are preceded
by keyword ensures. The post-conditions that result from translating axioms of the
form (φ ⇒ op(opc(~x),~t) = t) and (φ ⇒ predo(opc(~x),~t)) are

ensures [def(φ) ∧ φ ⇒ op(r,~t) = t]

ensures [def(φ) ∧ φ ∧ def(predo(r,~t)) ⇒ predo(r,~t)]

where op is a constructor or an observer operation, predo is an observer predicate, and
where r stands for the result of opc(~x).
Example: Axiom pop(push(s , i )) = s produces post-condition

ensures true ==> [φ] imp l i es
! ( true && ! isEmpty (\ resul t ) . value ) && ! true | | both undef ined or
( true && ! isEmpty (\ resul t ) . value ) && true && ( both def ined and

equals ( pop(\ resul t ) . s ta te , s ) . value ; equal )

for method StringArrayStack$Original push (StringArrayStack$Original s, String i ) in
class StringArrayStack$Immutable. The expression \result in JML represents the re-
sult of the method to which the post-condition is attached. The argument of pop
in the axiom is push(s , i ) which is precisely the result of method push. This post-
condition is the translation of an equality between the terms pop(push(s , i )) and
s, thus it must evaluate to true if either both terms are undefined or they are both
defined and have the same value. Remember that the definedness condition of an
operation invocation is the conjunction of the definedness conditions of its argu-
ments and the domain condition of the operation itself. The translation of the axiom
top(push(s , i )) = i would be similar, except in the last part where we would have
String$Immutable.equals(top(\result).value, i ).
Translating Axioms about Derived Operations/Predicates. Axioms that describe the
result of a given derived operation/predicate oppd on generic instances of the sort, gen-
erate post-conditions for the method that implements oppd. The post-conditions that
result from translating axioms (φ ⇒ opd(~x) = t) and (φ ⇒ predd(~x)) are

ensures [def(φ) ∧ φ ⇒ r = t]
ensures [def(φ) ∧ φ ⇒ r]
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where opd and predd denote derived operations and predicates, and r stands for the
result of opd(~x) or predd(~x).
Example: Axiom isEmpty(s) if size (s) = zero( ) translates into the following post-
condition in method boolean$Pair isEmpty (StringArrayStack$Original s).

ensures ! ( true && true ) && ! true | | both undef ined or
( true && true ) && true && ( both def ined and
s ize ( s ) . value == 0 ==> equal ) imply
\ resul t . value [r]

Translation of Axioms about Equality. Equality between values of a given type are
regarded, to some extent, as type-specific predicates. In this way, axioms of the form
(φ ⇒ x = x′) generate post-conditions ensures [def(φ) ∧ φ] ==> \result.value for
method equals. We do not illustrate this case since no specification in module Generic-
Stack defines axioms of this kind.
Closing Assertions. Whenever the assertions (pre and post-conditions) contain a vari-
able v that does not correspond to any of the parameters of the method to which the
assertion belongs, the assertion must be preceded by a JML quantifier \ forall that quan-
tifies over that variable within a given domain. Populating these domains is orthogonal
to contract generation. In a technical report [19] we present a specific strategy for pop-
ulating these domains—the one we have used for benchmarking our approach.

6.2 Enforcing Generic Properties

So far we have focused on the generation of contracts capturing user-defined properties,
specific for a given type. In addition, there are generic properties concerning equality
and cloning that are important to capture through contracts.
Contract for equals. In equational logic, any two terms that are regarded as equal must
produce equal values for every operation and predicate. In order to check the consis-
tency of an implementation in what respects these properties, our approach involves
the automatic generation of post-conditions for the equals method that test the results
given by all methods that implement observer operations and predicates when applied
to the two objects being compared. More concretely, for every observer operation and
predicate oppo, the post-condition

ensures \ resul t . value ==> ( o ther instanceof C$O r i g i n a l &&
[oppo ( one , ~x ) = oppo ( (C$O r i g i n a l ) other , ~x))]

is generated for the boolean$Pair equals(C$Original one, Object other) method of a
class C$Immutable, where C is the class that implements the given specification.

The first part of the above expression is a Java boolean expression, while the second
part denotes the translation of an equality between terms of our specification language
extended with the (C) x term. The translation of this new term is itself, as expected. The
translation of the term equality follows the rules previously explained.
Example: Returning to our StringArrayStack example, the contract generated
for method boolean$Pair equals(StringArrayStack$Original one, Object other) in class
StringArrayStack$Immutable includes the following pre-condition.

ensures \ resul t . value ==> other instanceof St r i ngAr rayS tack$Or ig i na l &&
( ! ! isEmpty ( one ) . value &&

( ! ! isEmpty ( ( S t r i ngAr rayS tack$Or ig i na l ) o ther ) . value | |
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( true && ! isEmpty ( one ) . value && true ) &&
( true && ! isEmpty ( ( S t r i ngAr rayS tack$Or ig ina l ) o ther ) . value && true ) &&
Str ing$Immutable . equals ( top ( one ) . value ,

top ( ( S t r i ngAr rayS tack$Or ig i na l ) o ther ) . value ) )

This contract does not completely capture congruence—it only tests observers ap-
plied to the left and right terms of equality. The process of testing equality between
all terms obtained from the application of all combinations of observers is not realistic
in this context. Instead, we rely on the not completely exhaustive process of monitor-
ing, which heavily uses the equals method. Although the contracts of methods invoked
from contracts are not monitored, we may force the execution of equals from within the
immutable class equipped with contracts—this is a subject for further work.

We do not generate post-conditions for properties other than congruence, e.g. reflex-
ivity and symmetry. Although these properties are crucial (as testified by the Java API
contract for equals saying that it should implement an equivalence relation), given that
they are independent of the target specification we chose not to enforce their checking—
it would impose an important overhead.
Contracts for clone. Our approach makes use of cloning so, its soundness can be
compromised if given implementations for clone do not meet the following correctness
criteria: (i) the clone method is required not to have any effect whatsoever on this;
(ii) clone’s implementation is required to go deep enough in the structure of the object
so that any references shared with the cloned object cannot get modified through the
invocation of any of the remaining methods of the class. For example, an array based
implementation of a stack, in which one of its methods changes the state of any of its
elements, requires the elements of the stack to be cloned together with the array itself.

The post-condition that we want for method clone is one that imposes equality be-
tween the cloned object and the original one: ensures equals(\result, o) is generated
as a post-condition for the method Object clone(C$Original o) of class C$Immutable.

7 Congu

Congu [7] is a prototype that supports the approach by checking the consistency of
specification modules and refinement mappings, and generating the classes required
for monitorization. Given the user supplied entities—specification module, refinement
mapping and classes—the following situations are identified as errors: the refinement
mapping refers to an operation that is not present in the specification module; the re-
finement mapping refers to a method that is not present in the implementing classes;
there are specification operations that are not mapped into any class method; among
many others. Once contracts are generated and execution is monitored, the usual pre
and post-condition exceptions are launched whenever invocations violate specification
domain conditions, and operation implementations violate specification axioms.

We have tested our architecture on four data types: the stack specification described
in this paper (both with Stack refined into an array-based “standard” class (Figure 3)
and into java.util.Stack), a data type representing rational numbers, and a data structure
Vector whose elements are indexed by integer values. The source code for the test cases
can be found elsewhere [7]. For each data type we assessed the time and space used in
five different situations.
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1. The user’s class and the test class only, both compiled with Sun’s Java compiler,
thus benchmarking the original user’s class only;

2. The whole architecture compiled with Sun’s Java compiler, thus benchmarking the
overhead of our architecture, irrespective of the contracts;

3. The class responsible for checking the contracts, with its contracts removed, com-
piled with the JML compiler; all other classes in the architecture compiled with
Sun’s Java compiler.

4. As above but with all contracts in place, except that JML \ forall ranges were not
generated;

5. As above but monitoring \ forall assertions with a limit of 20 elements in each
range (see below).

All tests were conducted on a PC running Linux, equipped with a 1150 MHz CPU
and 512Mb of RAM. We have used J2SE 1.4.2 09-b05 and JML 5.2. The runtime in
seconds for 1.000.000 random operations, average of 10 runs, are as follows.

Case 1 Case 2 Case 3 Case 4 Case 5 Slowdown
StringArrayStack 2.71 3.26 11.58 21.21 21.21 7.8
java.util.Stack 2.27 4.35 10.66 23.07 23.07 10.2
Rational 2.97 4.71 26.74 38.06 58.72 19.8
Vector 3.80 5.24 15.30 26.34 425.18 111.9

Inspecting the numbers for the first and the fifth case one concludes that monitoring
introduces a 10 to 100-fold time penalty, depending on how many \ forall assertions are
needed (none for the stacks, very little for the rational, a lot for the vector). The numbers
for the second case indicate that conveying all calls to the data structure under testing
through the Immutable class imposes a negligible overhead, when compiled with Sun’s
Java compiler. The numbers for the third case allow to conclude that roughly half of the
total overhead reported in the fourth column is due to contract monitoring alone, while
the other half to the fact that we are using the JML compiler. Comparing the fourth
to the fifth case one concludes that monitoring \ forall assertions can impose quite an
overhead, if the number of elements inside the \ forall domain is not properly limited.
We omit the results on the space used; it suffices to say that the largest increase was
reported for the Vector test, where we witnessed a negligible 5% increase from case 1
to case 5.

8 Related Work

There is a vast amount of work in the specification and checking of ADTs and software
components in general; the interested reader may refer to previous publications [9, 12]
for a survey. Here we focus on attempts to check OO implementations for conformance
against property-driven algebraic specifications.

Henkel and Diwan developed a tool [13] that allows to check the behavioral equiva-
lence between a Java class and its specification, during a particular run of a client appli-
cation. This is achieved through the automatic generation of a prototype implementation
for the specification which relies on term rewriting. The specification language that is
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f o r a l l l : L i nkedL i s t f o r a l l o : Object f o r a l l i : i n t
removeLast ( add ( l , o ) . s t a t e ) . r e t v a l == o
i f i > 0 get ( addF i r s t ( l , o ) . s ta te , in tAdd ( i , l ) . r e t v a l ) . r e t v a l == get ( l , i ) . r e t v a l

axioms
l : L i nkedL i s t ; o : Elem , i : I n tege r ;
removeLast ( add ( , o ) ) = o ;
get ( AddFi rs t ( l , o ) , suc ( i ) ) = get ( l , i ) i f gt ( i , zero ( ) ) ;

Fig. 12. An example of the specification of two properties of linked lists as they are presented by
Henkel and Diwan [13] and as they would be specified in our approach.

adopted is, as in our approach, algebraic with equational axioms. The main difference is
that their language is tailored to the specification of properties of OO implementations
whereas our language supports more abstract descriptions that are not specific to a par-
ticular programming paradigm. Being more abstract, we believe that our specifications
are easier to write and understand.

Figure 12 presents an example. The axioms define that removeLast operation pro-
vides the last element that was added to the list and define the semantics of get opera-
tion: get( l , i ) is the i-th element in the list l . The symbols retval and state are primitive
constructs of the language adopted by Henkel and Diwan [13] to talk about the return
value of an operation and the state of the current object after the operation, respectively.

When compared with our approach, another difference is that their language does
not support the description of properties of operations that modify other objects, reach-
able from instance variables, nor does the tool. In contrast, our approach supports the
monitoring of this kind of operation.

Another approach whose goal is similar to ours is Antoy and Hamlet’s [1]. They
propose an approach for checking the execution of an OO implementation against
its algebraic specification, whose axioms are provided as executable rewrite rules.
The user supplies the specification, an implementation class, and an explicit map-
ping from concrete data structures of the implementation to abstract values of the
specification. A self-checking implementation is built that is the union of the im-
plementation given by the implementer and an automatically generated direct imple-
mentation, together with some additional code to check their agreement. The abstrac-
tion mapping must be programmed by the user in the same language as the imple-
mentation class, and asks user knowledge about internal representation details. Here
lies a difference between the two approaches: our refinement mapping needs only
the interface information of implementing classes, and it is written in a very ab-
stract language. Moreover, there are some axioms that are not accepted by their ap-
proach, due to the fact that they are used as rewrite rules; for example, equations like
insert (X, insert (Y, Z)) = insert (Y, insert (X,Z)) cannot be accepted as rewrite
rules because they can be applied infinitely often. We further believe that the rich struc-
ture that our specifications present, together with the possibility to, through refinement
mappings, map a same module into many different packages all implementing the same
specification, is a positive point in our approach that we cannot devise in the above
referred approaches.
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9 Conclusion and Further Work

We described an approach for testing Java classes against specifications, using an alge-
braic, property-driven, approach to specifications as opposed to a model-driven one. We
believe that the simplicity of property-driven specifications will encourage more soft-
ware developers to use formal specifications. Therefore, we find it important to equip
these approaches with tools similar to the ones currently available for model-driven
ones.

Specifications define sorts, eventually referring to other sorts defined by other spec-
ifications, which they import. Specifications are nameless, so, the decision of which
specification to choose to define a given sort, is made only at module composition time.
This promotes reuse at the specification level.

Due to the abstract, implementation independent, nature of the specification lan-
guage we adopted, it is easy to check different Java packages against the same speci-
fication module. This only requires the definition of appropriate refinement mappings.
In the case of different classes that implement the same interface, refinement mappings
can be reused as well.

Our approach has some limitations, some of these being structural in the sense that
they are not solvable in any acceptable way while maintaining the overall structure:

– Self calls are not monitored. This limitation has a negligible impact if client classes
call all the methods whose behavior needs to be tested.

– The approach is highly dependent on the quality of the clone methods, supplied by
the user.

– Conformance checking ignores properties of specifications when implemented by
primitive types. However, as described at the end of Section 5, our approach un-
veiled a problem we were not aware of, in a given module. This problem can only
be overcome with client-invasive approaches.

We intend to investigate the best way to solve the problem of side-effects in contract
monitoring due to changes in the state of method parameters—our approach does not
cover this problem yet. Cloning all parameters in every call to a method in the generated
immutable class—as we do for the target object—does not seem a plausible solution.
We believe that methods that change the parameters’ state do not appear very often in
OO programming, except perhaps in implementations of the Visitor pattern and other
similar situations. In our opinion a better solution would allow the user to explicitly
indicate in the refinement mapping whether parameters are modified within methods
(the default being that they are not modified).

The relation between domain conditions of specifications and exceptions raised by
implementing methods is also a topic to investigate and develop, insofar as it would
widen the universe of acceptable implementation classes.

We also plan to investigate possible extensions of both the specification and refine-
ment languages in order to be possible to define 0-ary constructors, and refine them into
Java constructors that override the default initialization.

A further topic for future work is the generation, from specifications and refinement
mappings, of Java interfaces annotated with human readable contracts. Once one is con-
vinced that given classes correctly implement a given module, it is important to make
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this information available in the form of human-readable contracts to programmers that
want to use these classes and need to know how to use and what they can expect from
them.
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