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Abstract

Modelling Business Conversations in Service Component
Architectures

João Pedro Abril de Abreu

Service-oriented computing (SOC) is a new paradigm for creating and pro-
viding business services via computer-based systems. In SOC, services are
computational entities that can be published together with a description
of business functionality, discovered automatically and used by independent
organizations to compose and provide new services. Although several tech-
nologies are being introduced with the goal of supporting SOC, the paradigm
lacks theories and techniques that enable the development of reliable systems.

SENSORIA is a research project that addresses these aspects by develop-
ing mathematically-based methods for engineering service-oriented systems.
Within this project, the SENSORIA Reference Modelling Language (SRML)
is being developed to support the design of services at a level of abstraction
that captures business functionality independently of specific technologies.

In this thesis, we provide a semantics for the fragment of SRML that sup-
ports the design of composite services from a functional point of view. The
main goal of this research is to give system designers the means to design
new services by integrating existing services, while making sure that the re-
sulting system provides the intended business functionality — what is called
correctness of composition.

In order to address this goal, we define a mathematical model of computation
for service-oriented systems based on the typical business conversations that
occur between the constituents of such systems. We then define the semantics
of the SRML language over this model and base it on a set of specification
patterns that capture common service behaviour. We show that the formal-
ity of the language can be exploited with practical gains, by proposing a
methodology for model-checking the correctness of service compositions.

Our results indicate that a formal approach to service design based on the
conversational nature of business interactions can promote the development
of functionally correct services. Furthermore, this approach can optimize the
development of service-oriented systems by allowing conceptual errors to be
identified and corrected before the systems are built.
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1.1 Service-oriented computing

Service-oriented computing (SOC) is a new paradigm for creating and pro-

viding business services via computer-based information systems. In SOC,

services are computational entities that can be published together with a

description of business functionality, discovered automatically and used by

independent organizations to compose and provide new services (or for the

internal use of that organization). For example, a financial institution may

provide a service for making secure electronic payments that can potentially

be used by an insurance company to allow its clients to pay for car insurance

or by an airline as part of its service for booking flights; a service for booking

flights can in turn be used by a travel agency whose business is to arrange

complete trips (i.e. transportation, accommodation, and so on).

The particularity of SOC with respect to other software development

paradigms is that services are not composed of fixed software components

that are known in advance and whose coupling can be defined before the

service is required; in SOC, the provision of a service may require binding

to other services whose providers will be selected each time they need to be

used — this is because an organization that requires a service is interested

in getting the best possible quality of service from an ever-changing world of

service providers (and also wants the selection process to take into account

the specific context in which the service is being requested).

This dynamic and loose coupling of components sets SOC apart from

other paradigms in two fundamental ways: on the one hand, because the

choice of external services is done at run-time and because that choice may

vary each time those services are requested, the configuration of components

that provides a given service keeps changing in ways that cannot be pre-

dicted; on the other hand, because services must be made available for use

by an heterogeneous universe of independent organizations, they must be

described in a way that abstracts their business functionalities from the spe-

cific technologies that are used to implement them — the technical details

about the way a service is coupled to its client are left to be dealt with by

an independent middleware layer each time the service is requested.
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While several technologies are being introduced by different stakeholders

with the goal of supporting SOC, the paradigm still lacks sound founda-

tional theories and techniques for addressing challenges such as automated

composition, performance, security and safety. SENSORIA is a research

project that addresses these aspects by developing formal methods for engi-

neering service-oriented software [71]. Within SENSORIA, the SRML lan-

guage is being developed to support the design and analysis of services at

the “technology-agnostic” business level [36].

1.2 State of the art in service-orientation

The evolution of SOC is being driven by the “concurrent” and not always

“interactive” efforts of several standardization interest groups such as W3C,

OASIS or DARPA. At least three proposals have been made for standardizing

the concept of SOC: one by W3C [18], which was abandoned in the year

2004, another by the OASIS consortium [52], and more recently a third one

by the Open Group [42]. These proposals define what is loosely referred to

as Service-Oriented Architecture (SOA). Most of the efforts that have been

placed on making SOC a technological reality build upon the notions defined

by SOA.

Web Services

The major approach to the implementation of SOA consists of introducing

technologies that rely on the existing standards for the World Wide Web like

the HTTP and SOAP protocols or XML based languages — such technologies

implement what are called Web Services.

Within this approach, a main goal has been to create standards for allow-

ing service accessibility through the web. The language WSDL [26], which

is developed by W3C, has been adopted as the standard for describing the

interface of web-acessible services. A WSDL description essentially declares

the operations that are provided through the web by some HTTP accessible

software component. A WSDL operation declaration is much like a method
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signature of a standard programming language; the main difference is that

WSDL is XML-based to allow independence from the programming language

in which the component is implemented.

As an extension to the Web Service approach, and following the trend of

the Semantic Web [13], languages are being developed for adding semantic

content to web service descriptions — these technologies implement what

are called Semantic Web Services. The DARPA research agency, which is

part of the U.S. Department of Defense, has developed the OWL-S language,

which is based on an ontology tailored for web services and allows WSDL

descriptions to be extended with information about what the services do and

how they should be used [55]. On this side of the Atlantic, the European Se-

mantic Systems Initiative, which capitalizes on several EU research projects,

is developing the WSML language based on the WSMO ontology for web

services [35]. The purpose of both of these languages is to attach semantic

information to web service descriptions that can be used to guide the process

of discovery, negotiation and composition of services.

Service composition

In addressing the problem of providing new services by combining exist-

ing services — what is refered to as service composition — two different

approaches have emerged: orchestration and choreography [25]. An orches-

tration defines the local behaviour of an “orchestrator” component (or more

than one) that interacts with a set of existing services in order to a accom-

plish a certain business goal. A choreography is a global description of the

messages that are exchanged by a set of parties to accomplish a business goal.

In a sense, a choreography is a specification of the intended behaviour of a

system, which is not guaranteed to be implementable [7], while an orches-

tration is an implementation that is not guaranteed to provide the intended

behaviour. Because of this, efforts need to be made, on the one hand, to

understand how (and if) a given choreography can be implemented and, on

the other hand, to understand if a given orchestration generates the correct

behaviour — the latter is referred to as “correctness of composition”.
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The two languages considered to be de facto standards for orchestration

and choreography are BPEL [8] and WS-CDL [47], respectively. BPEL is an

OASIS standard that originated in a joint effort by IBM and Microsoft to

define an XML-based language for programming business processes. BPEL

allows orchestrating web services that are accessible through a WSDL in-

terface. WS-CDL is a standardization candidate of W3C that can be used

to specify a choreography of peers using WSDL (or XML schema) typed

messages.

Service Component Architecture

Resulting from an industry collaboration, the Service Component Architec-

ture (SCA) is a set of specifications that intend to standardize the notion as

well as the technological process of service composition in a way that allows

the use of several standard technologies for orchestrating web services [12]. In

SCA, new services (or just applications) are built by providing an XML-based

definition of a configuration of components — which can be implemented us-

ing technologies such as BPEL, C++ or JAVA — that communicate with a

set of existing services described using WSDL.

Service publication and discovery

The UDDI (Universal Description, Discovery and Integration) is an XML-

based protocol for creating “yellow pages” of web services [27]. A UDDI

server contains a list of WSDL descriptions that (in theory) correspond to

web available services. While the UDDI is considered the technological stan-

dard that supports service publication and discovery, it allows little more

than manual searches for web services based on business names or textual

descriptions of the services, in the style of search engines. The interest of

companies in maintaining UDDI lists has been very reduced — in fact, IBM,

Microsoft and SAP, have announced the discontinuation of their UDDI busi-

ness registries at the end of 2005. Research indicates that, at the moment,

generic search engines like Google or Yahoo! are in fact more reliable for find-

ing active web services than UDDI registries [6]. Unfortunately, like UDDI
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registries, search engines do not support the automation of service discovery.

1.3 Shortcomings and challenges

The technologies that are currently available for SOC are still far from sup-

porting the paradigm in its full dimension. The technologies that are avail-

able for service publication, like the UDDI, offer very little support for au-

tomated discovery of services. The technologies that are available for imple-

menting service composition, such as BPEL/WSDL, rely on static references

to existing services; yet the dynamic nature of SOC requires service to be

continually updated, not only to ensure the best quality of service, but also

because service availability keeps changing. On the other hand, automatic

service discovery and composition requires accessing rich behavioural descrip-

tions of services, which are not supported by current web service standards

like WSDL. Technologies such as those that support semantic web services

are definitely a step forward towards automatic discovery and composition,

but such technologies still lack the support of reliable automatic methods for

matching service descriptions with business requirements.

From the engineering point of view, SOC requires the introduction of well-

founded analytical methods and tools to support every stage of the service

development process, from design to maintenance. It is essential to provide

developers with the means to systematically create services that are reliable,

functionally correct, secure and efficient. Yet, at this stage, there is little

support for the development of services in more than an intuitive manner.

This is a level at which the software engineering community is making a

significant contribution to SOC. Computer scientists are bringing the formal

mathematical techniques that have been proved useful for software engineer-

ing to help fulfill the full potential of the SOC paradigm. A vast amount

of work is being done to address issues such as composition, security or dis-

covery using formalisms such as process algebras, automata and Petri nets.

Efforts are being placed not only on giving theoretical foundations to SOC,

but also on supporting the design process and guiding the use and evolution

of technological standards.
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1.4 The SRML approach

The SENSORIA Reference Modelling Language (SRML) is being developed

within project SENSORIA as a prototype domain-specific language for mod-

elling service-oriented systems at the business (high) level of abstraction.

SRML is inspired by the Service Component Architecture (SCA) composi-

tion model under which “[. . . ] relatively coarse-grained business components

can be exposed as services, with well-defined interfaces and contracts [. . . ]

removing or abstracting middleware programming model dependencies from

business logic” (p. 2 of [11]).

While both SCA and SRML are being developed to support the middleware-

independent layer that is concerned with the business logic of composite

services, these two approaches have different practical goals:

• The main interest of SCA is to provide an open specification that allows

the integration of several existing technologies (like JAVA, C++, BPEL

or PHP) for implementing the middleware-independent layer, i.e. the

business logic;

• SRML focuses on providing a formal framework with a mathematical

semantics for modelling and analysing the business logic of services

independently of the hosting middleware, but also independently of

the languages in which the business logic is programmed.

Furthermore, SRML provides support for modelling not only the functional

properties of services (i.e. the business logic), but also the aspects that

concern the run-time discovery and binding of services [38], which in our view

are at the centre of the SOC paradigm — such aspects are not addressed by

SCA.

The main novelty of SRML in addressing the business logic of services is

that it adopts a set of complex primitives tailored specifically for modelling

the business conversations that occur in SOC. In the world of SOC, service

providers and their clients continuously engage in conversations — i.e. an

exchange of correlated messages — with the goal of negotiating business

deals. For example, a service requester may ask for a quote from a flight
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booking service, on the basis of which it will decide either to go ahead with the

deal and book the flight or cancel it. In SRML, services are characterized by

the conversations that they support and the properties of those conversations.

In particular, in SRML:

• the messages that are exchanged within a system are typed by their

business function (a message can be a request, a cancelation, and so

on);

• service interface behaviour is specified using message correlation pat-

terns that are typical of business conversations; and

• there are pre-defined business conversation protocols that services can

follow (in particular, requester and provider protocols).

Additionally, these conversation protocols capture the crucial role that time

has in the outcome of the negotiations. In the world of SOC, the deals that a

service provider puts on offer keep changing as product availability changes

or markets evolve. For example, a flight agent may provide a quote for a

given flight that is valid for two-minutes, after which seats may no longer be

available or price may have changed.

Because of the importance that time has in the business logic of services,

the delays that are introduced by the infrastructures over which services run

become crucial in SOC. This is why in SRML communication is asynchronous

— messages are transmitted by wires, which may introduce a delay — and

support for specification and analysis of service performance is also being

developed [14].

Overall, SRML adopts a declarative style of modelling that promotes the

development and maintenance of services based on business requirements,

while abstracting from the way those services execute (see [66] for a discussion

about the benefits of declarative specifications). The formal semantics of

SRML, of which a part is defined in this thesis, aims at supporting the

design process with analytical techniques and tools [3, 14].

In the remaining of this section we give a brief outline of the SRML

language. We put the emphasis on the part of the language that concerns
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the business logic of service composition, which is the part of SRML we will

focus on throughout this thesis.

1.4.1 Service composition

The design of composite services in SRML resembles component-based devel-

opment (CBD) in the sense that new services result from the orchestration of

independent units of behaviour. Nonetheless, SRML moves away from CBD

because in SOC there is no fixed system of components that services can

be programmed to draw from but, instead, an evolving universe of business

functionality that service providers publish and that can be discovered and

used by other services as these execute.

SRML adopts the SCA assembly model according to which new services

are composed by interconnecting a set of elementary components to a set

of external services [12]; the new service is provided through an interface to

the resulting system. The business logic of such a composite service involves

a number of interactions among these components and external services,

but is independent of the internal configurations of the external services —

the external services need only be described by their interfaces. The actual

external services are discovered at run-time by matching these interfaces with

those that are advertised by service providers (and optimizing the satisfaction

of service level agreement constraints [38]).

The elementary unit for specifying service composition in SRML is the

service module (or just module for short), which is the SRML equivalent to

the SCA notion of “composite”. A module specifies how a set of internal

components and external required services interact to provide the behaviour

of a new service. In addition, a module defines constraints on the process of

discovery and selection of the required services.

Figure 1.1 shows the structure of the module TravelBooking, which mod-

els a service that manages the booking of a flight, a hotel and the associated

payment. The service is assembled by connecting an internal component

BA (that orchestrates the service) to three external services (for booking a

flight, booking a hotel and processing the payment) and the persistent com-



1.4. The SRML approach 10

TRAVELBOOKING

     TA:
    TravelAgent

FA:
FlightAgent

HA:
HotelAgentBA:

BookingAgent

PA:
PayAgent

BH:
c3,≡,d3

BP:
c2,≡,d2

BF:
c4,≡,d4

CB:
c1,≡,d1

DB:
UsrDB

BD:
c6,i/o,d6

CP:c5,≡,d5

Figure 1.1: The structure of the module TravelBooking. The service is as-
sembled by connecting a component BA of type BookingAgent to three external
service instances PA, HA and FA with interface types PayAgent, HotelAgent and
FlightAgent (respectively) and the persistent component (a database of users) DB
of type UsrDB. CB, CP, BP, BH, BF, and BD are the wires that interconnect the
several parties and TA of type TravelAgent is the interface through which service
requesters interact with the TravelBooking service.

ponent DB (a database of users). The difference between the three kinds

of entities — internal components, external services and persistent compo-

nents — is intrinsic to SOC: internal components are created each time the

service is invoked and killed when the service terminates; external services

are procured and bound to the other parties at run-time; persistent com-

ponents are part of the business environment in which the service operates

— they are not created nor destroyed by the service, and they are not dis-

covered but directly invoked as in component-based systems [33]. TA is the

interface through which service requesters interact with the TravelBooking

service. In SRML, interactions are peer-to-peer between pairs of entities

connected through wires. CB, CP, BP, BH, BF and BD are the wires in

TravelBooking.
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1.4.2 Functional behaviour and correctness

Each party (component or external service) is specified through a declaration

of the interactions the party can be involved in and the properties that can

be observed of these interactions during a session of the service. Wires are

specified by the way they coordinate the interactions between the parties.

If the party is an internal component of the service (like BA in Figure 1.1),

its specification is an orchestration given in terms of state transitions — using

the language of business roles. An orchestration is defined independently of

the language in which the component is programmed and the platform in

which it is deployed; the actual component may be a BPEL process, a C++

or a Java program or a wrapped up legacy system, inter alia. An orchestration

is also independent of the parties that are interconnected with the component

at run-time; this is because the orchestration does not define invocations of

operations provided by specific co-parties (components or external services);

it simply defines the properties of the interactions in which the component

can participate.

If the party is an external service, the specification is what we call a

requires-interface and consists of a set of temporal properties that correlate

the interactions in which the service can engage with its client. The lan-

guage of business protocols is used for defining such specifications. External

services are specified by their interface behaviour and not by their internal

workflow. Figure 1.2 shows the specification of the business protocol that

the HotelAgent service is expected to follow. The specification of the inter-

actions provided by the module (at its interface level) is what we call the

provides-interface, which also uses the language of business protocols. Fig-

ure 1.3 shows the specification of the business protocol that the composite

service is expected to follow, i.e the service that is offered by the service

module TravelBooking.

Business protocols use a set of predefined behaviour patterns that cap-

ture common service interface behaviour — this is because, in order to make

on-the-fly service discovery efficient, SRML advocates that the matching of

requires-interfaces of a module with provides-interfaces of potential service
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BUSINESS PROTOCOL HotelAgent is  

 INTERACTIONS 
   r&s lockHotel 

    checkin,checkout:date; name:usrdata 
    hconf:hcode 
 BEHAVIOUR  
  initiallyEnabled lockHotel?  
  lockHotel? enables lockHotel? until 
    today < lockHotel.checkin 
 
 
 

END BUSINESS PROTOCOL 
 

 

Figure 1.2: The specification of the service interface of a HotelAgent written in
the language of business protocols. A HotelAgent can be involved in one interaction
named lockHotel that models the booking of a room in a hotel. Some properties
of this interaction are specified: a booking request can be made once the service
is instantiated and a booking can be revoked up until the check-in date.

BUSINESS PROTOCOL TravelAgent is  

 INTERACTIONS 
   r&s login  

    usr:username, pwd:password 
  r&s bookTrip 

     from,to:airport, 
     out,in:date 
     fconf:fcode, 
     hconf:hcode, 
     amount:moneyvalue  
   snd payNotify 
     status:boolean  
   snd refund 
     amount:moneyvalue  
  BEHAVIOUR  

  initiallyEnabled login?  
   login! ∧ login.Reply enables bookTrip? 
   bookTrip? ensures payNotify!  

  payNotify! ∧ payNotify.status enables bookTrip? 
  bookTrip? ensures refund! 

 

Figure 1.3: The specification of the provides-interface of the sevice module
TravelBooking written in the language of business protocols. The service can be
involved in four interactions (login, bookTrip, payNotify and refund ) that model
the login into the system, the booking of a trip, the sending of a receipt and
refunding the client of the service (in case a booking is returned). Five properties
are specified for these interactions.
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providers must rely on repositories of business protocols that are hierarchi-

cally organized at design-time.

Persistent components can interact with the other parties synchronously,

i.e. they can block while waiting for a reply. The properties of synchronous

interactions are in the style of pre/post condition specification of methods.

The specification of each wire consists of a set of connectors that are

responsible for binding and coordinating, through interaction protocols, the

interactions that are declared locally in the specifications of the two parties

that the wire connects. The reason that interactions are named differently

in the two parties is precisely due to the fact that composite services are put

together at run-time without a-priori knowledge of the parties that will be

involved. Because of this, we need to rely on the interaction protocols of the

wires to establish how these interactions are correlated.

A service module is said to be functionally correct if the behaviour that

is advertised in its provides-interface is entailed by the composition of com-

ponents, required services and wires that the module specifies.

1.4.3 Service discovery and binding

In [38], a formal notion of service discovery and binding is given that defines

how services are assembled at run-time — in broad terms, services bind to the

discovered services by replacing their requires-interfaces with the provides-

interfaces of the discovered modules. The semantics of this binding process

is based on an algebraic composition of service modules (see [38]) that guar-

antees that a new service module is correct as long as the modules that are

discovered and bound are correct as well.

The proposed notion of service discovery and binding is independent of the

logic and languages in which the properties of the module and each of its parts

is specified. While the notion of correctness of a module is expressed in terms

of logical entailment, the mechanisms that SRML provides for composing

different modules is independent of any such logic. The particular choice of

logic operators, their semantics and proof-theory are essential for supporting

the design of composite services from a functional point of view but not for
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the semantics and pragmatics of the discovery and binding process that takes

place at run-time.

The aspects that concern discovery and binding are addressed in SRML

by a particular fragment of the language, which is outside the scope of this

thesis. This fragment allows the specification of policies that define how the

external services required by a module are selected and when they are bound.

As a short summary, we only mention that:

• The external policy concerns the way the module relates to external

parties: it declares a set of constraints that have to be taken into

account during discovery and selection. Every constraint involves a set

of variables that includes both local parameters of the service being

provided (e.g. the percentage of the cost of a trip that is refundable)

and standard configuration parameters selected from a fixed set of types

availability, response time, message reliability, inter alia;

• The internal policy of a module concerns the timing of the binding of

its interfaces and instantiation of its components and wires.

For more details on how discovery and binding is addressed in SRML we

refer the reader to [38].

1.5 Contribution and structure of the thesis

In this thesis we focus on the fragment of SRML that supports the design of

composite services from a functional point of view. More precisely, we define

the semantics of the languages that SRML provides for specifying functional

behaviour, which we have introduced briefly in Section 1.4, and we investigate

how the verification techniques being developed within project SENSORIA

— specifically the UCTL temporal logic and the UMC model-checker 1 — can

be used to support the design of functionally correct service compositions.

In particular, the language of business protocols, which is used for spec-

ifying service interface behaviour (both of required services and of modules

1The UCTL logic and the UMC model-checker (which is based on UCTL), are being
developed within SENSORIA by ISTI-CNR in Pisa.
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themselves), is defined over UCTL so that the mechanism of module composi-

tion (discussed in [37] and [38]) can work — this is because, the business logic

of a module relies on the discovery of services (provided by other modules)

that satisfy a set of specified properties.

In order to give meaning to the languages presented in Section 1.4 we

define a model of computation that captures the conversational nature of

the interactions that occur in SOC. This model together with the model of

service discovery and binding (presented in [38]) provide the mathematical

characterization of service-oriented computation that is required by SRML

for developing formal methodologies for engineering service-oriented systems.

The following is a short summary of each of the contributions made by

this thesis.

Semantic domain (Chapter 3) We define a model of computation for service-

oriented systems that is based on the typical business conversations

that occur between the constituents of these systems. In particular, we

define the typical requester and provider conversation protocols. This

model constitutes the semantic domain of SRML.

Logic of SOC (Chapter 4) We give a logical characterization of our model

of computation, using the logic UCTL. That is, we capture the proper-

ties that characterize computation in service-oriented systems and the

requester and provider conversation protocols using temporal formulas.

An axiomatization is given whose soundness is proved in Appendix A.

Specification languages (Chapter 5) We formalize the languages of busi-

ness roles, business protocols and interactions protocols, which are used

in service modules to specify the behaviour of components, service in-

terfaces and wires, respectively. For each of these languages, we provide

a formal semantics over our model of computation.

Behaviour patterns (Chapter 5) We formalize the behaviour patterns that

can be used for specifying service interface behaviour in terms of ab-

breviations of UCTL formulas.
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Model-checking service composition (Chapter 6) We propose a method-

ology for supporting the development of functionally correct service

modules using the UML state machine based model-checker UMC. In

order to formalize our methodology, we make a formal review of the

UMC model-checker.

Throughout the thesis, we rely on the TravelBooking case study to illustrate

our framework. In Appendix B, we present the complete SRML specification

of the TravelBooking service module. In Appendix C, we present the com-

plete encoding of TravelBooking with UML state machines for the purpose

of model-checking with UMC.

Most of the work that is presented in this thesis has been discussed in

previous publications. In particular, the model of computation that we pro-

pose for SOC has been presented in [2]; the language of interaction protocols

that is used for specifying wires is discussed in [1]; the semantics of the pat-

terns of service behaviour and the model-checking approach that we propose

for service composition is presented in [3]; and an overview of the SRML

approach to service-oriented modelling is given in [39]. This thesis presents

a comprehensive and unified view of that work.



Chapter 2

Related work

17



2.1. Formal approaches to service composition and analysis 18

2.1 Formal approaches to service composition

and analysis

Different formalisms and techniques are being brought to bear the challenges

raised by SOC. Among the approaches that address service composition some

focus directly on supporting the use of existing technological standards, while

others (like SRML) remain largely “technology agnostic”. Among the for-

malisms that are being used for defining service composition, process alge-

bras, Petri nets and automata are becoming pervasive. The analysis tech-

niques that are associated with these formalisms, such as model-checking

with temporal logic and bisimulation (in the case of process algebras), are

being used extensively for supporting the correct development of service com-

positions.

In this section we situate the work that is presented in this thesis by

discussing some of the proposals found in the literature for addressing the

problem of service composition and analysis. While we have organized the

discussion by formalism (process algebra, Petri nets, automata and temporal

logic), it is beyond our objectives to define a taxonomy of approaches. The

approaches that we have selected are related to our work either because they

have (or at the surface seem to have) similar goals or because they propose

similar modelling or analysis techniques.

2.1.1 Process algebras

Process algebras (or calculi) are a family of languages that allow precise

descriptions of concurrent computations. Several prototype programming

languages for concurrent systems have been proposed that have a process

algebra based semantics (e.g. [62, 68]), some of which promote component-

based development (e.g. [5])

One of the main characteristics of process algebras is that they rely only

on very few syntactic primitives. This in turn, makes it possible for for-

mal techniques to be used for manipulating and reasoning about processes

using techniques such has bisimulation. The disadvantage of having a very
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simple syntax is that it becomes hard to model domain specific phenomena

like the complex conversations that characterize SOC. Because of this, most

of the attempts at applying process algebras to SOC consist of extending

the capabilities of well-established process algebras (typically the π-calculus

[57]) with primitives that capture SOC phenomena — the following are some

examples.

COWS (Calculus for Orchestration of Web Services) is a process algebra,

developed within project SENSORIA, that provides operators inspired by

BPEL [50]. In particular, COWS has a mechanism for correlating messages

through the use of indexes. Verification techniques for COWS have been

defined over an extension of the UCTL logic and its associated model checker

[34]. The strategy for model-checking COWS specifications that is proposed

by the authors requires an additional specification of the business semantics

of the operations that are used in that COWS specification. This is because

notions such as request, response, etc — which are native to the SRML

language — are not part of COWS.

Other approaches exist that focus on abstracting subsets of BPEL with

process algebras in order to analyse phenomena such as data-independent

functionality [70] or fault handling [51].

Also within SENSORIA, Boreale et al. propose SCC (Service Centered

Calculus) [19], which is essentially an extension of the π-calculus with the

same primitives for defining orchestrations that have been adopted by the

ORC programming language for defining orchestrations [58]. SCC adopts

a notion of service session that allows modelling client-server relationships.

SCC also provides a primitive for closing a session, which allows modelling

service interruption and session termination. ORC itself was originally a

calculus for modelling orchestrations, but has evolved into a full-fledged pro-

gramming language for implementing orchestrations [49]. The notion of ses-

sion type (see [45]) is also being brought forward to the realm of SOC to

track the types of the values exchanged in each session (e.g. [4, 21]).

Vieira et al. [69] propose a variant of SCC that resorts to a generic

notion of context for correlating messages that would otherwise be seen as

independent. In SRML, two-way interactions define a much more complex
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notion of context, which is characterized by the events that can happen

associated with those interactions and the temporal correlation between those

events.

The previous are just examples (mostly taken from project SENSORIA)

of process algebras tailored for SOC. Several other processa algebras exists

that, for the sake of conciseness, we do not discuss (e.g. [24], which is based

on W3C’s WS-CDL, or [20], which focuses on multi-party sessions).

2.1.2 Petri nets

Petri nets are a very well established formalism for modelling distributed

systems (see for example [63] or [29] for an overview on Petri nets). In

particular Petri nets lend themselves to modelling a class of workflows —

referred to as synchronization workflows [48] — that contain the branching

and synchronization syntatic primitives found in BPEL [61]. Therefore, it is

not surprising that one of the main contributions of the Petri net community

towards the development of SOC has been to provide a formal semantics for

BPEL (e.g. [61, 44, 54]). Nevertheless, the use of Petri nets in SOC is also

being studied independently of BPEL.

Narayaman et al. provide support to the semantic web service technology

by defining a Petri net based semantics for the subset of OWL-S that deals

with processes [59]. The authors have implemented a tool for encoding OWL-

S process descriptions into Petri nets so that analysis can be made using their

simulation and modelling environment. The authors describe the composite

behaviour of a service using a Petri net and discuss the conditions under

which such behaviour can emerge by combining a set of web services. In

our work, the problem is placed the other way around; we are interested in

verifying if a fixed composition of services behaves globally as intended.

Yi and Kochut propose an approach in which service interface conversa-

tions are modelled by WSDL tailored Petri nets [72]. More precisely, each

service interface is modelled by a Petri net where the inputs model WSDL op-

erations and the connections between those inputs define a control flow that

models the conversation. A set of such service interfaces can be composed by
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defining a Petri net that orchestrates them. The associated tools support the

generation of BPEL code from composition specifications. It is also possi-

ble to generate from a composition specification a simplified WSDL tailored

Petri net that models the interface conversation of the composite service —

that Petri net can then be used in the composition of other services.

Approaches that combine Petri nets with other formalisms also exist. For

example, Hamadi et al. use Petri nets to model service behaviour and intro-

duce a Petri net based algebra to model service composition; the traditional

algebraic techniques like bisimulation and structural equivalence can then be

used to analyse service compositions [41].

2.1.3 Automata

Automata (also known as State Machines) provide a simple and intuitive

way of modelling computational systems. For example, the Specification and

Description Language (SDL) is a standard for specifying telecommunication

systems in an object-oriented fashion that is based on state machines [65].

SDL is suited for the specification of generic real-time systems where sev-

eral concurrent activities communicate using discrete signals and is a good

illustration of the power of state machine based formalisms for specifying dis-

tributed systems. Several attempts at harnessing this power for the purposes

of SOC are being pursued.

Fu, Bultan et al. have investigated several aspects of service composition

using guarded state machines with asynchronous communication to model

the peers involved in a composite service. The authors analyse the problem

of implementing a desired choreography, which they call a global conversation

[23], with a system of such machines [22]. They also analyse the problem of

verifying the correctness of an orchestration of a system of such guarded

state machines [40] — in particular, the authors propose a tool supported

method for verifying the correctness of BPEL compositions that involves

translating BPEL processes into guarded state machines, translating those

state machines into PROMELA (the input language of SPIN) and using

the SPIN model-checker to verify the correctness of the composition (using
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Linear Temporal Logic).

Some approaches focus on analysing real time properties of BPEL. For

example, Diaz et al. model-check choreographies written with WS-CDL by

translating them into timed-automata (i.e. timed state machines) — the

authors advocate that the resulting (model-checked) automata can then be

used for the automatic generation of correct BPEL orchestrations [30]. Dong

et al. define a timed automata based semantics for ORC, which they proof to

be equivalent to the official semantics of ORC [31], and advocate the use of

timed automata based model-checkers for verifying the correctness of ORC

orchestrations.

Beek et al. discuss the use of UML state machines, the logic UCTL,

and the model checker UMC [56] in the design of an extension of the SOAP

communication protocol tailored for service-oriented computing [9].

2.1.4 Temporal logic

Temporal logic has been extensively used for specifying properties of concur-

rent and distributed systems independently of the processes that guarantee

those properties. Typically, temporal logic is used within model-checking

approaches to service-oriented system analysis for expressing the properties

that a composite service is expected to satisfy, while the service itself is usu-

ally modelled using process algebras (e.g. [50]), Petri nets or automata (e.g.

[9]). In SRML, we use temporal logic not only to express the properties that

are expected of a composite service, but also to model the external services

that are required by the composition. In particular, SRML makes use of a set

of patterns of temporal logic that capture commonly occuring requirements

in business interactions. The use of patterns of logic for modelling system

requirements has been addressed in the past (e.g. [53, 32]). Van der Aalst

and Pesic have applied that idea and proposed DecSerFlow, a language for

modelling services with patterns of Linear Temporal Logic (expressed graph-

ically) that constrain the processes that the services follow, without the need

to fully define these processes [66, 67]. The main difference between the

patterns of logic used in SRML and those used in DecSerFlow derives from
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the fact that SRML is a domain specific language; because of this, the ab-

breviations offered by SRML are tailored specifically for modelling business

interactions, while those of DecSerFlow model generic processes.

2.2 Where SRML stands

There is a multitude of formal languages intended for supporting the develop-

ment of functionally correct service compositions. A fundamental difference

between SRML and those languages derives from the fact that SRML is based

on a set of constructs that capture what we believe are paradigmatic aspects

of the business conversations that occur in SOC. These constructs can be

used directly to model service behaviour — specifically SRML contains:

• messages that are typed by their business function;

• typical message correlation patterns; and

• pre-defined conversation protocols.

As far as we know, the existing approaches (some of which have been dis-

cussed in this chapter) support the modelling of business conversations in

a much more generic way. For example, some calculi support conversations

only in the sense that the set of messages can be partitioned into conver-

sations (e.g. [50, 69]). Other approaches use generic workflow descriptions

to model conversational protocols of services (e.g. [72]). To the best of our

knowledge, at the moment there is no other approach in which the business

nature of service conversations is captured in such detail as in SRML.

Another particularity of SRML, derives from the fact that SRML is in-

spired by the Service Component Architecture. SRML uses two different

types of languages for specifying the components of a service: an automata-

based language is used for specifying the internal components that are known

a priori and a more abstract logic-based language is used for specifying the

services that need to be discovered. This is because, in SOC, services must be

discovered based on their conversational protocols and not on the workflows
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that they follow. Most approaches model services as processes which, in our

opinion, does not reflect the true nature of service discovery.

In fact, when we compare SRML to other approaches to service compo-

sition, it stands out that SRML places itself at a higher level of abstraction.

This is because SRML adopts a declarative style through which one can spec-

ify “what” the components of a service do, while abstracting from “how”

they do it. Most other approaches focus on aspects of computation that are

closely related to way service composition is implemented, while SRML fo-

cuses on the logic of business integration and allows the executional aspects

to be left unspecified. This shift from procedural to declarative specifications

has been advocated by van der Aalst and Pesic for modelling services [66] —

nonetheless the authors have focused their efforts on monitoring the workflow

of services at run-time and have not addressed the issue of service design.

With SRML, we adopt the same philosophy and put forward a solution in

which the business logic of composite services can be designed and analysed

without forcing designers to make premature decisions about the way that

business logic is implemented.
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In this chapter we present the semantic domain that underlies our frame-

work. In summary, we see service-oriented systems as networks of computa-

tional entities that interact by exchanging messages whose types are mean-

ingful from a business point of view. We model the behaviour of such systems

using transition systems in which the transitions represent the exchange and

processing of messages.

The chapter is organized as follows: Section 3.2 defines the notion of

configuration (i.e. network of interacting nodes); Section 3.3 defines which

events (i.e. messages) can be exchanged between the nodes of a configura-

tion; Section 3.4 defines how a configuration can compute — in particular it

defines how events are transmitted asynchronously between nodes and how

the computation performed by a configuration can be modelled with a tran-

sition system; Section 3.5 defines the prototypical requester and provider

conversation protocols.

3.1 Data modelling

Our approach focuses on the patterns of message exchange that are typical

in SOC. Therefore, throughout this thesis, we will abstract from the data

modelling aspects by considering a fixed data signature

Σ = 〈D,F 〉

where D is a set of data sorts (such as int, boolean and so on) and F is a

D∗×D-indexed family of sets of operations over the sorts (such as addition,

conjunction, and so on). We further assume that time, boolean ∈ D are

datatypes that represent the usual concepts of time and truth values, and

that the usual operations over time and truth values are in F . We assume a

fixed algebra

U

for interpreting Σ.
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3.2 Configurations

A configuration is a graph where the nodes are entities capable of performing

computations and the edges are wires that connect those entities. The graph

does not have multiple edges, meaning that for every two nodes there is

either a single wire connecting them or they are not directly connected. The

graph does not have loops either, meaning that a node cannot be connected

to itself. The graph is undirected because wires do not have a direction

associated with them; wires are able to transmit messages both ways as we

will see further ahead. We further distinguish between nodes that are able

to perform parallel computations and those that can only perform sequential

computations.

Definition 3.2.1 (Configuration) A configuration is a triple

〈N,WIRE , PLL〉

such that:

• 〈N,WIRE 〉 is a simple graph (undirected, without self-loops or multi-

ple edges) where N is a set of computational nodes and the relation

WIRE ⊆ N ×N is the set of edges (the wires that connect the nodes);

• PLL ⊆ N are “distributed” nodes, i.e. nodes that can perform parallel

computations; N \PLL are “sequential” nodes, i.e. nodes that can only

perform sequential computations;

As discussed in Section 1.1, the configurations of service-oriented systems

evolve at run-time, when external services are bound to satisfy business re-

quirements. For the purpose of this thesis, which is to model and analyse

the functional properties of composite services, we restrict ourselves to static

configurations, i.e. we do not model or analyse how these configurations

come about (we refer the reader to [38] for an account of how the run-time

reconfiguration of systems is handled in SRML).

A service-oriented configuration (SO-configuration) is a configuration in

which the nodes interact using a particular type of (business) interactions.
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In a SO-configuration the set of interactions that can take place between

each pair of nodes is fixed. We distinguish between one-way and two-way

interactions and assign a direction to each interaction that defines which

messages can be sent and received by which nodes. As discussed in Section

1.4, messages are propagated through wires asynchronously, i.e. there is a

time gap between the instant a party sends a message and the instant the

message is delivered to the co-party by the wire. Associated with each wire

there is a particular delay.

Definition 3.2.2 (Service-Oriented Configuration) A Service-Oriented

configuration is a tuple

〈N,WIRE ,PLL,Ψ, 2WAY , 1WAY 〉

where:

• 〈N,WIRE ,PLL〉 is a configuration;

• Ψ assigns to every w ∈ WIRE an element w.delayΨ ∈ timeU that

denotes the delay associated with wire w.

• 2WAY and 1WAY are N×N-indexed families of mutually disjoint sets

of “two-way” and “one-way” interactions, respectively; we use INT to

refer to 2WAY ∪ 1WAY ;

• For every n, n′ ∈ N , if 〈n, n′〉 /∈ WIRE then INT 〈n,n′〉 = ∅, i.e. there

are no interactions between nodes that are not connected by a wire.

Naturally, if there is an interaction between n and n′, then there needs

to be a wire between these two nodes for the interaction to take place; this

is captured by the last condition of the definition. We will see further ahead

that if interaction i belongs to 〈n,n′〉 this means that i is initiated by node n.

In the next two sections we define which events can occur when a configu-

ration computes and we define the notions of computation state, computation

step and computation model for a configuration.
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Throughout the rest of the Chapter we consider a fixed configuration

Ξ = 〈N,WIRE ,PLL,Ψ, 2WAY , 1WAY 〉

over which all definitions are given.

3.3 Interactions, events and pledges

In service-oriented computation, typical interactions are of a conversational

kind that involves a durative asynchronous exchange of correlated events

(messages). In SRML, two-way interactions capture a pattern of dialogue

that is prevalent in service-oriented computation: a party sends a request

to a co-party that replies either positively by making a pledge to deliver a

property (i.e. it gives some kind of guarantee) or negatively, in which case

the interaction ends; if the answer is positive the party that made the request

can commit by accepting the pledge or cancel the request. If and after the

requester commits, a revoke may be available that compensates for the effects

of the pledge. One-way interactions capture situations in which a party sends

a single message and does not expect a reply from the co-party. This type

of interaction has only this one event associated with it.

We use a particular notation to distinguish between the different types

of events that can occur during interactions. The following table shows the

events associated with an interaction a:

a
 The initiation-event of a.

aB The reply-event of a.

a� The commit-event of a.

a7 The cancel-event of a.

a> The revoke-event of a.

Associated with every one-way interaction a there is one and only one

event, a
. Every two-way interaction a has associated with it the set of five

events {a
, aB, a�, a7, a>}. The possible patterns of two-way interaction

supported by SRML in the case in which the reply is positive are depicted

in Figure 3.1.
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Figure 3.1: The patterns of two-way interactions that involve a positive reply.
By useBy we denote the time point (deadline) after which PartyB no longer ensures
the pledge. In the case on the left, the initiator commits to the pledge; a revoke
may occur later on, compensating the effects of the commit-event. In the middle,
there is a cancellation; in this situation, a revoke is not available. In the case on
the right, the deadline occurs without a commit or cancel having occurred.

Each event has a direction associated with it; an event is sent by one party

to a co-party that receives it. For every two-way interaction a ∈ 2WAY 〈n,n′〉,

the events a
, a�, a7 and a> can be sent by node n and received by node n′,

while the event aB can be sent by n′ and received by n. More precisely:

Definition 3.3.1 (Events) For every interaction a ∈ and node n ∈ N , the

set En(a) of events associated with a that can be received by n is defined as

follows:

If a ∈ 2WAY 〈n,n′〉 then

En(a) = {aB}

En′(a) = {a
, a�, a7, a>}

En′′(a) = ∅ for any other n′′ ∈ N

If a ∈ 1WAY 〈n,n′〉 then

En(a) = ∅

En′(a) = {a
}

En′′(a) = ∅ for any other n′′ ∈ N
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We also define the following sets:

• En =
⋃
{En(a) : a ∈} is the set of all events that can be received by

node n.

• E(a) = En(a) ∪ Ec′(a) where a ∈〈n,n′〉 is the set of events associated

with interaction a.

• E〈n,n′〉 =
⋃
{E(a) : a ∈〈n,n′〉 ∨a ∈〈n′,n〉} is the set of all events that are

carried by wire 〈n, n′〉.

• E =
⋃
{E(a) : a ∈ INT} is the set of all events that can occur.

We see E as a WIRE-indexed or a N-indexed family of sets when convenient.

Every event may have a set of parameters. In particular, every reply-

event (of a two-way interaction) has at least two parameters: Reply defines

if the reply is positive or negative and useBy defines an expiration time until

when the pledge holds. In order to be able to refer to a parameter p without

being ambiguous about which interaction that parameter is associated with,

we assume that all the parameters associated with some interaction a (i.e.

the parameters of the events of a) have different names. For example, if a

is a two-way interaction, a.Reply unambiguously denotes a parameter of aB

— this is because there cannot be another parameter Reply associated with

interaction a.

Definition 3.3.2 (Parameters) A parameter-assigning function PP assigns

a D-indexed family of disjoint sets of parameters to each event in E, such

that:

• For every a ∈, e, e′ ∈ E(a), P ∈ PP(e) and P ′ ∈ PP(e′), P and P ′ are

disjoint.

• For every a ∈ 2WAY , Reply ∈ PP(aB)boolean and useBy ∈ PP(aB)time

Throughout this thesis, we assume that for every configuration Ξ there is

a fixed parameter-assigning function denoted by PPΞ (or simply PP , if no

ambiguity arises).
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As mentioned, associated with each two-way interaction there is a pledge,

which is a property (or set of properties) that holds after a positive reply. For

example, a typical flight agent states a price for every requested flight that

is guaranteed to hold for a period of time (i.e. until the deadline expires). In

this case, the pledge is that the service requester will pay the stated price,

if it commits. For every interaction a, we use a.pledge to denote the pledge

that is associated with that interaction.

3.4 Computation states, steps and models

In this section we define a discrete model of computation for service-oriented

configurations. In this model we assume that each node is capable of pub-

lishing 1 and processing received events. We also assume that nodes are

independent units of computation running in parallel and therefore can send

or process events simultaneously. In our model events are transmitted asyn-

chronously by the wires, i.e. while an event is not delivered to its destination

(after being published), nodes and wires continue publishing, delivering and

processing events. Once an event is delivered, it is buffered in the destination

node until that node is ready to process it.

When a configuration computes, it goes through a sequence of states that

are characterized, among other things, by which events are pending in wires

and which events are buffered in the nodes of the configuration. The state

of the system is also characterized by a time instant, the set of pledges that

hold in that state and the history of events and parameters of events (i.e. a

record of which events have been published, delivered, etc).

Definition 3.4.1 (Computation state) A computation state is a tuple

〈PND , INV ,TIME ,PLG ,HST ,Π〉

where:
1We use the term “publish”, which is not typically used for peer-to-peer interactions,

to refer to the action of handing over an event to a wire — this is because in our model
the routing of events is done entirely by the wires, i.e. the nodes are unaware of the
destination of the events that they output.
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• PND ⊆ E is the set of events pending in that state, i.e. the events that

are waiting to be delivered by the corresponding wire;

• INV ⊆ E is the set of events invoked in that state, i.e the events that

have been delivered and are waiting to be processed;

• TIME ∈ timeU is the time in that state;

• PLG ⊆ {a.pledge : a ∈ 2WAY } is the set of pledges that hold in that

state;

• HST consists of four subsets of E, HST !,HST ¡,HST ? and HST ¿ that

keep the history of event propagation; they contain the events that have

been published, delivered, executed and discarded, respectively;

• Π assigns to each parameter p ∈ PP(e)d of datatype d ∈ D, with

e ∈ E(a) and a ∈, a value a.pΠ ∈ dU , i.e. Π keeps the value of each

parameter.

If s = 〈PND , INV ,TIME ,PLG ,HST ,Π〉 is a computation state we use

PNDs, INV s, TIME s, PLGs, HST s and Πs to refer to the components that

state.

At this point, it is important to clarify that we introduce real time in

our model of computation in order to be able to formalize the notion of

deadline that is associated with two-way interactions, as well as the notion

of delay associated with wires. Nonetheless, it is beyond the aim of this

thesis to provide a framework for modelling real-time properties — this kind

of property falls within the realm of what is called quality of service and

in this thesis we focus strictly on the functional properties of services. We

refer the reader to [14] for an approach to modelling and analysing real-time

performance of service-oriented systems using the SRML language.

The state of the system evolves through computation steps. In each com-

putation step events can be published (i.e. placed in the wires by the nodes),

delivered (i.e. taken from the wires and buffered in the nodes) or processed

(i.e. taken from the buffers) in which case the life cycle of the event ends. We
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distinguish between events that are executed upon processing (which typi-

cally have side effects) and those that are simply discarded. Nodes that do

not perform parallel computation, i.e. sequential nodes, can only process one

event during each step. In our model wires may not be reliable in the sense

that they may lose events without actually delivering them to the nodes.

More precisely:

Definition 3.4.2 (Computation step) A computation step is a tuple

〈SRC ,TRG ,DLV ,PRC ,EXC ,Θ〉

where:

• SRC and TRG are the source and target states;

• DLV ⊆ PNDSRC is the set of events that are selected for delivery during

that step;

• PRC is a partial function that selects for each node n such that INV SRC
n

is non-empty, a subset of INV SRC
n , such that if |PRC (n)| > 1 then

n ∈ PLL, i.e. PRC selects which events will be processed during that

step such that only one event can be processed by each sequential node;

• EXC ⊆ PRC is the set of events that are executed during that step.

DSC = PRC \ EXC is the set of events that are discarded, i.e. the

events that are processed but are not executed;

• PNDTRG = (PNDSRC \DLV )]PUB where PUB ⊆ E, i.e. the events

that were selected for delivery will no longer be pending in the target

state; the new events that become pending in the target state are those

that are published during that computation step;

• There is a set of actually-delivered events ADLV ⊆ DLV such that for

every n ∈ N :

– If PRC (n) is defined then INV TRG
n = (INV SRC

n \ {PRC (n)}) ∪
ADLV n
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– If PRC (n) is undefined then INV TRG
n = INV SRC

n ∪ ADLV n

i.e. the events that were processed will no longer be waiting in the target

state; the events that are actually delivered to a component will have to

wait until they are processed;

• Θ assigns to each parameter in PP(e)d such that e ∈ PUB and d ∈ D
(is the datatype of the parameter), an element in dU , i.e. the value of

the parameter;

• TIME SRC < TIMETRG , i.e. time moves forward;

• SRC and TRG are such that:

– HST !TRG = HST !SRC ∪ PUB

– HST ¡TRG = HST ¡SRC ∪ ADLV

– HST ?TRG = HST ?SRC ∪ EXC

– HST ¿TRG = HST ¿SRC ∪DSC

– Π(e)TRG = Θ(e) for each e ∈ PUB

– Π(e)TRG = Π(e)SRC for each e /∈ PUB

To summarize (and help digest), the definition says that the set of events

that are pending in wires is updated during each computation step by adding

the events that each node publishes — PUB — and removing the events that

the wire delivers — DLV — during that step. The set of events that are

waiting to be processed in each node is updated in each step by adding the

events that are actually delivered — ADLV — to that node and removing

the events that have been processed, which are given by function PRC . The

history of events is updated in each step by adding to the corresponding

subsets of HST the events that have been published, delivered, executed and

discarded. Events are published with a set of parameter values given by Θ,

which is stored in the target state by Π. Figure 3.2 illustrates the event flow

during a computation step.

A model of computation for a configuration is a transition system in which

each state is labelled with a computation state and each transition is labelled
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PARTY A PARTY B

INVA INVBPNDw

WIRE
We e'

TRG

PARTY A PARTY B
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PUBA PUBB

PRC(B)
DLVBDLVA
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Figure 3.2: A graphical representation of the event flow during a computation
step from the point of view of a wire w between a pair of nodes A and B. The
system evolves from state SRC to state TRG during the step. The set of events
that are published by the two nodes during the step is given by PUBA and PUBB;
these events become pending in the wire in the target state. The subset of pending
events that is selected for delivery during the step is shown in light grey; some of
these events are delivered to node A and enter the set INV A while others are
delivered to node B and enter INV B. Events e ∈ INV A and e′ ∈ INV B that
are waiting to be processed in the source state are processed during the step
(e ⊆ PRC (A) and e′ ⊆ PRC (B)) and therefore are not present in the target state.
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DLV = { }
PRC = {login}
EXC = {login}
PUB = {login}

PND = { }
INV = {login}
HST! = {login}
HST¡ = {login}
HST? = { }

PND = {login}
INV = { }
HST! = {login, login}
HST¡ = {login}
HST? = {login}

Figure 3.3: A possible transition in a model of computation (i.e. a SO-TS)
for TravelBooking. Only a part of the labels is shown. During the transition the
request-event login
, which was in the set INV (of events waiting to be processed),
is processed and executed. The reply-event loginB is published and becomes pend-
ing (i.e. it is added to PND). The history of event propagation, represented by
the family of sets HST, is updated in the target state.

with a computation step — we call these Service-Oriented Transition Sys-

tems (SO-TS) (see Def. 3.4.4). A SO-TS defines the different choices that the

configuration can make while computing. Each path in the transition system

represents a possible computation in terms of the order and time at which

events are published, delivered and processed. Figure 3.3 illustrates by show-

ing what could be a transition in a model of computation for TravelBooking

(see also Figures 1.1 and 1.3).

Since we are not interested in modelling the aspects that concern error

management in service-oriented systems, we restrict ourselves to those mod-

els in which every wire is reliable. Furthermore, we assume that the events

that are pending in wires or invoked in the nodes will eventually be delivered

or processed, respectively — this is what we call fairness. We also restrict

ourselves to modelling sessions, which in our definition are computations

during which events are not published more than once. In order to enforce

this property, we only consider transition systems without cycles, i.e. tran-

sition systems where every path passes in each state at most once. In formal

words, we use directed acyclic graphs (also known as DAGs) as models.

To help us define the notion of SO-TS, we first define a notion of reach-

ability between the vertices and edges of a directed acyclic graph.
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Definition 3.4.3 (Reachability) Let 〈S,→〉 be a directed acyclic graph,

where S is the set of vertices and → ⊆ S ×S is the set of edges. The partial

order relation < on the set S ∪ → is defined as follows, for every s, s′ ∈ S
and r = (s1, s2), r′ = (s′1, s

′
2) ∈→:

• s < s′ iff s 6= s′ and there is a directed path from s to s′

• s < r iff s ≤ s1

• r < s iff s2 ≤ s

• r < r′ iff s2 ≤ s′1

where s ≤ s′ denotes s < s′ ∨ s = s′.

Definition 3.4.4 (Service-oriented transition system) A Service-Oriented

Transition System (SO-TS) is a tuple

〈S,→, s0, G〉

where:

• 〈S,→〉 is a directed acyclic graph, where S is the set of vertices (the

states) and → ⊆ S × S is the set of edges (the transitions between

states);

• s0 ∈ S is the initial state;

• G is a labelling function that assigns a computation state to every state

s ∈ S and a computation step to every transition s → s′, such that

G(s→ s′) = 〈G(s), G(s′), , , 〉, i.e. the source and target computation

states associated with a transition are the ones that label the states of

that transition.

We use the following notation to refer to the components of the labels:

If s is a state (s ∈ S) we use PNDs, INV s, TIME s, PLGs, HST s and

Πs to refer to the components of computation state G(s) (in accordance

with the names used in definition 3.4.1);
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If r is a transition (r ∈ R) we use SRC r, TRGr, DLV r, PRC r, EXC r,

DSCr and PUB r to refer to the components of the computation step

G(r) (in accordance with the names used in definition 3.4.2).

Furthermore, the following properties hold for a SO-TS:

Wire Reliability For every transition r ∈→ and w ∈ WIRE, DLV r
w =

ADLV r
w, i.e. wires do not lose events — we say that each wire w is

reliable;

Session For every two transitions r, r′ ∈→ such that r < r′, PUB r ∩
PUB r′ = ∅, i.e. events are not published more than once on each

path; and PNDs0 = INV s0 = ∅, i.e. there are no events pending or

buffered in the initial state — we say that the transition system models

a session;

Fairness For every state s ∈ S and event e ∈ E:

• If e ∈ PNDs then there is r ∈→ such that s < r and e ∈ DLV r,

i.e. every event that is pending in a wire will eventually be deliv-

ered;

• If e ∈ INV s then there is r ∈→ such that s < r and e ∈ PRC r, i.e.

every event that is invoked (i.e. buffered in a node) will eventually

be processed;

Wire Delay For every w ∈ WIRE, if there is a transition r = s1 → s2

such that e ∈ PUB r for some event e ∈ Ew, then there is another

transition r′ = s3 → s4 such that r < r′, e ∈ DLV r′ and TIME s4 <

TIME s2 + w.delayΨ, i.e. events that are published through wire w are

delivered within the delay associated with w.

3.5 The requester and provider protocols

As discussed in the beginning of the chapter, a configuration defines which

interactions can take place between which nodes; in particular it defines
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which events each node can publish and which events it can receive. In

the case of a two-way interaction, a participating node is defined in the

configuration either as the requester, meaning it is able to publish the request,

commit, cancel and commit events and receive the reply, or as the provider

in which case it can publish the reply event and receive all the remaining

events. Although a configuration defines which events a requester and a

provider can publish or process, it does not say anything about when (or

if) those events will indeed be published or processed by them. The actual

behaviour of a node in a two-way interaction, which is modelled by a SO-TS,

can be classified according to the conditions under which the node publishes,

executes or discards the events of that interaction.

In Section 3.3 we have briefly mentioned the prototypical conversation

pattern that has motivated the event types that are used in our semantic

model. To recapitulate, a requester sends a request to a provider that replies

either positively by making a pledge to deliver a set of properties (i.e. it gives

some kind of guarantee) or negatively, in which case the interaction ends; if

the answer is positive the requester can commit by accepting the pledge

or cancel the interaction. If and after the requester commits, the provider

may accept a revoke that compensates for the effects of committing. That

conversation pattern is illustrated in Figure 3.1.

That conversation can be observed when one of the nodes behaves as a

requester and the other node behaves as a provider. Nonetheless, the proto-

col that each node follows is local and independent of the behaviour of the

other nodes. Next we define the requester and the provider protocols.

We consider a fixed SO-TS

〈S,→, s0, G〉

as model of computation for configuration Ξ.

Definition 3.5.1 (Requester) A node n ∈ N is said to behave as a re-

quester in an interaction a ∈ 2WAY 〈n,n′〉 iff for every transition r = s −→ s′
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the following properties hold:

1. If aB ∈ EXC r then there is r′ with r′ < r such that a
 ∈ PUB r′

i.e. the reply-event will not be executed before the initiation-event is

published;

2. If a
 ∈ PUB r then there is no r′ with r < r′ such that aB ∈ DSCr′

i.e. the reply-event will not be discarded after the initiation event was

published;

3. If a� ∈ PUB r then there is r′ < r such that aB ∈ EXC r′ and

a.replyΘr
′

= true

i.e. the commit-event will only be published after a positive reply-event

was executed;

4. If a� ∈ PUB r then there is no r′ < r such that a7 ∈ PUB r′

i.e. the commit-event will only be published if the cancel-event has not

been published before;

5. If a7 ∈ PUB r then there is r′ < r such that aB ∈ EXC r′ and a.replyΘr
′

=

true

i.e. the cancel-event will only be published after a positive reply-event

was executed;

6. If a7 ∈ PUB r then there is no r′ < r such that a� ∈ PUB r′

i.e. the cancel-event will only be published if the commit-event has not

been published before;

7. If a> ∈ PUB r then there is r′ < r such that a� ∈ PUB r′

i.e. the revoke-event will only be published after the commit-event was

published.

To summarize, a requester will be ready to execute the reply to its request,

but only after this request is done — this is captured by clauses 1 and 2 of the

definition. A requester will only choose between cancelling or committing to

the deal offered by the provider, if a deal was in fact offered — this is captured
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by clauses 3 and 4. Finally, a requester will not try to revoke a deal to which

it did not previously commit — this is captured by clause 5.

The provider protocol is defined next:

Definition 3.5.2 (Provider) A node n ∈ N is said to behave as a provider

in an interaction a ∈ 2WAY 〈n′,n〉 iff for every transition r = s −→ s′ the

following properties hold:

1. If aB ∈ PUB r then there is r′ < r such that a
 ∈ EXC r′, i.e. the

reply-event will only be published after the initiation-event is executed;

2. If a
 ∈ EXC r then there is r < r′ such that aB ∈ PUB r′, i.e. a

reply-event will be published after the initiation-event is executed;

3. If a� ∈ EXC r then there is r′ < r such that aB ∈ PUB r′, a.replyΘr
′

=

true and TIME s′ < a.useByΘr
′
, i.e. the commit-event will only be

executed after the publication of a positive reply and before the deadline

expires;

4. If a� ∈ EXC r then there is no r′′ < r such that a7 ∈ EXC r′′, i.e. the

commit-event will only be executed if the cancel-event was not executed;

5. If a7 ∈ EXC r then there is r′ < r such that aB ∈ PUB r′, a.replyΘr
′

=

true and TIME s′ < a.useByΘr
′
, i.e. the cancel-event will only be ex-

ecuted after the publication of a positive reply and before the deadline

expires;

6. If a7 ∈ EXC r then there is no r′′ < r such that a� ∈ EXC r′′, i.e. the

cancel-event will only be executed if the commit-event was not executed;

7. If aB ∈ PUB r and a.replyΘr = true, then there is no r′ = n1 −→ n2

with r < r′ such that:

• a� ∈ DSCr′

• TIMEn1 < a.useByΘr

• there is no transition r < r′′ < r′ such that a7 ∈ EXC r′′
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i.e. the commit-event will not be discarded after a positive reply was

executed unless the deadline has expired or the cancel-event has been

executed;

8. If aB ∈ PUB r and a.replyΘr = true, then there is no r′ = n1 −→ n2

with r < r′ such that:

• a7 ∈ DSCr′

• TIMEn1 < a.useByΘr

• there is no transition r < r′′ < r′ such that a� ∈ EXC r′′

i.e. the cancel-event will not be discarded after a positive reply was

executed unless the deadline has expired or the commit-event has been

executed;

9. a.pledge ∈ PLGs′ if the following conditions hold:

• there is a transition r′ ∈ R such that r′ ≤ s′ and aB ∈ PUB r′ and

a.replyΘr
′

= true

• there is no r′′ < s′ with a� ∈ EXC r′′ or a7 ∈ EXC r′′

• TIME s′ < a.useByΘr
′

i.e. the pledge holds from the moment a positive reply is published until

either the commit or the cancel are executed or the deadline expires;

10. If a> ∈ PRC r, then there is r′ ∈ R such that r′ < r and a� ∈ PRC r′,

i.e. the revoke-event will not be processed before the commit-event.

A provider always replies to a request, but naturally it does so only if a

request was made — this is captured by clauses 1 and 2 of the definition. A

provider will be ready to execute a commit or a cancel (only one of the two)

after and only after it has published a positive reply to the request and while

the deadline does not expire — this is captured by clauses 3 to 8; the pledge

that is associated with the positive reply will remain true until the deadline

expires or the co-party commits or cancels — this is captured by clause 9.
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Finally, every provider has a policy of not processing a revoke event before

processing the associated commit event — this is captured by clause 10.

Clause 10 is necessary in order to guarantee that no request to revoke is

unintentionally lost. The underlying assumption made by a provider is that

if a revoke-event was received before the commit-event, it is probably because

the wire delivered the events in the wrong order and not because the co-party

made an unreasonable request — therefore a provider buffers every request

to revoke until it has processed the associated commit. It is also important

to notice that a provider may not necessarily accept a revoke; this is why no

guarantee is given that the revoke will be executed when processed.



Chapter 4

The logic of service-oriented

computing

45
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In Chapter 3 we have characterized service-oriented computations. In

particular, we have defined the notions of configuration and model of com-

putation for a configuration. In this chapter, we discuss how the logic UCTL

can be used to reason about such models and we give a logic characterization

of service-oriented computations using UCTL. We start by presenting UCTL

in Section 4.1. We proceed, in Section 4.2, by refining the syntax and seman-

tics of UCTL with the primitives of service-oriented computation. Finally,

in section 4.3, we use UCTL to axiomatize service-oriented computation.

Further ahead, in Chapter 5, we will see that the language that SRML

provides for specifying service interfaces is based on UCTL. We will also see

that there is a small difference between the logic that is presented in this

chapter and the one that is used for specifications: here we define UCTL

over the interactions associated with a configuration, while in specifications

we use a logic that is defined over interaction names that are local to the

specification of each of the nodes of a configuration. Nonetheless, the logic

used in specifications (which is defined in Section 5.3) is equivalent to the one

defined in this chapter in the sense that it uses the same set of operators (with

the same semantics) and therefore is also referred to as “UCTL” throughout

the thesis.

4.1 Background: the logic UCTL

In [10] UCTL was presented as an action/state-based temporal logic over

Doubly Labelled Transition Systems. UCTL allows expressing properties

that concern both the state of a computational system and the actions that it

performs; this makes it easy to express properties that would be troublesome

to write with pure action-based or state-based logics [10]. In this section, we

review UCTL.

4.1.1 Doubly Labelled Transition Systems

UCTL is interpreted over Doubly Labelled Transition Systems (L2TS), which

are transition systems in which both the states and the transitions between
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states are labelled [28]. The L2TSs used by UCTL differ from the classical

notion of transition system in that they use sets of actions as labels rather

than single actions. This allows systems to be modelled where several actions

can take place simultaneously or a sequence of actions to be abstracted as a

single state transition. For example, the reply-event of two-way interactions

(see Section 3.3) is tipically published in the transition during which the

associated request-event is executed, as an effect of that execution (this is

discussed in Section 5.2).

Definition 4.1.1 (Doubly Labelled Transition System) A Doubly La-

belled Transition System ( L2TS for short) is a tuple

〈S, s0, Act, R,AP, L〉

where:

• S is a set of states;

• s0 ∈ S is the initial state;

• Act is a finite set of observable actions;

• R ⊆ S×2Act×S is the transition relation. We write s
α−→ s′ to denote

a transition (s, α, s′) ∈ R;

• AP is a set of atomic propositions;

• L : S → 2AP is a labelling function such that L(s) is the subset of all

atomic propositions that are true in state s;

The relation R defines the state transitions that can occur in the system

and the actions that can be observed during those transitions. The state

labelling function L defines which propositions, from a fixed set of atomic

propositions AP , are true in each state.

A path from a state s in a L2TS is a sequence of transitions that originates

in s and represents one possible evolution when the system is in that state.

The notion of path, path concatenation and path length are required for

defining the semantics of UCTL and are defined as follows:
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Definition 4.1.2 (Path) Let 〈S, s0, Act, R,AP, L〉 be an L2TS and let s ∈
S:

• σ is a path from s if

– σ = s (the empty path from s) or

– σ = (s
α1−→ s1)(s1

α2−→ s2) . . . (si−1
αi−→ si). . . , i.e. a possibly

infinite sequence of transitions from s

We use σ(i) to denote the state si and σ(i−1, i) to denote the transition

si−1
αi−→ si.

• The concatenation of paths σ1 and σ2, denoted by σ1σ2, is a partial

operation, defined only if σ1 is finite and its final state coincides with

the first state of σ2. Concatenation is associative and has identities:

σ1(σ2σ3) = (σ1σ2)σ3 and if s0 is the first state of σ and sn is its final

state, then s0σ = σsn = σ.

• A path σ is said to be maximal if it is either an infinite sequence or it

is a finite sequence whose final state has no successor states.

• The length of a path σ is denoted by |σ| and defined as follows:

– If σ = s, then |σ| = 0.

– If σ is an infinite path, then |σ| = ω.

– If σ = (s0
α1−→ s1) · · · (sn

αn+1−→ sn+1) then |σ| = n+ 1.

4.1.2 The syntax of UCTL

We proceed by defining the syntax of UCTL over a set of events Act and

a set of atomic predicates AP . We use a to range over Act and p to range

over AP . First, we define action formulas, which allow us to reason about

transitions. Then we define the notion of UCTL formula for reasoning about

L2TSs (as a whole).
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Definition 4.1.3 (Action formulas) The syntax of action formulas is de-

fined as follows:

χ ::= true | a | τ | ¬χ | χ ∧ χ

Definition 4.1.4 (UCTL formulas) The syntax of UCTL formulas is de-

fined as follows:

φ ::= true | p | ¬φ | φ ∧ φ′ | Aπ | Eπ

π ::= Xχφ | φ χU φ′ | φ χUχ′ φ
′ | φχWφ′ | φχW ′

χφ
′

We refer to φ as state formulas and to π as path formulas.

A and E are path quantifiers and X, U and W are indexed next , until

and weak until operators. The semantics of these operators is defined next.

4.1.3 The semantics of UCTL

For the purposes of SRML, we define the semantics of action formulas in a

slightly different manner than in [10]. Instead of interpreting action formulas

over sets of actions, we interpret action formulas over transitions. We will see

in Section 4.2.2 that this enables us to extend the syntax of action formulas

with terms. The atomic formula true is satisfied by every transition. The

atomic formula a (which represents an action) is satisfied by the transitions

labelled by a set of actions that contains a, i.e. the transitions during which

a occurs. The atomic formula τ is satisfied by transitions labelled by the

empty set only and is used to represent unobservable actions.

Definition 4.1.5 (Satisfaction of action formulas) The satisfaction re-

lation for action formulas is defined as follows:

• s α−→ s′ |= true

• s α−→ s′ |= act iff act ∈ α

• s α−→ s′ |= τ iff α = ∅
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• s α−→ s′ |= ¬χ iff not s
α−→ s′ |= χ

• s α−→ s′ |= χ ∧ χ′ iff s
α−→ s′ |= χ and s

α−→ s′ |= χ′

UCTL formulas can be state formulas, meaning they are interpreted over

states, or path formulas, meaning they are interpreted over paths. The state

formula true is satisfied by every state. The state formula p (where p is a

predicate) is satisfied by the states labelled by p, i.e. the states in which p

is true. The intuitive semantics of each of the operators used by UCTL is

captured in Table 4.1. The formal semantics of UCTL formulas is given by

the next definition.

Definition 4.1.6 (Satisfaction of UCTL formulas) Let 〈S, s0, Act, R,AP, L〉
be a L2TS. The satisfaction relation for UCTL formulas is defined as follows:

• s |= true;

• s |= p iff p ∈ L(s);

• s |= ¬φ iff not s |= φ;

• s |= φ ∧ φ′ iff s |= φ and s |= φ′;

• s |= Aπ iff σ |= π for all paths σ such that σ(0) = s;

• s |= Eπ iff there exists a path σ with σ(0) = s such that σ |= π;

• σ |= Xχφ iff σ(0, 1) |= χ and σ(1) |= φ;

• σ |= [φχUφ
′] iff there exists 0 ≤ j such that σ(j) |= φ′ and for all

0 ≤ i < j, σ(i) |= φ and σ(i, i+ 1) |= χ;

• σ |= [φχUχ′φ
′] iff there exists 1 ≤ j such that σ(j) |= φ′, σ(j − 1) |= φ

and σ(j−1, j) |= χ′ and for all 0 < i < j, σ(i−1) |= φ and σ(i−1, i) |=
χ.

• σ |= φχWφ′ iff either:

– σ |= φχUφ
′; or
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– for all 0 ≤ i, σ(i) |= φ and σ(i, i+ 1) |= χ;

• σ |= [φχWχ′φ
′] iff either:

– σ |= φχUχ′φ
′; or

– for all 0 ≤ i, σ(i) |= φ and σ(i, i+ 1) |= χ;

Other operators, like the diamond <> and box [ ] modalities of the

Hennessy-Milner logic [43], can be seen as abbreviations of UCTL state for-

mulas. In particular:

Definition 4.1.7 (Derived operators)

• < χ > φ stands for E[Xχφ]

• [χ]φ stands for ¬ < χ > ¬φ

• EFφ stands for E[truetrueUφ]

• AFφ stands for A[truetrueUφ]

• EGφ stands for ¬AF¬φ

• AGφ stands for ¬EF¬φ

It is easy to conclude that:

s |= AGφ iff in every path σ from s and every 0 ≤ i, σ(i) |= φ

s |= [χ]φ iff in every path σ from s such that |σ| ≥ 1, if σ(0, 1) |= χ

then σ(1) |= φ

The intuitive semantics of the derived operators is captured in Table 4.2.
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Aπ All paths from the state satisfy π.
Eπ There exists a path from the state that satisfies π.

Xχφ The second (or next) state of the path is reached by a
transition that satisfies χ and φ holds in that state.

φχUφ
′ φ and χ hold in every state and transition of the path,

respectively, until eventually there is state in which φ′

holds.
φχUχ′φ

′ φ and χ hold in every state and transition of the path,
respectively, until eventually there is transition that sat-
isfies χ′ and leads to a state in which φ′ holds.

φχWφ′ φχUφ
′ holds in the path or φ and χ hold in every state

and transition of the path, respectively.
φχWχ′φ

′ φχUχ′φ
′ holds in the path or φ and χ hold in every state

and transition of the path, respectively.

Table 4.1: The intuitive semantics of the UCTL operators. The operators A
and E are interpreted over a state, while the remaining operators are interpreted
over a path.

< χ > φ There is a transition from s that satisfies χ and ends in
a state in which φ holds.

[χ]φ Every transition from s satisfies χ and ends in a state
in which φ holds.

EFφ There is a path that starts in s that leads to a state in
which φ holds.

AFφ Every path that starts in s leads to a state in which φ
holds.

EGφ There is a path that starts in s for which φ holds in
every state.

AGφ φ holds in every state of every path that starts in s

Table 4.2: The intuitive semantics of the derived operators. Each of these
operators is an abbreviation of a UCTL (state) formula interpreted over some
state s.
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4.2 Applying UCTL to service-oriented mod-

els

4.2.1 Service-Oriented Doubly Labelled Transition Sys-

tems

As discussed in Section 4.1, UCTL is interpreted over L2TSs. The models

of computation that we use for configurations are transition systems labelled

with sets of events — what we call service-oriented transition systems (SO-

TS) (see Def. 3.4.4). In order to use UCTL to reason about service-oriented

models of computation we need to define a L2TS-based abstraction of a SO-

TS — what we call a Service-Oriented L2TS (SO-L2TS).

A SO-TS and the associated SO-L2TS have the same structure, i.e. they

are formed by the same set of states and the states are connected in the

same way. It is the labelling that is different for each of these two types of

transition systems:

• The actions that label the SO-L2TS correspond to the different stages

of event propagation — publication, delivery, execution and discard (as

discussed in Chapter 3). A transition of the SO-L2TS is labelled by e!,

e¡, e? or e¿ if e is published, delivered, executed or discarded during

that transition, respectively;

• Besides the pledges (see Section 3.3), each state of the SO-L2TS also

contains information about the actions that have happened before the

system reached that state, i.e. the history of event propagation. Notice

that while the history of actions can be derived by looking at the path

that precedes the state, we need to make this information available

directly from states in order to be able to reason about it — this is

because UCTL does not contain operators to help reason about the

past (see [46] for an example of a logic with past operators). Every

state is also labelled by the function that interprets the parameters on

that state.
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login?
login!

login!
login¡

login!
login¡
login?
login!

Figure 4.1: The SO-L2TS transition that abstracts the transition shown in
Figure 3.3. During this transition the event login
 is executed and the event loginB
is published; therefore the transition is labelled with login
? and loginB!. Since
they occur during the transition, these two actions become part of the history of
actions and therefore they also label the target state. Before the transition, the
event login
 had already been published and delivered (or else it could not be
executed) and that is why the source state is labelled with login
! and login
¡.

As an example, in Figure 4.1 we show the (SO-L2TS) transition that

abstracts the (SO-TS) transition that was introduced in Figure 3.3.

Definition 4.2.1 (Service-oriented L2TS) The Service-Oriented L2TS ( SO-

L2TS) that abstracts a SO-TS 〈S,→, s0, G〉 is the tuple

〈S, s0, Act, R,AP, L,TIME ,Π〉

where:

• Act = {e! : e ∈ E} ∪ {e¡ : e ∈ E} ∪ {e? : e ∈ E} ∪ {e¿ : e ∈ E};

• R ⊆ S × 2Act × S is such that:

– s→ s′ iff (s, α, s′) ∈ R for some α ∈ Act2, i.e. state interconnec-

tion is preserved;

– For every (s, α, s′) ∈ R:

α = {e! : e ∈ PUB s→s′} ∪ {e¡ : e ∈ ADLV s→s′} ∪ {e? : e ∈
EXCs→s′} ∪ {e¿ : e ∈ DSCs→s′}

i.e. transitions are labelled with the publication (!), delivery (¡),

execution (?) and discard of events (¿);
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• AP = {e! : e ∈ E} ∪ {e¡ : e ∈ E} ∪ {e? : e ∈ E} ∪ {e¿ : e ∈
E} ∪ {a.pledge : a ∈ 2WAY };

• L : S → 2AP is such that:

L(s) = {e! : e ∈ HST !s} ∪ {e¡ : e ∈ HST ¡s} ∪ {e? : e ∈ HST ?s} ∪
{e¿ : e ∈ HST ¿s} ∪ PLGs

i.e. states are labelled by the history of event propagation and the

pledges that are true in the state;

• TIME assigns to each state s ∈ S and transition s′
α−→ s the instant

TIME s;

• Π assigns to each state s ∈ S the parameter interpretation Πs.

It follows from Def. 4.1.1 that 〈S, s0, Act, R,AP, L〉 is a L2TS.

4.2.2 Extending UCTL

In order to be able to reason about the values of the parameters of events

and time, we extend UCTL with terms. A UCTL term can be a constant, an

operation, the value of some parameter or the time associated with a state.

Definition 4.2.2 (UCTL Terms) The D-indexed family of sets TERM is

defined inductively as follows:

• If const ∈ Fd then

const ∈ TERMd

• If f ∈ F<d1,...,dn,dn+1> and
→
p∈ TERM<d1,...,dn> then

f(
→
p) ∈ TERMdn+1

• If p ∈ PP(e)d for some e ∈ E(a) and a ∈ INT , then

a.p ∈ TERMd

• time ∈ TERMtime
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Definition 4.2.3 (Interpretation of terms) The interpretation of a term

t ∈ TERM in state s ∈ S, written JtKs, is defined as follows:

• JconstKs = constU

• Jf(t1, ..., tn)Ks = fU(Jt1Ks, ..., JtnKs)

• Ja.pKs = a.pΠ(s)

• JtimeKs = TIME (s)

We extend action formulas with equations in order to be enable to write

things like

EF < loginB! ∧ login.Reply = true > true

which means that “there is a path on which a positive reply to a login request

is eventually published”.

Definition 4.2.4 (Extended action formulas) The extended syntax of ac-

tion formulas is defined as follows:

χ ::= true | t1 = t2 | a | τ | ¬χ | χ ∧ χ

As mentioned in Section 4.1, we interpret action formulas over transitions,

instead of sets of actions (as in [10]). The reason for this is twofold: on the

one hand we wish to be able to reason about the time at which an action took

place (and in our model the time is associated with the states); and on the

other hand we wish to reason about the parameters of the events that occur

during the transition (i.e. the events that are published, delivered, executed

or discarded) and the values of the parameters are fixed (after publication)

in the states (see Def. 3.4.2). Because the parameters are fixed when the

event is published (i.e. in the states that succeed the transition during which

the event published), we need to interpret the terms of actions formulas over

the target states of transitions.

Definition 4.2.5 (Satisfaction of extended action formulas) The sat-

isfaction relation for extended action formulas is defined as follows:
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• s α−→ s′ |= t1 = t2 iff Jt1Ks′ = Jt2Ks′

• All other formulas are interpreted as defined in Def. 4.1.5.

We also introduce the syntactic category of state predicates, which con-

sists of atomic predicates (i.e. the history of actions and pledges) and equa-

tions. This enables us to write things like

AG[loginB! ∧ login.Reply] time < login.useBy

which means that “the deadline for committing (or cancelling) after a positive

reply to a login request is published will not expire immediately”.

Definition 4.2.6 (State predicates) The language SP of state predicates

is defined as follows:

SP ::= ap | t1 = t2

with ap ∈ AP and t1, t2 ∈ TERMd for some d ∈ D

Definition 4.2.7 (Satisfaction of state predicates) The satisfaction re-

lation for state predicates is defined as follows, where s ∈ S:

• s |= ap iff ap ∈ L(s)

• s |= t1 = t2 iff Jt1Ks = Jt2Ks

We also need to extend the syntax of UCTL formulas by incorporating

state predicates (instead of atomic predicates, as initially defined in Def.

4.1.4).

Definition 4.2.8 (UCTL formulas extended) The extended syntax of UCTL

formulas is defined as follows, where sp ∈ SP :

φ ::= true | sp | φ ∧ φ′ | ¬φ | Aπ | Eπ

π ::= Xχφ | φ χU φ′ | φ χUχ′ φ
′

The satisfaction relation for the extended formulas is defined as follows:
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• s |= sp as defined in Def. 4.2.7

• All other formulas are interpreted as defined in Def. 4.1.6.

Given a model of computation for some configuration abstracted by the

SO-L2TS 〈S, s0, Act, R,AP, L〉, we are able to use UCTL formulas, with syn-

tax defined over Act and AP , to reason about that model.

4.3 The axioms of service-oriented computa-

tion

In Chapter 3 we have presented our model of computation for service-oriented

systems. We have defined which events can occur when a given configuration

computes and how those events are transmitted between the nodes of the

configuration. In particular, we have characterized the typical requester and

provider conversation protocols that prevail in service-oriented computation.

These properties can be expressed using formulas of UCTL. The advantages

of having a set of formulas that characterize service-oriented computation

are twofold: on the one hand it empowers us with a set of axioms over which

we can reason; on the other hand it enables us to classify the nodes of a

configuration by checking if they behave as requesters or providers, for each

two-way interaction they are involved in.

The axioms of service-oriented computation are presented next as a set

of theorems. In Appendix A we prove each of these theorems. Theorems

4.3.4 and 4.3.5 are of particular importance: we will see in Section 5.3, that

these two theorems contain the set of formulas that give semantics to the

interaction types s&r and r&s used in service interface specifications (like

the one shown in Figure 1.2).

Let t = 〈S, s0, Act, R,AP, L,Π〉 be the SO-L2TS that abstracts some

model of computation for a configuration 〈N,WIRE ,PLL,Ψ, 2WAY , 1WAY 〉.

Theorem 4.3.1 (Axioms of event propagation) For every e ∈ E, s0

satisfies the following formulas :
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• A[true{¬e¡}W{e!}true]

(Events can only be delivered after they are published)

• A[true{¬e?∧¬e¿}W{e¡}true]

(Events can only be processed after they are delivered)

• AG¬(e? ∧ e¿)

(An event cannot be both executed and discarded)

Theorem 4.3.2 (Axioms of fairness) For every e ∈ E, s0 satisfies

• AG[e!]A[true{true}U{e¡}true]

(After an event is published, it will eventually be delivered)

• AG[e¡]A[true{true}U{e?∨e¿}true]

(After an event is delivered, it will eventually be processed, i.e. it will

be executed or discarded)

Theorem 4.3.3 (Axiom of session) For every e ∈ E, s0 satisfies

• AG[e!]A[true{¬e!}Wfalse]

(An event can only be published once)

• AG[e? ∨ e¿]A[true{¬e?∧¬e¿}Wfalse]

(An event can only be processed once)

Theorem 4.3.4 (Axioms of Requesters) A node n ∈ N behaves as a

requester in some interaction a ∈ 2WAY 〈n,n′〉 iff s0 satisfies the following

formulas:

1. A[true{¬aB?}W{a
!}true]

i.e. the reply-event will not be executed before the initiation-event is

published;

2. AG[a
!]A[true{¬aB¿}Wfalse]

i.e. the reply-event will not be discarded after the initiation event was

published;
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3. A[true{¬a�!}W{aB?∧a.Reply}true]

i.e. the commit-event will only be published after a positive reply was

executed;

4. AG[a7!]A[true{¬a�!}Wfalse]

i.e. the commit-event will only be published if the cancel-event has not

been published before;

5. A[true{¬a7!}W{aB?∧a.Reply}true]

i.e. the cancel-event will only be published after a positive reply was

executed;

6. AG[a�!]A[true{¬a7!}Wfalse]

i.e. the cancel-event will only be published if the commit-event has not

been published before;

7. A[true{¬a>!}W{a�!}true]

i.e. the revoke-event will only be published after the commit-event was

published.

Theorem 4.3.5 (Axioms of Providers) A node n ∈ N behaves as a provider

in some interaction a ∈ 2WAY 〈n,n′〉 iff s0 satisfies the following formulas:

1. A[true{¬aB!}W{a
?}true]

i.e. the reply-event will only be published after the initiation-event is

executed;

2. AG[a
?]A[true{true}U{aB!}true]

i.e. after the initiation-event is executed a reply-event will be published;

3. A[true{¬a�?}W{aB!∧a.Reply}A[true{¬a�?}W{a�?∧time<a.useBy}true]]

i.e. the commit-event will only be executed after the publication of a

positive reply and before the deadline expires;

4. AG[a7?]A[true{¬a�?}Wfalse]

i.e. the commit-event will only be executed if the cancel-event was not

executed before;
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5. A[true{¬(a7?}W{aB!∧a.Reply}A[true{¬a7?}W{a7?∧time<a.useBy}true]]

i.e. the cancel-event will only be executed after the publication of a

positive reply and before the deadline expires;

6. AG[a�?]A[true{¬a7?}Wfalse]

i.e. the cancel-event will only be executed if the commit-event was not

executed before;

7. A[true{¬(aB!∧a.Reply)}W{aB!∧a.Reply}¬E[true{¬a7?}U{a�¿∧time<a.useBy}]]

i.e. the commit-event will not be discarded after a positive reply was

executed unless the deadline has expired or the cancel-event has been

executed;

8. A[true{¬(aB!∧a.Reply)}W{aB!∧a.Reply}¬E[true{¬a�?}U{a7¿∧time<a.useBy}true]]

i.e. the cancel-event will not be discarded after a positive reply was ex-

ecuted unless the deadline has expired or the commit-event has been

executed;

9. AG[aB! ∧ a.Reply](A[a.pledge{true}W{a�?∨a7?∨a.useBy≤time}true])

i.e. the pledge must be true from the moment a positive reply is pub-

lished until either the commit or the cancel are executed or the deadline

expires;

10. A[true{¬a>?∧¬a>¿}W{a�?∨a�¿}true]

i.e the revoke-event will not processed before processing the commit-

event.
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In Chapter 3 we defined a semantic domain for service-oriented compu-

tation. More precisely, we defined configurations as sets of interconnected

computational entities that interact between each other by sending and pro-

cessing typed events (like request, reply, commit, etc). We have also defined

the notion of model of computation for a configuration as a state transition

system, where the transitions are characterized by the sending, reception and

processing of events by these computational entities.

In this Chapter we define a language for specifying service composition

that is interpreted over the semantic domain defined in Chapter 3. As dis-

cussed in Section 1.4, the style of specification that we use is based on the

SCA assembly model [12]. In SCA, new services are provided by intercon-

necting a set of components with a set of existing services and defining an

interface to this system. The ultimate goal of this chapter is to define the

notion of service module that was introduced in Section 1.4. In SRML, a

service module is the (compositional) specification of a service through each

of its parts: required services; internal components, which orchestrate the

required services; and wires, which coordinate the interactions between the

former. A service module defines a family of configurations and their models

of computation, where each member represents a possible implementation

of the intended service (when connected to a client). We proceed along the

various sections of the chapter as follows:

5.1 defines how the interactions in which a party can be involved can be

declared;

5.2 defines a state machine based language that is used for specifying the

behaviour of the internal components of the service;

5.3 defines a temporal logic based language that is used for specifying ser-

vice interfaces (i.e. the conversations of services with their clients);

5.4 defines a language for coordinating the interactions between pairs of

parties, which is used for specifying wires;

5.5 formalizes the notion of service module and defines how this primitive

is used for specifying service composition.
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5.1 Interaction signatures

The specifications of every component and service interface have in common a

declaration of the interactions in which the corresponding party (component

or service) can be involved — what we call an interaction signature (see

Def. 5.1.2). An interaction signature defines a set of local interaction names,

together with their parameters, which denote the interactions in which a

party can be involved. The names are local to the party being specified

in order to allow specifications to be reused in different contexts (as for

example different service modules) — the binding of the names that are used

locally for each party is performed by the wire specifications. There is a type

associated with each interaction name that allows us to derive which events

can be published, received and processed by the party that is associated with

the signature — this is essential for specifying when those events are in fact

sent or processed by the party.

As an example, in Figure 5.1 we show the interaction signature of a

FlightAgent, which is the type of one of the services required to compose

TravelBooking. A FlightAgent can be involved in the interactions lockFlight,

payAck and payRefund, which have types r&s, rcv and snd, respectively.

Each of these interactions has some parameters associated with the request-

event (
). lockFlight, which is a two-way interaction, also has parameters

associated with the reply-event (B).

We will see further ahead that types s&r and r&s are used to denote

two-way interactions from the point of view of the requester and provider,

respectively. Types snd and rcv are used to denote one-way interactions from

the point of the sender and the receiver, respectively. We will also see that if

the signature is associated with a service interface then the type also defines

the conversational protocol that the service follows. Throughout this thesis

we restrict ourselves to using four interaction types, but we envision that

further research can lead us to enrich this set of types in order to capture a

wider variety of conversation protocols.

Definition 5.1.1 (Interaction Types) Interactions can be of one of the

following types TYPE = {s&r, r&s, snd, rcv}.
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– 7 – 
 

   

BUSINESS PROTOCOL FlightAgent is  

 INTERACTIONS 
   r&s lockFlight 

    from,to:airport,  
    out,in:date, 

     traveller:usrdata 
     fconf:fcode 

      amount:moneyvalue, 
     beneficiary:accountn, 
         payService:serviceId 
   rcv payAck  
     proof:pcode 
     status:bool 
   snd payRefund 
     amount:moneyvalue 

 BEHAVIOUR  
  initiallyEnabled lockFlight?  
  lockFlight! ∧ lockFlight.Reply enables payAck? 
  payAck? ∧ payAck.status enables lockFlight? 
  lockFlight? ensures payRefund! 

END BUSINESS PROTOCOL 

 

 

BUSINESS PROTOCOL Customer is  

 INTERACTIONS 
   s&r login  

    usr:username, pwd:password 
  s&r bookTrip 

     from,to:airport, 
     out,in:date 
     fconf:fcode, 
     hconf:hcode, 
     amount:moneyvalue  
   rcv payNotify 
     status:boolean  
   rcv refund 
     amount:moneyvalue  
  BEHAVIOUR  

  initiallyEnabled login?  
   login! ∧ login.Reply enables bookTrip? 
   bookTrip? ensures payNotify!  

  payNotify! ∧ payNotify.status enables bookTrip? 
  bookTrip? ensures refund! 
 

END BUSINESS PROTOCOL 

Figure 5.1: The interaction signature of a FlightAgent

Definition 5.1.2 (Interaction Signature) An interaction signature is a

pair

〈NAME ,PARAM 〉

where:

• NAME is a TYPE-indexed family of sets of interaction names;

• PARAM consists of five functions PARAM 
, PARAMB, PARAM�,

PARAM 7 and PARAM > such that:

– PARAM 
 assigns to each name in NAME a D-indexed family of

sets of 
-parameters (associated with the initiation-event);

– PARAMB, PARAM�, PARAM 7 and PARAM > assign to each

name a ∈ NAME s&r ∪ NAME r&s a D-indexed family of sets of

B-parameters, �-parameters, 7-parameters and >-parameters, re-

spectively, such that Reply ∈ PARAMB(a)boolean and useBy ∈
PARAMB(a)time;

– For every a ∈ NAME and P, P ′ ∈ PARAM 
(a)∪PARAMB(a)∪
PARAM�(a) ∪ PARAM 7(a) ∪ PARAM >(a), P and P ′ are dis-

joint.

That is, an interaction signature defines a set of typed interaction names

and a set of parameters for each of the events of the interaction. B-, �-, 7-
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and >-parameters (which are associated with the reply-, commit, cancel- and

revoke events) are defined for two-way interaction names only (i.e. interac-

tion names that are typed by either s&r or r&s).

Throughout the remaining of Section 5.1 we consider a fixed interaction

signature

s = 〈NAME ,PARAM 〉

over which all definitions will be given.

As already mentioned, the types that are associated with the interactions

in a signature determine which events can be published by the party and

which can be received and processed. That is, the types define the role of

the party in interactions. For example, FlightAgent, which is involved in

interaction lockF light of type r&s, can perform the action of publishing the

reply-event of that interaction — denoted by lockFlightB! — and the actions

of receiving (i.e delivering), executing and discarding the other events —

denoted by lockF light
¡, lockF light
?, lockF light
¿!, lockF light�¡, and so

on. The action of executing the reply-event of lockFlight, for example, is

performed (under a different name) by the co-party of FlightAgent that plays

the role of requester in lockFlight. The event names and action names that

are associated with each interaction type are defined next.

Definition 5.1.3 (Event names) The NAME-indexed families of sets EnPUB

and EnRCV of names of events that can be published and received, respec-

tively, is defined as follows:

If a ∈ NAME s&r then EnPUB
a = {a
, a�, a7, a>} and EnRCVa = {aB};

If a ∈ NAME r&s then EnPUB
a = {aB} and EnRCVa = {a
, a�, a7, a>};

If a ∈ NAME snd then EnPUB
a = {a
} and EnRCVa = ∅;

If a ∈ NAME rcv then EnPUB
a = ∅ and EnRCVa = {a
};

We define En = EnRCV ∪ ENPUB as the NAME-indexed family of sets of

all event names (associated with signature s).
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Every parameter p ∈ PARAM #(a) where # ∈ {
,B,�, 7, >} is said to be

a parameter of event a#.

Definition 5.1.4 (Action Names) The NAME-indexed families of sets of

publication, delivery, execution and discard action names are defined as fol-

lows, where a ∈ NAME:

ActPUB
a = {e! : e ∈ EnPUB

a }

ActDLV
a = {e¡ : e ∈ EnRCVa }

ActEXC
a = {e? : e ∈ EnRCVa }

ActDSC
a = {e¿ : e ∈ EnRCVa }

We define Act = ActPUB ∪ActDLV ∪ActEXC ∪ActDSC as the NAME-indexed

family of sets of all action names associated with interaction signature s.

In Chapter 3 we mentioned that when a provider gives a positive reply,

it makes a pledge to guarantee a set of properties. For each interaction with

type r&s in an interaction signature (meaning that the party can publish the

reply of that interaction), there is a pledge that can be specified.

Definition 5.1.5 (Pledge names) The set PLNames of pledge names as-

sociated with interaction signature s is {a.pledge : a ∈ NAME r&s}.

Each interaction name in a signature denotes an interaction in which

some node of a configuration is involved (which can have a different name in

the specification of the peer node). An interaction interpretation over a con-

figuration defines which interaction each name denotes. Also, an interaction

interpretation defines the event, action and parameter that each event, action

and parameter names denote, respectively. Since the two nodes involved in

an interaction can observe the parameters of that interaction differently, an

interaction interpretation defines for each parameter a function that models

how that parameter is observed by the node associated with the signature.
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Definition 5.1.6 (Interaction Interpretation) An Interaction Interpre-

tation II for s over a configuration 〈N,W,PLL,Ψ, 2WAY , 1WAY 〉 is an

injective function that:

• assigns an interaction in 2WAY ∪1WAY to each name in NAME such

that:

– for every a ∈ NAME s&r ∪ NAME r&s, II (a) ∈ 2WAY , i.e. inter-

action names with type s&r or r&s denote two-way interactions;

– for every a ∈ NAME snd ∪ NAME rcv, II (a) ∈ 1WAY , i.e. inter-

action names with type snd or rcv denote one-way interactions;

• assigns an event in E to each event name in En such that for every

a ∈ NAME and event name with form a# for some # ∈ {
,B,�,7,>};

II (a#) = II (a)#

• assigns an action to each action name in Act such that for every a ∈
NAME and action name with form a#%, for some # ∈ {
,B,�,7,>}
and % ∈ {!, ¡, ?, ¿}

II (a#%) = II (a)#%

• assigns a pair 〈p′, view〉 to each parameter name p in PARAM , where:

– p′ is a parameter in PP such that:

∗ if p ∈ PARAM 
(a)d then p′ ∈ PP(II (a
))d

∗ if p ∈ PARAMB(a)d then p′ ∈ PP(II (aB))d, II (Reply) =

Reply and II (useBy) = useBy

∗ if p ∈ PARAM�(a)d then p′ ∈ PP(II (a�))d

∗ if p ∈ PARAM 7(a)d then p′ ∈ PP(II (a7))d

∗ if p ∈ PARAM >(a)d then p′ ∈ PP(II (a>))d

i.e. p′ is the parameter denoted by p

– view : dU −→ dU , where p ∈ PARAM d, is such that if p = Reply

or p = useBy then view = id, i.e. view is the function that defines

how the parameter is observed.
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It results from definitions 5.1.4 and 5.1.6 that types s&r and r&s are

associated with the roles of requester and provider in two-way interactions,

respectively. This is because the action names associated with s&r inter-

actions denote the actions of a requester and the action names associated

with r&s interactions denote the actions of a provider. Types snd and rcv

are associated with the roles of sender and receiver in one-way interactions,

respectively.

In order for an interaction signature to be associated with one computa-

tional node only, it is necessary that all interaction names in the signature

denote interactions in which that node is involved and even more so that

all action names associated with the signature denote actions that can be

performed by that node. A local interaction interpretation is an interaction

interpretation that satisfies this property.

Definition 5.1.7 (Local Interaction Interpretation) An Interaction In-

terpretation II for s over a configuration 〈N,W,PLL,Ψ, 2WAY , 1WAY 〉 is

said to be local to a node n ∈ N iff:

• For every name a ∈ NAME s&r ∪ NAME snd, II (a) ∈ INT 〈n,n′〉 for

some n′ ∈ N , i.e. all interaction names with types s&r or snd denote

interactions initiated by n;

• For every name a ∈ NAME r&s∪NAME rcv, II (a) ∈ INT 〈n′,n〉 for some

n′ ∈ N , i.e. all interaction names with types r&s or rcv denote inter-

actions initiated by some other node.

The definition says, that in order for an interpretation to be local to a

node n it is necessary that each name with a type associated with the action

of initiating the interaction (either s&r or snd) be indeed interpreted by an

interaction initiated by n; and that the names associated with any of the

remaining types be interpreted by interactions initiated by some other node.
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5.2 Business Roles: specifying components

Components are computational units that (together with the wires) are used

for orchestrating a set of external services in order to compose a new ser-

vice. That is, the components act as mediators between a set of independent

external services and the client of the service being provided. It is also pos-

sible that no external service is required, in which case the interconnection

of components provides the service itself.

Service modules specify the components that are used in the provision

of a service. Each component declared in a service module is typed by a

(possibly underspecified) state machine — what we call a business role. A

business role contains a declaration of a set of attributes that model the state

of the component and a set of transition specifications that model how that

state can change. A transition specification defines: (1) the trigger of the

transition, which can be the execution of an event or an internal state change;

(2) a guard, which defines a condition that must be satisfied for the trigger

to cause the transition; (3) the effects that the transition has on the state

of the component and the events that the component publishes during the

transition. Transition specifications are defined using a declarative textual

language that permits the components to be underspecified, thus avoiding

premature decisions about how those components should be implemented.

To illustrate we show part of the business role of a BookingAgent in Figure

5.2.

In this section, we present the language of business roles. We start by

defining the notion of attribute declaration. We then proceed to define the

language of business roles including its interpretation over SO-TSs.

5.2.1 Attribute declaration

An attribute declaration defines a set of variables that model the state of the

component — what we call attributes of the component. For example, the

specification of a BookingAgent contains the following attribute declaration:
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BUSINESS ROLE BookingAgent is 

 INTERACTIONS 
   r&s bookTrip 
     from,to:airport, out,in:date 
     fconf:fcode, hconf:hcode, amount:moneyvalue 
   s&r bookFlight 
     from,to:airport, out,in:date, traveller:usrdata 

     fconf:fcode,amount:moneyvalue, 
beneficiary:accountn, 
payService:serviceId  

   s&r payment 
      amount:moneyvalue, beneficiary:accountn 
     originator:usrdata, cardNo:paydata 

     proof:pcode 
   s&r bookHotel 

    checkin:date, checkout:date, 
    traveller:usrdata 
    hconf:hcode 

 ORCHESTRATION 
local  
 s:[START, LOGGED, QUERIED, FLIGHT_OK, HOTEL_OK, 
  CONFIRMED, END_PAYED, END_UNBOOKED,  
  COMPENSATING, END_COMPENSATED],login:boolean,  
  traveller:usrdata, travcard:paydata 

  transition Request 
triggeredBy bookTrip 
guardedBy s=LOGGED  
effects s’=QUERIED  
  ∧ bookTrip.out>today ⇒ bookFlight 
  ∧ bookFlight.from=bookTrip.from 
  ∧ bookFlight.to=bookTrip.to 
  ∧ bookFlight.out=bookTrip.out 
  ∧ bookFlight.in=bookTrip.in 
  ∧ bookFlight.traveller=traveller 
  ∧ bookTrip.out≤today ⇒ bookTrip 
  ∧ bookTrip.Reply=False 

   transition TripCommit 
triggeredBy bookTrip 
guardedBy s=HOTEL_OK 
effects s’=CONFIRMED 
  ∧ bookFlight ∧ bookHotel ∧ payment 
  ∧ payment.amount=bookFlight.amount 
  ∧ payment.beneficiary= 
   bookFlight.beneficiary 
  ∧ payment.originator=traveller 
  ∧ payment.cardNo=travcard 

   
 

Figure 5.2: Part of the specification of a BookingAgent using the language of
business roles.
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BUSINESS ROLE BookingAgent is 

 INTERACTIONS 
   r&s bookTrip 
     from,to:airport; out,in:date 
     fconf:fcode; hconf:hcode; amount:moneyvalue 
   s&r bookFlight 
     from,to:airport; out,in:date; traveller:usrdata 

     fconf:fcode; amount:moneyvalue; 
    beneficiary:accountn; payService:serviceId   

   s&r payment 
      amount:moneyvalue; beneficiary:accountn 
     originator:usrdata; cardNo:paydata 

     proof:pcode 
   s&r bookHotel 

    checkin,checkout:date, 
    traveller:usrdata 
    hconf:hcode 
  … 

 ORCHESTRATION 
local  
 s:[START, LOGGED, QUERIED, FLIGHT_OK, HOTEL_OK, 

CONFIRMED, END_PAYED, END_UNBOOKED, COMPENSATING, 
END_COMPENSATED]; login:Boolean; 
traveller:usrdata; travcard:paydata 

  transition Request 
triggeredBy bookTrip? 
guardedBy s=LOGGED  
effects bookTrip.out>today ⊃ s’=QUERIED 
 ∧ bookTrip.out≤today ⊃ s’=END_UNBOOKED  
sends bookTrip.out>today ⊃ bookFlight! 
  ∧ bookFlight.from=bookTrip.from 
  ∧ bookFlight.to=bookTrip.to 
  ∧ bookFlight.out=bookTrip.out 
  ∧ bookFlight.in=bookTrip.in 
  ∧ bookFlight.traveller=traveller 
 ∧ bookTrip.out≤today ⊃ bookTrip! 
  ∧ bookTrip.Reply=False 

  transition TripCommit 
triggeredBy bookTrip? 
guardedBy s=HOTEL_OK 
effects s’=CONFIRMED 
sends bookFlight! ∧ bookHotel!∧ payment! 
  ∧ payment.amount=bookFlight.amount 
  ∧ payment.beneficiary= 
   bookFlight.beneficiary 
  ∧ payment.originator=traveller 
  ∧ payment.cardNo=travcard 

  … 

Attribute s ranges within a finite set of values (START, LOGGED, etc.)

and is used in BookingAgent to model control flow. The other attributes are

used for storing data that is needed at different stages of the orchestration.

Formally:

Definition 5.2.1 (Attribute declaration) An attribute declaration VAR

is a D-indexed family of disjoint sets (where D is the set of datatypes).

An attribute interpretation for a SO-TS models the internal changes of

the component as it computes by assigning a value to each attribute in each

state of the SO-TS.

Definition 5.2.2 (Attribute interpretation) An attribute interpretation

∆ for an attribute declaration VAR over a SO-TS 〈S,→, s0, G〉 assigns to ev-

ery state s ∈ S and every attribute v ∈ VARd an element v∆(s) ∈ dU (the

value of the attribute on that state).

Throughout the remaining of Section 5.2 we consider:

• sig = 〈NAME ,PARAM 〉 to be an interaction signature where Act is

the set of actions associated with sig;

• VAR to be an attribute declaration.

In order to interpret the language, we also consider:

• Ξ = 〈N,W,PLL,Ψ, 2WAY , 1WAY 〉 to be a configuration;

• II to be an interaction interpretation for sig over 2WAY ∪1WAY local

to some node n ∈ N ;

• m = 〈S,→, s0, G〉 to be a SO-TS for Ξ;
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• ∆ to be an attribute interpretation for VAR over m.

Next, we define the language of business roles over sig and VAR. First,

we define the sub-language of states for specifying the state of the component.

Then, we define the sub-language of effects for specifying the effects of state

transitions. Finally, we define the notion of transition specification using the

sub-languages of states and effects.

5.2.2 Sub-language of states

State terms denote the values of the parameters of events and attributes in

states. We use a.param where param is a parameter of some event e of inter-

action a and not e.param. We do this because all parameters associated with

events of the same interaction have different names and therefore a.param

unambiguously refers to a parameter of e and not of another event.

Definition 5.2.3 (State Terms) The D-indexed family of sets STERM of

state terms (where D is the set of datatypes we have fixed) is defined as

follows:

• If c ∈ Fd then

c ∈ STERM d

for every d ∈ D

• If f ∈ F<d1,...,dn,dn+1> and
→
p∈ STERM<d1,...,dn> then

f(
→
p) ∈ STERM dn+1

for every d1, ..., dn, dn+1 ∈ D

• If a ∈ NAME and param ∈ PARAM (a)d, then

a.param ∈ STERM d

for every d ∈ D

• time ∈ STERM time
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• If v ∈ VARd, then

v ∈ STERM d

for every d ∈ D

In order to interpret the value of a parameter it is necessary to consider

how that parameter is observed by the component — this is defined by the

interaction interpretation through the function view.

Definition 5.2.4 (Interpretation of state terms) The interpretation of

a state term t ∈ STERM in a state s ∈ S, written JtKs, is defined as follows,

where II (param) = 〈param′, view〉:

• JcKs = cU

• Jf(t1, ..., tn)Ks = fU(Jt1Ks, ..., JtnKs)

• Ja.paramKs = view(II (a).param′Π
s

)

• JtimeKs = TIME s

• JvKs = v∆(s)

The sub-language of states is used for specifying the values of parameters,

time and attributes in a state.

Definition 5.2.5 (Language of States) The sub-language of states LS is

defined as follows:

• φ ::= true | t1 = t2 | φ ∧ φ | ¬φ

with t1, t2 ∈ STERM d for some d ∈ D.

Definition 5.2.6 (Satisfaction for the language of states) The state sat-

isfaction relation for the language of states LS is defined as follows, where

s ∈ S:

• s |= true
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• s |= t1 = t2 iff Jt1Ks = Jt2Ks

• s |= ¬φ iff not s |= φ

• s |= φ ∧ φ′ iff s |= φ and s |= φ′

5.2.3 Sub-language of effects

Effect terms extend the syntax of state terms with the term v′. Unlike state

terms, which are interpreted over states, effect terms are interpreted over

transitions. In particular, the term v denotes the value of attribute v in the

source state of the transition being considered, while the term v′ denotes the

value of v in the target state. Analogously, terms time and time′ denote the

time in the source and target states, respectively.

Definition 5.2.7 (Effect Terms) The D-indexed family of sets ETERM

of effect terms is defined inductively as follows:

• If c ∈ Fd then

c ∈ ETERM d

for every d ∈ D

• If f ∈ F<d1,...,dn,dn+1> and
→
p∈ ETERM<d1,...,dn> then

f(
→
p) ∈ ETERM dn+1

for every d1, ..., dn, dn+1 ∈ D

• If a ∈ NAME and param ∈ PARAM (a)d, then

a.param ∈ ETERM d

for every d ∈ D

• time, time′ ∈ ETERM time

• If v ∈ VARd, then
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v, v′ ∈ ETERM d

for every d ∈ D

Definition 5.2.8 (Interpretation of effect terms) The interpretation of

an effect term t ∈ ETERM in a transition s1 → s2, written JtKs1→s2, is

defined as follows, where II (param) = 〈param′, view〉:

• JcKs1→s2 = cU

• Jf(t1, ..., tn)Ks1→s2 = fU(Jt1Ks1→s2 , ..., JtnKs1→s2)

• Ja.paramKs1→s2 = view(II (a).param′Π
s2

)

• JvKs1→s2 = v∆(s1)

• Jv′Ks1→s2 = v∆(s2)

• JtimeKs1→s2 = TIME s1

• Jtime′Ks1→s2 = TIME s2

The sub-language of effects is used for specifying the effects of state tran-

sitions, namely how the internal state of the component changes (by equating

the values of its attributes in the source and target states) and which events

are published by the component.

Definition 5.2.9 (Language of Effects) The Language of Effects LE is

defined as follows:

• φ ::= true | t1 = t2 | pub | φ ∧ φ | ¬φ

where t1, t2 ∈ ETERM d for some d ∈ D and pub ∈ EnPUB (i.e. pub is an

event that can be published).

Definition 5.2.10 (Satisfaction for the language of effects) The satis-

faction relation for the language of effects LE is defined for every transition

r ∈→ as follows:

• r |= true



5.2. Business Roles: specifying components 77

• r |= t1 = t2 iff Jt1Kr = Jt2Kr

• r |= pub iff II (pub) ∈ PUB r

• r |= ¬φ iff not r |= φ;

• r |= φ ∧ φ′ iff r |= φ and r |= φ′;

5.2.4 Transition specifications

Using the sub-languages of states and effects we can define how state tran-

sitions are specified for components. For example, a component of type

BookingAgent can be involved in the following transition:

BUSINESS ROLE BookingAgent is 

 INTERACTIONS 
   r&s bookTrip 
     from,to:airport, out,in:date 
     fconf:fcode, hconf:hcode, amount:moneyvalue 
   s&r bookFlight 
     from,to:airport, out,in:date, traveller:usrdata 

     fconf:fcode,amount:moneyvalue, 
beneficiary:accountn, 
payService:serviceId  

   s&r payment 
      amount:moneyvalue, beneficiary:accountn 
     originator:usrdata, cardNo:paydata 

     proof:pcode 
   s&r bookHotel 

    checkin:date, checkout:date, 
    traveller:usrdata 
    hconf:hcode 

 ORCHESTRATION 
local  
 s:[START, LOGGED, QUERIED, FLIGHT_OK, HOTEL_OK, 
  CONFIRMED, END_PAYED, END_UNBOOKED,  
  COMPENSATING, END_COMPENSATED],login:boolean,  
  traveller:usrdata, travcard:paydata 

  transition Request 
triggeredBy bookTrip 
guardedBy s=LOGGED  
effects s’=QUERIED  
  ∧ bookTrip.out>today ⇒ bookFlight 
  ∧ bookFlight.from=bookTrip.from 
  ∧ bookFlight.to=bookTrip.to 
  ∧ bookFlight.out=bookTrip.out 
  ∧ bookFlight.in=bookTrip.in 
  ∧ bookFlight.traveller=traveller 
  ∧ bookTrip.out≤today ⇒ bookTrip 
  ∧ bookTrip.Reply=False 

   transition TripCommit 
triggeredBy bookTrip 
guardedBy s=HOTEL_OK 
effects s’=CONFIRMED 
  ∧ bookFlight ∧ bookHotel ∧ payment 
  ∧ payment.amount=bookFlight.amount 
  ∧ payment.beneficiary= 
   bookFlight.beneficiary 
  ∧ payment.originator=traveller 
  ∧ payment.cardNo=travcard 

   
 

This transition is triggered when the component processes the event

bookTrip�; if the component is in a state in which s has the value HO-

TEL OK, then the effects of the transition will take place: the events bookFlight�,

bookHotel� and payment
 will be published (with some constraints on their

parameters).

Definition 5.2.11 (Transition specification) A transition specification is

a triple

〈trigger, guard, effects〉

where:

• trigger ∈ EnEXC or trigger ∈ LS specifies the event or the state

change that triggers the transition, respectively;
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• guard ∈ LS specifies the state in which the party must be for the tran-

sition to take place;

• effects ∈ LE specifies the effects of the transition (i.e. how the state

changes and which events are published).

A SO-TS m satisfies a transition specification in which the trigger is an

event e if (and only if) in every transition of m that starts in a state in

which the guard is true and during which e is processed, e is executed (i.e.

not discarded) and the effects are observed. In a similar way, m satisfies a

transition specification in which the trigger is a state condition if (and only

if) every transition of m that leads to a state in which the guard is true and

during which the trigger condition becomes true (i.e. the condition is false in

the source state, but true in the target state) is followed only by transitions

that satisfy the specified effects. Formally:

Definition 5.2.12 (Transition satisfaction) The SO-TS m satisfies a tran-

sition specification 〈trigger, guard, effects〉 iff for every transition r = s1 →
s2 the following two properties hold:

• If trigger ∈ EnEXC , II (trigger) ∈ PRC r and s1 |= guard, then

II (trigger) ∈ EXC r and r |= effects.

• If trigger ∈ LS, not (s1 |= trigger), s2 |= trigger and s2 |= guard,

then for every s2 → s3 ∈ R

s2 → s3 |= effects.

5.2.5 Business Roles

As discussed, a business role is a specification of a component that declares

the set of interactions in which that component can be involved, the set of

attributes that characterize the internal state of that component and a set

of transition specifications.
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Definition 5.2.13 (Business role) A business role is a triple

〈sig,VAR,ORCH 〉

where:

• sig is an interaction signature;

• VAR is an attribute declaration;

• ORCH is a set of transition specifications for sig and VAR.

A SO-TS satisfies a business role if and only if it satisfies every transition

specification in that business role.

Definition 5.2.14 (Satisfaction of business roles) The SO-TS m is said

to satisfy a business role 〈sig,VAR,ORCH 〉 iff m |= t for every t ∈ ORCH .

5.3 Business Protocols: specifying service in-

terfaces

Service modules specify which external services are required in order to pro-

vide a new service. As discussed in Section 1.4, each requires-interface in a

service module is typed by a specification of the properties that the corre-

sponding external service needs to satisfy regarding the way it interacts with

its client. Also, the provides-interface of the module is typed by a specifica-

tion of the properties that the module offers at its interface. In SRML, the

specification of service interfaces (requires- or provides-) is given by business

protocols. A business protocol is an abstract description of a service that

specifies the interactions in which the service can engage with its client and

places some constraints on the manner in which it does engage in those in-

teractions. Figure 5.3 shows the business protocol followed by a FlightAgent.

A business protocol is abstract in the sense that it does not specify the in-

ternal state or workflow of the service (like it is done by business roles for
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components), but only a temporal correlation between the actions that the

service performs.

In this section, we present the language of business protocols. First, we

adapt the logic UCTL to reason over interaction signatures — that is, while

in Chapter 4 we have defined UCTL over the interactions of a configuration,

in this chapter we define UCTL over local interaction names and their param-

eters. Then, we present a set of event correlation patterns that are persistent

in SOC and that we use as templates for specifying service interfaces.

Throughout Section 5.3 we consider:

• Ξ = 〈N,W,PLL,Ψ, 2WAY , 1WAY 〉 to be a configuration;

• sig = 〈NAME ,PARAM 〉 to be an interaction signature, where Act is

the set of actions associated with sig;

• II to be an interaction interpretation for sig over 2WAY ∪1WAY local

to some node n ∈ N ;

• m = 〈S, s0, Act
′, R, L,AP,Π〉 to be the SO-L2TS that abstracts some

model of computation for Ξ; II [Act] ⊆ Act′ by definition (i.e. Act′ is a

superset of the actions that can be performed by node n);

5.3.1 UCTL for specifications

In Chapter 4, we have defined UCTL over the interactions of a configuration.

In order to keep business protocols local to the services that they specify

we need to adapt UCTL so that we can reason about interactions using

their local names, i.e. the names declared in the interaction signature of the

service. More precisely, we want action formulas and state predicates to be

defined over the names of the actions that can be performed by the service.

Next, we redefine UCTL action formulas and state predicates over the actions

and parameters associated with interaction signature sig. The structure of

UCTL formulas that was defined in Section 4.2.2 is kept unchanged.
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– 7 – 
 

   

BUSINESS PROTOCOL FlightAgent is  

 INTERACTIONS 
   r&s lockFlight 

    from,to:airport,  
    out,in:date, 

     traveller:usrdata 
     fconf:fcode 

      amount:moneyvalue, 
     beneficiary:accountn, 
         payService:serviceId 
   rcv payAck  
     proof:pcode 
     status:bool 
   snd payRefund 
     amount:moneyvalue 

 BEHAVIOUR  
  initiallyEnabled lockFlight?  
  lockFlight! ∧ lockFlight.Reply enables payAck? 
  payAck? ∧ payAck.status enables lockFlight? 
  lockFlight? ensures payRefund! 

END BUSINESS PROTOCOL 

 

 

BUSINESS PROTOCOL Customer is  

 INTERACTIONS 
   s&r login  

    usr:username, pwd:password 
  s&r bookTrip 

     from,to:airport, 
     out,in:date 
     fconf:fcode, 
     hconf:hcode, 
     amount:moneyvalue  
   rcv payNotify 
     status:boolean  
   rcv refund 
     amount:moneyvalue  
  BEHAVIOUR  

  initiallyEnabled login?  
   login! ∧ login.Reply enables bookTrip? 
   bookTrip? ensures payNotify!  

  payNotify! ∧ payNotify.status enables bookTrip? 
  bookTrip? ensures refund! 
 

END BUSINESS PROTOCOL 

Figure 5.3: The business protocol followed by a FlightAgent. A FlightAgent can
engage in three interactions (lockFlight, payAck and payRefund) and its behaviour
obeys four constraints.
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Definition 5.3.1 (Terms) The D-indexed family of sets TERM is defined

inductively as follows:

• If c ∈ Fd then

c ∈ TERM d

for every d ∈ D

• If f ∈ F<d1,...,dn,dn+1> and
→
p∈ TERM<d1,...,dn> then

f(
→
p) ∈ TERM dn+1

for every d1, ..., dn, dn+1 ∈ D

• If a ∈ NAME and p ∈ PARAM (a)d, then

a.p ∈ TERM d

for every d ∈ D

• time ∈ TERM time

Definition 5.3.2 (Interpretation of terms) The interpretation of a term

t ∈ TERM in state s ∈ S, written JtKs, is defined as follows, where II (p) =

〈p′, view〉:

• JcKs = cU

• Jf(t1, ..., tn)Ks = fU(Jt1Ks, ..., JtnKs)

• Ja.pKs = view(II (a).p′Π(s))

• JtimeKs = TIME (s)

Definition 5.3.3 (Action formulas) The language of action formulas is

defined as follows:

χ ::= true | t1 = t2 | act | τ | ¬χ | χ ∧ χ

with act ∈ Act and t1, t2 ∈ TERM d for some d ∈ D.
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Definition 5.3.4 (Satisfaction of action formulas) The satisfaction re-

lation for action formulas is defined as follows:

• s α−→ s′ |= true

• s α−→ s′ |= t1 = t2 iff Jt1Ks′ = Jt2Ks′;

• s α−→ s′ |= act iff II (act) ∈ α;

• s α−→ s′ |= τ iff α = ∅

• s α−→ s′ |= ¬χ iff not α |= χ

• s α−→ s′ |= χ ∧ χ′ iff α |= χ and α |= χ′

Action names can also be used as state predicates, in which case they

have a different meaning: a state satisfies an action name if the action that

the name denotes has happened in the past.

Definition 5.3.5 (State predicates) The language SP of state predicates

is defined as follows:

SP ::= act | pledge | t1 = t2

with act ∈ Act, pledge ∈ PLNames and t1, t2 ∈ TERM d for some d ∈ D

Definition 5.3.6 (Satisfaction of state predicates) The satisfaction re-

lation for state predicates is defined as follows, where s ∈ S:

• s |= act iff II (act) ∈ L(s)

• s |= pledge iff II (a).pledge ∈ L(s)

• s |= t1 = t2 iff Jt1Ks = Jt2Ks

UCTL formulas and their semantics have been defined in Chapter 4 (Def.

4.2.8). We recall the syntax of UCTL formulas for reference, where p is a

state predicate and χ is an action formula:

φ ::= true | p | φ ∧ φ′ | ¬φ | Aπ | Eπ

π ::= Xχφ | φ χU φ′ | φ χUχ′ φ
′
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5.3.2 Patterns of service-oriented behaviour

In order to facilitate the specification of service interface behaviour we de-

fine the language of behaviour constraints in terms of a set of patterns that

capture common requirements in the context of service-oriented interactions.

The patterns capture the conditions under which events are executed or dis-

carded (if processed) and the conditions under which events are published.

Each of the patterns is defined as an abbreviation of UCTL.

Definition 5.3.7 (Behaviour constraints) The set ABRV of behaviour

constraints that can be specified for sig is defined as follows:

ABRV ::= initiallyEnabled e? | s enables e? | s enables e? until w |
s ensures e!

where e?, e! ∈ Act and s, w ∈ SP .

Definition 5.3.8 (Interpretation of behaviour constraints)

• “initiallyEnabled e?′′ stands for

A[true{¬e¿}W{e?}true]

(The event e will never be discarded);

• ”s enables e?” stands for

A[¬s{¬e?}W (s ∧ ¬EF < e¿ > true)]

(Once s (first) becomes true e cannot be discarded ever again and before

s becomes true e cannot be executed);

• ”s enables e? until w” stands for¬E[¬w{true}U(s ∧ E[¬w{true}U{e¿}true])]
∧

AG(w ⇒ ¬EF < e? > true)
 ∧A[true{¬e?}Ws]
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initiallyEnabled e? The event e will never be discarded.
s enables e? Once s (first) becomes true e cannot be dis-

carded ever again and before s becomes true
e cannot be executed.

s enables e? until w e can only be executed, and cannot be dis-
carded, after s (first) becomes true but only
while w has never been true. Once w (first)
becomes true e cannot be executed anymore.

s ensures e! After s (first) becomes true e will be pub-
lished, but not before.

Table 5.1: The intuitive semantics of the event correlation patterns that can be
used to specify service interface behaviour. e is an event and s and w are state
predicates.

(e can only be executed, and cannot be discarded, after s (first) becomes

true but only while w has never been true. Once w (first) becomes true

e cannot be executed anymore.);

• ”s ensures e!” stands for

A[¬s{¬e!}W (s ∧ AF [e!]true)]

(After s (first) becomes true e will be published, but not before);

Table 5.1 summarizes the intuitive semantics of each of the event corre-

lation patterns captured by the language of behaviour constraints — each

of which can be used (in business protocols) to specify service interface be-

haviour. The set of patterns that we present is not intended to be complete;

we envision that further research will lead us to extend (or adapt) this set of

patterns.

5.3.3 Business Protocols

A business protocol is an interaction signature together with a set of be-

haviour constraints — expressed using the patterns defined in 5.3.7 and 5.3.8
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and summarized in Table 5.1 — that correlate the actions associated with

that signature.

Definition 5.3.9 (Business Protocol) A business protocol is a pair

〈sig,BHV 〉

where:

• sig is an interaction signature;

• BHV ⊂ ABRV is a set of behaviour constraints defined over sig.

The fact that an interaction is typed with s&r or r&s in a business pro-

tocol means that the service (specified by that business protocol) engages

in that interaction following the protocol of requesters or providers, respec-

tively, which we have discussed in Section 3.5. For example, a service of type

FlightAgent (shown in Figure 5.3) behaves as a provider in the interaction

lockFlight, i.e. it always replies to a request, it waits for a commit or cancel,

and so on. In order for a model of computation (abstracted by a SO-L2TS)

to satisfy a business protocol, that model must necessarily satisfy the set of

UCTL formulas that characterize the behaviour of requesters or providers

for each interaction declared in that business protocol with type s&r or r&s,

respectively. These are the formulas in Theorems 4.3.4 and 4.3.5.

A model of computation satisfies the specification given by a business

protocol if and only if it satisfies the protocols associated with the types of

each interaction declared in that business protocol and satisfies the event

correlation specified by the behaviour constraints of that business protocol.

Definition 5.3.10 (Satisfaction of Business Protocols) The SO-L2TS

m satisfies a business protocol 〈〈NAME ,PARAM 〉,BHV 〉 iff:

• For each a ∈ NAME s&r, m satisfies the set of formulas defined in 4.3.4,

i.e. the formulas that characterize the requester protocol;

• For each a ∈ NAME r&s, m satisfies the set of formulas defined in 4.3.5,

i.e. the formulas that characterize the provider protocol;
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• For each x ∈ BHV , s0 |= x, i.e. s0 satisfies every behaviour constraint.

At the end of this chapter, we discuss how business protocols are used to

specify the interfaces of services required for the composition of a new service

and also the interface that is provided by the new service.

5.4 Interaction Protocols: specifying wires

We have seen in the previous sections that the specification of the interac-

tions a party is involved in is done locally for each party using local names

and a local set of parameters for each interaction name. It is the responsi-

bility of wire specifications to pair the interaction names that are used by

two different wired parties to refer to the same (peer-to-peer) interaction and

to correlate the parameters that are observed by each of the two parties for

those interactions. In this section, we define a language for specifying wires.

In particular we define the notion of interaction protocol, which is the speci-

fication primitive for correlating pairs of interaction signatures.

Throughout the section we consider a fixed pair of interaction signatures

sig1 = 〈NAME ,PARAM 〉 and sig2 = 〈NAME ′,PARAM ′〉.

5.4.1 Syntax

The terms used for specifying wires, which we call coordination terms, have

the same structure as the UCTL terms used in business protocols (defined in

5.3.1) — the difference is that coordination terms are defined over a pair of

interaction signatures (not just one) and therefore can be used for correlating

the parameters observed by two different parties.

Definition 5.4.1 (Coordination term) The D-indexed family of sets

CTERM of Coordination Terms is defined as follows:

• If c ∈ Fd then

c ∈ CTERM d
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• If f ∈ F<d1,...,dn,dn+1> and
→
p∈ CTERM<d1,...,dn> then

f(
→
p) ∈ CTERM dn+1

• If a ∈ NAME and param ∈ PARAM (a)d, then

a.param ⊆ CTERM d

for every d ∈ D

• If a ∈ NAME ′ and param ∈ PARAM ′(a)d, then

a.param ⊆ CTERM d

for every d ∈ D

We use the operator ≡ to specify that two interaction names are equiv-

alent (in the sense that they refer to the same interaction). A coordination

is a set of equations (on parameters) and equivalences between interaction

names, such that each name cannot be equivalent to more than one other

name. That is, a coordination defines a one-to-one relationship between the

interaction names of the two signatures, but it does not necessarily pair every

name. More precisely:

Definition 5.4.2 (Coordination) A Coordination COORD is a set of el-

ements of φ, where:

• φ ::= t1 = t2 | a ≡ b

with t1, t2 ∈ CTERM d for some d ∈ D and a ∈ NAME and b ∈ NAME ′,

such that:

• For every a ∈ NAME and b, c ∈ NAME ′ if a ≡ b ∈ COORD then

a ≡ c /∈ COORD

• For every a ∈ NAME ′ and b, c ∈ NAME if a ≡ b ∈ COORD then

a ≡ c /∈ COORD
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INTERACTION PROTOCOL Straight(d1,d2,d3,d4) is  

 ROLE A 
   s&r S1 

    i1:d1 

    i2:d2 

    i3:d3 
     o1:d4 

 ROLE B 
   r&s R1 

    i1:d1 

    i2:d2 

    i3:d3 
     o1:d4 

 COORDINATION 
 S1 ≡ R1 
 S1.i1=R1.i1 

 S1.i2=R1.i2 

 S1.i3=R1.i3 
 S1.o1=R1.o1 

 
Figure 5.4: An interaction protocol that connects a s&r to a r&s interactions
where the initiation-event (
) has three parameters and the reply-event (B) has
just one. According to this interaction protocol the two interactions are equivalent
and their parameters are observed in the same way from the point of view of the
two parties involved in the interaction. d1, d2, d3 and d4, which are the datypes
of the parameters, are left undefined until the interaction protocol is applied.

An interaction protocol is a pair of interaction signatures together with a

coordination that pairs the interaction names in those signatures and corre-

lates the values of the parameters associated with those names. We call the

two signatures in an interaction protocol Role A and Role B. Figure 5.4 shows

an interaction protocol that connects a s&r with a r&s interactions, where

the initiation event (
) has three parameters and the reply event (B) has just

one. According to this protocol the parameters are the same from the points

of view of the two interactions. The datatypes of the parameters are left un-

defined until the interaction protocol is applied (i.e. Straight(d1, d2, d3, d4)

stands for a family of interaction protocols).

Definition 5.4.3 (Interaction Protocol) An Interaction Protocol is a triple

〈sig1, sig2, coord〉
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where coord ∈ COORD is a coordination for the interaction signatures sig1

and sig2. We refer to sig1 and sig2 as the roles of the interaction protocol

— Role A and Role B, respectively.

Since we wish interaction protocols to be reusable, we define them in-

dependently of the names that are used for specifying the parties that they

connect. Because of this, we require a mechanism for mapping the roles of

the interaction protocol to the interaction signatures of the two parties that

we wish to connect. We call this mechanism a signature morphism (see Def.

5.4.4). A signature morphism preserves the structure of interaction signa-

tures: a signature morphism map from a signature s to a signature s′ maps

each interaction name of s to an interaction name of s′ with the same type.

Also, it maps each parameter of every interaction a to a parameter of map(a)

— choosing always a parameter that is associated with the same event, i.e.


-parameters are mapped into 
-parameters and B-parameters are mapped

into B-parameters. It is important to notice that not every interaction of

the target signature needs to be in the mapping of a signature morphism.

This property allows the coordination of only a part of the interactions of

two parties. This is necessary because each party may interact with more

than one co-party.

Definition 5.4.4 (Signature morphism) A signature morphism, map, from

an interaction signature 〈NAME ,PARAM 〉 to another interaction signature

〈NAME ′,PARAM ′〉 is a function that:

• assigns to each interaction name a ∈ NAME t with t ∈ TYPE an

interaction name a′ ∈ NAME ′t;

• assigns to each parameter p ∈ PARAM #(a)d, where # ∈ {
,B,�, 7, >},
a parameter p′ ∈ PARAM ′

#(a′)d such that map(a) = a′;

Interactions protocols are established between two parties using what we

call connectors. A connector maps each of the roles of an interaction protocol

to the signature of one of the two parties using a signature morphism. In that

way, a connector defines which interactions are actually being correlated by
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INTERACTION PROTOCOL Straight(d1,d2,d3,d4) is  

 ROLE A 
   s&r S 

    i1:d1 

    i2:d2 

    i3:d3 
     o1:d4 

 ROLE B 
   r&s R 

    i1:d1 

    i2:d2 

    i3:d3 
     o1:d4 

 COORDINATION 
 S ≡ R 
 S.i1=R.i1 

 S.i2=R.i2 

 S.i3=R.i3 
 S.o1=R.o1 

 
 

BA 
BookingAgent  BH  

HA 
HotelAgent 

s&r bookHotel 
  checkin 
  checkout 
      traveller 
  hconf 

S 

i1 
i2 
i3 
o1 

Straight 
(date,date, 

usrdata,hcode) 

R 

i1 
i2 

i3 
o1 

r&s lockHotel 
  checkin 
  checkout 
      name 
  hconf 

 
Figure 5.5: The connector that that binds the BookingAgent to the HotelAgent
using a Straight interaction protocol. Variables S, S.i1 S.i2, S.i3 and S.o1 are
associated with the interaction name bookHotel and parameters checkin, checkout,
traveller and hconf, respectively, in order to define a morphism from the Role A of
the protocol into the signature of the BookingAgent. Variables R, R.i1 R.i2, R.i3
and R.o1 define a morphism from the Role B into the signature of HotelAgent.
The datatypes of parameters checkin, checkout, traveller and hconf (date, date,
usrdata and hcode, respectively) are used to parameterize the interaction protocol.

the interaction protocol, thus allowing the interpretation of its coordination.

Figure 5.5 shows the connector that binds the BookingAgent to the HotelA-

gent using the Straight interaction protocol shown in Figure 5.4. There is

only one interaction between these two parties. Formally:

Definition 5.4.5 (Connector) A connector for two interaction signatures

partyA and partyB is a triple

〈map1, ip,map2〉

where:

• ip = 〈sig1, sig2, coord〉 is an interaction protocol;

• map1 is a signature morphism from sig1 to partyA;

• map2 is a signature morphism from sig2 to partyB.

Let partyA = 〈NAME , , 〉 and partyA = 〈NAME ′, , 〉; we say that an

interaction name a ∈ NAME ∪ NAME ′ is coordinated by the connector iff

a ∈ map1 ∪map2 (i.e. a is in the mapping defined by the connector).
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5.4.2 Semantics

In order to define the semantics of coordinations we consider a configuration

and a model of computation, given by a SO-TS, for that configuration. We

also consider two interaction signatures interpreted over the configuration

and a connector between them, for which we will the define the meaning of

the coordination. Let:

• Ξ = 〈N,W,PLL,Ψ, 2WAY , 1WAY 〉 be a configuration;

• partyA and partyB be two interaction signatures;

• II 1 and II 2 be local interaction interpretations over 2WAY ∪ 1WAY

for partyA and partyB, respectively. We will use II to denote II 1∪II 2;

• 〈map1, 〈s1, s2, 〉,map2〉 be a connector for partyA and partyB. We will

use map to denote map1 ∪map2;

• m = 〈S,→, s0, G〉 be the SO-TS that models the computation of Ξ;

In order to interpret a coordination term it is necessary to consider which

interaction name in the signatures of the parties is each name in the co-

ordination mapped to. It is also necessary to consider which interactions

interpret which interaction names, which parameter values each interaction

has in each state and how this values are observed locally by each of the two

sides involved in the interaction.

Definition 5.4.6 (Interpretation of coordination terms) The interpre-

tation of a coordination term t ∈ CTERM in a state s ∈ S, written JtKs, is

defined as follows, where II (param) = 〈param′, view〉:

• JcKs = cU

• Jf(t1, ..., tn)Ks = fU(Jt1Ks, ..., JtnKs)

• Ja.paramKs = view((II (map(a)).param′Π
s

)
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Two coordination terms are equal if and only if their denotation is the

same throughout every state of the model of computation. That is, the

correlation between parameters specified in the interaction protocol needs to

be constant as the system computes. Two names a and b are equivalent,

written a ≡ b, if and only if they are mapped to two interaction names

that have the same interpretation — the function of the symbol ≡ in wire

specifications is to specify that two interaction names, that are being used

independently in the specifications of two different parties, actually denote

the same interaction. The notion of equivalence between interaction names

depends only on how interactions are interpreted and is independent of which

model of computation is assumed.

Definition 5.4.7 (Satisfaction of Coordinations) The satisfaction rela-

tion for coordinations by the pair 〈m, II 〉 (i.e. the model of computation and

the interaction interpretation) is defined as follows:

• 〈m, II 〉 |= t1 = t2 iff Jt1Ks = Jt2Ks for every s ∈ S;

• 〈m, II 〉 |= a ≡ b iff II (map(a)) = II (map(b)).

5.5 Service Modules: specifying service com-

position

Throughout the chapter we have defined how components, service interfaces

and wires are specified. Next, we define how the composition of a service

can be specified using a graph labelled by component, service interface and

wire specifications — what we call a service module. We also define a notion

of correctness for service modules. The idea is that every configuration and

model of computation that satisfies the composition of a service module (i.e.

it satisfies the specification of each part of the module) should also satisfy

the (provides) interface that is advertised by the module.
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5.5.1 Service Modules

In Section 1.4 we have introduced the notion of service module. In particular,

in Figure 1.1 we show the structure of the service module TravelBooking. A

service module defines a wired interconnection of components and required

services. A module also defines which of these parties connects directly to the

client of the service. We distinguish between wires that connect to the client

— external wires — and wires that are internal to the service composition —

internal wires. A service module provides a specification for each component,

external-service and internal wire. In particular, each component is specified

by a business role, each external service is specified by a business protocol and

each wire is specified by an interaction protocol (established by a connector).

Every service module defines a provides-interface that advertises the set

of interactions (and properties of these interactions) that are provided by

the service — this set is a sub-set of the interactions specified locally for

the parties that are wired to the client. It is important to notice that while

the specification of each party correlates the actions that can be performed

by that party, the specification given by the provides-interface is for the

service as a whole and therefore establishes a correlation between the actions

performed by the different parties that compose the service.

The behaviour of the client and external wires is not specified in a service

module because the properties that are advertised by the service module,

through the provides-interface, should be independent of the behaviour of

the client and the wires that the client chooses [38], i.e. those properties

should be satisfied for every possible client and external wires.

Definition 5.5.1 (Service module) A service module is a tuple

〈N,W,C, client, spec, prov〉

where:

• 〈N,W 〉 is a simple graph (undirected, without self-loops or multiple

edges), where N is a set of nodes (the parties that compose the service
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and the client of the service) and the symmetric relation W ⊆ N×N is

the set of edges (the wires that interconnect the parties and the client);

• We distinguish between different types of nodes:

– client ∈ N is the client of the service;

– P = N \ {client} are the nodes whose composition provides the

service — called parties — and consist of:

∗ C ⊆ P the components; and

∗ R = P \ C the (external) required services;

• We distinguish between two types of wires:

– WW = {〈n, n′〉 ∈ W : n, n′ 6= client} are the wires that do not

connect to the client — what we call internal wires.

– WE = W \WW are the wires that connect to the client — what

we call external wires.

• spec assigns:

– a business role to each component c ∈ C;

– a business protocol to each required service r ∈ R;

We use sign(p) to refer to the interaction signature (indirectly)

assigned by spec to a party p ∈ P ;

– a connector for sign(p) and sign(p′) to each internal wire 〈p, p′〉 ∈
WW such that every interaction name coordinated by that connec-

tor is not coordinated by any other connector in spec[WW ];

• prov = 〈〈NAME ,PARAM 〉, bhv〉 is a business protocol — the provides-

interface of the module — such that:

– NAME ⊆
⋃

NAME sign(p) with p ∈ P and 〈client, p〉 ∈ W ;

– PARAM #(a) = PARAM
sign(p)
# (a) for each p ∈ P , a ∈ NAME ∩

NAME sign(p) and # ∈ {
,B,�, 7, >};
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i.e. prov is a subset of the interactions of the parties that are connected

to the client. If 〈client, p〉 ∈ W and sign(p) = 〈NAME ′, BELL′, ENV ′〉,
we use provp to denote 〈NAME ∩ NAME ′, BELL ∩ BELL′, ENV ∩
ENV ′〉, i.e. the interactions provided by the service through party p;

We use wire(a) to denote a wire w ∈ W such that:

• w ∈ WW and a is in the coordination of spec(w); or

• w = 〈client, p〉, provp = 〈NAME , , 〉 and a ∈ NAME

i.e. wire(a) denotes the wire through which interaction a takes place.

In order to interpret a service module we need to consider the several

properties of service-oriented systems that it specifies and recall how this

properties are represented in the semantic domain we have defined. In par-

ticular, in every module specification:

• the graph defines which parties compose the service and how they are

interconnected, i.e. it defines a set of configurations (those that satisfy

the graph);

• the wire specifications define constraints on how the interaction names

can be interpreted and a correlation between the parameters of interac-

tions, i.e. wire interpretations define a set of interaction interpretations

and set of models of computation for the configurations (those that sat-

isfy the coordination done by the wires);

• the component, the requires-interface and the provides-interface speci-

fications define constraints on how the configurations can compute —

in particular, on how the value of state attributes (of components)

evolve during computation. That is, they define a set of models of

computation and a set of attribute interpretations (those that satisfy

every component, requires-interface and provides-interface specification

in the module).
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For these reasons, the notion of satisfaction for service modules is given for

interpretation structures composed by a configuration, an interaction inter-

pretation for each party in the module, a model of computation (SO-TS) and

an attribute interpretation for each component.

Definition 5.5.2 (Interpretation structure) An interpretation structure

for a service module m = 〈N,W,C, client, spec, prov〉 is a tuple

〈Ξ, II , t,∆〉

such that:

• Ξ = 〈N ′,W ′, PLL, 2WAY , 1WAY 〉 is a configuration;

• t is a SO-TS for Ξ;

• II is a P -indexed family of interaction interpretations over 2WAY ∪
1WAY such that II p, with p ∈ P , interprets the signature in spec(p)

(i.e. it interprets the interactions of party p);

• ∆ is a C-indexed family of attribute interpretations over t, such that

∆c interprets the attribute declaration in spec(c) (i.e. it interprets the

attributes of component c).

Let prov = 〈〈NAME ,PARAM 〉, bhv〉. We use II prov to denote II |NAME∪PARAM ,

i.e. the interpretation of the interactions in the provides-interface;

If an interpretation structure satisfies the configuration of parties defined

by the service module and the individual specification of each party, we say

that it satisfies the composition of the module. If such an interpretation

structure also satisfies the provides-interface of the module we say that it

satisfies the provision of the module. Next, we define these two notions of

satisfaction for service modules.

We consider m = 〈N,W,C, client, spec, prov〉 to be a module specification

and Ξ = 〈N ′,W ′, PLL, 2WAY , 1WAY 〉 to be a configuration.
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Definition 5.5.3 (Composition satisfaction of a service module) An

interpretation structure sem = 〈Ξ, II , t,∆〉 is said to satisfy the composition

of m, written sem
compos

|= m, iff:

1. N = N ′, W = W ′ and PLL = R ∪ {client};

2. For each party p ∈ P , II p is local to p;

3. For each party p ∈ P and interaction name a ∈ NAME sign(p)∩NAME sign(prov),

II (a) ∈ INT 〈p,client〉 ∪ INT 〈client,p〉;

4. 〈t,∆〉 satisfies spec(p), for each party p ∈ P ;

5. 〈t, II 〉 satisfies spec(w), for each wire w ∈ WW .

Condition 1 states that a service module defines a configuration (in the

sense of Def. 3.2.1) where each of the components is modelled by a sequential

computational node and the client and each of the external services are mod-

elled by distributed computational nodes. That is, the client and the external

services can each process more that one event during the same computation

step (see 3.4.2). This is justified because external services, being services

themselves, are typically implemented by a distributed set of interconnected

computational units as well (see [38]), which for the purposes of this thesis

we abstract with a distributed node. The client that connects to the module

can also be a complex system (that may use this service module to compose

yet another service) and therefore is also modelled by a distributed node.

Condition 2 guarantees that each specification spec(p) for party p ∈ P is

defined exclusively over actions that the node that models p can perform.

Condition 3 states that each interaction name in the specification of a party

p that is advertised in the provides-interface must denote an interaction be-

tween p and the client. Conditions 4 and 5 state that each component,

requires-interface and wire specification must be individually satisfied.

Definition 5.5.4 (Provision satisfaction of a service module) Let sem =

〈Ξ, II , t,∆〉 be an interpretation structure for m such that sem
compos

|= m and
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let t′ be the L2TS that abstracts t. sem is said to satisfy the provision of m,

written sem
provis

|= m, iff 〈Ξ, II prov, t′〉 |= prov.

An interpretation structure satisfies the provision of a service module if

it satisfies the properties that the service advertises — through the provides-

interface — regarding its interaction with the client.

5.5.2 Correctness of service modules

In principle, a service module should be such that the properties related

to the composition (of components, external-services and wires) entail the

properties advertized by the module, in which case we say that the module

is correct.

Definition 5.5.5 (Module correctness) The service module m is said to

be correct iff, for every module interpretation sem of m

if sem
compos

|= m then sem
provis

|= m.

From a software engineering point of view, it is very important to know

if a given service module is correct before implementing it. This is because

in such case, any (correct) implementation of the composition defined in the

module specification is guaranteed to provide a service that interacts with

its client as intended and advertized. In the next Chapter, we discuss how

the model-checker UMC can be used to support the development of correct

service modules.
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In this Chapter we propose a methodology for using the UML based

model-checker UMC to support the development of service modules that

are correct in the sense of Section 5.5.2. In Section 6.1, we review the

model-checker UMC and, in Section 6.2, we present a methodology for model-

checking the correctness of service modules with UMC.

6.1 UMC model-checker: a formal review

UMC is a model-checker for UML state machine based models. A UMC

model is a set of objects, each of which is typed by a class whose behaviour

is described by a UML state machine. UMC assigns to each model a L2TS

(in the sense of Def. 4.1.1) that represents all the possible evolutions of that

system of objects. The properties of a model can be verified by checking

which UCTL formulas the corresponding L2TS satisfies.

In this section we make a formal review of the syntax of UMC models

(using the same style of notation we have been using so far) that covers the

features of UMC that are relevant for supporting our framework and give an

overview of the semantics of these models.

6.1.1 Syntax of UMC models: UML state machines

UMC supports integers and boolean values (and arrays of integers and booleans)

as primitive datatypes — these are used to type the attributes and the pa-

rameters of the signals that each class of objects can receive.

Definition 6.1.1 (UMC Types) T = {int, bool, obj, int[], bool[], obj[]} ⊂
D (where D is the set of datatypes we have fixed) are the (primitive) datatypes

supported by UMC.

A class signature defines the signals that can be invoked on the objects

of that class (by other objects or by the objects themselves) and defines the

state attributes of each of those objects. Every signal may have a set of

parameters.
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Definition 6.1.2 (UMC class signature) A UMC class signature is a triple

〈SGN,PARAM,VAR〉

where:

• SNG is the set of signals that the objects of the class can receive (which

may trigger a state transition);

• PARAM assigns to each signal a T -indexed set of parameters;

• VAR is a T -index family of sets of attributes of the objects of this class.

A UMC class is a class signature together with a specification of how the

objects of that class change state when they receive signals (i.e. when signals

are invoked on the objects). This specification of behaviour consists of a dec-

laration of a set of states in which the objects of the class can be and the set

of transitions that can occur between these states, i.e. what is called a UML

state machine. UML provides a syntactic notion of state that simplifies the

specification of stateflows by allowing parallelism and containment relations

between states — we refer to these syntactic states as UML states (or simply

as states when there is no ambiguity) to distinguish them from the notion of

computation state that takes into consideration the values of the attributes

of the object.

Each UML state can be composite, meaning it contains a set of other

states (referred to as substates), or simple in which case it does not contain

any other state. Composite states can be parallel, meaning that their sub-

states are all active simultaneously (i.e. an object enters all of the substates

at the same time), or sequential in which case only one substate can be active

at any given moment. The set of UML states in which the objects of some

class can be is specified with a UML state declaration:

Definition 6.1.3 (UML state declaration) A UML state declaration is

a tuple

〈S,E, PLL, Initial, F inal〉

where
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• S is a set of UML states;

• 〈S,E〉 is a tree, where S are the nodes and E are the edges, that repre-

sents the nesting of states; the leaf states (which have no nested states)

are referred to as simple states — we use LEAF to denote the leaf

states;

• PLL ⊆ (N \ LEAF ) is the set of composite parallel states, whose

children are referred to as regions; We refer to N \ (LEAF ∪ PLL)

(the states that are neither simple nor parallel) as composite sequential

states.

• Initial, F inal ⊆ LEAF are initial and final states, respectively.

States are represented graphically as follows:

state

initial state

final state

UML transitions are the syntactic constructs for specifying state transi-

tions. A UML transition includes the same 〈trigger, guard, effects〉 struc-

ture as the transition specifications that we use in business roles (see Section

5.2), but the UML further uses states to restrict the ability of the transition

to occur (and its effects). This is what in SRML corresponds to the use of

a state attribute to model control flow, as is the case with attribute s of a

BookingAgent (see Figure 5.2). That is, for a transition to happen (as the

result of the trigger) it is not sufficient that the guard is true; the object

must also be in some given source state. When it happens, a transition will

take the object into a given target state. In UMC, the triggers, guards and

effects of UML transitions are specified using a particular language, which

for the sake of clarity will be defined after the (first class) notions of UML

transition, UMC class and UMC model.
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Definition 6.1.4 (UML transition) A UML transition for a class signa-

ture 〈SGN,PARAM ,VAR〉 and a UML state declaration 〈S,E, PLL, Initial,
F inal〉 is a tuple

〈src, trg, trigger, guard, effects〉

where:

• src, trg ∈ S are the source and target states of the transition, respec-

tively;

• trigger is a UMC trigger, i.e. the signal that triggers the transition;

• guard ∈ Cond is the condition under which the transition can take

place;

• effects ∈ Stm are the actions performed if the transition takes place.

The definition of UMC trigger and the languages Cond (of UMC conditions)

and Stm (of UMC statements) are introduced further ahead.

A UML transition is represented graphically as follows:

trgsrc

trigger 
[ guard ] /
effects

We can now formalize the notions of UMC class and UMC model that

we have introduced informally:

Definition 6.1.5 (UMC class) A UMC class is a tuple

〈SGN,PARAM ,VAR, INI , S, T 〉

where:

• c = 〈SGN,PARAM ,VAR〉 is a class declaration;

• INI is a function that assigns an initial value in tU to each attribute in

VARt;
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• S is a UML state declaration;

• T is a set of UML transitions for c and S.

Definition 6.1.6 (UMC model) A UMC model is a pair

〈OBJ , class〉

where:

• OBJ is a set of objects;

• class assigns to each object in OBJ a UMC class.

In summary, a UMC model consists of a set of objects each of which

is typed by a class that specifies: the signals that the object can receive,

the attributes that characterize the state of the object, the values of the

attributes in the initial state of the object and the object’s behaviour (given

by a UML state machine).

The languages of transitions

UMC provides a sub-language of conditions and a sub-language of state-

ments, which are used for specifying the guards and the effects of UML

transitions, respectively. Both these languages are defined over the trigger

of the transition, which is typically a parameterized signal. The parameters

of the signal can be used as part of the guard or to specify the effects. More

precisely:

Let 〈OBJ , class〉 be a UMC model and cls = 〈〈SGN,OP,PARAM ,VAR〉,
, T 〉 be the class of some object obj ∈ OBJ of that model.

Definition 6.1.7 (UMC trigger) A UMC trigger for a transition of cls

can be:

• an empty trigger, written “−”; or
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• s where s ∈ SGN , i.e. a signal.

LocalV ar = PARAM (s) (or LocalV ar = ∅ if the trigger is empty) is the set

of variables that are associated with the trigger.

Let trg be a trigger for a transition of cls.

A UMC term can be a standard operation on integers (sum, subtraction,

division or product), a parameter of the trigger or the value of some state

attribute.

Definition 6.1.8 (UMC terms) The T -indexed family of terms associated

with trg is defined as follows:

Termint ::= intV alue | Termint + Termint | Termint − Termint

| Termint ∗ Termint | Termint ÷ Termint

Termt ::= LocalV art | V art

where intV alue ∈ Fint, i.e. intV alue is an integer.

A UMC condition is a comparison between terms or the conjunction or

negation of other conditions. Conditions are used — as guards — to specify

in which (computation) states the object must be, and which properties the

trigger must have, for a transition to take place.

Definition 6.1.9 (UMC conditions) The language of UMC conditions

for transition t is defined as follows:

Cond ::= true | false | Termt = Termt | Termint < Termint

| Cond ∧ Cond | ¬Cond

where t ∈ T is some UMC type;

A UMC statement can be an assignment made to a state attribute (using

the symbol “:=“), the sending of a signal to another object, a conditional “if

then else” statement or a sequence of statements (separated by “;”). State-

ments are used for defining which changes are made to the state of the object

and which signals are sent to other objects when a transition takes place.
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Definition 6.1.10 (UMC statements) The language of UMC statements

for transition t is defined as follows:

Stm ::= V art := Termt | obj.signal(p1, . . . , pn)

| if Cond then Stm else Stm | Stm ;Stm

where obj ∈ Obj is an object of the model.

6.1.2 Semantics of UMC models

Next, we give an overview of the semantics of UMC models, i.e. the function

that assigns to every UMC model a L2TS that represents the different ways

in which that system of state machines can evolve.

Each of the objects that constitutes a UMC model has a queue that buffers

the signals that the object receives. The state of that system of objects can

be characterized by which signals are in the queues of the objects, by which

UML states are active for each object and by the values of the attributes of

the objects — this is the UMC equivalent to our notion of computation state

(introduced in Chapter 3). More precisely:

Definition 6.1.11 (UMC computation state) A computation state for

a UMC model 〈OBJ , class〉 is a triple

〈INV ,∆, Active〉

where:

• INV is a OBJ -indexed family of sets of signals that are waiting to be

processed in the queues of each object;

• ∆ assigns to each attribute of type t ∈ T of each object its value in tU ;

• Active is a OBJ -indexed family of sets of UML states which are ac-

tive for each object, such that if s ∈ Activeobj then s is in the state

declaration of obj;
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The notion of “run-to-completion step”, given by the UML specification

[60], restricts the way in which individual UML state machines can evolve

from one state to the other. UMC, which models the evolution of a system

of several state machines, makes stronger assumptions than those defined by

the UML standard — some of the assumptions made by UMC are that:

• only one object can evolve during each “run-to-completion step”, i.e.

UMC adopts an interleaving semantics for its models;

• the data structures that buffer the signals that an object receives are

first-in-first-out queues;

• communication is instantaneous and reliable, i.e. signals are placed

directly in the queue of the target object and no signal is lost in the

process.

UMC associates with every model a L2TS that represents all the possible

evolutions of the system of objects that constitute the model. This L2TS is

generated on the fly — whenever some property needs to be checked against

the model — in accordance with the notion of “run-to-completion step” (and

in accordance with the other semantic assumptions that UMC makes). The

states of this L2TS are labelled by the computation states of the system and

the transitions, which represent possible run-to-completion steps, are labelled

by the actions performed during that step.

More precisely, if we take a model 〈OBJ , class〉 to be in a computational

state s, the algorithm that generates the L2TS transitions that originate from

s consists of the following steps for every object obj ∈ OBJ :

1. Identify the enabled transitions — these are the transitions (specified

by the class of the object) whose source state is active, whose trigger

satisfies the signal at the front of the queue of obj (if there is one) and

whose guard is true in s;

2. Select the transitions that can actually happen — these are the tran-

sitions with maximum priority according to a partial ordering of tran-

sitions based on the nesting of the source states [60]. More precisely,
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a transition originating in some substate has a higher priority than a

conflicting transition originating in a state that contains that substate;

3. Resolve conflicts: generate all the maximal subsets of transitions where

there are no two transitions coming from intersecting states [60] — we

call these the resolved subsets.

4. Serialize the transitions of each resolved subset, i.e. for each resolved

subset generate all possible sequences of transitions — each of this se-

quences defines a possible ‘run-to-completion step”/evolution and will

generate its own branch in the L2TS;

5. Compute the target computation state for each sequence of transitions

by executing their effects sequentially — this includes removing the

signal at the front the queue, updating the value of the attributes of

the object and enqueuing each signal that was sent by the object in the

buffer of the target object.

6.2 Using UMC to support service module

development

The goal of a service provider, while developing a service module, is to guar-

antee that the orchestration of components and wires that will be imple-

mented will provide the desired service once those components are connected

(at run-time) to external services that satisfy the required behaviour. The

main challenge involved in supporting this development process with the

UMC model-checker results from the fact that in our framework the required

services are specified with patterns of interface behaviour — those which we

have characterized logically in Chapter 5 — and not with state machines.

In order to model-check the orchestration performed by the components and

wires of a module it is necessary to define state machines that satisfy the be-

haviour of the required services and interconnect them with the components.

The properties that are expected of the resulting service can then be checked

over that system of state machines.
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Our contribution towards the process of model-checking service modules

with UMC consists mainly of defining a catalogue of stateflow patterns that

can be composed for encoding the behaviour of a service interface with a

UMC state machine. Similarly, we define a catalogue of stateflow patterns

through which the coordination performed by the wires can be encoded with

UMC state machines. In this section, we present a methodology for using

these patterns to encode a module specification with a system of UMC state

machines.

6.2.1 Assumptions and limitations

The semantic domains of SRML (introduced in Chapter 3) and UMC/UML

state machines are not the same; the differences between these two domains

reflect the different levels of abstraction that are used to characterize service-

oriented computation at the business level and to characterize a system of

generic state-machines, respectively. The methodology that we propose for

encoding (and model-checking) service modules with UMC/UML state ma-

chines is limited by the nature of these differences. The following are short

discussions on some of the assumptions and limitations (or what at the sur-

face appear to be limitations) of our methodology.

Real time Since UMC does not deal with real time, we restrict ourselves to

model-checking a subset of SRML that does not deal with real time

properties. More precisely, we assume that: (1) the state variable

TIME is not part of the specification languages and therefore service

modules do not contain properties about the time; and (2) there is

no dealine associated with two-way interactions (see Chapter 3); the

provider in a two-way interaction will remain ready to execute the

commit- or the cancel-event indefinitely after publishing a positive re-

ply.

Parameterization UMC forces us to define the parameter values with which

each signal can be sent by each state machine. Because of this, a UMC

encoding of a module specification requires a concrete parameterization
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of each event that can be published — in this sense, a UMC encoding is

a model of a particular session that is characterized by the parameter

values of each event that can be published during that session. The

properties that a UMC encoding satisfies depend on the values that are

chosen to parameterize the events. This means that in order for the

developer to be able to draw conclusions about the correctness of the

module, it is essential that he/she parameterizes the events wisely.

Components SRML supports a style of engineering in which specifications

are refined at different stages of the development process, such that in a

final stage an implementation for the service is reached. The language

of business roles (introduced in Chapter 5), which is used for specifying

the components of a module — at an earlier stage of the development

process —, allows defining the family of state machines out of which

a member will be chosen — at a later stage of development — for

implementation. The model-checking techniques we propose in this

Chapter are aimed at supporting that later stage of development and

therefore assume that the orchestration performed by each component

of a service module can be and is already refined with a UML state

machine.

External service distribution We assume that external services are not

distributed. By encoding each requires-interface with a single UMC

state machine we are adopting an implementation where only one event

can be processed by the external service during each computation step

(this is because each state machine has one and only one queue) —

although typically a service results from the composition of several

distributed components. From a practical point of view this is not a

big limitation since the business logic of a service module typically does

not require external services to execute two events simultaneously, but

only that they do execute them.

Module distribution We assume that the composition of components, wires

and external services is not distributed, i.e. only one of these parties can
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evolve in each computation step. This limitation results from the inter-

leaving semantics that UMC adopts for UML state machines. Again,

from a practical point of view this is a small limitation because the

properties offered by a service module typically do not depend on if

two events are executed or published simultaneously, only on if they

are indeed executed or published; nor do those properties depend on if

the state of two different parties is updated simultaneously (in fact the

latter cannot be observed with the logic we have defined for reasoning

about services).

6.2.2 A methodology for encoding service composition

with UMC/UML state machines

A UMC-encoding of a service module is a set of communicating state ma-

chines, each of which models a part of the system that is specified by that

module. In particular, in the UMC encoding that we propose:

• there is a state machine for each component that models the orches-

tration performed by that component — we assume these are given a

priori;

• there is a state machine for each requires-interface that models the

possible interface behaviours of a service that satisfies the business

protocol of that requires-interface;

• there is a state machine that models all the possible interface be-

haviours of a client of the service (in particular, it models all the re-

quests that the client can make to the service);

• there is a state machine for each equivalence between interaction names

(specified by the connectors of the wires) whose behaviour guarantees

that events are correctly delivered. That is, they model the internal

wires;

• there is a state machine for each interaction advertised in the provides-

interface of the module; these set of state machines guarantee that
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Figure 6.1: The UML state machine that models the orchestration performed
by a BookingAgent. Parameters that do not affect the workflow are not shown.

events sent by the client to the service and vice versa are correctly

delivered. That is, they model the wires that connect to the client.

Next, we discuss the methodology used to build each of these kinds of

state-machine. Afterwards, we formalize the methodology by defining the

notion of UMC encoding of a module specification.

Components

As discussed at the beginning of the section, we assume that the behaviour of

each component is already refined as a UML state machine. For example, in

order to model-check the running example TravelBooking, we take the state

machine shown in Figure 6.1 as a model of the orchestration performed by

the BookingAgent component BA.

Encoding requires-interfaces

As discussed in Chapter 5, the specification of a requires-interface consists of

a typed declaration of the interactions that the required service can engage

in and a set of behaviour constraints that correlate the events of those in-

teractions. Our strategy for encoding a requires-interface as a state machine

consists of including in the state machine a region (i.e. a composite parallel

state) for each of the interactions in which the service can engage – which we
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e ensured e needs to be published
e enabled e should be executed if processed
e published e has been published
e executed e has been executed

Table 6.1: The intuitive meaning of the boolean attributes associated with an
event e — each of these is an attribute of the state machine that encodes the
requires-interface in which the interaction associated with e is declared.

call interaction-regions – and a region for each of the behaviour constraints

– which we call constraint-regions – except for the constraints defined with

the pattern “initiallyEnabled e?” (that define that an attribute e enabled is

initialized to true).

The role of each of the interaction-regions is to guarantee that the con-

versational protocol that is associated with the type of the interaction is

respected. Events of a given interaction are published and executed exclu-

sively by the interaction-region that models that interaction. The role of the

constraint-regions is to flag, through the use of special state attributes, when

events should be published and when events become enabled for execution

– the evolution of the interaction-regions, and thus the actual publication

and execution of events, is guarded by the value of those flags. That is,

constraint-regions cooperate with interaction-regions to guarantee the corre-

lation of events expressed by the behaviour constraints.

In particular, for each event e that can be published by the external service

there is an attribute e ensured in the state machine — which can be used by

constraint-regions to flag that e needs to be published — and for each event

e that can be executed there is an attribute e enabled — which can be used

by constraint-regions to flag that e should be executed if processed. For each

event e there is also an attribute e published or e executed, which is updated

by the interaction-regions (when e is published or executed, respectively) and

monitored by the constraint regions. Table 6.1 summarizes the meaning of

the attributes associated with an event e.

According to this methodology, every interaction of the same type defines

a region with the same pattern of workflow, where only the names of the
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events are different; also, every behaviour constraint that follows the same

correlation pattern defines a region with the same pattern of workflow, where

only the conditions that guard the transitions are different. In Figure 6.2 we

show the encoding of a FlightAgent. For example, the constraint lockFlight>?

ensures payRefund
! is enforced by the state machine as follows: 1) when

region A executes lockFlight> it sets the attribute lockFlight executed to true;

2) this attribute is monitored by region Z (which encodes the constraint)

which responds by setting the value of attribute payRefund
 ensured to true;

3) as a consequence region C publishes the event payRefund
.

The encoding that we propose for requires-interfaces is compositional in

the sense that each region in the state machine is defined exclusively by the

properties of the interaction or constraint that it encodes, regardless of the

other interactions or constraints in the business protocol that specifies the

requires-interface.

Encoding a generic client

A generic client is one that interacts with the service in every possible way

that the service allows, i.e. it engages nondeterministically in the interactions

declared in the provides-interface of the service. We encode such a client

by creating a state machine with a single state and a loop transition for

each event that the client can publish when interacting with the service

(as specified by the provides-interface of the service module). Such a state

machine can publish each event of each interaction at any given time.

Since the interactions that the client can engage in are not specified locally

to the client, we use the names declared in the provides-interface of the

module to encode those interactions — these are the same names that are

used in the encoding of the co-parties of the client.

Encoding wires

In Chapter 3 we have seen that interactions are peer-to-peer, i.e. they take

place between a pair of parties. Then, in Chapter 5 we have seen that the

interactions each party can engage in are specified locally for the parties using
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a1

a2
lockFlight /

a3

lockFlight /

payAck(status)
[payAck_enabled] / 
payAck_executed := true
payAck_status := status

[payRefund_ensured] / 
BF2.payRefund

[lockFlight_sent & lockFlight_Reply] /
payAck_enabled := true [payAck_executed & payAck_status] / 

lockFlight_enabled := true

[lockFlight_executed] / 
payRefund_ensured := true

A

B C

Y X

Z

lockFlight
[lockFlight_enabled] /
BF1.lockFlight(false)
lockFlight_Reply := false
lockFlight_sent := true

lockFlight
[lockFlight_enabled] / 
BF1.lockFlight(true)
lockFlight_Reply := true
lockFlight_sent := true

lockFlight
[lockFlight_enabled] /
lockFlight_executed := true

Figure 6.2: The UML state machine that encodes a requires-interface of type
FlightAgent ; the attribute initialization is not shown. A FlightAgent is involved
in the three interactions lockFlight, payAck and payRefund that are encoded by
interaction-regions A, B and C, respectively; these three interactions are correlated
by four behaviour constraints that originate the three constraint-regions Y , X, and
Z. The constraint “initiallyEnabled lockFlight
?” does not originate a region in
the state machine; instead it determines that the attribute lockFlight
 enabled is
initially set to true.
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local names — in a module specification there are two different names that

denote the same interaction, one name for each of the two parties involved

in the interaction. The role of wire specifications is to pair the interaction

names declared locally to the parties, thus defining which interactions take

place between each parties.

In the encoding of module specifications we propose, each wire is encoded

by a set of independent state machines: one for each interaction that occurs

through that wire, i.e. one for each equivalence between interaction names

that is in the specification of that wire. Each of these state machines is

responsible for coordinating the events of the interaction it is associated with.

The idea is that a party publishes an event of some interaction by signaling

it in the state machine that coordinates that interaction; this state machine

in turn forwards the event by signaling it in the co-party, using not the same,

but the equivalent name (which is the name that the co-party recognizes) —

in the particular case of the wires that connect to the client, the same names

need to be used on both ends of the wire.

In the TravelBooking module two-way interactions are coordinated by

straight interaction protocols that bind the names and parameters of s&r

and r&s interaction declarations directly (i.e. events and parameter values

are the same from the point of view of the two parties connected). Figure 6.3

shows the state machine that encodes this connector for the single interaction

that takes place between BA and HA — there is only one persistent state in

which the machine waits to receive events and forward them with the same

parameter values.

This encoding, with multiple state machines instead of just one, together

with the interleaving semantics of UMC, guarantees that all possible orders

of delivery between events of different interactions are modelled. Notice, this

would not be so if each wire was encoded by a single state machine because

state machines have a first-in/first-out buffering policy that would enforce

events to be delivered in the order in which they were published.
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bookHotel(a,b,c) / 
HA.lockHotel(a,b,c)

bookHotel / 
HA.lockHotel

bookHotel / 
HA.lockHotel

bookHotel / 
HA.lockHotel

lockHotel(a) / 
BA.bookHotel(a)

Figure 6.3: The UML encoding of the connector that coordinates the single
(two-way) interaction between BA and HA which is named bookHotel and lockHotel
from the point of each party, respectively.

Encoding UCTL predicates with UMC boolean conditions

Before we define how the composition of a module specifications is encoded

with a UMC model, we need to define how UCTL state predicates — which

are used for specifying constraints in business protocols (see Chapter 5) —

are translated into UMC state conditions that can be used as guards in

transitions. The goal of this translation is to be able to create state machines

(for encoding requires-interfaces) that monitor when some state predicate

becomes true. It is important to notice that it is only possible to translate

those state predicates built with the datatypes (and operation over these

datatypes) that are supported by UMC.

First we define how to encode UCTL terms. Every parameter name is

translated into a variable with the same name, which (as we will see further

ahead) stores the value of that parameter.

Definition 6.2.1 (Encoding of terms) The partial function ω : TERM −→
EXPUMC that translates UCTL terms into UMC expressions is defined as

follows:

• ω(const) = const iff const ∈ Fint, i.e. const is an integer number;

• ω(f(t1, t2)) = t1 f t2 iff t1, t2 ∈ TERM int and f ∈ {+,−, ∗,÷}, i.e.

binary operations over integers are translated into infix notation;

• ω(a.param) = a param;
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The state predicates e! and e? are translated into the variables e published

and e executed, respectively — these two variables are used to flag that event

e has been published or executed, i.e. these variables model the history of

events.

Definition 6.2.2 (Encoding of state predicates) The function Ω : SP −→
SFUMC that translates state predicates into UMC boolean conditions is de-

fined as follows:

• Ω(e!) = e published

• Ω(e?) = e executed

• Ω(t1 = t2) = ω(t1) = ω(t2)

Encoding service composition with UMC

The following (lengthy) definition formalizes the methodology we have been

discussing throughout the section. That is, it formalizes how the composi-

tion of components, wires and external services that is specified by a service

module is encoded with a UMC model according to our methodology. In

particular, it defines the UML patterns that encode: (1) the conversational

protocols that are associated with each interaction type (see Section 5.3); (2)

the event correlation patterns (see Section 5.3); and (3) the coordination of

interactions performed by wires (see Section 5.4).

Definition 6.2.3 (Encoding of service composition) An encoding of the

composition specified by a service module

〈N,W,C, client, spec, prov〉

is a UMC model

〈OBJ ,CLASS 〉

where OBJ is the minimum set such that:

• For each participant (client, components and requires-interfaces) n ∈
N , there is an object on ∈ OBJ that models it;
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• For every equivalence x ≡ y ∈ coord (which pairs interaction names),

where spec(w) = 〈map1, 〈 , , coord〉,map2〉 for some wire w ∈ WW ,

there is an object ox≡y ∈ OBJ , which is responsible for coordinating the

events of the interaction defined by the equivalence; We also use omap(x)

or omap(x) (where map(x) and map(y) are the actual interaction names

being bound) to denote ox≡y;

• For every interaction provided by the service a ∈ NAME, where prov =

〈〈NAME , , 〉, 〉, there is an object oa ∈ OBJ , which is responsible for

coordinating the events of a (between the service and the client);

The class CLASS (o) of each object o ∈ OBJ satisfies the following properties:

Components Let c ∈ C be a component, with spec(c) = 〈〈NAME ,PARAM ,

VAR, 〉,ORCH 〉. CLASS (oc) = 〈SGN,P,VAR, INI , SD, T 〉 is such

that:

• SGN = ENRCV , i.e. there is a signal for each event that can be

received by the component;

• P (e) = {p ∈ PARAM : p is a parameter of e} i.e. signals have

the same parameters as the corresponding events;

The workflow of the component, given by the UML state declaration

SD and transitions T is (a refinement of ORCH ) assumed to be given

a priori.

Requires-interfaces Let r ∈ R be a requires-interface, with spec(r) =

〈〈NAME ,PARAM 〉,BHV 〉. CLASS (or) = 〈SGN,P,VAR, INI ,

〈S,E, root, PLL〉, T 〉 is such that:

• SGN = ENRCV , i.e. there is a signal for each event that can be

received by the required service;

• P (e) = {p ∈ PARAM : p is a parameter of e} i.e. signals have

the same parameters as the corresponding events;

• VAR is such that:
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– For each event e ∈ ENRCV , e enabled, e executed ∈ VAR,

i.e. for each event that can be received by the external service

there are two boolean attributes — e enabled and e executed

— for flagging when the event is enabled for execution and

has been executed in the past, respectively;

– For each event e ∈ ENPUB , x ensured, x published ∈ VAR,

i.e. for each event that can be published by the external service

that are two boolean variables — e ensured and e published

— for flagging when that the event needs to be published or

has been published in the past, respectively;

– For each parameter p ∈ PARAM (e), e p ∈ VAR is a variable

used for storing the value of that parameter;

• root ∈ PLL, i.e. the root state is a composite parallel state;

• For each interaction a ∈ NAME r&s there is a region in root with

the following structure, where w = oa encodes the wire through

which the interaction takes place:

s1

s2

a /
a_executed := true

s3

a/
a_executed := true

a
[a_enabled] /
a_executed := true
w.a(false)
a_Reply := false
a_published := true

a
[a_enabled] /
a_executed := true
w.a(true)
a_Reply := true
a_published := true a

[a_enabled] /
a_executed := true

• For each interaction a ∈ NAME s&r there is a region in root with

the following structure, where w = oa encodes the wire through

which the interaction takes place:
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s2

s3

s4

[a_ensured] /
w.a
a_published := true

s1

[a_ensured] /
w.a
a_published := true

/
w.a
a_published := true

a(false) /
a_executed := true
a_Reply := false

/
w.a

a_published := true

a(true) /
a_executed := true
a_Reply := true

• For each interaction a ∈ NAME rcv there is a region in root with

the following structure, where w = oa encodes the wire through

which the interaction takes place:

a
[a_enabled] / 
a_executed := true

• For each interaction a ∈ NAME snd there is a region in root with

the following structure, where w = oa encodes the wire through

which the interaction takes place:

[a_ensured] / 
w.a
a_published := true

• For each contraint cst ∈ BHV of type initiallyEnabled e?,

INI (e enabled) = true, i.e. the attribute e enabled is initialized
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to true;

• For each contraint cst ∈ BHV of type a enables e? there is a

region in root with the following structure:

[Ω(a)] /
e_enabled := true

• For each contraint cst ∈ BHV of type a enables e? until b there

is a region in root with the following structure:

[Ω(a)] /
e_enabled := true

[Ω(b)] /
e_enabled := false

• For each contraint cst ∈ BHV of type a ensures e? there is a

region in root with the following structure:

[Ω(a)] / 
e_ensured := true

• For each contraint cst ∈ BHV of type a.p = c, INI (a p) = c, i.e.

the attribute a p is initialized to true;

That is, each interaction defines a region with a workflow pattern that

enforces the behaviour associated with that type of interaction; and each

constraint (except those defined with the pattern initiallyEnabled) de-

fines a region with a workflow pattern that enforces that constraint;

Internal wires Let x ≡ y ∈ coord (be in the coordination) of some wire

w = 〈p, p′〉 ∈ WW (which connects parties p and p′), where:

spec(w) = 〈map1, 〈s1, s2, coord〉,map2〉;

sign(p) = 〈NAME ,PARAM 〉;
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sign(p′) = 〈NAME ′,PARAM ′〉;

map1(x) = a for some a ∈ NAME; and

map2(y) = b for some b ∈ NAME ′;

CLASS (ox≡y) = 〈SGN,PARAM ,VAR, INI , 〈S,E, root, PLL〉, T 〉 is such

that:

• SGN = ENPUB
a ∪ EN ′PUB

b , i.e. there is a signal for each event

associated with the interaction defined by the equivalence, named

according to the party that publishes it;

• P (e) = {p ∈ PARAM ∪ PARAM ′ : p is a parameter of e} i.e.

signals have the same parameters as the corresponding events;

• VAR = ∅, i.e. there are no local attributes;

• root is a composite sequential state with the following structure,

where X = op and Y = op
′

are the objects that encode the two

parties connected by the wire:

– If a ∈ NAME s&r then root is

a / 
Y.b

a / 
Y.b

a / 
Y.b

a / 
Y.b

b / 
X.a

– If a ∈ NAME r&s then root is
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b / 
X.a

b / 
X.a

b / 
X.a

b / 
X.a

a / 
Y.b

– If a ∈ NAME snd then root is

a / 
Y.b

– If a ∈ NAME rcv then root is

b / 
X.a

That is, the state machines that encode the internal wires are always

ready to forward events from one party to the other using the names

that are local to each of the parties;

External wires Let prov = 〈〈NAME ,PARAM 〉 〉 be provides-interface of

the module and a ∈ NAME be an interaction provided by the service

through some party p ∈ P . CLASS (oa) = 〈SGN,P,VAR, INI , 〈S,E, root,
PLL〉, T 〉, which encodes the wire through which interaction a takes

place, is such that:

• SGN = ENa, i.e. there is a signal for each event associated with

interaction a;

• P (e) = {p ∈ PARAM : p is a parameter of e} i.e. signals have

the same parameters as the corresponding events;
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• VAR = ∅, i.e. there are no local attributes;

• root is a composite sequential state with the following structure,

where P = op encodes the party that provides interaction a:

– If a ∈ NAME s&r then

a / 
Client.a

a / 
Client.a

a / 
Client.a

a / 
Client.a

a / 
P.a

– If a ∈ NAME r&s then

a / 
P.a

a / 
P.a

a / 
P.a

a / 
P.a

a / 
Client.a

– If a ∈ NAME snd then

a / 
Client.a

– If a ∈ NAME rcv then

a / 
P.a
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That is, the state machines that encode the external wires are always

ready to forward events from the client to the service and vice-versa

and do so without changing their names;

Client Let prv = 〈〈NAME ,PARAM 〉,BHV 〉 be the provides-interface of

the module; the class that specifies the behaviour of the client of the

service CLASS (oclient) = 〈SGN,P,VAR, INI , 〈S,E, root,
PLL〉, T 〉 is such that:

• SGN = ENPUB , i.e. there is a signal for each event that can be

published by the service;

• P (e) = {p ∈ PARAM : p is a parameter of e} i.e. signals have

the same parameters as the corresponding events;

• VAR is the minimum set such that for each event that can be

published by the client (and received by the service), i.e. each

event in ENRCV , there is an attribute e published ∈ VAR, which

is used for flagging that the event was published and guarantee that

each event is published only once;

• root is a sequential parallel state such that for every interaction

a ∈ NAME \NAME snd (i.e. every interaction that is not typed by

snd) there is a region in root with the following structure, where

w = oa is the wire through which the interaction takes place:

– If a ∈ NAME s&r then

[not a_pub] / 
w.a [not a_pub] / 

w.a

[not a_pub] / 
w.a

[not a_pub] / 
w.a

– If a ∈ NAME r&s then
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[not a_pub] / 
w.a(true)

[not a_pub] / 
w.a(false)

– If a ∈ NAME snd then

[not a_pub] / 
w.a

That is, the state machine that encodes the client can nondeterminis-

tically publish the events of each interaction at any given moment, but

only publishes each event once.

6.2.3 Model-checking the module TravelBooking

In order to model-check that the composition specified by the module Trav-

elBooking provides the properties specified in TravelAgent (shown in Figure

1.3), we have encoded each of its external-required interfaces, each of the

connectors and the client using the methodology described in the previous

section.

Having used UMC to model-check TravelBooking, we found that all the

constraints were satisfied except one: “payNotify
! ∧ payNotify.status en-

ables bookTrip>?”. This is because there is a path on which the event book-

Trip> is discarded after the event payNotify
 is published with a positive
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value for the payNotify.status parameter. This means that the publication

of event payNotify
 with a positive payNotify.status by the service does not

guarantee that the revoke event of interaction payNotify becomes enabled for

execution. If the composition was implemented as it is, it would be possible

for a client to ask for a booking to be revoked and have this request ignored

by the service.

After analysing the path that leads to the failure of the property, we

understood that the problem is that, because PA interacts directly with

the client through the wire CP, it is possible for the payment notification

(represented by payNotify
) to be received by the client before BA receives

the confirmation for the payment (which is sent via another wire, BP). If the

client tries to revoke the booking immediately, BA will not accept it because

it does not yet know that the payment of the booking has been accepted by

PA.

In order to fix this problem we have redesigned the module TravelBooking

by removing the wire CP and delegating the notification to BA. In the new

configuration, PA does not interact directly with the client anymore. When

the payment is executed by PA, the component BA is notified and is in turn

responsible for notifying the client. Only then can the client choose to revoke

the booking. Figure 6.4 shows the configuration of the module TravelBooking

after being redesigned. With its new configuration the module provides all

the properties specified in TravelAgent (shown in Figure 1.3).

6.2.4 Evaluating the methodology

Completness

Our methodology is used under the assumption that the UML state machines

that encode required services and wires satisfy the properties that are spec-

ified for those services and wires in the service module (via the associated

business and interaction protocols). Under this assumption, we can conclude

that each error found by the model-checker reveals a design error in the ser-

vice module, i.e. it reveals that the module is not correct (in the sense of

Def. 5.5.5) — this is illustrated in Section 6.2.3, where the error found by
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TRAVELBOOKING

     TA:
    TravelAgent

FA:
FlightAgent

HA:
HotelAgentBA:

BookingAgent

PA:
PayAgent

BH:
c3,≡,d3

BP:
c2,≡,d2

BF:
c4,≡,d4

CB:
c1,≡,d1

DB:
UsrDB

BD:
c6,i/o,d6

Figure 6.4: The structure of the module TravelBooking after being redesigned.

model-checking TravelBooking led to redesigning that service module.

On the other hand, if no error is found by the model-checker we cannot

conclude that a module is correct. This is because when we use the proposed

methodology we restrict the model-checking to a specific selection of required

services and wires (those that result from the encoding). Nonetheless, a mod-

ule is correct only if it provides the intended behaviour for any combination

of required services and wires that satisfy the specification in that module.

In summary, this means that while the methodology that we propose can

be used for finding design errors — as illustrated in Section 6.2.3 — and

therefore indirectly promotes the development of modules that are correct,

this methodology does not allow proving that modules are indeed correct. In

Chapter 7, we discuss how further work could allow us to prove the correct-

ness of service modules with model-checking.

Performance

We have not made a thorough analysis of the performance of UMC while

model-checking SRML modules. We did nonetheless run some experiments

while model-checking TravelBooking which lead us to the conclusions that

we discuss here.

The state space, i.e. the number of states of the L2TS that is associated
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with a service module, can be reduced by making stronger assumptions on

the models. For example, we can assume that the client of the service follows

the protocol of service requester (in the sense of Def. 3.5.1) in every two-way

interaction that it engages in with the module. This assumption reduces the

set of possible behaviours of the client and therefore greatly reduces the size

of the L2TS that models the system. If we had made such an assumption

when model-checking TravelBooking we would still have found the error that

we have described Section 6.2.3. Nonetheless, it would be possible for some

other errors to be missed — for example, it would be impossible to check

that TravelBooking discards all the revoke-events that arrive before the cor-

responding commit-events, as expected from a provider (see Def. 3.5.2).

Our experience using UMC suggests that the gains obtained in terms of

speed by making stronger assumptions on the models are of little practical

significance when model-checking individual service modules. UMC is ca-

pable of verifying a complete model (of a SRML module) in a few seconds

and therefore we did not find the need to explore the conditions under which

models can be made smaller.

Scalability

As discussed throughout this section, each of the components and required

services in a module is encoded by an individual UML state machine for

model-checking. It is easy to see that, the size of the models that are used

for model-checking is directly proportional to the size of the the modules

that they encode. On the other hand, SRML modules tend to be small

by nature — typically the properties provided by a module result from the

behaviour of a small set of components that are wired to a small set of

required services. Because of this, the model-checking methodology that we

propose — which builds on the principle that service-oriented architectures

should be devoloped in a modular way — doesn’t seem to have problems of

scalability.
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7.1 A short summary and reflection

In this thesis we have presented our contribution towards the development

of SRML — a prototype language being developed within the SENSORIA

project for supporting the design of service-oriented computational systems

at the business level. SRML distinguishes itself from other formal languages

being developed for SOC in two important ways: 1) it is based on a set of

complex primitives tailored specifically for modelling the business conver-

sations that occur in SOC; 2) it provides support for modelling the static

functional aspects that concern the composition of service behaviour as well

as the dynamic aspects that concern the run-time discovery, selection and

binding of services.

In this thesis we have focused on the part of SRML that concerns the

functional behaviour of services (the dynamic aspects of SRML have been

addressed in other publications [38]). We have defined a mathematical model

of computation for service-oriented systems that captures the business inter-

actions that take place between the constituents of such systems. Our model

captures the conversational nature of business interactions by characterizing

them as an asynchronous exchange of correlated messages. In the world of

SOC, service providers and their clients continuously engage in structured

conversations with the goal of negotiating business deals. Our model cap-

tures this and allows services to be characterized by the conversations that

they support and the properties of those conversations.

We have given a temporal logic axiomatization of this model using the

UCTL logic and we have also defined the declarative languages that SRML

provides for specifying the functional behaviour of composite services: the

language of business roles for specifying components, the language of busi-

ness protocols for specifying service interface behaviour and the language of

interaction protocols for specifying the coordination performed by the wires

that establish the interactions. In particular, the language of business proto-

cols is based on a set of patterns of common service behaviour, which we have

formalized as temporal properties using UCTL. This logic based semantics

is essential for the mechanism of module composition adopted by SRML to
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work — in SRML the business logic of a module relies on the discovery of

services (provided by other modules) that satisfy a set of specified properties

(see [37, 38]).

In order to analyse the functional correctness of service compositions we

have proposed a methodology for using the model-checker UMC that includes

encoding the patterns of service behaviour using UML state machines. This

methodology is introduced in tune with the goals of SRML (and the SEN-

SORIA project) of supporting service engineering from a practical point of

view and has proved itself to be valuable for identifying design errors that

could otherwise be overseen.

7.2 The impact of our research

7.2.1 Fine-tuning SRML

In [36], an initial sketch of the syntax of SRML was introduced that had no

formal semantics. A main goal of our work has been to formalize that syntax

and give it a semantics. One of the side-effects of this process has been the

fine-tuning of the language and the clarification of some of its aspects. In

particular:

• the language of coordinations, which is used for writing interaction

protocols (see Section 5.4), was originally less strict than the current

one. The assumptions introduced by the computational model, which

resulted from a thorough analysis of the case studies, led us to restrict

this language. In the computational model that we have introduced,

wires always deliver events to the correct recipient. For example, it is

not possible for a party to publish an event and receive it later. The

sender and receiver of each event is fixed in the model being consid-

ered. Because of this, the purpose of an interaction protocol is not to

specify what a wire does with each event, but simply to pair interaction

names therefore defining the sender and receiver of the events of those

interactions.
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• some syntactic redundancy has been eliminated from the language of

business roles (see Section 5.2). In [36], we would write e? or e! in the

trigger or in the effects of transition specifications, respectively. Our

work has clarified that if we write e in the trigger of a transition its

meaning is the processing of event e. And if e is written in the effects

of a transition then its meaning is the publication of e. In both cases

it is not necessary to sufix the name of the event.

• the semantics of provides-interfaces of modules was clarified and as

a consequence the notion of module composition that was originally

introduced in [37] was updated to that of [38]. As discussed in Section

5.5, a provides-interface defines which subset of interactions associated

with the components and requires-interfaces is provided by the module,

i.e. it defines for each of the components and required services if and

how they can interact with the client of the service. The interaction

protocol that the module supports for establishing these interactions

can also be part of the specification of the module, but it is not relevant

for the properties of those interactions — that is why in this thesis we

have only considered modules where the external wires are not specified

(see 5.5). The mechanism of module composition described in [37]

included the composition of the interaction protocol that a module

establishes with its client module and the interaction protocol that

the client module was expecting to use (i.e. the one that links to

the requires-interface of that module). While defining the semantics

of provides-interfaces it became clear that a notion of wire matching

should be introduced in the mechanism of module composition, i.e.

the interaction protocol that a module supports for interacting with its

client module must satisfy (and not be composed with) the interaction

protocol that the client module is expecting to use — this is captured

in [38].

From the syntactic point of view, it is important to mention that, before

this work was carried out, the interaction signatures associated with the

provides-interfaces of modules were typed from the point of view of the
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client of those modules. Instead, those signatures must be typed from

the point of view of the module (which provides the interactions) in

order for the mechanism of matching requires- and provides-interfaces

described in [38] to work.

7.2.2 Supporting service-oriented engineering

The model of computation that we have presented in Chapter 3 and the

model of service discovery and binding [38] are two fundamental stepping

stones for the goals of the SRML approach and project SENSORIA — they

provide the mathematical characterization of service-oriented computation

that we require for developing formal methodologies for engineering service-

oriented systems. Several avenues of research are being pursued that are

grounded on these models. Namely:

• Languages and techniques are being pursued for specifying and analysing

the functional behaviour of composite services. In this thesis we have

defined the three declarative languages that SRML provides for this

purpose (the languages of business roles, business protocols and inter-

action protocols) together with a model-checking technique. Variants

and extensions of these languages (in particular the use of state ma-

chines and the extension of business protocols with other patterns) are

being considered as well as the enrichment of the analytical techniques.

• A complementary approach is being developed for supporting the speci-

fication and analysis of service performance using stochastic formalisms

[14] — it is at this level that the real-time primitives that we have in-

troduced in this thesis (namely the deadline associated with two-way

interactions and the delay associated with wires) are being put to use.

• A methodological approach to the engineering of service-oriented sys-

tems has been proposed that advocates capturing requirements using

extended versions of UML notation (namely use-case diagrams and

statecharts) for deriving (formal) SRML specifications [16].
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• An encoding of BPEL into SRML has been defined that provides the

means for using BPEL processes as part of composite service specifi-

cations; tool support has been developed for automating this encoding

process using graph transformations [17].

• The SRML framework is being validated in different use-case scenarios.

SRML has been used to model an on-the-road car repair service [15]

— an argument is made that service-orientation would enhance the

flexibility and adaptability of the computation systems used in the

automotive domain. A service for finding a mortgage has been used to

illustrate the SRML approach to software engineering [16]. The service

for booking a trip that we have used throughout this thesis has also

been used to illustrate how the configurations of systems evolve in a

service-oriented environment [38].

7.3 Further work

7.3.1 On the specification patterns

The set of interaction types and specification patterns that we have presented

is based on the set of case studies that have been adopted in SENSORIA. A

more exhaustive survey of case studies will most likely lead us to extend or

adapt this set of types and patterns.

We are also interested in making a thorough analysis of the relation be-

tween the specification patterns of service interactions and those patterns

that are considered essential (if not sufficient) for specifying distributed sys-

tems in general [53]. It is our intuition that the former is a subset of the

latter. In any case, we believe that SOC would benefit from a circumscribed

and well-founded set of patterns for specifying service interactions.

On the model-checking side of things, a formal analysis of the relation

between UCTL and UMC state machines should be made if we are to consider

extending SRML with more specification patterns. So far, it is not clear the

extent to which the (parallel-region-based) compositional approach that we



7.3. Further work 138

have proposed for model-checking with UMC can be applied if SRML is

extended with other specification patterns.

7.3.2 On the analysis techniques

Validating the current approach

While in UMC one defines an individual model of computation — by in-

putting a set of UML state machines — in our framework one defines a family

of models of computation — by specifying a service module. We would like

to prove that the encoding of a service module with UMC state machines, as

defined in Chapter 6, satisfies the UCTL formulas that are associated with

the requires-interfaces of that module. In order to do this, it is first necessary

to formalize the semantics of UMC models, which so far has not been done.

Proving the correctness of service modules with UMC

Ideally, we would like to be able to prove the correctness of a module speci-

fication (see Definition 5.5.5), i.e. prove that every possible encoding of the

composition specified in that module satisfies the interface properties that

the module advertises. In order to be able to perform this task with UMC

we would need to address two issues:

• first, we would need to define what a canonical model for a module

specification is; intuitively this would be the SO-L2TS that models

every possible behaviour of the service module;

• second, we would need to be able to encode that canonical model with

a system of UMC state machines, which is not necessarily possible — a

formal comparison between the semantic domains of SRML and UMC

would have to be done in order to understand exactly which family of

SO-L2TS can be encoded with UMC. An alternative to defining a UMC

encoding of the canonical model would be to develop a new model-

checker — possibly reusing the UMC engine as its basis — tailored for

service module specifications, much like it has been done for COWS
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specifications [34]. This model-checker should be able to take a service

module specification as input together with a UCTL formula and verify

if the canonical model associated with that specification verifies that

formula.

Model-checking using Linear Temporal Logic

It would be interesting to investigate to which extent the specification pat-

terns that we use in SRML can be formalized with Linear Temporal Logic

(LTL). We envision that such a formalization would allow us to use model-

checkers like SPIN 1 for supporting service design without having to provide

an encoding from temporal properties into UML state machines (unlike the

current approach). This would be possible because with LTL it can be ex-

pressed that the properties of the requires-interfaces of a service module entail

the properties of the provides-interface (over every model that satisfies the

behaviour of the components and wires). Intuitively, this consists of checking

that in all paths in which the properties of the requires-interfaces are true,

the properties of the provides-interfaces are also true — in UCTL (which is

as expressive as CTL) this cannot be expressed.

1For example, we could use Hugo/RT [64] to translate UML state machine based or-
chestrations into the modelling language of SPIN, Promela.
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Let:

• Ξ = 〈COMP,WIRE,PLL,Ψ, 2WAY, 1WAY 〉 be a configuration;

• m = 〈S,→, s0, G〉 be a model of computation for Ξ;

• 〈S, s0, Act, R, L,AP,Π〉 be the SO-L2TS that abstracts m.

• e ∈ E, i.e. e is an event associated with Ξ;

• a ∈ 2WAY〈c,c′〉, for some c, c′ ∈ COMP , i.e. a is a two-way interaction

initiated by c.

A.1 Lemma of sessions

Lemma A.1.1 (Session) For every two transitions r, r′ ∈→ such that r <

r′, DLV r ∩DLV r′ = ∅ and PRCr ∩PRCr′ = ∅, i.e. events are not delivered

nor processed more than once on each path.

Proof

1. Let r = s→ s′, r′ = s1 → s′1 ∈→ be such that r < r′ and e ∈ DLV r for

some e ∈ E. It is easy to conclude from the notion of computation step

(Def. 3.4.2) that there is r′′ < r such that e ∈ PUBr′′, e ∈ PNDs and

e 6∈ PNDs′. According to the notion of session there cannot be r′′ < r′′′

such that e ∈ PUBr′′′. Therefore for every s′ ≤ s′′, e 6∈ PNDs′′.

Since, s′ ≤ s1, we conclude from the notion of computation step that

e 6∈ DLV r′.

2. Let r = s→ s′, r′ = s1 → s′1 ∈→ be such that r < r′ and e ∈ PRCr for

some e ∈ E. It is easy to conclude from the notion of computation step

(Def. 3.4.2) that there is r′′ < r such that e ∈ DLV r′′, e ∈ INV s and

e 6∈ INV s′. As proved, there cannot be r′′ < r′′′ such that e ∈ DLV r′′′.

Therefore for every s′ ≤ s′′, e 6∈ INV s′′. Since, s′ ≤ s1, we conclude

from the notion of computation step that e 6∈ PRCr′.

3. The result follows immediately.
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2

A.2 Event propagation (Theorem 4.3.1)

1. We wish to prove that

s0 |= A[true{¬e¡}W{e!}true]

Proof

(a) Let σ be a path from s0 that contains a transition s
α−→ s′ with

e! ∈ α. In this case, there is j > 0, where σ(j − 1) = s, e! ∈ α(j)

and σ(j − 1) = s′. Because e! ∈ α(j), σ(j − 1, j) |= e!. Obviously

σ(j − 1) |= true and σ(j) |= true.

Let 0 < i < j. If σ(i − 1, i) |= e¡ then there is a transition

r = σ(i − 1) −→ σ(i) such that e ∈ DLV r. Since accord-

ing to Def. 3.4.2, DLV r ⊆ PNDσ(i−1), we conclude that e ∈
PNDσ(i−1). We can also conclude from Def. 3.4.2 that either

e! ∈ PUBσ(i−2)−→σ(i−1) or e! ∈ PNDσ(i−2). Since, according to

Def. 3.4.2 PNDs0 = ∅, it easy to see that there is a transition

r′ < r such that e! ∈ PUBr′ , i.e. there is ′′ < i such that e! ∈ αi′′ .
But this contradicts Def. 3.4.4 (according to which events can

only be published once) since e! ∈ αj. Hence, σ(i− 1, i) 6|= e¡, i.e.

σ(i− 1, i) |= ¬e¡.

Therefore, according to Def. 4.1.6,

σ |= true{¬e¡}U{e!}true

(b) Let σ be a path from s0 that does NOT contain a transition s
α−→

s′ with e! ∈ α. Then, according to Def 3.4.2, σ cannot contain a
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transition s1
α′−→ s′1 with e¡ ∈ α′. That is, for all i ≥ 0, σ(i−1, i) |=

¬e¡.

(c) The result follows from (a), (b) and Def. 4.1.6.

2

2. We wish to prove that

s0 |= A[true{¬e?∧¬e¿}W{e¡}true]

Proof

(a) Let σ be a path from s0 that contains a transition s
α−→ s′ with

e¡ ∈ α. In this case, there is j > 0, where σ(j − 1) = s, e¡ ∈ α(j)

and σ(j − 1) = s′. Because e¡ ∈ α(j), σ(j − 1, j) |= e¡. Obviously

σ(j − 1) |= true and σ(j) |= true.

Let 0 < i < j. If σ(i−1, i) |= e? or σ(i−1, i) |= e¿ then, there is a

transition r = σ(i− 1) −→ σ(i) such that e ∈ EXCr ∪DSCr, i.e.

e ∈ PRCr. Since according to Def. 3.4.2, DLV r ⊆ PNDσ(i−1),

we conclude that e ∈ INV σ(i−1). We can also conclude from Def.

3.4.2 that either e! ∈ DLV σ(i−2)−→σ(i−1) or e! ∈ INV σ(i−2). Since,

according to Def. 3.4.2 INV s0 = ∅, it easy to see that there is a

transition r′ < r such that e! ∈ DLV r′ , i.e. there is ′′ < i such

that e¡ ∈ αi′′ . But this contradicts Lemma A.1.1 (according to

which events can only be delivered once) since e¡ ∈ αj. Hence,

σ(i− 1, i) 6|= e? and σ(i− 1, i) 6|= e¿, i.e. σ(i− 1, i) |= ¬e? ∧ ¬e¿.

Therefore, according to Def. 4.1.6,

σ |= true{¬e?∧¬e¿}U{e¡}true

(b) Let σ be a path from s0 that does NOT contain a transition s
α−→

s′ with e¡ ∈ α. Then, according to Def 3.4.2, σ cannot contain a
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transition s1
α′−→ s′1 with e? ∈ α′ or e¡ ∈ α′. That is, for all i ≥ 0,

σ(i− 1, i) |= ¬e? ∧ ¬e¿.

(c) The result follows from (a), (b) and Def. 4.1.6.

2

3. We wish to prove that

s0 |= AG¬(e? ∧ e¿)

Proof Let σ be a path from s0 and 0 ≤ i.

Let us assume that e? ∈ L(σ(i)), i.e. σ(i) |= e?. From Def. 4.2.1 we

conclude that there is a state s = σ(i) such that e ∈ HST?s. From Def.

3.4.2 we conclude that there is a transition r < s such that e ∈ EXCr

and therefore e ∈ PRCr. From lemma A.1.1 we conclude that there

is no transition r′ in σ such that r′ 6= r and PRCs′−→s′′ . Hence, there

is no transition r′ 6= r and DSCs′−→s′′ . We conclude from 3.4.2 that

there is no state s′ in σ such that e ∈ HST¿. From 3.4.2 and 4.2.1 we

conclude that there is no 0 ≤ j such that σ |= e¿. Hence, σ(i) 6|= e¿

and obviously σ(i) 6|= e? ∧ e¿, i.e. σ(i) |= ¬(e? ∧ e¿).

We have concluded that if σ(i) |= e? then σ(i) 6|= e¿. Obviously, if

σ(i) |= e¿ then σ(i) 6|= e? and therefore σ(i) |= ¬(e? ∧ e¿). In the case

in which σ(i) 6|= e? and σ(i) 6|= e¿ it is also true that σ(i) |= ¬(e?∧ e¿).

The result follows immediately from 4.1.7.

2
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A.3 Fairness (Theorem 4.3.2)

1. We wish to prove that

s0 |= AG[e!]A[truetrueUe¡true]

Proof Let σ be a path from s0 and s = σ(i) for some 0 ≤ i.

Let σ′ = s
α−→ s′ . . . be such that e! ∈ α, i.e. e ∈ PUBs→s′ . In this

case s
α−→ s′ |= e!. We can conclude from Def. 3.4.2 that e ∈ PNDs′ .

According to Def. 3.4.4 (fairness) there is a transition r such that

s′ < r and e ∈ DLV r. Since according to Def. 3.4.4 wires are reliable,

DLV r = ADLV r, and therefore there is a 1 < i such that σ(i− 1, i) |=
e¡. From Def. 4.1.6, we conclude that

σ′ |= true{true}U{e¡}true

and that

σ′(1) = s′ |= A[true{true}U{e¡}true]

We can also conclude from Def. 4.1.7 (the definition of the derived

operators) that

s |= [e!](A[true{true}U{e¡}true])

The result follows immediately from Def. 4.1.7. 2

2. We wish to prove that

s0 |= AG[e¡]A[true{true}U{e?∨e¿}true]

Proof Let σ be a path from s0 and s = σ(i) for some 0 ≤ i.

Let σ′ = s
α−→ s′ . . . be such that e¡ ∈ α, i.e. e ∈ ADLV s→s′ . In

this case s
α−→ s′ |= e¡. Since we assume every wire is reliable (see
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Def.3.4.4), we can conclude from Def. 3.4.2 that e ∈ INV s′ . According

to Def. 3.4.4 (fairness) there is a transition r such that s′ < r and

e ∈ PRCr, i.e. e ∈ EXCr ∪DSCr. Hence, there is a 1 < i such that

σ(i− 1, i) |= e? ∨ e¿. From Def. 4.1.6, we conclude that

σ′ |= true{true}U{e?∨e¿}true

and that

σ′(1) = s′ |= A[true{true}U{e?∨e¿}true]

We can also conclude from Def. 4.1.7 (the definition of the derived

operators) that

s |= [e¡](A[true{true}U{e?∨e¿}true])

The result follows immediately from Def. 4.1.7. 2

A.4 Session (Theorem 4.3.3)

1. We wish to prove that

s0 |= AG[e!]A[true{¬e!}Wfalse]

Proof Let σ be a path from s0 and s = σ(i) for some 0 ≤ i.

Let σ′ = (s
α1−→ s′)σ′′ be such that e! ∈ α1, i.e. e ∈ PUBs→s′ . In

this case σ′(0, 1) |= e!. According to Def. 3.4.4 (session) for every

s → s′ < r, PUBs→s′ ∩ PUBr = ∅, i.e. e 6∈ PUBr. We can conclude

that for every 1 < i, σ′′(i − 1, i) |= ¬e!. From Def. 4.1.6, we conclude

that

σ′ |= true{¬e!}Wfalse
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and that

σ′(1) = s′ |= A[true{¬e!}Wfalse]

We can also conclude from Def. 4.1.7 (the definition of the derived

operators) that

s |= [e!]A[true{¬e!}Wfalse]

The result follows immediately from Def. 4.1.7. 2

2. We wish to prove that

s0 |= AG[e? ∨ e¿]A[true{¬e?∧¬e¿}Wfalse]

Proof Let σ be a path from s0 and s = σ(i) for some 0 ≤ i.

Let σ′ = (s
α1−→ s′)σ′′ be such that e? ∈ α1 or e¿ ∈ alpha1, i.e. e ∈

EXCs→s′∪DSCs→s′ and therefore e ∈ PRCs→s′ . In this case σ′(0, 1) |=
e? ∨ e¿. According to Lemma A.1.1 for every s → s′ < r, PRCs→s′ ∩
PRCr = ∅. Hence, e 6∈ PRCr and therefore e 6∈ EXCs→s′ ∪DSCs→s′ .

We can conclude that for every 1 < i, σ′(i − 1, i) |= ¬e! ∧ ¬e¿. From

Def. 4.1.6, we conclude that

σ′′ |= true{¬e!∧¬e¿}Wfalse

and that

σ′(1) = s′ |= A[true{¬e!∧¬e¿}Ufalse]

We can also conclude from Def. 4.1.7 (the definition of the derived

operators) that

s |= [e! ∧ e¿](A[true{¬e!∧¬e¿}Ufalse])

The result follows immediately from Def. 4.1.7. 2
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A.5 Requester (Theorem 4.3.4)

A.5.1 ⇒

Let us assume that c behaves as a requester (see Def. 3.5.1) in interaction a.

1. We wish to prove that

s0 |= A[true{¬aB?}W{a
!}true]

Proof

(a) Let σ be a path from s0 that contains a transition s
α−→ s′ with

a
! ∈ α. In this case, there is j > 0, where σ(j−1) = s, a
! ∈ α(j)

and σ(j − 1) = s′. Because a
! ∈ α(j), σ(j − 1, j) |= a
!. Obvi-

ously σ(j − 1) |= true and σ(j) |= true.

Let 0 < i < j. If σ(i − 1, i) |= aB? then according to Def. 3.5.1

there should be a i′ < i such that σ(i′ − 1, i′) |= a
!. But this

contradicts Def. 3.4.4 (session). Hence, σ(i − 1, i) 6|= aB!, i.e.

σ(i− 1, i) |= ¬aB?.

Therefore, according to Def. 4.1.6, σ |= true{¬aB?}U{a
!}true.

(b) Let σ be a path from s0 that does NOT contain a transition s
α−→

s′ with a
! ∈ α. Then, according to Def. 3.5.1, σ cannot contain

a transition s1
α1−→ s′1 with aB? ∈ α. That is, for all i ≥ 0,

σ(i− 1, i) |= ¬aB?.

(c) The result follows from (a), (b) and Def. 4.1.6.

2

2. We wish to prove that

s0 |= AG[a
!](A[true{¬aB¿}Wfalse])
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Let σ = be a path from s0 and s = σ(i) for some 0 ≤ i.

Let σ′ = (s
α1−→ s′)σ′′ be such that a
! ∈ α1, i.e. a
 ∈ PUBs−→s′ . In

this case σ′(0, 1) |= a
?. According to Def. 3.5.1 there is no transition

r such that s −→ s′ < r and aB ∈ DSCr. That is, for every 2 ≤ i,

σ′(i − 1, i) |= ¬aB¿ and obviously σ′(i) |= true. From Def. 4.1.6, we

conclude that

σ′′ |= true{¬a.reply¿}Wfalse

and that

σ′(1) = s′ |= A[true{¬a.reply¿}Wfalse]

Since α1 |= a
?, we can also conclude from Def. 4.1.7 (the definition of

the derived operators) that

s |= [a
!](A[true{¬a.reply¿}Wfalse])

The result follows immediately from Def. 4.1.7.

3. We wish to prove that

s0 |= A[true{¬a�!}W{aB?∧a.Reply}true]

Proof

(a) Let σ be a path from s0 that contains a transition s
α−→ s′

with aB? ∈ α and a.ReplyΘs→s
′
. In this case, there is j > 0,

where σ(j − 1) = s, aB? ∈ α(j) and σ(j − 1) = s′. Because

aB? ∈ α(j) and a.ReplyΘs→s
′
, σ(j − 1, j) |= aB? ∧ a.Reply. Ob-

viously σ(j − 1) |= true and σ(j) |= true.

Let 0 < i < j. If σ(i − 1, i) |= a�! then according to Def. 3.5.1

there should be a i′ < i such that σ(i′ − 1, i′) |= aB? ∧ a.Reply.

But this contradicts Def. 3.4.4 (session). Hence, σ(i−1, i) 6|= a�!,



A.5. Requester (Theorem 4.3.4) 150

i.e. σ(i− 1, i) |= ¬a�!.

Therefore, according to Def. 4.1.6, σ |= true{¬a�!}U{aB?∧a.Reply}true.

(b) Let σ be a path from s0 that does NOT contain a transition s
α−→

s′ with a
! ∈ α. Then, according to Def. 3.5.1, σ cannot contain

a transition s1
α1−→ s′1 with a�! ∈ α. That is, for all i ≥ 0,

σ(i− 1, i) |= ¬a�!.

(c) The result follows from (a), (b) and Def. 4.1.6.

2

4. We wish to prove that

s0 |= AG[a7!]A[true{¬a�!}Wfalse]

Proof Let σ be a path from s0 and s = σ(i) for some 0 ≤ i.

Let σ′ = (s
α1−→ s′)σ′′ be such that a7! ∈ α1, i.e. a7 ∈ PUBs→s′ . In

this case s
α1−→ s′ |= a7!. If there is a transition r < r′ in σ′′ such that

a� ∈ PUBr, then according to Def. 3.5.2 there cannot be a transition

r′′ < r′ in σ′′ such that a7 ∈ PUBr′′ . But this contradicts the fact that

s → s′ < r′ and a7 ∈ PUBs→s′ . Hence there is no transition r′ in σ′′

such that a� ∈ PUBr. That is, for every 1 < i, σ(i − 1, i) |= ¬a�!.

From Def. 4.1.6, we conclude that

σ′′ |= true{¬a�!}Wfalse

and that

σ′(1) = s′ |= A[true{¬a�!}Wfalse]

We can also conclude from Def. 4.1.7 (the definition of the derived

operators) that

s |= [a7!]A[true{¬a�!}Wfalse]
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The result follows immediately from Def. 4.1.7. 2

5. We wish to prove that

s0 |= A[true{¬a7!}W{aB?∧a.Reply}true]

Proof

(a) Let σ be a path from s0 that contains a transition s
α−→ s′

with aB? ∈ α and a.ReplyΘs→s
′
. In this case, there is j > 0,

where σ(j − 1) = s, aB? ∈ α(j) and σ(j − 1) = s′. Because

aB? ∈ α(j) and a.ReplyΘs→s
′
, σ(j − 1, j) |= aB? ∧ a.Reply. Ob-

viously σ(j − 1) |= true and σ(j) |= true.

Let 0 < i < j. If σ(i − 1, i) |= a7! then according to Def. 3.5.1

there should be a i′ < i such that σ(i′ − 1, i′) |= aB? ∧ a.Reply.

But this contradicts Def. 3.4.4 (session). Hence, σ(i− 1, i) 6|= a7!,

i.e. σ(i− 1, i) |= ¬a7!.

Therefore, according to Def. 4.1.6, σ |= true{¬a7!}U{aB?∧a.Reply}true.

(b) Let σ be a path from s0 that does NOT contain a transition s
α−→

s′ with a
! ∈ α. Then, according to Def. 3.5.1, σ cannot contain

a transition s1
α1−→ s′1 with a7! ∈ α. That is, for all i ≥ 0,

σ(i− 1, i) |= ¬a7!.

(c) The result follows from (a), (b) and Def. 4.1.6.

2

6. We wish to prove that

s0 |= AG[a�!]A[true{¬a7!}Wfalse]
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Proof Let σ be a path from s0 and s = σ(i) for some 0 ≤ i.

Let σ′ = (s
α1−→ s′)σ′′ be such that a�! ∈ α1, i.e. a� ∈ PUBs→s′ . In

this case s
α1−→ s′ |= a�!. If there is a transition r < r′ in σ′′ such that

a7 ∈ PUBr, then according to Def. 3.5.2 there cannot be a transition

r′′ < r′ in σ′′ such that a� ∈ PUBr′′ . But this contradicts the fact

that s→ s′ < r′ and a� ∈ PUBs→s′ . Hence there is no transition r′ in

σ′′ such that a7 ∈ PUBr. That is, for every 1 < i, σ(i − 1, i) |= ¬a7!.

From Def. 4.1.6, we conclude that

σ′′ |= true{¬a7!}Wfalse

and that

σ′(1) = s′ |= A[true{¬a7!}Wfalse]

We can also conclude from Def. 4.1.7 (the definition of the derived

operators) that

s |= [a�!]A[true{¬a7!}Wfalse]

The result follows immediately from Def. 4.1.7. 2

7. We wish to prove that

s0 |= A[true{¬a>!}W{a�!}true]

Proof

(a) Let σ be a path from s0 that contains a transition s
α−→ s′ with

a�! ∈ α. In this case, there is j > 0, where σ(j − 1) = s, a�! ∈
α(j) and σ(j − 1) = s′. Because a�! ∈ α(j), σ(j − 1, j) |= a�!.

Obviously σ(j − 1) |= true and σ(j) |= true.

Let 0 < i < j. If σ(i − 1, i) |= a>! then according to Def. 3.5.1

there should be a i′ < i such that σ(i′ − 1, i′) |= a�!. But since
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σ(j − 1, j) |= a�!, Def. 3.4.4 (session) is contradicted. Hence,

σ(i− 1, i) 6|= a>!, i.e. σ(i− 1, i) |= ¬a>?.

Therefore, according to Def. 4.1.6, σ |= true{¬a>!}U{a�!}true.

(b) Let σ be a path from s0 that does NOT contain a transition s
α−→

s′ with a�! ∈ α. Then, according to Def. 3.5.1, σ cannot contain

a transition s1
α1−→ s′1 with a>! ∈ α. That is, for all i ≥ 0,

σ(i− 1, i) |= ¬a>!.

(c) The result follows from (a), (b) and Def. 4.1.6.

2

A.5.2 ⇐

Let us assume that s0 satisfies every formula in 4.3.4 and r = s −→ s′ is a

transition of m.

1. We wish to prove that if aB ∈ EXCr then there is r′ with r′ < r such

that a
 ∈ PUBr′

Proof Let us assume that aB ∈ EXCr and σ is a path from s0 that

contains r. In this case, there is i > 0 such that σ(i−1, i) |= aB?. Since

according to 4.3.5, s0 |= A[true{¬aB?}W{a
!}true] then we conclude that

σ |= true{¬aB?}W{a
!}true

Because there is i > 0 such that σ(i−1, i) |= aB?, then we also conclude

from 4.1.6 that

σ |= true{¬aB?}U{a
!}true

i.e. there exists j ≥ 1 such that σ(j−1, j) |= a
! and for all i such that

0 < i′ < j, σ(i − 1, i) |= ¬aB?. Since σ(i − 1, i) |= aB?, we conclude

that j < i. That is, there is a transition r′ < r such that a
 ∈ PUBr′

(as we wanted to prove). 2
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2. We wish to prove that if a
 ∈ PUBr, then there is no r′ with r < r′

such that aB ∈ DSCr′

Proof Let us assume that a
 ∈ PUBr and σ = σ′(σ(i−1)
αi−→ σ(i))σ′′,

where σi−1 = s and σi = s′, is a path from s0. In this case, there is

i > 0 such that σ(i− 1, i) |= a
?. According to 4.3.5

s0 |= AG[a
!](A[trueaB¿}Wfalse])

We conclude from Def. 4.1.6 that

s |= [a
!](A[true¬aB¿}Wfalse])

Since s
α−→ s′ |= a
!, we can conclude that

s′ |= A[true¬aB¿}Wfalse]

and that

σ′′ |= true¬aB¿}Wfalse

which means that for every i < j, σ(j) |= ¬aB!. Hence, there is no

transition r′ such that r < r′ and aB ∈ DSCr′ . 2

3. We wish to prove that if a� ∈ PUBr then there is r′ ≤ r such that

aB ∈ EXCr′ and a.replyΘr
′

= true

Proof Let us assume that a� ∈ PUBr and σ is a path from s0 that

contains r. In this case, there is 0 < i such that σ(i − 1, i) |= a�!.

Since according to 4.3.5, s0 |= A[true{¬a�!}W{aB?∧a.Reply}true] then we

conclude that

σ |= true{¬a�!}W{aB?∧a.Reply}true

Because there is 0 < i such that σ(i − 1, i) |= a�!, it is not the case

that for every 0 < i′, σ(i′ − 1, i) |= ¬a�!. We conclude from 4.1.6 that

σ |= true{¬a�!}U{aB?∧a.Reply}true
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i.e. there exists j ≥ 1 such that σ(j − 1, j) |= aB? ∧ a.Reply and for

all i such that 0 < i′ < j, σ(i′ − 1, i′) |= ¬a�!. Since σ(i− 1, i) |= a�!,

we conclude that j < i. That is, there is a transition r′ < r such that

aB ∈ EXCr′ and a.replyΘr
′

= true (as we wanted to prove). 2

4. We wish to prove that if a� ∈ PUBr then there is no r′ < r such that

a7 ∈ PUBr′

Proof Let us assume that a� ∈ PUBr and σ is a path from s0 that

contains r. In this case, there is i > 0 such that σ(i − 1, i) |= a�!.

Let us suppose that σ = σ′(s1
α′−→ s′1)σ′′ where r′ = s1 → s′1 < r and

a7 ∈ PUBr′ . In this case s1
α′−→ s′1 |= a7!. Since according to 4.3.5

s0 |= AG[a7!](A[true{¬a�}Wfalse])

we conclude from Def. 4.1.7 that

s1 |= [a7!](A[true{¬a�!}Wfalse])

Since s1
α′−→ s′1 |= a�!, we can conclude that

s′1 |= A[true{¬a�!}Wfalse]

and that

σ′′ |= true{¬a�!}Wfalse

which means that for every i < j, σ(j) |= ¬a�!, i.e. a�! 6∈ αj. But

this contradicts the fact that r′ < r and r |= a�!. Hence, a7 6∈ PUBr′

or r′ 6< r. Therefore, there is no transition r′ < r in σ such that

a7 ∈ PUBr′ . 2

5. We wish to prove that if a7 ∈ PUBr then there is r′ < r such that

aB ∈ EXCr′ and a.replyΘr
′

= true

Proof Let us assume that a7 ∈ PUBr and σ is a path from s0 that
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contains r. In this case, there is 0 < i such that σ(i − 1, i) |= a7!.

Since according to 4.3.5, s0 |= A[true{¬a7!}W{aB?∧a.Reply}true] then we

conclude that

σ |= true{¬a7!}W{aB?∧a.Reply}true

Because there is 0 < i such that σ(i−1, i) |= a7!, it is not the case that

for every 0 < i′, σ(i′ − 1, i) |= ¬a7!. We conclude from 4.1.6 that

σ |= true{¬a7!}U{aB?∧a.Reply}true

i.e. there exists j ≥ 1 such that σ(j − 1, j) |= aB? ∧ a.Reply and for

all i such that 0 < i′ < j, σ(i′ − 1, i′) |= ¬a7!. Since σ(i − 1, i) |= a7!,

we conclude that j < i. That is, there is a transition r′ < r such that

aB ∈ EXCr′ and a.replyΘr
′

= true (as we wanted to prove). 2

6. We wish to prove that if a7 ∈ PUBr then there is no r′ < r such that

a� ∈ PUBr′

Proof Let us assume that a7 ∈ PUBr and σ is a path from s0 that

contains r. In this case, there is i > 0 such that σ(si−1, si) |= a7!. Let

us suppose that σ = σ′(s1
α′−→ s′1)σ′′ where r′ = s1 → s′1 < r and

a� ∈ PUBr′ . In this case s1
α′−→ s′1 |= a�!. Since according to 4.3.5

s0 |= AG[a7!](A[true{¬a7}Wfalse])

we conclude from Def. 4.1.7 that

s1 |= [a�!](A[true{¬a7!}Wfalse])

Since s1
α′−→ s′1 |= a7!, we can conclude that

s′1 |= A[true{¬a7!}Wfalse]

and that

σ′′ |= true{¬a7!}Wfalse
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which means that for every i < j, σ(j) |= ¬a7!, i.e. a7! 6∈ αj. But

this contradicts the fact that r′ < r and r |= a7!. Hence, a� 6∈ PUBr′

or r′ 6< r. Therefore, there is no transition r′ < r in σ such that

a� ∈ PUBr′ . 2

7. We wish to prove that if a> ∈ PUBr then there is r′ < r such that

a� ∈ PUBr′

Proof Let us assume that a> ∈ PUBr and σ is a path from s0 that

contains r. In this case, there is 0 < i such that σ(i−1, i) |= a>!. Since

according to 4.3.5, s0 |= A[true{¬a>!}W{a�!}true] then we conclude that

σ |= true{¬a>!}W{a�!}true

Because there is 0 < i such that σ(i − 1, i) |= a�!, it is not the case

that for every 0 < i′, σ(i′ − 1, i) |= ¬a�!. We conclude from 4.1.6 that

σ |= true{¬a>!}U{a�!}true

i.e. there exists j ≥ 1 such that σ(j − 1, j) |= a�? and for all i such

that 0 < i′ < j, σ(i′−1, i′) |= ¬a>!. Since σ(i−1, i) |= a>!, we conclude

that j < i. That is, there is a transition r′ < r such that a� ∈ EXCr′

(as we wanted to prove). 2

A.6 Provider (Theorem 4.3.5)

A.6.1 ⇒

Let us assume that c′ behaves as a provider (see Def. 3.5.2) in interaction a.

1. We wish to prove that

s0 |= A[true{¬aB!}W{a
?}true]
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Proof

(a) Let σ be a path from s0 that contains a transition s
α−→ s′ with

a
? ∈ α. In this case, there is j > 0, where σ(j−1) = s, a
? ∈ α(j)

and σ(j − 1) = s′. Because a
? ∈ α(j), σ(j − 1, j) |= a
?. Obvi-

ously σ(j − 1) |= true and σ(j) |= true.

Let 0 < i < j. If σ(i− 1, i) |= aB! then by clause 1. in Def. 3.5.2

there should be a i′ < i such that σ(i′ − 1, i′) |= a
?. But this

contradicts lemma A.1.1 (according to which events can only be

processed once). Hence, σ(i− 1, i) 6|= aB!, i.e. σ(i− 1, i) |= ¬aB!.

Therefore, according to Def. 4.1.6, σ |= true{¬aB!}U{a
?}true.

(b) Let σ be a path from s0 that does NOT contain a transition s
α−→

s′ with a
? ∈ α. Then, according to clause 1. in Def. 3.5.2 σ

cannot contain a transition s1
α1−→ s′1 with aB! ∈ α. That is, for

all i ≥ 0, σ(i− 1, i) |= ¬aB!.

(c) The result follows from (a), (b) and Def. 4.1.6.

2

2. We wish to prove that

s0 |= AG[a
?](A[true{true}U{aB!}true])

Proof Let σ be a path from s0 and s = σ(i) for some 0 ≤ i.

Let σ′ = s
α−→ s′ . . . be such that a
? ∈ α. In this case s

α−→ s′ |= a
?.

According to the definition of provider (Def. 3.5.2) there is a transition

r such that s
α−→ s′ < r and aB ∈ PUBr. That is, there is a 1 < i

such that σ(i− 1, i) |= aB!. From Def. 4.1.6, we conclude that

σ′ |= true{true}U{aB!}true
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and that

σ′(1) = s′ |= A[true{true}U{aB!}true]

We can also conclude from Def. 4.1.7 (the definition of the derived

operators) that

s |= [a
?](A[true{true}U{aB!}true])

The result follows immediately from Def. 4.1.7. 2

3. We wish to prove that

s0 |= A[true{¬a�?}W{aB!∧a.Reply}A[true{¬a�?}W{a�?∧time<a.useBy}true]]

Proof

(a) Let σ be a path from s0 that contains a transition r = s
α−→ s′

such that aB! ∈ α and a.ReplyΘr = true. In this case, σ =

σ′(s, α, s′)σ′′ and there is a j > 0, where σ(j − 1) = s, aB! ∈
α(j) and σ(j) = s′. Because aB! ∈ αj and a.ReplyΘr = true,

σ(j − 1, j) |= aB! ∧ a.Reply.

i. Let us assume there is a transition r′ in σ′′ such that r < r′

and a� ∈ EXCr′ . In this case there is 0 < i such that σ′′(i−
1, i) |= a�?. From Def. 3.5.2 we conclude that TIMEσ(i′) <

a.useByΘr and therefore, σ(i′−1, i′) |= a�?∧time < a.useBy.

From lemma A.1.1 we conclude that there is no i′ < i such

that σ(i′ − 1, i′) |= a�?. Hence, from Def. 4.1.6 we conclude

that

σ′′ |= true{¬a�?}U{a�?∧time<a.useBy}true

From lemma A.1.1 we conclude that there is no i′′ < j < i such

that σ(i′′ − 1, i′′) |= a�?, i.e. for every i′′ < j, σ(i′′ − 1, i′′) |=
¬a�.
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ii. Let us instead assume that there is no transition r′ in σ′′ such

that r < r′ and a� ∈ EXCr′ . In this case for every 0 < i

σ′′(i − 1, i) |= ¬a�?. If we assume that there is r′′ < r such

that a� ∈ EXCr′ then according to Def. 3.5.2 there should

be r′′′ < r′′ such that aB ∈ PUBr′′′ . But since aB ∈ PUBr,

this is a contradiction with lemma A.1.1. Therefore, there is

no r′′ < r such that a� ∈ EXCr′ , i.e. for every 0 < i′′ < j,

σ(i′ − 1, i′) |= ¬a�?.

iii. We conclude from i., ii. and 4.1.6 that

σ′′ |= true{¬a�?}W{a�?∧time<a.useBy}true

and that

s′ |= A[true{¬a�?}W{a�?∧time<a.useBy}true]

Furthermore, since r |= aB! ∧ a.Reply, we conclude that

σ |= true{¬a�?}U{aB!∧a.Reply}A[true{¬a�?}W{a�?∧time<a.useBy}true]

and that

s0 |= A[true{¬a�?}U{aB!∧a.Reply}A[true{¬a�?}W{a�?∧time<a.useBy}true]]

(b) Let σ be a path from s0 that does NOT contain a transition r =

s
α−→ s′ such that aB! ∈ α and a.ReplyΘr = true. According to

Def. 3.5.2 there cannot be a transition r′ in σ such that a� ∈
EXCr′ , i.e. for every 0 < i, σ(i− 1, i) |= ¬a�?.

(c) The result follows from (a), (b) and Def. 4.1.6.

2
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4. We wish to prove that

s0 |= AG[a7?]A[true{¬a�?}Wfalse]

Proof Let σ be a path from s0 and s = σ(i) for some 0 ≤ i.

Let σ′ = (s
α1−→ s′)σ′′ be such that a7? ∈ α1, i.e. a7 ∈ EXCs→s′ .

In this case σ′(0, 1) |= a7?. If there is a transition r′ in σ′′ such that

a� ∈ EXCr, then according to Def. 3.5.2 there cannot be a transition

r′′ < r′ in σ′′ such that a7 ∈ EXCr′′ . But this contradicts the fact that

s → s′ < r′ and a7 ∈ EXCs→s′ . Hence there is no transition r′ in σ′′

such that a� ∈ EXCr. That is, for every 0 < i, σ′′(i − 1, i) |= ¬a�?.

From Def. 4.1.6, we conclude that

σ′′ |= true{¬a�?}Wfalse

and that

σ′(1) = s′ |= A[true{¬a�?}Wfalse]

We can also conclude from Def. 4.1.7 (the definition of the derived

operators) that

s |= [a7?]A[true{¬a�?}Wfalse]

The result follows immediately from Def. 4.1.7. 2

5. We wish to prove that

s0 |= A[true{¬(a7?}W{aB!∧a.Reply}A[true{¬a7?}W{a7?∧time<a.useBy}true]]

Proof

(a) Let σ be a path from s0 that contains a transition r = s
α−→ s′

such that aB! ∈ α and a.ReplyΘr = true. In this case, σ =

σ′(s, α, s′)σ′′ and there is a j > 0, where σ(j − 1) = s, aB! ∈
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α(j) and σ(j) = s′. Because aB! ∈ αj and a.ReplyΘr = true,

σ(j − 1, j) |= aB! ∧ a.Reply.

i. Let us assume there is a transition r′ in σ′′ such that r < r′

and a7 ∈ EXCr′ . In this case there is 0 < i such that σ′′(i−
1, i) |= a7?. From Def. 3.5.2 we conclude that TIMEσ(i′) <

a.useByΘr and therefore, σ(i′−1, i′) |= a7?∧time < a.useBy.

From lemma A.1.1 we conclude that there is no i′ < i such

that σ(i′ − 1, i′) |= a7?. Hence, from Def. 4.1.6 we conclude

that

σ′′ |= true{¬a7?}U{a7?∧time<a.useBy}true

From lemma A.1.1 we conclude that there is no i′′ < j < i such

that σ(i′′ − 1, i′′) |= a7?, i.e. for every i′′ < j, σ(i′′ − 1, i′′) |=
¬a7.

ii. Let us instead assume that there is no transition r′ in σ′′ such

that r < r′ and a7 ∈ EXCr′ . In this case for every 0 < i

σ′′(i − 1, i) |= ¬a7?. If we assume that there is r′′ < r such

that a7 ∈ EXCr′ then according to Def. 3.5.2 there should

be r′′′ < r′′ such that aB ∈ PUBr′′′ . But since aB ∈ PUBr,

this is a contradiction with lemma A.1.1. Therefore, there is

no r′′ < r such that a7 ∈ EXCr′ , i.e. for every 0 < i′′ < j,

σ(i′ − 1, i′) |= ¬a7?.

iii. We conclude from i., ii. and 4.1.6 that

σ′′ |= true{¬a�?}W{a7?∧time<a.useBy}true

and that

s′ |= A[true{¬a�?}W{a7?∧time<a.useBy}true]

Furthermore, since r |= aB! ∧ a.Reply, we conclude that

σ |= true{¬a7?}U{aB!∧a.Reply}A[true{¬a7?}W{a7?∧time<a.useBy}true]
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and that

s0 |= A[true{¬a7?}U{aB!∧a.Reply}A[true{¬a7?}W{a7?∧time<a.useBy}true]]

(b) Let σ be a path from s0 that does NOT contain a transition r =

s
α−→ s′ such that aB! ∈ α and a.ReplyΘr = true. According

to Def. 3.5.2 there cannot be a transition r′ in σ such that a7 ∈
EXCr′ , i.e. for every 0 < i, σ(i− 1, i) |= ¬a7?.

(c) The result follows from (a), (b) and Def. 4.1.6.

2

6. We wish to prove that

s0 |= AG[a�?]A[true{¬a7?}Wfalse]

Proof Let σ be a path from s0 and s = σ(i) for some 0 ≤ i.

Let σ′ = (s
α1−→ s′)σ′′ be such that a�? ∈ α1, i.e. a� ∈ EXCs→s′ .

In this case σ′(0, 1) |= a7?. If there is a transition r′ in σ′′ such that

a7 ∈ EXCr, then according to Def. 3.5.2 there cannot be a transition

r′′ < r′ in σ′′ such that a� ∈ EXCr′′ . But this contradicts the fact

that s→ s′ < r′ and a� ∈ EXCs→s′ . Hence there is no transition r′ in

σ′′ such that a7 ∈ EXCr. That is, for every 1 < i, σ′′(i− 1, i) |= ¬a7?.

From Def. 4.1.6, we conclude that

σ′′ |= true{¬a7?}Wfalse

and that

σ′(1) = s′ |= A[true{¬a7?}Wfalse]

We can also conclude from Def. 4.1.7 (the definition of the derived

operators) that

s |= [a�?]A[true{¬a7?}Wfalse]
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The result follows immediately from Def. 4.1.7. 2

7. We wish to prove that

s0 |= A[true{¬(aB!∧a.Reply)}W{aB!∧a.Reply}¬E[true{¬a7?}U{a�¿∧time<a.useBy}true]]

Proof

(a) Let σ be a path from s0 that contains a transition r = s
α−→ s′

such that aB! ∈ α and a.ReplyΘr = true. In this case, σ =

σ′(s, α, s′)σ′′ and there is a j > 0, where σ(j − 1) = s, aB! ∈
α(j) and σ(j) = s′. Because aB! ∈ αj and a.ReplyΘr = true,

σ(j − 1, j) |= aB! ∧ a.Reply.

According to the definition of provider there is no r′ = n1 −→ n2

with r < r′ such that:

• a� ∈ DSCr′

• TIMEn1 < a.useByΘr

• there is no transition r′′ < r′ such that a7 ∈ EXCr′′

That is, there is no j ≤ i such that σ′′ = σ1(σ(i − 1, i))σ′1, σ(i −
1, i) |= a�¿∧(time < a.useBy) and for all j ≤ i′ < i, σ(i′−1, i′) |=
¬a7?. From Def. 4.1.6, we conclude that

σ′′ 6|= true{¬a7?}U{a�¿∧time<a.useBy}true

Therefore, according to Def. 4.1.6,

s′ |= ¬E[true{¬a7?}U{a�¿∧time<a.useBy}true]

Since aB ∈ PUBr and m is a session (see Def. 3.4.4), there is

no transition r′′′ < r such that aB ∈ PUBr′′′ . That is, for all
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0 < i′′ < j, σ(i′′ − 1, i′′) |= ¬(aB! ∧ a.Reply). Hence,

σ |= true{¬(aB!∧a.Reply)}U{aB!∧a.Reply}¬E[true{¬a7?}U{a�¿∧time<a.useBy}true]

(b) Let σ be a path from s0 that does NOT contain a transition r =

s
α−→ s′ with aB! ∈ α and a.ReplyΘr = true. In this case, for all

i ≥ 0, σ(i− 1, i) |= ¬(aB! ∧ a.Reply).

(c) The result follows from (a), (b) and Def. 4.1.6.

2

8. We wish to prove that

s0 |= A[true{aB!∧a.Reply}W{aB!∧a.Reply}¬E[true{¬a�?}U{a7¿∧time<a.useBy}true]]

Proof

(a) Let σ be a path from s0 that contains a transition r = s
α−→ s′

such that aB! ∈ α and a.ReplyΘr = true. In this case, σ =

σ′(s, α, s′)σ′′ and there is a j > 0, where σ(j − 1) = s, aB! ∈
α(j) and σ(j) = s′. Because aB! ∈ αj and a.ReplyΘr = true,

σ(j − 1, j) |= aB! ∧ a.Reply.

According to the definition of provider there is no r′ = n1 −→ n2

with r < r′ such that:

• a7 ∈ DSCr′

• TIMEn1 < a.useByΘr

• there is no transition r′′ < r′ such that a� ∈ EXCr′′

That is, there is no j ≤ i such that σ′′ = σ1(σ(i − 1, i))σ′1, σ(i −
1, i) |= a7¿∧(time < a.useBy) and for all j ≤ i′ < i, σ(i′−1, i′) |=
¬a�?. From Def. 4.1.6, we conclude that

σ′′ 6|= true{¬a�?}U{a7¿∧time<a.useBy}true
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Therefore, according to Def. 4.1.6,

s′ |= ¬E[true{¬a�?}U{a7¿∧time<a.useBy}true]

Since aB ∈ PUBr and m is a session (see Def. 3.4.4), there is

no transition r′′′ < r such that aB ∈ PUBr′′′ . That is, for all

0 < i′′ < j, σ(i′′ − 1, i′′) |= ¬(aB! ∧ a.Reply). Hence,

σ |= true{¬(aB!∧a.Reply)}U{aB!∧a.Reply}¬E[true{¬a�?}U{a7¿∧time<a.useBy}true]

(b) Let σ be a path from s0 that does NOT contain a transition r =

s
α−→ s′ with aB! ∈ α and a.ReplyΘr = true. In this case, for all

i ≥ 0, σ(i− 1, i) |= ¬(aB! ∧ a.Reply).

(c) The result follows from (a), (b) and Def. 4.1.6.

2

9. We wish to prove that

s0 |= AG[aB! ∧ a.Reply](A[a.pledge{true}W{a�?∨a7?∨a.useBy≤time}true])

Proof Let σ be a path from s0, 0 ≤ i and σ(i, i + 1) be such that

aB? ∈ αi+1 and a.ReplyΘσ(i)→σ(i+1)
= true. In this case σ(i, i + 1) |=

aB? ∧ a.Reply.

(a) Let sigma′′ be a path from σ(i + 1) that contains a transition

r′ = s1 → s′1 such that a� ∈ EXCr′ or a7 ∈ EXCr′ or a.useBy ≤
TIMEs′1 and there is no s2 < s′1 where a.useBy ≤ TIMEs2 (i.e.

s′1 is the first state in which the deadline has elapsed). In this case

there is 0 < j such that σ(j−1, j) |= a�?∨a7?∨a.useBy ≤ time.

Let i′ < j. Since according to lemma A.1.1 there is no other

transition r′′ < r such that a� ∈ EXCr′′ or a7 ∈ EXCr′′ , we
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conclude from Def. 3.5.2 that a.pledge ∈ PLGσ′′(i′). That is, for

every 0 < i′ < j, σ′′ |= a.pledge. We conclude from 4.1.6 that

σ′′ |= a.pledge{true}U{a�?∨a7?∨a.useBy≤time}true]

(b) Let σ′ = (σ(i, i + 1))σ′′ be such that there is NO transition r′ =

s1 → s′1 ∈ σ′′ where a� ∈ EXCr′ or a7 ∈ EXCr′ or a.useBy ≤
TIMEs′1 . From Def. 3.5.2 and Def. 3.4.4 (time moves forward)

we conclude that for every state σ′′(i′′) where i ≤ i′′, a.pledge ∈
PLGσ′′(i′′), i.e. for every i ≤ i′′, σ′′ |= a.pledge.

(c) We conclude from (a) and (b) that

σ′′ |= a.pledge{true}W{a�?∨a7?∨a.useBy≤time}true

From Def. 4.1.6 we conclude that

σ(i+ 1) |= A[a.pledge{true}W{a�?∨a7?∨a.useBy≤time}true]

and from Def. 4.1.7 we conclude that

σ(i) |= [aB! ∧ a.Reply]A[a.pledge{true}W{a�?∨a7?∨a.useBy≤time}true]

The result follows immediately. 2

10. We wish to prove that

s0 |= A[true{¬a>?∧¬a>¿}W{a�?∨a�¿}true]

Proof

(a) Let σ be a path from s0 that contains a transition s
α−→ s′ where

a�? ∈ α or a�¿ ∈ α. In this case, there is j > 0, where

σ(j − 1) = s, a�? ∈ α or a�¿ ∈ α and σ(j − 1) = s′. This

means that σ(j − 1, j) |= a�? ∨ a�¿.
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Let 0 < i < j. If σ(i − 1, i) |= a>? or σ(i − 1, i) |= a>¿ then

by clause 10. in Def. 3.5.2 there should be a i′ < i such that

σ(i′ − 1, i′) |= a�? or σ(i′ − 1, i′) |= a�¿. But this contra-

dicts lemma A.1.1 (according to which events can only be pro-

cessed once). Hence, σ(i − 1, i) 6|= a>? and σ(i − 1, i) 6|= a>¿, i.e.

σ(i− 1, i) |= ¬a>? ∧ ¬a>¿.

Therefore, according to Def. 4.1.6, σ |= true{¬a>?∧¬a>¿}U{a�?∨a�¿}true.

(b) Let σ be a path from s0 that does NOT contain a transition s
α−→

s′ where a�? ∈ α or a�¿ ∈ α. Then, according to Def. 3.5.2 σ

cannot contain a transition s1
α1−→ s′1 with a>? ∈ α or a>¿ ∈ α.

That is, for all i ≥ 0, σ(i− 1, i) |= ¬a>? ∧ ¬a>¿.

(c) The result follows from (a), (b) and Def. 4.1.6.

2

A.6.2 ⇐

Let us assume that s0 satisfies every formula in 4.3.5 and r = s −→ s′ is a

transition of m.

1. We wish to prove that if aB ∈ PUBr then there is r′ < r such that

a
 ∈ EXCr′ .

Proof Let us assume that aB ∈ PUBr and σ is a path from s0 that

contains r. In this case, there is i > 0 such that σ(i−1, i) |= aB!. Since

according to 4.3.5, s0 |= A[true{¬aB!}W{a
?}true] then we conclude that

σ |= true{¬aB!}W{a
?}true

Because there is i > 0 such that αi |= aB!, then we also conclude from
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4.1.6 that

σ |= true{¬aB!}U{a
?}true

i.e. there exists j ≥ 1 such that σ(j−1, j) |= a
? and for all i such that

0 < i′ < j, σ(i′ − 1, i′) |= ¬aB!. Since σ(i − 1, i) |= aB!, we conclude

that j < i. That is, there is a transition r′ < r such that a
 ∈ EXCr′

(as we wanted to prove). 2

2. We wish to prove that if a
 ∈ EXCr, then there is r < r′ such that

aB ∈ PUBr′ .

Proof Let us assume that a
 ∈ EXCr and σ = σ′(σ(i−1)
αi−→ σ(i))σ′′,

where σi−1 = s and σi = s′, is a path from s0. In this case, there is

i > 0 such that σ(si−1, si) |= a
?. According to 4.3.5

s0 |= AG[a
?](A[true{true}U{aB!}true])

We conclude from Def. 4.1.6 that

s |= [a
?](A[true{true}U{aB!}true])

Since s
α−→ s′ |= a
?, we can conclude that

s′ |= A[true{true}U{aB!}true])

and that

σ′′ |= true{true}U{aB!}true]

which means that there is i < j such that σ(j − 1)
αj−→ σ(j) |= aB!.

Hence, there is r′ = σ(j − 1) −→ σ(j) such that r < r′ and aB ∈
PUBr′ . 2

3. We wish to prove that if a� ∈ EXCr then there is r′ < r such that

aB ∈ PUBr′ , a.replyΘr
′

= true and TIMEs′ < a.useByΘr
′
.
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Proof Let us assume that a� ∈ EXCr and σ is a path from s0 that

contains r. In this case, there is i > 0 such that σ = σ′(σ(i − 1, i))σ′′

and σ(i− 1, i) |= a�?. Since according to 4.3.5,

s0 |= A[true{¬a�?}W{aB!∧a.Reply}A[true{¬a�?}W{a�?∧time<a.useBy}true]]

then

σ |= true{¬a�?}W{aB!∧a.Reply}A[true{¬a�?}W{a�?∧time<a.useBy}true]

Because there is i > 0 such that σ(i−1, i) |= a�, it is not the case that

for every 0 < j, σ(j − 1, j) |= ¬a�?. Therefore we conclude from 4.1.6

that

true{¬a�?}U{aB!∧a.Reply}A[true{¬a�?}W{a�?∧time<a.useBy}true]

That is, there is 0 < i′′ such that σ(i′) |= aB!∧a.Reply. Since for every

j′ < i′, σ(j′ − 1, j′) |= ¬a�? and since σ(i − 1, i) |= a�?, we conclude

that i′ < i. That is, there is a transition r′ < r such that aB ∈ PUBr′

and a.replyΘr
′

= true.

We also conclude from 4.1.6 that

σ(i) |= A[true{¬a�?}W{a�?∧time<a.useBy}true]

and that

σ′′ |= true{¬a�?}W{a�?∧time<a.useBy}true

Since i′ < i, it is the case that there is 0 < i′′ such that σ′′(i′′ −
1, i′′) |= a�? ∧ time < a.useBy. From lemma A.1.1 we conclude that

σ(i−1, i) = σ′′(i′′−1, i′′), Therefore, σ(i−1, i) |= a�?∧time < a.useBy,

which according to Def. 4.1.6 means that TIMEs′ < a.useByΘr
′
.

2
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4. We wish to prove that if a� ∈ EXCr then there is no r′ < r such that

a7 ∈ EXCr′ .

Proof Let us assume that a� ∈ EXCr and σ is a path from s0 that

contains r. In this case, there is i > 0 such that σ(i− 1, i) |= a�?. Let

σ = σ′(s1
α′−→ s′1)σ′′ where r′ = s1 → s′1 < r

Let us suppose that a7 ∈ EXCr′ . In this case s1
α′−→ s′1 |= a7?. Since

according to 4.3.5

s0 |= AG[a7?](A[true{¬a�}Wfalse])

we conclude from Def. 4.1.7 that

s1 |= [a7?](A[true{¬a�?}Wfalse])

Since s1
α′−→ s′1 |= a7?, we can conclude that

s′1 |= A[true{¬a�?}Wfalse]

and that

σ′′ |= true{¬a�?}Wfalse

which means that for every i < j, σ(j − 1, j) |= ¬a�?, i.e. a�? 6∈
αj. But this contradicts the fact that r′ < r and r |= a�?. Hence,

a7 6∈ EXCr′ . That is, there is no transition r′ < r in σ such that

a7 ∈ EXCr′ .

2

5. We wish to prove that if a7 ∈ EXCr then there is r′ < r such that

aB ∈ PUBr′ , a.replyΘr
′

= true and TIMEs′ < a.useByΘr
′

Proof Let us assume that a7 ∈ EXCr and σ is a path from s0 that

contains r. In this case, there is i > 0 such that σ = σ′(σ(i − 1, i))σ′′
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and σ(i− 1, i) |= a7?. Since according to 4.3.5,

s0 |= A[true{¬a7?}W{aB!∧a.Reply}A[true{¬a7?}W{a7?∧time<a.useBy}true]]

then

σ |= true{¬a7?}W{aB!∧a.Reply}A[true{¬a7?}W{a7?∧time<a.useBy}true]

Because there is i > 0 such that σ(i− 1, i) |= a7, it is not the case that

for every 0 < j, σ(j − 1, j) |= ¬a7?. Therefore we conclude from 4.1.6

that

true{¬a7?}U{aB!∧a.Reply}A[true{¬a7?}W{a7?∧time<a.useBy}true]

That is, there is 0 < i′′ such that σ(i′′ − 1, i′′) |= aB! ∧ a.Reply. Since

for every j′ < i′, σ(j′ − 1, j′) |= ¬a7? and since σ(i − 1, i) |= a7?, we

conclude that i′ < i. That is, there is a transition r′ < r such that

aB ∈ PUBr′ and a.replyΘr
′

= true.

We also conclude from 4.1.6 that

σ(i) |= A[true{¬a7?}W{a7?∧time<a.useBy}true]

and that

σ′′ |= true{¬a7?}W{a7?∧time<a.useBy}true

Since i′ < i, it is the case that there is 0 < i′′ such that σ′′(i′′ −
1, i′′) |= a7? ∧ time < a.useBy. From lemma A.1.1 we conclude that

σ(i−1, i) = σ′′(i′′−1, i′′), Therefore, σ(i−1, i) |= a7?∧time < a.useBy,

which according to Def. 4.1.6 means that TIMEs′ < a.useByΘr
′
.

2

6. We wish to prove that if a7 ∈ EXCr then there is no r′ < r such that

a� ∈ EXCr′
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Proof Let us assume that a7 ∈ EXCr and σ is a path from s0 that

contains r. In this case, there is i > 0 such that σ(i− 1, i) |= a7?. Let

σ = σ′(s1
α′−→ s′1)σ′′ where r′ = s1 → s′1 < r.

Let us suppose that a� ∈ EXCr′ . In this case s1
α′−→ s′1 |= a�?. Since

according to 4.3.5

s0 |= AG[a�?](A[true{¬a7}Wfalse])

we conclude from Def. 4.1.7 that

s1 |= [a�?](A[true{¬a7?}Wfalse])

Since s1
α′−→ s′1 |= a�?, we can conclude that

s′1 |= A[true{¬a7?}Wfalse]

and that

σ′′ |= true{¬a7?}Wfalse

which means that for every i < j, σ(j) |= ¬a7?, i.e. a7? 6∈ αj. But this

contradicts the fact that r′ < r and r |= a7?. Hence, a� 6∈ EXCr′ .

That is, there is no transition r′ < r in σ such that a� ∈ EXCr′ .

2

7. We wish to prove that if aB ∈ PUBr and a.Replyθ
r
, then there is no

transition r′ = s1
α−→ s′1 with r < r′ such that:

• a�∈ DSCr′

• TIMEn1 < a.useByΘr

• there is no transition r < r′′ < r′ such that a7 ∈ EXCr′′

Proof Let us assume that aB ∈ PUBr, a.Replyθ
r

and σ is a path

from s0 that contains r. In this case, there is i > 0 such that σ =
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σ′(σ(i − 1, i))σ′′ and σ(i − 1, i) |= aB! ∧ a.Reply. Since according to

4.3.5,

s0 |= A[true{¬(aB!∧a.Reply)}W{aB!∧a.Reply}¬E[true{¬a7?}U{a�¿∧time<a.useBy}true]]

then

σ |= true{¬(aB!∧a.Reply)}W{aB!∧a.Reply}¬E[true{¬a7?}U{a�¿∧time<a.useBy}true

Because there is i > 0 such that σ(i− 1, i) |= aB!∧a.Reply = true, we

also conclude from 4.1.6 that

σ |= true{¬(aB!∧a.Reply)}U{aB!∧a.Reply}¬E[true{¬a7?}U{a�¿∧time<a.useBy}true]

i.e.

σ(i) = s′ |= ¬E[true{¬a7?}U{a�¿∧time<a.useBy}true]

We conclude from 4.1.6 that

σ′′ 6|= true{¬a7?}U{a�¿∧time<a.useBy}true

which means that there is no i < j such that σ(j−1, j) |= a�¿∧time <
a.useBy and such that for all i < j′ < j, σ(j′ − 1, j′) |= ¬a7?. That is,

there is no transition r′ = s1
α−→ s′1 in σ with r < r′ such that:

• a� ∈ DSCr′

• TIMEn1 < a.useByΘr

• there is no transition r < r′′ < r′ in σ such that a7 ∈ EXCr′′

2

8. We wish to prove that if aB ∈ PUBr and a.replyΘr = true, then there

is no r′ = n1 −→ n2 with r < r′ such that:

• a7 ∈ DSCr′



A.6. Provider (Theorem 4.3.5) 175

• TIMEn1 < a.useByΘr

• there is no transition r < r′′ < r′ such that a� ∈ EXCr′′

Proof Let us assume that aB ∈ PUBr, a.Replyθ
r

and σ is a path

from s0 that contains r. In this case, there is i > 0 such that σ =

σ′(σ(i − 1, i))σ′′ and σ(i − 1, i) |= aB! ∧ a.Reply. Since according to

4.3.5,

s0 |= A[true{¬(aB!∧a.Reply)}W{aB!∧a.Reply}¬E[true{¬a�?}U{a7¿∧time<a.useBy}true]]

then

σ |= true{¬(aB!∧a.Reply)}W{aB!∧a.Reply}¬E[true{¬a�?}U{a7¿∧time<a.useBy}true

Because there is i > 0 such that σ(i− 1, i) |= aB!∧a.Reply = true, we

also conclude from 4.1.6 that

σ |= true{¬(aB!∧a.Reply)}U{aB!∧a.Reply}¬E[true{¬a�?}U{a7¿∧time<a.useBy}true]

i.e.

σ(i) = s′ |= ¬E[true{¬a�?}U{a7¿∧time<a.useBy}true]

We conclude from 4.1.6 that

σ′′ 6|= true{¬a�?}U{a7¿∧time<a.useBy}true

which means that there is no i < j such that σ(j−1, j) |= a7¿∧ time <
a.useBy and such that for all i < j′ < j, σ(j′ − 1, j′) |= ¬a�?. That

is, there is no transition r′ = s1
α−→ s′1 in σ with r < r′ such that:

• a7 ∈ DSCr′

• TIMEn1 < a.useByΘr

• there is no transition r < r′′ < r′ in σ such that a� ∈ EXCr′′

2
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9. We wish to prove that if a.pledge ∈ PLGs′ if the following conditions

hold:

• there is a transition r′ ∈ R such that r′ ≤ s′ and aB ∈ PUBr′

and a.replyΘr
′

= true

• there is no r′′ < n′ with a� ∈ EXCr′′ or a7 ∈ EXCr′′

• TIMEn′ < a.useByΘr
′

Proof

Let us assume that:

• there is a transition r′ = s1 → s′1 ∈ R such that r′ ≤ s′ and

aB ∈ PUBr′ and a.replyΘr
′

= true

• there is no r′′ < n′ with a� ∈ EXCr′′ or a7 ∈ EXCr′′

• TIMEn′ < a.useByΘr
′

Let σ = σ′(σ(i− 1, i))σ′′ be such that σ(i− 1) = s1 and σ(i) = s′1. In

this case σ(i− 1, i) |= aB! ∧ a.Reply. According to 4.3.5

s0 |= AG[aB! ∧ a.Reply](A[a.pledge{true}W{a�?∨a7?∨a.useBy≤time}true])

We conclude from Def. 4.1.7 that

s′1 |= A[a.pledge{true}W{a�?∨a7?∨a.useBy≤time}true]

and that

σ′′ |= a.pledge{true}W{a�?∨a7?∨a.useBy≤time}true

We conclude that either:

(a) σ′′ |= a.pledge{true}U{a�?∨a7?∨a.useBy≤time}true;

In this case there is 0 < j such that σ′′ |= a�? ∨ a7? ∨ a.useBy ≤
time and for every 0 < i′ < j, σ′′(j) |= a.pledge. Since r′ < r,
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we conclude that s′ = σ′′(i′) for some 0 < i′′. And since there is

no r′′ < n′ with a� ∈ EXCr′′ or a7 ∈ EXCr′′ , we conclude that

i′′ < j. Therefore, σ′′(i′′) = s′ |= a.pledge, i.e. a.pledge ∈ PLGs′ .

(b) or, for every 0 < j, σ′′(j) |= a.pledge. In this case, since r′ < r, we

conclude that r is in σ′′. Therefore, s′ |= a.pledge, i.e. a.pledge ∈
PLGs′ .

The result follows immediately from (a) and (b).

2

10. We wish to prove that if a> ∈ PRCr, then there is r′ ∈ R such that

r′ < r and a� ∈ PRCr′ .

Proof Let us assume that a> ∈ PRCr and σ is a path from s0 that

contains r. Since PRC = EXC ] DSC, in this case, there is i > 0

such that a>? ∈ αi or a>¿ ∈ αi, i.e. αi |= a>? ∨ a>¿. Since according to

4.3.5,

s0 |= A[true{¬a>?∧¬a>¿}W{a�?∨a�¿}true]

we conclude that

σ |= true{¬a>?∧¬a>¿}W{a�?∨a�¿}true

Because there is i > 0 such that αi |= a>?∨ a>¿, then we also conclude

from 4.1.6 that

σ |= true{¬a>?∧¬a>¿}U{a�?∨a�¿}true

i.e. there exists j ≥ 1 such that αj |= a>? ∨ a>¿ and for all i such that

0 < i′ < j, αi |= ¬a>? ∧ ¬a>¿. Since αi |= a>? ∨ a>¿, we conclude that

j < i. That is, there is a transition r′ < r such that a> ∈ EXCr′ or

a> ∈ DSCr′ , which means that a> ∈ PRCr′ (as we wanted to prove).

2
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– 1 – 
 

In this appendix, we define the TravelBooking service module. We give a graphical 
overview of the structure of this service module for convenience before specifying it 
using the SENSORIA Reference Modelling Language – SRML. 
 
The persistent component DB provides three synchronous interactions log, getData 
and getCard with type rpl. These interactions are modelled as functions that can be 
used in the orchestration of the co-party of DB (i.e. BA). 
 
The interaction protocols involved in this example are “standard”. All connectors 
(except for BD) implement a straight (asynchronous) protocol in the sense that events 
issued by one party are forwarded directly to the co-party without any changes on the 
parameters.   This is denoted by ≡, which actually stands for a family of interaction 
protocols.  For convenience, we only define the interaction protocol that is used by 
wire BH.  In the case of BD, we specify a straight (synchronous) input/output proto-
col, denoted by i/o, again in the sense that no operations on data are require. 
 
 

TRAVELBOOKING

     TA:
    TravelAgent

FA:
FlightAgent

HA:
HotelAgentBA:

BookingAgent

PA:
PayAgent

BH:
c3,!,d3

BP:
c2,!,d2

BF:
c4,!,d4

CB:
c1,!,d1

DB:
UsrDB

BD:
c6,i/o,d6

CP:c5,!,d5

 
 
TRAVELBOOKING  consists of:  
• TR – the provides-interface of the module, of type TravelAgent; 
• FA – a requires-interface (for a flight-booking service), of type FlightAgent; 
• PA – a requires-interface (for a payment service), of type PayAgent; 
• HA – a requires-interface (for a hotel-booking service), of type HotelAgent; 
• BA – an interface for component that coordinates the business process, of type 

BookingAgent; 
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– 2 – 
 

• DB – a uses-interface for the persistent component (of the bottom layer) that 
stores user data, of type UsrDB; 

• CB, CP, BF, BH, BP, BD – wire-interfaces typed by connectors that establish 
the required interconnections.  
 

MODULE TravelBooking is  

DATATYPE 

sorts: usrname, password, usrdata, boolean, 
fcode, hcode, pCode, airport, date, pay-
Data, accountn, moneyvalue, serviceId, 
nat 

COMPONENTS 

 BA: BookingAgent 
 

PROVIDES 

 CR: Customer 

REQUIRES 

 FA: FlightAgent 
 PA: PayAgent 
 HA: HotelAgent 
 

USES 

 DB:  UserDB 

 

WIRES 

 

BA 
BookingAgent 

c4 

 
BF d4 

FA 
FlightAgent 

s&r bookFlight 
    from 
  to 
  out 
  in 
  traveller 
  fconf 
      amount  
     beneficiary  
      payService 

S 

i1 
i2 
i3 

i4 
i5 
o1 

o2 

o3 

o4 

≡  

R 

i1 
i2 
i3 

i4 

i5 
o1 

o2 

o3 

o4 

r&s lockFlight 
  from 
  to 
  out 
  in 
  traveller 
  fconf 
  amount  
  beneficiary  
  payService 

snd payAck 
  proof 
  status 

S 

i1 

i2 
≡  

R 

i1 

i2 

rcv payAck 
  proof 
  status 
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– 3 – 
 

rcv ackRefundRcv 
  amount 

R 

i1 
≡  

S 

i1 
snd payRefund 
  amount 

 

BA 
BookingAgent 

c3 BH d3 
HA 
HotelAgent 

s&r bookHotel 
  checkin 
  checkout 
      traveller 
  hconf 

S 

i1 
i2 
i3 
o1 

Straight 
(date,date, 

usrdata,hcode) 

R 

i1 
i2 

i3 
o1 

r&s lockHotel 
  checkin 
  checkout 
      name 
  hconf 

 
BA 

     BookingAgent 
c6 BD d6 

DB 
UserDB 

ask log A i/o R rpl log 

ask getData A i/o R rpl getData 

ask getCard A i/o R rpl getCard 

 
BA 

BookingAgent 
c2 BP d2 

PA 
PayAgent 

s&r payment 
  amount 
      beneficiary 
      originator 
  cardNo 
  proof 

S 

i1 

i2  
i3  
i4 

o1 

≡  

R 

i1 

i2  
i3  
i4  

o1 

r&s payment 
  amount 
      beneficiary 
      originator 
  cardNo 
  proof 

 
 

END MODULE 

 

 

SPECIFICATIONS 

LAYER PROTOCOL UsrDB is  

 INTERACTIONS 
  rpl log(usrname,password):bool 

   rpl getData(usrname):usrdata 
   rpl getCard(usrname):paydata 
  BEHAVIOUR 

END LAYER PROTOCOL 
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BUSINESS ROLE BookingAgent is 

 INTERACTIONS 
   r&s login 
     usr:usrname, 
     pwd:password 
     fconf:fcode, 
     hconf:hcode, 
     amount:moneyvalue 
   r&s bookTrip 
     from,to:airport, 
     out,in:date 
     fconf:fcode, 
     hconf:hcode, 
     amount:moneyvalue 
   ask log(username,password):bool 
   ask getData(username):usrdata 
   ask getCard(username):paydata 
   s&r bookFlight 
     from,to:airport, 
     out,in:date, 
     traveller:usrdata 

     fconf:fcode 
     amount:moneyvalue 

    beneficiary:accountn 
    payService:serviceId   

   s&r payment 
      amount:moneyvalue 
     beneficiary:accountn 
     originator:usrdata 
     cardNo:paydata 

     proof:pcode 
   s&r bookHotel 

    checkin:date, checkout:date, 
    traveller:usrdata 
    hconf:hcode 
  snd payAck 
    proof:pCode, 
    status:bool 
  rcv ackRefundRcv 
    amount:moneyvalue 
  snd ackRefundSnd 
    amount:moneyvalue 

 ORCHESTRATION 
local  
 s:[START, LOGGED, QUERIED, FLIGHT_OK, HOTEL_OK, 
   CONFIRMED, END_PAYED, END_UNBOOKED,  
   COMPENSATING, END_COMPENSATED],  
 login:boolean,  
 traveller:usrdata,  
 travcard:paydata 

  transition Login  
triggeredBy login 
guardedBy s=START 
effects login’=log(login.usrname,login.pwd)  
  ∧ login’ ⇒ (s’=LOGGED  
   ∧ traveller’=getData(login.usrname) 
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    ∧ travcard’=getCard(login.usrname)) 
  ∧ ¬login’ ⇒ s’=END_UNBOOKED 
  ∧ login ∧ login.Reply=login’   

  transition Request 
triggeredBy bookTrip 
guardedBy s=LOGGED  
effects s’=QUERIED  
  ∧ bookTrip.out>today ⇒ bookFlight 
  ∧ bookFlight.from=bookTrip.from 
  ∧ bookFlight.to=bookTrip.to 
  ∧ bookFlight.out=bookTrip.out 
  ∧ bookFlight.in=bookTrip.in 
  ∧ bookFlight.traveller=traveller 
  ∧ bookTrip.out≤today ⇒ bookTrip 
  ∧ bookTrip.Reply=False 

  transition FlightAnswer  
triggeredBy bookFlight 
guardedBy s=QUERIED 
effects bookFlight.Reply ⇒ s’=FLIGHT_OK 
  ∧ ¬bookFlight.Reply ⇒ s’=END_UNBOOKED 
  ∧ bookFlight.Reply ⇒ bookHotel 
  ∧ bookHotel.checkin=bookTrip.in 
  ∧ bookHotel.checkout=bookTrip.out 
  ∧ bookHotel.traveller=traveller 
  ∧ ¬bookFlight.Reply ⇒ bookTrip 
  ∧ bookTrip.Reply=False 

  transition HotelAnswer  
triggeredBy bookHotel 
guardedBy s=FLIGHT_OK 
effects bookHotel.Reply ⇒ s’=HOTEL_OK  
  ∧ ¬bookHotel.Reply ⇒ s’=END_UNBOOKED 
   ∧ bookHotel.Reply ⇒ bookTrip 
  ∧ bookTrip.fconf=bookFlight.fconf 
  ∧ bookTrip.amount=bookFlight.amount 
  ∧ bookTrip.hconf=bookHotel.hconf  
  ∧ ¬bookHotel.Reply ⇒ bookFlight  
  ∧ bookTrip ∧ bookTrip.Reply=False  

   transition TripCommit 
triggeredBy bookTrip 
guardedBy s=HOTEL_OK 
effects s’=CONFIRMED 
  ∧ bookFlight ∧ bookHotel ∧ payment 
  ∧ payment.amount=bookFlight.amount 
  ∧ payment.beneficiary= 
   bookFlight.beneficiary 
  ∧ payment.originator=traveller 
  ∧ payment.cardNo=travcard 

  transition PaymentAnswer 
triggeredBy payment 
guardedBy s=CONFIRMED 
effects payment.Reply ⇒ s’=END_PAYED 
  ∧ ¬payment.Reply ⇒ s’=END_UNBOOKED 
  ∧ payAck ∧ payAck.proof=payment.proof  
  ∧ payAck.status=payment.Reply  

   transition TripCancel 
triggeredBy bookTrip 
guardedBy s=HOTEL_OK 
effects s’=END_UNBOOKED 
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  ∧ bookFlight ∧ bookHotel 

   transition TripCompensate 
triggeredBy bookTrip 
guardedBy s=END_PAYED ∧ today<out 
effects s’=COMPENSATING 
  ∧ bookFlight ∧ bookHotel 

   transition TripRefund 
triggeredBy ackRefundRcv? 
guardedBy s=COMPENSATING 
effects s’=END_COMPENSATED 
  ackRefundSnd  
  ∧ ackRefundSnd.amount=ackRefundRcv.amount 

END BUSINESS ROLE 

 

BUSINESS PROTOCOL FlightAgent is  

 INTERACTIONS 
   r&s lockFlight 

    from,to:airport,  
    out,in:date, 

     traveller:usrdata 
     fconf:fcode 

      amount:moneyvalue, 
     beneficiary:accountn, 
         payService:serviceId 
   rcv payAck  
     proof:pcode 
     status:bool 
   snd payRefund 
     amount:moneyvalue 

 BEHAVIOUR  
  initiallyEnabled lockFlight?  
  lockFlight! ∧ lockFlight.Reply enables payAck? 
  payAck? ∧ payAck.status enables lockFlight? 
  lockFlight? ensures payRefund!  
 

END BUSINESS PROTOCOL 

BUSINESS PROTOCOL HotelAgent is  

 INTERACTIONS 
   r&s lockHotel 

    checkin,checkout:date 
      name:usrdata 
    hconf:hcode 
 BEHAVIOUR  
  initiallyEnabled lockHotel?  
  lockHotel? enables lockHotel? 
 

END BUSINESS PROTOCOL 
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BUSINESS PROTOCOL PayAgent is  

 INTERACTIONS 
   r&s payment 
      amount:moneyvalue 
         beneficiary:accountn 
         originator:usrdata 
     cardNo:paydata 

    proof:pcode 
  snd payNotify 

     status:bool 
  BEHAVIOUR  

  initiallyEnabled payment?  
  payment! ensures payNotify!  
 

END BUSINESS PROTOCOL 

 

BUSINESS PROTOCOL TravelAgent is  

 INTERACTIONS 
   r&s login  

    usr:username, pwd:password 
  r&s bookTrip 

     from,to:airport, 
     out,in:date 
     fconf:fcode, 
     hconf:hcode, 
     amount:moneyvalue  
   snd payNotify 
     status:boolean  
   snd refund 
     amount:moneyvalue  
  BEHAVIOUR  

  initiallyEnabled login?  
   login! ∧ login.Reply enables bookTrip? 
   bookTrip? ensures payNotify!  

  payNotify! ∧ payNotify.status enables bookTrip? 
  bookTrip? ensures refund! 
 

END BUSINESS PROTOCOL 
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INTERACTION PROTOCOL Straight(d1,d2,d3,d4) is  

 ROLE A 
   s&r S1 

    i1:d1 

    i2:d2 

    i3:d3 
     o1:d4 

 ROLE B 
   r&s R1 

    i1:d1 

    i2:d2 

    i3:d3 
     o1:d4 

 COORDINATION 
 S1 ≡ R1 
 S1.i1=R1.i1 

 S1.i2=R1.i2 

 S1.i3=R1.i3 
 S1.o1=R1.o1 
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−WIRES −−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Class payAck Wire i s
S i g n a l s :

payAck bel l ( proo f : Token , s t a t u s : bool ) ;
State Top =s1
Trans i t i on s :

s1 −> s1 { payAck bel l ( proof , s t a t u s ) /
FAobj . payAck bel l ( proof , s t a t u s ) }

end payAck Wire ;

−−−

Class refund Wire i s
S i g n a l s :

payRefund be l l ( amount ) ;
State Top =s1
Trans i t i on s :

s1 −> s1 { payRefund bel l ( amount ) /
BAobj . ackRefundRcv bel l ( amount ) }

end refund Wire ;

−−−

Class payNoti fy Wire i s
S i g n a l s :

p a y N o t i f y b e l l ( s t a t u s : bool ) ;
State Top =s1
Trans i t i on s :

s1 −> s1 { p a y N o t i f y b e l l ( s t a t u s ) /
CRobj . p a y N o t i f y b e l l ( s t a t u s ) }

end payNoti fy Wire ;

−−−

Class ackRefundSnd Wire i s
S i g n a l s :

r e f u n d b e l l ( amount ) ;
ackRefundSnd bel l ( amount )
State Top =s1
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Trans i t i on s :
s1 −> s1 { ackRefundSnd bel l ( amount ) /

CRobj . r e f u n d b e l l ( amount )}
end ackRefundSnd Wire ;

−−−

Class Hotel Wire i s
S i g n a l s :

bookHote l be l l ( check in : date , checkout : date ,
t r a v e l l e r : Token ) ;

l o c k H o t e l r e p l y ( Reply : bool , hconf : Token ) ;
bookHotel commit ;
bookHote l cance l ;
bookHote l revoke ;

State Top =s1
Trans i t i on s :

s1 −> s1 { bookHote l be l l ( checkin , checkout , t r a v e l l e r ) /
HAobj . l o c k H o t e l b e l l ( checkin , checkout ,
t r a v e l l e r )}

s1 −> s1 { l o c k H o t e l r e p l y ( Reply , hconf ) /
BAobj . bookHote l r ep ly ( Reply , hconf ) }

s1 −> s1 { bookHote l cance l /
HAobj . l o c k H o t e l c a n c e l }

s1 −> s1 { bookHotel commit /
HAobj . lockHotel commit }

s1 −> s1 { bookHote l revoke /
HAobj . l o ckHote l r evoke }

end Hotel Wire ;

−−−

Class Fl ight Wire i s
S i g n a l s :

b o o k F l i g h t b e l l ( from : Token , to : Token , out : date , in : date ,
t r a v e l l e r : Token ) ;

l o c k F l i g h t r e p l y ( Reply : bool , f c o n f : Token , amount ,
b e n e f i c i a r y : Token , payServ ice : Token ) ;

bookF l i gh t cance l ;
bookFlight commit ;
bookFl ight revoke ;

State Top =s1
Trans i t i on s :
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s1 −> s1 { b o o k F l i g h t b e l l ( from , to , out , in , t r a v e l l e r )/
FAobj . l o c k F l i g h t b e l l ( from , to , out , in ,
t r a v e l l e r )}

s1 −> s1 { l o c k F l i g h t r e p l y ( Reply , f con f , amount ,
b e n e f i c i a r y , payServ ice ) /
BAobj . bookF l i gh t r ep ly ( Reply , f con f , amount ,
b e n e f i c i a r y , payServ ice ) }

s1 −> s1 { bookF l i gh t cance l /
FAobj . l o c k F l i g h t c a n c e l }

s1 −> s1 { bookFlight commit /
FAobj . lockFl ight commit }

s1 −> s1 { bookFl ight revoke /
FAobj . l o c k F l i g h t r e v o k e }

end Fl ight Wire ;

−−−

Class payment Wire i s
S i g n a l s :

payment bel l ( amount , b e n e f i c i a r y : Token , o r i g i n a t o r : Token ,
cardNo : Token ) ;

payment reply ( Reply : bool , proo f : Token ) ;
payment cancel ;
payment commit ;
payment revoke ;

State Top =s1
Trans i t i on s :

s1 −> s1 { payment be l l ( amount , b e n e f i c i a r y , o r i g i n a t o r ,
cardNo )/
PAobj . payment be l l ( amount , b e n e f i c i a r y ,
o r i g i n a t o r , cardNo ) }

s1 −> s1 { payment reply ( Reply , proo f ) /
BAobj . payment reply ( Reply , proo f ) }

s1 −> s1 { payment cancel / PAobj . payment cancel }
s1 −> s1 { payment commit / PAobj . payment commit }
s1 −> s1 { payment revoke / PAobj . payment revoke }

end payment Wire ;

Class log in Wire i s
S i g n a l s :

l o g i n b e l l ( usr : Token , pwd : Token ) ;
l o g i n r e p l y ( Reply : bool ) ;
l o g i n c a n c e l ;
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log in commit ;
l o g i n r e v o k e ;

State Top =s1
Trans i t i on s :

s1 −> s1 { l o g i n b e l l ( usr , pwd) /
BAobj . l o g i n b e l l ( usr , pwd)}

s1 −> s1 { l o g i n r e p l y ( Reply ) /
CRobj . l o g i n r e p l y ( Reply ) }

s1 −> s1 { l o g i n c a n c e l / BAobj . l o g i n c a n c e l }
s1 −> s1 { log in commit / BAobj . log in commit }
s1 −> s1 { l o g i n r e v o k e / BAobj . l o g i n r e v o k e }

end log in Wire ;

−−−

Class DB Wire i s
Operat ions :

l og ( usrname : Token , password : Token ) : bool ;
getData ( usrname : Token ) : Token ;
getCard ( usrname : Token ) : Token ;

Vars :
P r i o r i t y :=2;

State Top =s1
Trans i t i on s :

s1 −> s1 { l og ( usrname , password ) /
r e s : bool ;
r e s := DBobj . l og ( usrname , password ) ;
r e turn r e s }

s1 −> s1 { getData ( usrname ) /
r e s : usrdata ;
r e s := DBobj . getData ( usrname ) ;
r e turn r e s }

s1 −> s1 { getCard ( usrname ) /
r e s : paydata ;
r e s := DBobj . getCard ( usrname ) ;
r e turn r e s }

end DB Wire ;

−−−

Class bookTrip Wire i s
S i g n a l s :

bookTr ip be l l ( from : Token , to : Token , out : date , in : date ) ;
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bookTr ip rep ly ( Reply : bool , f c o n f : Token , hconf : Token ,
amount ) ;

bookTr ip cance l ;
bookTrip commit ;
bookTrip revoke ;

State Top =s1
Trans i t i on s :

s1 −> s1 { bookTr ip be l l ( from , to , out , in ) /
BAobj . bookTr ip be l l ( from , to , out , in ) }

s1 −> s1 { bookTr ip rep ly ( Reply , f con f , hconf , amount ) /
CRobj . bookTr ip rep ly ( Reply , f con f ,
hconf , amount ) }

s1 −> s1 { bookTr ip cance l / BAobj . bookTr ip cance l }
s1 −> s1 { bookTrip commit / BAobj . bookTrip commit }
s1 −> s1 { bookTrip revoke / BAobj . bookTrip revoke }

end bookTrip Wire ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−− COMPONENTS −−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Class BookingAgent i s

S i g n a l s :
l o g i n b e l l ( usr : Token , pwd : Token ) ;
l o g i n c a n c e l ;
log in commit ;
l o g i n r e v o k e ;
bookTr ip be l l ( from : Token , to : Token , out , in ) ;
bookTr ip cance l ;
bookTrip commit ;
bookTrip revoke ;
bookF l i gh t r ep ly ( Reply : bool , f c o n f : Token , amount ,

b e n e f i c i a r y : Token , payServ ice : Token ) ;
bookHote l r ep ly ( Reply : bool , hconf : Token ) ;
payment reply ( Reply : bool , proo f : Token ) ;
ackRefundRcv bel l ( amount ) ;

Vars :
s : book ings tatus := START;
logged : bool := f a l s e ;
t r a v e l l e r ;
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t ravcard ;
bookf l ight amount ;
b o o k f l i g h t b e n e f i c i a r y : Token ;
b o o k f l i g h t f c o n f : Token ;
bookf l ight amount : Token ;
b o o k t r i p i n : date ;
bookt r ip out : date ;
KD :=0;

State Top =s1

Trans i t i on s :

Log inBe l l1 : s1 −> s1
{ l o g i n b e l l ( usr , pwd) [ s = START] /

logged := DBW. log ( usr , pwd ) ;
i f logged then {

s := LOGGED;
t r a v e l l e r := DBW. getData ( usr ) ;
t ravcard := DBW. getCard ( usr ) }

e l s e { s := END UNBOOKED } ;
loginW . l o g i n r e p l y ( logged ) ;
}

TripBe l l1 : s1 −> s1
{ bookTr ip be l l ( from , to , out , in )

[ ( s = LOGGED) ] /
b o o k t r i p i n := in ;
bookt r ip out := out ;
s := QUERIED;
FlightW . b o o k F l i g h t b e l l ( from , to , out , in , t r a v e l l e r ) ;

}

FlightAnswer1 : s1 −> s1
{ bookF l i gh t r ep ly ( Reply , f con f , amount ,

b e n e f i c i a r y , payServ ice )
[ s=QUERIED] /
bookf l ight amount := amount ;
b o o k f l i g h t b e n e f i c i a r y := b e n e f i c i a r y ;
b o o k f l i g h t f c o n f := f c o n f ;
bookf l ight amount := amount ;
i f Reply=True then { s := FLIGHT OK}
e l s e { s := END UNBOOKED} ;
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i f Reply=true {
HotelW . bookHote l be l l ( booktr ip out , bookt r ip in ,

t r a v e l l e r ) }
e l s e { bookTripW . bookTr ip rep ly ( False , nu l l ,

nu l l , n u l l ) } ;
}

HotelAnswer1 : s1 −> s1
{ bookHote l r ep ly ( Reply , hconf ) [ s=FLIGHT OK] /
i f Reply=True then { s := HOTEL OK}
e l s e { s := END UNBOOKED} ;
i f Reply=True then {
bookTripW . bookTr ip rep ly ( Reply , b o o k f l i g h t f c o n f ,

hconf , bookf l ight amount ) }
e l s e {bookTripW . bookTr ip rep ly ( False , nu l l ,

nu l l , n u l l ) } ;
}

TripCommit : s1 −>s1
{ bookTrip commit [ s=HOTEL OK] /
s := CONFIRMED;
FlightW . bookFlight commit ;
HotelW . bookHotel commit ;
paymentW . payment be l l ( bookf l ight amount ,

b o o k f l i g h t b e n e f i c i a r y ,
t r a v e l l e r , t ravcard ) ;

}

TripCancel1 : s1 −>s1
{ bookTr ip cance l [ s= HOTEL OK] /

s := END UNBOOKED;
FlightW . bookF l i gh t cance l ;
HotelW . bookHote l cance l ;

}

PaymentAnswer1 : s1 −>s1
{ payment reply ( Reply , proo f ) [ s= CONFIRMED] /

i f Reply=True then { s := END PAYED}
e l s e { s := END UNBOOKED} ;
payAckW . payAck bel l ( proof , Reply ) ;

}

TripCompensate1 : s1 −>s1
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{ bookTrip revoke [ ( s= END PAYED) ] /
s := COMPENSATING;
FlightW . bookFl ight revoke ;
HotelW . bookHote l revoke ;
}

TripRefund : s1 −>s1
{ ackRefundRcv bel l ( amount ) [ s = COMPENSATING] /

s = END COMPENSATED;
ackRefundSndW . ackRefundSnd bel l ( amount ) ;
}

end BookingAgent ;

−−−

Class UserDB i s

Operat ions :
l og ( usrname : Token , password : Token ) : bool ;
getData ( usrname : Token ) : Token ;
getCard ( usrname : Token ) : Token ;

Vars :
c r u s rda ta : Token := UserData ;
cr paydata : Token := PayData ;

State Top = s1

Trans i t i on s :

Log : s1 −> s1 { l og ( usrname , password ) / re turn True}

Log : s1 −> s1 { l og ( usrname , password ) / re turn Fal se }

GetData : s1 −> s1 {getData ( usrname ) / re turn c r u s rda ta }

GetCard : s1 −> s1 {getCard ( usrname ) / return cr paydata }

end UserDB ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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−−−−−−−−−−−REQUIRES−INTERFACES −−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Class HotelAgent i s
S i g n a l s :

l o c k H o t e l b e l l ( check in : date , checkout : date , t r a v e l l e r ) ;
lockHotel commit ;
l o c k H o t e l c a n c e l ;
l o ckHote l r evoke ;

Vars :
l o c k H o t e l b e l l e n a b l e d : bool := true ;
lockHote l commit enabled : bool := f a l s e ;
l o c k H o t e l c a n c e l e n a b l e d : bool := f a l s e ;
l o ckHote l r evoke enab l ed : bool := f a l s e ;

l o c k H o t e l r e p l y s e n t : bool = f a l s e ;
l o c k H o t e l b e l l e x e c u t e d : bool := true ;
lockHote l commit executed : bool := f a l s e ;
l o c k H o t e l c a n c e l e x e c u t e d : bool := f a l s e ;
l o ckHote l r evoke execu t ed : bool := f a l s e ;

l o ckHot e l che ck in : date ;
l o ckHote l checkout : date ;
l o c k H o t e l t r a v e l l e r ;

l ockHote l Rep ly : bool := f a l s e ;
hconf : Token := HConf ;

State Top = A / B
State A = s1 , s2 , s3 , s4 , s5 , s6
State B = s1 , s2

Trans i t i on s :
LockHote l Be l l 1 : A. s1 −> A. s2

{ l o c k H o t e l b e l l ( checkin , checkout , t r a v e l l e r )
[ l o c k H o t e l b e l l e n a b l e d ] /

l o c k H o t e l b e l l e n a b l e d := f a l s e ;
l o ckHot e l che ck in := check in ;
l o ckHote l checkout := checkout ;
l ockHote l Rep ly := true ;
HotelW . l o c k H o t e l r e p l y ( true , hconf ) ;
l o c k H o t e l r e p l y s e n t := true ;
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l ockHote l commit enabled := true ;
l o c k H o t e l c a n c e l e n a b l e d := true ;
}

LockHote l Be l l 2 : A. s1 −> A. s6
{ l o c k H o t e l b e l l ( checkin , checkout , t r a v e l l e r )

[ l o c k H o t e l b e l l e n a b l e d ] /
l o c k H o t e l b e l l e n a b l e d := f a l s e ;
l o ckHot e l che ck in := check in ;
l o ckHote l checkout := checkout ;
l o c k H o t e l t r a v e l l e r := t r a v e l l e r ;
l ockHote l Rep ly := f a l s e ;
HotelW . l o c k H o t e l r e p l y ( f a l s e , n u l l ) ;
l o c k H o t e l r e p l y s e n t := true ;
}

LockHotel Cancel : A. s2 −> A. s3
{ l o c k H o t e l c a n c e l [ l o c k H o t e l c a n c e l e n a b l e d ] /
l o c k H o t e l c a n c e l e n a b l e d := f a l s e ;
}

LockHotel Commit : A. s2 −> A. s4
{ lockHotel commit [ lockHote l commit enabled ] /
lockHote l commit executed := true ;
lockHote l commit enabled := f a l s e ;
}

lockHote l Revoke : A. s4 −> A. s5
{ l o ckHote l r evoke [ l o ckHote l r evoke enab l ed ] /
l o ckHote l r evoke enab l ed := f a l s e ;
}

r u l e 1 a : B. s1 −> B. s2
{ −

[ l ockHote l commit executed ] /
l o ckHote l r evoke enab l ed := true ;

}

end HotelAgent ;

−−−

Class Fl ightAgent i s



198

S i g n a l s :
l o c k F l i g h t b e l l ( from : Token , to : Token , out : date ,

in : date , t r a v e l l e r : Token ) ;
l o c k F l i g h t c a n c e l ;
lockFl ight commit ;
l o c k F l i g h t r e v o k e ;
payAck bel l ( proof , s t a t u s : bool ) ;

Vars :
P r i o r i t y :=1;

l o c k F l i g h t b e l l e n a b l e d : bool := true ;
l ockFl ight commit enab led : bool := f a l s e ;
l o c k F l i g h t c a n c e l e n a b l e d : bool := f a l s e ;
l o c k F l i g h t r e v o k e e n a b l e d : bool := f a l s e ;
payAck be l l enab led : bool := f a l s e ;
payRe fund be l l a c t i v e : bool := f a l s e ;

l o c k F l i g h t r e p l y s e n t : bool := f a l s e ;
payRe fund be l l s ent : bool := f a l s e ;
l o c k F l i g h t r e v o k e e x e c u t e d : bool := f a l s e ;
payAck be l l executed : bool := f a l s e ;
payRefund be l l ensured : bool := f a l s e ;

l o ckF l i gh t f r om : Token ;
l o c k F l i g h t t o : Token ;
l o c k F l i g h t i n : date ;
l o c k F l i g h t o u t : date ;
l o c k F l i g h t t r a v e l l e r : Token ;
payAck proof : bool ;
payAck status : bool ;

l o ckF l i gh t Rep ly : bool ;
f c o n f : Token := Fconf ;
amount : i n t := 10 ;
b e n e f i c i a r y : Token := B e n e f i c i a r y ;
payServ ice : Token := PayService ;
payRefund amount : i n t ;

State Top = A / B / C / D / E / F

State A = s1 , s2 , s3 , s4 , s5 , s6
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State B = s1 , s2
State C = s1 , s2
State D = s1 , s2
State E = s1 , s2
State F = s1 , s2

Trans i t i on s :
−−−− Be l l i s proce s sed . Reply i s t rue .
L o c k F l i g h t B e l l 1 : A. s1 −> A. s2

{ l o c k F l i g h t b e l l ( from , to , out , in , t r a v e l l e r )
[ l o c k F l i g h t b e l l e n a b l e d ] /

l o c k F l i g h t b e l l e n a b l e d := f a l s e ;
l o c k F l i g h t i n := in ;
l o c k F l i g h t o u t := out ;
l o ckF l i gh t Rep ly := true ;
FlightW . l o c k F l i g h t r e p l y ( l ockF l i ght Rep ly ,

f con f , amount , b e n e f i c i a r y ,
payServ ice ) ; −− send rep ly

l o c k F l i g h t r e p l y s e n t := true ;
l ockFl ight commit enab led := true ;
l o c k F l i g h t c a n c e l e n a b l e d := true ;
}

l o c k F l i g h t B e l l 2 : A. s1 −> A. s6
{ l o c k F l i g h t b e l l ( from , to , out , in , t r a v e l l e r )

[ l o c k F l i g h t b e l l e n a b l e d ] /
l o c k F l i g h t b e l l e n a b l e d := f a l s e ;
l o c k F l i g h t i n := in ;
l o c k F l i g h t o u t := out ;
l o ckF l i gh t Rep ly := f a l s e ;
FlightW . l o c k F l i g h t r e p l y ( l ockF l i ght Rep ly ,

nu l l , nu l l , nu l l , n u l l ) ;
l o c k F l i g h t r e p l y s e n t := true ;
}

l o c kF l i g h t Ca nc e l : A. s2 −> A. s3
{ l o c k F l i g h t c a n c e l [ l o c k F l i g h t c a n c e l e n a b l e d ] /

l o c k F l i g h t c a n c e l e n a b l e d := f a l s e ;
}

lockFlight Commit : A. s2 −> A. s4
{ l ockFl ight commit [ l ockFl ight commit enab led ] /
lockFl ight commit enab led := f a l s e ;
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}

l o ckFl ight Revoke : A. s4 −> A. s5
{ l o c k F l i g h t r e v o k e [ l o c k F l i g h t r e v o k e e n a b l e d ] /
l o c k F l i g h t r e v o k e e n a b l e d := f a l s e ;
l o c k F l i g h t r e v o k e e x e c u t e d := true ;
}

payAck Bel l 1 : B. s1 −> B. s2
{ payAck bel l ( proof , s t a t u s ) [ payAck be l l enab led ] /

payAck be l l enab led := f a l s e ;
payAck be l l executed := true ;
payAck proof := proo f ;
payAck status := s t a t u s ;

}

payRefund Bel l : C. s1 −> C. s2
{ − [ payRefund be l l ensured ] /

refundW . payRefund be l l ( payRefund amount ) ;
payRe fund be l l s ent := true ;

}

ru l e 2 : D. s1 −> D. s2
{− [ l o c k F l i g h t r e p l y s e n t and lo ckF l i gh t Rep ly ] /

payAck be l l enab led := true ;
}

r u l e 3 a : E. s1 −> E. s2
{ −

[ payAck be l l executed and payAck status ] /
l o c k F l i g h t r e v o k e e n a b l e d := true ;

}

ru l e 4 : F . s1 −> F. s2
{ −

[ l o c k F l i g h t r e v o k e e x e c u t e d ] /
payRefund amount := amount ;
payRefund be l l ensured := true ;

}

end Fl ightAgent ;

−−−
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Class PayAgent i s

S i g n a l s :
payment be l l ( amount : Token , b e n e f i c i a r y : Token ,

o r i g i n a t o r : Token , cardNo : Token ) ;
payment cancel ;
payment commit ;
payment revoke ;

Vars :
payment be l l enab led : bool := true ;
payment commit enabled : bool := f a l s e ;
payment cance l enabled : bool := f a l s e ;
payment revoke enabled : bool := f a l s e ;

payment rep ly sent : bool := f a l s e ;
p a y N o t i f y b e l l s e n t : bool := f a l s e ;

p a y N o t i f y b e l l e n s u r e d : bool := f a l s e ;

payment amount : Token ;
payment bene f i c i a ry : Token ;
payment or ig inator : Token ;
payment cardNo : Token ;

payment Reply : bool ;
proo f : Token := Proof ;
payNot i f y s ta tu s : bool ;

State Top = A / B / C

State A = s1 , s2 , s3 , s4 , s5 , s6
State B = s1 , s2
State C = s1 , s2

Trans i t i on s :

payment Bel l 1 : A. s1 −> A. s2
{ payment bel l ( amount , b e n e f i c i a r y , o r i g i n a t o r , cardNo )

[ payment be l l enab led ] /
payment be l l enab led := f a l s e ;
payment amount := amount ;
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payment bene f i c i a ry := b e n e f i c i a r y ;
payment or ig inator := o r i g i n a t o r ;
payment cardNo := cardNo ;
payment Reply := true ;
paymentW . payment reply ( true , proo f ) ;
payment rep ly sent := true ;
payment commit enabled := true ;
payment cance l enabled := true ;
}

payment Bel l 2 : A. s1 −> A. s6
{ payment bel l ( amount , b e n e f i c i a r y , o r i g i n a t o r , cardNo )

[ payment be l l enab led ] /
payment be l l enab led := f a l s e ;
payment amount := amount ;
payment bene f i c i a ry := b e n e f i c i a r y ;
payment or ig inator := o r i g i n a t o r ;
payment cardNo := cardNo ;
payment Reply := f a l s e ;
paymentW . payment reply ( f a l s e , n u l l ) ;
payment rep ly sent := true ;
}

payment Cancel : A. s2 −> A. s3
{ payment cancel [ payment cance l enabled ] /

payment cance l enabled := f a l s e ;
}

payment Commit : A. s2 −> A. s4
{ payment commit [ payment commit enabled ] /

payment commit enabled := f a l s e ;
}

payment Revoke : A. s4 −> A. s5
{ payment revoke [ payment revoke enabled ] /

payment revoke enabled := f a l s e ;
}

payNot i f y Be l l : B. s1 −> B. s2
{ −

[ p a y N o t i f y b e l l e n s u r e d ] /
payNotifyW . p a y N o t i f y b e l l ( payNot i f y s ta tu s ) ;
p a y N o t i f y b e l l s e n t := true ;
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}

ru l e 4 : C. s1 −> C. s2
{ −

[ payment rep ly sent ] /
payNot i f y s ta tu s := payment Reply ;
p a y N o t i f y b e l l e n s u r e d := true ;

}

end PayAgent ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−CLIENT−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Class C l i en t i s
S i g n a l s :

l o g i n r e p l y ( Reply ) ;
bookTr ip rep ly ( Reply : bool , f c o n f : Token ,

hconf : Token , amount ) ;
p a y N o t i f y b e l l ( s t a t u s : bool ) ;
r e f u n d b e l l ( amount ) ;

Vars :
l o g i n b e l l a c t i v e := TT;
l og in commi t ac t i v e := TT;
l o g i n c a n c e l a c t i v e := TT;
l o g i n r e v o k e a c t i v e := TT;
b o o k T r i p b e l l a c t i v e := TT;
bookTrip commit act ive := TT;
b o o k T r i p c a n c e l a c t i v e := TT;
bookTr ip r evoke ac t ive := TT;

username : Token := User ;
password : Token := Passwd ;
from : Token := From ;
to : Token := To ;
out : date := Today ;
in : date := Today ;

State Top = s1
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Trans i t i on s :

Log inBe l l : s1 −> s1
{ − [ l o g i n b e l l a c t i v e=TT] /

loginW . l o g i n b e l l ( username , password ) ;
l o g i n b e l l a c t i v e := FF;
}

LoginCommit : s1 −> s1
{ − [ l o g i n b e l l a c t i v e=TT] /

loginW . login commit ;
l og in commi t ac t i v e := FF;
}

LoginCancel : s1 −> s1
{ − [ l o g i n c a n c e l a c t i v e=TT] /

loginW . l o g i n c a n c e l ;
l o g i n c a n c e l a c t i v e := FF;
}

LoginRevoke : s1 −> s1
{ − [ l o g i n r e v o k e a c t i v e=TT] /

loginW . l o g i n r e v o k e ;
l o g i n r e v o k e a c t i v e := FF;
}

BookTripBell : s1 −> s1
{ − [ b o o k T r i p b e l l a c t i v e=TT] /

bookTripW . bookTr ip be l l ( from , to , out , in ) ;
b o o k T r i p b e l l a c t i v e := FF;
}

BookTripCommit : s1 −> s1
{ − [ bookTrip commit act ive=TT] /

bookTripW . bookTrip commit ;
bookTrip commit act ive := FF;
}

BookTripCancel : s1 −> s1
{ − [ b o o k T r i p c a n c e l a c t i v e=TT] /

bookTripW . bookTr ip cance l ;
b o o k T r i p c a n c e l a c t i v e := FF;
}
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BookTripRevoke : s1 −> s1
{ − [ bookTr ip r evoke ac t ive=TT] /

bookTripW . bookTrip revoke ;
bookTr ip r evoke ac t ive := FF;
}

end Cl i en t ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−DATA TYPES−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Class book ings tatus i s end ;
Class usrdata i s end ;
Class paydata i s end ;
Class date i s end ;

Objects :

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−SERVICE MODULE−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
BAobj : BookingAgent ;
HAobj : HotelAgent ;
FAobj : Fl ightAgent ;
CRobj : C l i en t ;
PAobj : PayAgent ;
DBobj : UserDB ;
payAckW : payAck Wire ; −− BA −> FA
refundW : refund Wire ; −− FA −> BA
payNotifyW : payNoti fy Wire ; −− PA −> CR
ackRefundSndW : ackRefundSnd Wire −− FA −> CR
HotelW : Hotel Wire ; −− BA <−> HA
FlightW : Fl ight Wire ; −− BA <−> FA
paymentW : payment Wire ; −− BA <−> PA
loginW : log in Wire ; −− CR <−> BA
DBW: DB Wire ; −− BA <−> DB
bookTripW : bookTrip Wire ; −− CR <−> BA
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−DATA OBJECTS−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
START, LOGGED, QUERIED, FLIGHT OK, HOTEL OK, CONFIRMED,

END PAYED,END UNBOOKED, COMPENSATING,
END COMPENSATED: book ings tatus ;

TT,FF,XX, ACTIVE: Token ;

Today , Tomorrow , AfterTomorrow : date ;
HConf , User , Passwd , UserData , PayData , From , To : Token ;
Fconf , Bene f i c i a ry , PayService , Proof : Token ;
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