Formal Aspects of
Software Architecture

J.L.Fiadeiro

X7 University of

< Leicester

€3

Contributions 3
|

m ATX Software
AT X

SOFTWA

= Antonia Lopes @ University of Lisbon

X University of

@ Leicester

ICFEM 2005

Plan 2
]

= Architectures:
Complexity in software development
Physiological vs social complexity
Architectures and Programming “in-the-world"

= CommUnity
Computation vs Coordination
Externalisation of interactions
Refinement vs Composition

£X] University of
ICFEM 2005 @ Leicester

Software Architecture? 4
|

= A software architecture for a system is the
structure or structures of the system, which
comprise elements, their externally-visible
behavior, and the relationships among them.

source: L.Bass, P.Clements and R.Kazman.
Software Architecture in Practice. Addison-Wesley, 1998.

= There are many views, as there are many
structures, each with its own purpose and focus in
understanding the organisation of the system.

(X} University of
ICFEM 2005 ' Leicester

What is it for? 5 A case of “"complexity” 6
| |

component (n): a constituent part
complex (a): composed of two or more parts

architecture (n):

1 : formation or construction as, or as if, the result
of conscious act;

2 : a unifying or coherent form or structure

University of

IcFEM 2005 L iaatar 107EM 2005 @ Leicester
A case of "complexity” 6 A case of "complexity” 6
|
in-the-head in-the-head Example
mnemonics = "One man and his problem..” mnemonics = "One man and his problem..”
(and his program, and his machine) (and his program, and his machine)
result-driven = The Science of Algorithms and Complexity result-driven
= hot so much Engineering but more of

symbolic Craftsmanship (one of a kind) symbolic
information = acase for virtuosi information
elementary elementary
control flow control flow Using a pocket calculator to select

the next move

I University of

@ Leicester

[X] University of
@ Leicester ICFEM 2005

ICFEM 2005

A case of "complexity”

in-the-head in-the-small
mnemonics I/0 specs
result-driven algorithms

The need for commercialisation...

"One man and his problem..”
(and his program, but their
machine)

The Science of Program

symbolic data structures Analysis and Construction
information and types Commerce, but not yet
Engineering
elementary execute once
control flow termination
- DL
1} [
10 years ago, the "software crisis” 8

I ——
SCIENTIFIC
AMERICAN

Comguering Lvmne disease.
Tha crisis in software.
Whal canses deep earthquakes?

SEPLIMBER 1192
143

ICFEM 2005

X7 University of

v Leicester

A case of “"complexity”

in-the-head in-the-small ppogram Architectures
mnemonics I/0 specs P
lengths
result-driven algorithms
El\‘c"‘mt:mmn
symbolic data structures I | T
infor‘mGTiOn and TYPCS Count first byte Y Output byte Output count
elementary execute once
control flow termination ——
i 5005 University of
@ Leicester
1) [/
10 years ago, the "software crisis”

SCIENTIFIC
AMERICAN

Comguering Lyme disease.
The erisis in software.
Wl canses deep earthquakes?

SEFLIMBER 1102
1483

TRENDS IN COMPUTING

Software's Chronic Crisis
W, By Gikls, staff writer

I'he (1.5, economy, anl indeed al sockty, has plunged inte cyberspace. Computers
rumup i1 everythog from -nasters and arcrall-control sysems o the cash reiis
ter at the supermarket checeout. Yet software remains largely the custom product
of a cottege industry. Can it ever be manulactured sn that 1t meets industrial stan-
darcs of mass production and reliablity™

ICFEM 2005

X7 University of

@ Leicester

10 years ago, the “software crisis” 8 A case of “"complexity” 9
|

u The challenge of complexity is not only large but also growing. [...]. To keep
up with such demand, programmers will have to change the way that they in-the-head in-the-small in-‘rhe-lqr‘ge
work. "You can't build skyscrapers using carpenters," Curtis quips.

m [...] Musket makers d{'d not get more productive until Eli Whitney figured out mnemonics I/0 specs complex specs = “One man
how to manufacture interchangeable parts that could be assembled by any i
.) . . and his
skilled workman. In like manner, software parts can, if properly standardized, bl "
be reused at many different scales. result-driven algorithms system modules ?;of :I:“'_“
ut their
m [...]JIn April, NIST announced that it was creating an Advanced Technology programs)
Program to help engender a market for component-based software.) Th .
symbolic data structures databases, . e Science
information and types persistence of Software
Specification
elementary execute once continuous and Design
control flow termination execution = Engineering
University of University of
1cFEM 2005 Leicester 10FEM 2003 Leicester
The case for MILs 10 The case for MILs 10
I —
= Modelling Interconnection Languages for programming-in- Architectures of Usage
the-large (DeRemer and Kron 75) R—
accessibility

— — — prowded (derived) resources

= Address the global structure of a system in terms of
= what its modules and resources are

= how they fit together in the system ~ [Cem oo
» Interconnection may be data or control oriented =

= Descriptions are concise, precise and verifiable

University of

@ Leicester

X7 University of

v Leicester

ICFEM 2005 ICFEM 2005

The case for new mathematics 11

ICFEM 2005 EX3 Uni‘(ersity of
@ Leicester

The case for new mathematics 1

= Algebraic techniques for structuring specifications
= "Putting Theories together o Make Specifications”
= The theory of Institutions
= The role of Category Theory

= Temporal logics for continuous/reactive execution

(X7 University of

ICFEM 2005 <« Leicester

The case for new mathematics 11

= Algebraic techniques for structuring specifications
= "Putting Theories together to Make Specifications”
= The theory of Institutions
= The role of Category Theory

ICFEM 2005 X Uni\zersity of
@ Leicester
The case for objects/components 12

m In like manner, software parts
can, if properly standardized,
be reused at many different
scales.

m [...]In April, NIST announced
that it was creating an
Advanced Technology Program
to help engender a market for
component-based software.

I University of

@ Leicester

ICFEM 2005

The case for objects/components 12

u In like manner, software parts

The case for objects/components 12

m In like manner, software parts

can, if properly standardized,
be reused at many different
scales.

[...]In April, NIST announced
that it was creating an
Advanced Technology Program
to help engender a market for
component-based software.

= Builds on a powerful
methodological metaphor
- clientship

ICFEM 2005

X7 University of

@ Leicester

The case for objects/components 12

= Builds on a powerful
methodological metaphor
- clientship

= Inheritance hierarchies
for reuse

s Software construction
becomes like child's play

ICFEM 2005

X7 University of

v Leicester

= Builds on a powerful

can, if properly standardized, -
methodological metaphor

be reused at many different

scales. - clientship
= [...JIn April, NIST announced = Inheritance hierarchies
that it was creating an for reuse

Advanced Technology Program
to help engender a market for
component-based software.

8 Uni‘{ersity of
Leicester

ICFEM 2005

Yet, in 2003 the crisis was going on 13
I ———

m Computing has certainly got faster, smarter and cheaper, but it has
also become much more complex.

m Ever since the orderly days of the mainframe, which allowed tight
control of IT, computer systems have become ever more distributed,
more heterogeneous and harder to manage. [...]

m In the late 1990s, the internet and the emergence of e-commerce
“broke IT’s back”. Integrating incompatible systems, in particular,
has become a big headache.

m applications will no longer be a big chunk of software that runs on a
computer but a combination of web services

X7 University of

ICFEM 2005 @ Leicester

Yet, in 2003 the crisis was going on 13
|

Yet, in 2003 the crisis was going on 13
|

m Computing has certainly got faster, smarter and cheaper, but it has m Computing has certainly got faster, smarter and cheaper, but it has
also become much more complex. also become much more complex.

Ever since the orderly days of the mainframe, which allowed tight m Ever since the orderly days of the mainframe, which allowed tight

control of IT, computer systems have become ever more distributed,
more heterogeneous and harder to manage. [...]

In the late 1990s, the internet and the emergence of e-commerce
“broke IT’s back”. Integrating incompatible systems, in particular,
has become a big headache.

applications will no longer be a big chunk of software that runs on a
computer but a combination of web services

control of IT, computer systems have become ever more distributed,
more heterogeneous and harder to manage. [...]

In the late 1990s, the internet and the emergence of e-commerce
“broke IT’s back”. Integrating incompatible systems, in particular,
has become a big headache.

applications will no longer be a big chunk of software that runs on a
computer but a combination of web services

ICFEM 2005

Yet a case of “"complexity”?

FX] University of

@ Leicester

14

The Economist, May 10, 2003

ICFEM 2005

Yet a case of “complexity”?
I ——

University of

@ Leicester

14

in-the-head in-the-small in-the-large in-the-head in-the-small in-the-large

mnemonics I/0 specs complex specs “One man mnemonics I/0 specs complex specs “One man and
and his his problem..”

result-driven algorithms system modules problem... result-driven algorithms system modules (but their
(but 'rhelr) programs)
programs “One man

symbolic data structures databases, The Science symbolic data structures databases, and)

information and types persistence of Software information and types persistence everybody's
Specification problems...

elementary execute once continuous and Design elementary execute once continuous

control flow termination execution Engineering control flow termination execution

ICFEM 2005

X7 University of

v Leicester

ICFEM 2005

I University of

» Leicester

Same complexity? 16
I ——

A case of "complexity” 15
. __|

in-the-head in-the-small in-the-large in-the-world
mnemonics I/0 specs complex specs evolving
result-driven algorithms system modules sub-systems &

interactions

symbolic data structures databases, separation data

information and types persistence computation

elementary execute once continuous distribution &

control flow termination execution coordination
-
Same complexity? 16 Same complexity? 16

= “Physiological” complexity = “Physiological” complexity

derives from the need to account for problems/situations
that are “"complicated” in the sense that they offer great
difficulty in understanding, solving, or explaining

there is nothing necessarily wrong or faulty in them; they are
just the unavoidable result of a necessary combination of
parts or factors

derives from the need to account for problems/situations
that are "complicated” in the sense that they offer great
difficulty in understanding, solving, or explaining

= there is nothing necessarily wrong or faulty in them; they are

Jjust the unavoidable result of a necessary combination of
parts or factors

= "Social” complexity

= derives from the number and “open” nature of interactions
that involve “autonomic” parts of a system;

= it is almost impossible to predict what properties can emerge
and how they will evolve as a result of the interactions in place
or the dynamics of the population itself.

ICFEM 2005

University of

Leicester

X7 University of

@ Leicester

Same Science & Engineering? 17
|

= “"Physiological” complexity
= server-to-server, static, linear
interaction based on identities
= compile or design time integration
= architectures of usage
= product structure

University of

1CFEM 2005 Leicester

Same Science & Engineering? 17

= “Physiological” complexity
= server-to-server, static, linear
interaction based on identities
= compile or design time integration
= architectures of usage
= product structure

= "Social” complexity

= dynamic, mobile and unpredictable
interactions based on properties

= “late” or "just-in-time" integration
= contracts of interaction
= evolving structure

X7 University of

ICFEM 2005 v Leicester

Same Science & Engineering? 17

= “"Physiological” complexity
= server-to-server, static, linear
interaction based on identities
= compile or design time integration
= architectures of usage
= product structure

University of

@ Leicester

ICFEM 2005

Same Science & Engineering? 17

= "Physiological” complexity
= server-to-server, static, linear
interaction based on identities
= compile or design time integration
= architectures of usage
= product structure

= "Social” complexity

= dynamic, mobile and unpredictable
interactions based on properties

= “late” or "just-in-time" integration
= contracts of interaction
= evolving structure

University of

@ Leicester

ICFEM 2005

Same Science & Engineering? 17

The Rematch

= “"Physiological” complexity

+ server-to-server, static, linear
interaction based on identities

compile or design time integration
architectures of usage
product structure

= "Social” complexity

dynamic, mobile and unpredictable v
interactions based on properties intfe

“late” or "just-in-time" integration g

contracts of interaction =

evolving structure
ICFEM 2005 i‘;‘;zzgtuér
Run-time Architectures 19

= The Components&Connectors view
= The "Interacts” relationship

= One generation later
Perry and Wolf (92)
Shaw and Garlan (96)
Bass, Clements, Kazman (98)

m Partly inspired by (civil) architects (Alexander)

3 Umversu:y of

@ Leicester

ICFEM 2005

Two different relationships 18

= Implements
a given module is defined in ferms of facilities provided
by/to other modules;
composition mechanisms glue pieces together by
indicating for each use of a facility where its
corresponding definition is provided

= Interacts

components are treated as independent entities that
may interact with each other along well defined lines of
communication (connectors)

X
ICFEM 2005 Umverslty of

@ Leicester
Architectures in Software Design 20
B
[Requirements high-level
J

domain

- S S S S S e . .. [Ar‘Ch”'eCfUr'e] S

machine

[Code low-level

(X} University of

ICFEM 2005 @ Leicester

Summary 21

Architecture-based approaches

X1
=
B E{ A Coordination
Computation
ICFEM 2005 ﬁ(ﬁ E'giz:tsytoff:r
Summary et

Architecture-based approaches

(A E{ 8 WA

Computation

Compositionality wrt refinement

X7 University of

ICFEM 2005 v Leicester

Summary 21

Architecture-based approaches

X
Ty
Coordination
Computation

Compositionality wrt refinement

£X] University of

@ Leicester

ICFEM 2005

Summary &

Architecture-based approaches

-
—NE- C N
[Eoaamaion]
Al ClE
Computation

Compositionality wrt refinement

X7 University of

ICFEM 2005 @ Leicester

Summary 21

Architecture-based approaches

LA -E{e [A

Aalls]Cle]
Computation

Compositionality wrt refinement
wrt evolution

] University of

ICFEM 2005 <’ Leicester

How? 23
|

m Architecture description languages (ADLs) have been proposed as
a possible answer

= Several prototype ADLs and supporting tools have been proposed

Rapide events with simulation and animation

UniCon emphasizing heterogeneity and compilation
Wright formal specification of connector interactions
Aesop style-specific arch design languages

Darwin service-oriented architectures

SADL SRI language emphasizing refinement

Meta-H arch description for avionics domain

C-2 arch style using implicit invocation

ACME open-ended approach ("XML for architectures”)

X University of

@ Leicester

ICFEM 2005

Need for formality 22

|

= Architectures = Box & Lines ?
is there a shared understanding of what they mean?
how easy is it to communicate details ("up” and "down")?
what degree of analytic leverage are we given?
how informed are we for selecting among alternatives?

= We need a formal approach supporting
abstraction: capturing the essential
precision: knowing what exactly is being addressed
analysis: predicting what properties will emerge
refinement: coding according to standard reference models
automation: tool support

University of

@ Leicester

ICFEM 2005

Purpose of ADLs 24

= An ADL is a language that provides features for modelling a
software system's conceptual architecture, at least:
components
connectors
configurations

= The purpose of an ADL is to
provide models, notations, and tools to describe components and their
interactions
support large-scale, high-level designs
support principled selection and application of architectural paradigms

X7 University of

ICFEM 2005 @ Leicester

CommUnity 25

= Not a full-fledged ADL

its purpose is not to support large-scale, industrial architectural design

but to serve as a test bed for formalising architectural notions and
techniques

and a prototype for extensions (e.g. mobility)
but has found its way into industrial practice
= Full mathematical semantics
the semantics is largely “language independent”
supports reasoning and prototyping
supports heterogeneity (based on General Systems Theory)

ICFEM 2005 3 Uni‘{ersity of
eicester
Architectural elements 27

= Components

model entities/devices/machines (software or “real world"), that keep
an internal state, perform computations, and are able to synchronise
with their environment and exchange information through channels

“designs” given in ferms of communication channels and actions
= Connectors

model entities whose purpose is to coordinate interactions between
components

"structured designs” given in terms of a “glue” and collection of “roles”
(as in Wright)

can be superposed at run-time over given components
= Configurations

diagrams in a category of designs as objects and superposition as
morphisms;

composition (emergent behaviour) given by colimit construction

X University of

ICFEM 2005 @ Leicester

Origins 26

A confluence of contributions from

(Re)Configurable Distributed Systems
exoskeletal software

» Parallel Program Design

superposition

Coordination Models and Languages

separation of concerns (Computation / Coordination)
= The categorical imperative
Goguen's approach to General Systems Theory

ICFEM 2005 X3 Uni\zersity of
@ Leicester
Designing components 28

An example

The design of a “naive"” bank account

design n-account is
out num:nat, bal:int
in v: nat
do dep: true — bal:=v+bal
[l wit: bal2v — bal:=bal-v

(X} University of
ICFEM 2005 @ Leicester

Designing components 28
|

An example

The design of a "naive"” bank account

design n-account is
out num:nat, bal:int
in v: nat
do dep: true — bal:=v+bal
[wit: bal2v — bal:=bal-v

vV n-account
bal num

] University of

ICFEM 2005 @ Leicester

Actions 30

I ——
m Provide for synchronisation with the environment (e.g. to transmit
or receive new data made available through the channels)
= Provide for the computations that make available or consume data

do g[D(g)] : L(g), U(g) — R(g)

s Write frame D (qg)
the local channels (out, prv) into which the action can write data

= Computation R (g)
how the execution of the action uses the data read on the input
channels and changes the data made available on the local channels
s Guards L(g), U(g)
set of states in which the action may be enabled L (g)
set of states in which the action must be enabled U (g)
U(g)o L(g)

X University of

@ Leicester

ICFEM 2005

Channels 29

|
= Provide for interchange of data
actions do not have I/0 parameters!
reading from a channel does not consume the datal!
Output channels out (V)

allow the environment to observe the state of the component, and for
the component to transmit data o the environment

the component controls the data that is made available; the
environment can only read the data

Input channels in (V)
allow the environment to make data available to the component

the environment controls the data that is made available; the
component can only read the data

Private channels prv (V)

model communication inside (different parts of) the component;
the environment can neither read from nor write into private channels

X7 University of

ICFEM 2005 @ Leicester

Designing components 31
I ——

Another example

The design of a VIP-account that may accept a withdrawal when the
balance together with a given credit amount is greater than the
requested amount, and will accept any withdrawal for which there are
funds available to match the requested amount:

design vip-account[CRE:nat] is
out num: nat, bal:int
in wv: nat
do dep[bal]: true — bal’=v+bal
[wit[bal]: bal+CRE2v, bal2v — bal’<bal-v

X7 University of

ICFEM 2005 @ Leicester

Superposition 32
|

= A structuring mechanism for the design of systems that
allows to build on already designed components by
"augmenting” them while “preserving” their properties.

= Typically, the additional behaviour results from the
introduction of new channels and corresponding assignments
(that may use the values of the channels of the base design).

] University of

@ Leicester

ICFEM 2005

Characterising Superposition 34
I ——

The relationship between a design P; and a design P, obtained
from P, through the superposition of additional behaviour, can
be modelled as a mapping between the channels and actions of
the two designs

o:P,—P,

subject o some constraints.

X University of

@ Leicester

ICFEM 2005

Applying Superposition 33
|

An example

Extending the design of n-account to control how many days the
balance has exceeded a given amount since it was last reset.

design e-account[MAX:int] is
out num:nat, bal:int, count:int
in v,day:nat
prv d:int
do dep[bal,d,count]: true —
bal:=v+bal
d:=day
if bal2MAX then count:=count+ (day-d)
M wit[bal,d,count]:
bal2v — bal:=bal-v
d:=day
if bal2MAX then count:=count+ (day-d)
M reset [d,count]:
true, false — count:=0|d:=day

University of

@ Leicester

ICFEM 2005

Superposition Morphisms 35
I ——

A superposition morphism o:P;—P, consists of

 atotal function o,,:V;—V, s.t.

o Sorts, privacy and
availability of channels are
preserved

o Input channels may become
output channels

* apartial mapping o, :T,—T; s.t.

o Privacy/availability of
actions is preserved

o Domains of channels are
preserved

(X} University of
ICFEM 2005 ' Leicester

Superposition Morphisms 35
|

A superposition morphism o:P,—P, consists of

 a total function o.,:V;—V, s.t.

o Sorts, privacy and
availability of channels are

ssort,(o,,(v))= sort,(v)
o, (out(Vy)) Cout(V,)
oen(in(Vr)) € out(Vz) Lin(P) 0 I;Z;:iirc\/::nnels may become
*oen(prv(Vy) S prv(Vs) output channels

* apartial mapping o, :T,—T; s.t.
+,.(sh(I')) Csh(r)
0, (prv(T,)) Cprv(Ty)
*0cn(D1(0g(9))) ED2(9)

o Privacy/availability of
actions is preserved
o Domains of channels are

«0,. (D0 V))) €D4(v) preserved
ICFEM 2005 ﬁ(ﬁ Elgiz:tsytoff:r
Superposition Morphisms 36

and, moreover, for every g in T, s.t. 6,.(9) is defined

* R2(9) 2 o(Ry(0..(9))) o Effects of actions must be
preserved or made more
* Lo(9) O ofLy(o.(9)) deterministic

o The bounds for enabling conditions
of actions can be strengthened but
not weakened

* U2(9) 2 o(Uy(0,(9)))

X7 University of

ICFEM 2005 v Leicester

Superposition Morphisms 36
|

and, moreover, for every g in I, s.t. 0,(g) is defined

o Effects of actions must be
preserved or made more
deterministic

o The bounds for enabling conditions
of actions can be strengthened but
not weakened

£X] University of

» Leicester

ICFEM 2005

Superposition Morphisms: Examples 37

design n-account is
out num:nat, bal:int
in v:nat
do dep[bal]: true — bal:=v+bal
1 wit[bal]: bal2v — bal:=bal-v

inclusion

design e-account[MAX:int] is
out num:nat, bal:int, count:int

in v,day:nat
prv d:int
do dep[bal,d,count]: true —

bal:=v+bal

d:=day

if bal2MAX then count:=count+ (day-d)
1 wit[bal,d,count]:

bal2v — bal:=bal-v

d:=day

if bal2MAX then count:=count+ (day-d)
M reset [d,count]:

true, false — count:=0|d:=day

X7 University of

ICFEM 2005 @ Leicester

Superposition Morphisms: Examples 38

Another example

design account is
out num:nat, bal:int
in wv: nat
do dep: true — bal:=vtbal
0 wit: true — bal:=bal-v

design
out
in
do

[

inclusion

n-account is
num:nat, bal:int
v: nat

dep: true — bal:=v+bal
wit: bal2v — bal:=bal-v

ICFEM 2005

Externalising the counter

X7 University of

@ Leicester

40

A design of a counter that counts how many days a value has
exceed a given value, since the last time it was reset

CJQ I”LSCT

'Vﬂ' counter[LIM]

_N'day de count

design counter[LIM:int] is
in wval,day:nat
out count:int

prv d:int
do chg[d,count]: true —
d:=day

| if val2LIM then count:=count+ (day-d)
[l reset[d,count]: true, false — count:=0|d:=day

X7 University of

@ Leicester

ICFEM 2005

Externalising superposed behaviour 39
|

= These examples represent two typical kinds of superposition

= monitoring
= regulation
= The superposed behaviour can be captured by a component
= monitor Support reuse
= regulator

= and the new design is obtained by interconnecting the
underlying design with this component.

£X] University of
ICFEM 2005 @ Leicester

Externalising the counter 41

To identify which channels and actions of the account are involved in
the monitoring by the counter, we use the diagram

% design channel is
ba’), “« 2 in x: int X o
-~ do a: true—sskip Q Yaz
3e? 2 =~ cn
A o
n-account counter

This diagram captures the configuration of a system with two
components — n-account and counter — that are interconnected
through a third design (a communication channel)

I University of

» Leicester

ICFEM 2005

Configurations 42
|

® Using diagrams whose nodes are labelled by designs and
whose arcs are labelled by superposition morphisms, it is
possible to design large systems from simpler components.

® Interactions between components are made explicit
through the corresponding name bindings.

® Name bindings are represented as additional hodes labelled
with designs and edges labelled by morphisms.

X7 University of

ICFEM 2005 ¥ Leicester
Semantics of Configurations 44
design channel is
=7 B e
ae? ES Chg

design counter[LIM:int] is
in wval,day:nat
out count:int
in v:nat prv d:int
- o do chg[d,count]: true — d:=day
do dep[bal]: true — bal:=vibal i
0 wii{bal}: RS N ea P e e | "if val2LIM then count:=count+(day-d)

] reset[d,count] :
3,
m

design n-account is
out num:nat, bal:int

true, false —> count:=0|d:=day

(e
2T 9
design e-account[MAX:int] is ae¥® 09
out num:nat, bal:int, count:int L
in v,day:nat W
prv d:int
do dep[bal,d,count]: true — bal:=v+bal | d:=day
I if bal2MAX then count:=count+(day-d)
[wit[bal,d,count]: bal2v — bal:=bal-v | d:=day
|| if bal2MAX then count:=count+ (day-d)
] reset[d,count]: true, false — count:=0/d:=day

X7 University of

@ Leicester

ICFEM 2005

Semantics of Configurations 43

What's the relationship between e-account and the
configuration?

% design channel is
ba’), « 2 in x: int X ~
-~ do a: true—skip @ ey
3e? 2 o4
e g
n-account counter
In
Loy .
a2 slo
e-account
£X] University of
I(FEM 2005 & Leicester
Semantics of Configurations 45

The semantics of configurations is given by the
"amalgamated sum"” (colimit) of the diagram.

/ channel \

£ 911 7 95 921 =
912/ N\ 922

defines synchronisation sets
{911, 921} {912, 921

P1||P2

University of

» Leicester

ICFEM 2005

Semantics of Configurations 45

The semantics of configurations is given by the
"amalgamated sum” (colimit) of the diagram.

channel
/ i1<—x—>o\A

2
P2
= 911}> g <_ 921
912 922
defines an I/0 connection
T defines synchronisation sets
{911, 9213 {912, 924}
ICFEM 2005 ilgﬁ;:tsytoér
Configurations 47

= Not every diagram represents a meaningful configuration.

= Restrictions on diagrams that make them well-formed
configurations:

+ An output channel of a component cannot be connected (directly or
indirectly through input channels) with output channels of the same or
other components.

Private channels and private actions cannot be involved in the
connections.
m These restrictions cannot be captured by the notion of
superposition because they involve the whole diagram.

(X7 University of

@ Leicester

ICFEM 2005

Semantics of Configurations 46
|

The colimit of such design diagrams
= Amalgamates channels involved in each i/o interconnection and the
result is an output channel of the system design
= Represents every synchronisation set {g;,g,} by a single action g,lg,
with
= safety bound: conjunction of the safety bounds of g; and g,
= progress bound: conjunction of the progress bounds of g; and g,
« conditions on next state: conjunction of conditions of g; and g,

University of

IEEM 2005 @ Leicester
Externalising the regulator 48
o F design channel’ is
.oa\l/ 4 in x:int, y:nat iq
% do a:true — \
'
design account is design reg is
in wv:nat in x:int, y: nat
out bal,num:int do a: x2y —

do dep: true — bal:=bal+v

1 wit: true — bal:=bal-v /
\ design n-account is
in wv:nat

out bal,num:int
do dep: true — bal:=bal+v
0 wit: bal2v — bal:=bal-v

I University of

@ Leicester

ICFEM 2005

o o
Externalising the regulator 48
o * design channel’ is
oy Y in x:int, y:nat iq
% do a:true — \
Wt
design account is design reg is
in wv:nat in x:int, y: nat
out bal,num:int do a: x2y —

do dep: true — bal:=bal+v

1l wit: true — bal:=bal-v /
\ design n-account is
in v:nat

out bal,num:int
do dep: true — bal:=bal+v
[1 wit: bal2v — bal:=bal-v

FX] University of
ICFEM 2005 @ Leicester

Recall: architectural elements 50

= Components

= model entities/devices/machines (software or “real world"), that keep
an internal state, perform computations, and are able to synchronise
with their environment and exchange information through channels

= “designs” given in terms of communication channels and actions

= Connectors
model entities whose purpose is to coordinate interactions between
components
= “structured designs” given in terms of a “"glue” and collection of “roles”
(as in Wright)
= can be superposed at run-time over given components
= Configurations
+ diagrams in a category of designs as objects and superposition as
morphisms;
composition (emergent behaviour) given by colimit construction

University of

Leicester

ICFEM 2005

vip-account 9

% design channel’ is
<. in x:int, y:nat

X_ .
2> b
bq . _» 2 do a:true — o

W

design account is design vip-reg[C:nat] is
in v:nat in x:int,y:nat

out bal,num:int do a: x+Cy, x2y —
do dep: true — bal:=bal+v
[wit: true — bal:=bal-v /
\ design vip-account[C:nat] is
in v:nat

out bal,num:int
do dep: true — bal:=bal+v
M wit: bal+C2v, bal2v — bal:=bal-v

£X] University of
ICFEM 2005 @ Leicester

From simple to complex interactions 51
I ——

= The configuration diagrams presented so far express simple
and static interactions between components

= action synchronisation

= the interconnection of input channels of a component with
output channels of other components

= More complex interaction protocols can also be described
by configurations...

niversity of

ICFEM 2005 Leicester

Bounded asynchronous interaction 52

A generic sender and receiver communicating asynchronously,
through a bounded buffer

sender[t] yq| »ej buffer[t+K] , »e va| receiver[t]
X3 Umverslty of
ICFEM 2003 @ Leicester

Bounded asynchronous interaction 52

A generic sender and receiver communicating asynchronously,
through a bounded buffer

sender[t] vql »ej buffer[t+K] , »e va| receiver[t]
design sender[t] is
out val:t design receiver[t] is
prv rd:bool in wval:t
do prod[val,rd]:-rd, false—»>rd’ do rec:true,false—

[send[rd] :xrd,false — -rd’

[X] University of

< Leicester

ICFEM 2005

Bounded asynchronous interaction 52

A generic sender and receiver communicating asynchronously,
through a bounded buffer

buffer[t+K] , val receiver[t]

Y

sender[t] val »ei

design sender[t] is

out val:t

prv rd:bool

do prod[val,rd]:-rd, false—rd’
[send[rd] :rd,false — -rd’

£X] University of
ICFEM 2005 @ Leicester

Bounded asynchronous interaction 53

buffer[t+K] , val receiver[t]

Y

sender[t] yql adl

design buffer[t; K:nat] is

in 5,312

out @82

prv g:queue (K, t); rd:bool

do put:-£full (q) >q:=enqueue (i, q)

[lprv next:-empty(g)A-rd —o:=head(q) ||q:=tail (q) ||rd:=true
[get:rd — rd:=false

FX3 Unlversnty of

@ Leicester

ICFEM 2005

Communicating through a pipe 54
|

put qr\"lc

psender[t] o .- pipe[t,K] eof eof preceiver[t]
val o dl o »® val cle

[X] University of

» Leicester

ICFEM 2005

Communicating through a pipe 54

put qf\"lc

cl »® scl pipe[t,k] eof eof preceiver[t]
val i o »# val cle

v

psender([t]

design psender[t] is

out val:t, cl:bool

prv rd:bool

do prod[val,rd] : -rdAa-cl, false—rd’

[lprv close[cl]:-rdAa-cl,false—cl’
send[rd] :rd, false—>-rd’

g
design preceiver[t] is

in val:t, eof:bool
out cl:bool
do rec:-eofA-cl,false—

[] prv close:-cl,-clAaeof—cl’

[X] University of
ICFEM 2005 W Leicester

Communicating through a pipe 54

od send t qr\"lc

psender[t] d .- pipe[t,K] eof eof preceiver[t]
val edl 0 »e val cle

design psender[t] is

out val:t, cl:bool

prv rd:bool

do prod[val,rd] :-rdAa-cl, false—>rd’

[]prv close[cl]:-rda-cl,false—>cl’
send[rd] :xd, false—>-rd’

University of

@ Leicester

ICFEM 2005

Communicating through a pipe 55

Y

eof preceiver[t]
val cle

y

psender[t] g »pscl pipe[t,K] eof
val i)

~

/design pipe[t,K:nat] is

in i:t, scl:bool

out o:t, eof:bool

prv q:queue (K, t) ;rd:bool

do put: -full(q)—>q:=enqueue(i,q)
[lprv next: -empty(q)A-rd—o:=head(q)|/q:=tail(q)|rd:=true

[1 get: rd—rd:=false
Qprv signal: sclaempty(q)A-rd—>eof:=true j
University of
ICFEM 2005 » Leicester

Connectors 56

u A connector is a well-formed configuration of the form

7 T~

n —2D >0

el en
! !
Rl i Rr\

G is the glue and R's are the roles

n I'ts semantics is given by the colimit of the diagram

FX] University of

» Leicester

ICFEM 2005

Refinement morphisms 58

A refinement morphism o:P;—P, consists of
* a total function o.,:V;—=Term(V,) s.t.

* apartial mapping o, :I',—T; s.t.

[X] University of
ICFEM 2005 @ Leicester

Refinement 57

Connectors can be applied (instantiated) to components that
refine (are instances of) their roles

A refinement mapping
o:P,—P,

supports the identification of a way in which the design P,
is refined by P.,.

University of

@ Leicester

ICFEM 2005

Refinement morphisms 58

A refinement morphism o:P;—P, consists of
 a total function o.,:V;—=Term(V,) s.t.

Sorts are preserved as well as
the border between the
component and its environment

* a partial mapping o, :I',—T; s.t.
Domains of channels are
preserved
Every action that models
interaction has to be implemented

I University of

@ Leicester

ICFEM 2005

Refinement morphisms 58

A refinement morphism o:P,—P, consists of
 a total function o,:V;—Term(V,) s.t.

esort, (o, (V)= sort,(v)

o, (out(Vy)) € out(V,)

o (in(Vy)) Cin(V,)

o, (prv(V,)) € Term(loc(V,))
a partial mapping o, :I,—T; s.t.

*0,.(sh(I,)) Csh(I) Domains of channels are

*0,(prv(T)) Sprv(T;) preserved

*0o1(9)2 D, gEsh(Ty) Every action that models

*0cn(D1(00c(9))) SD,(9) interaction has to be implemented
*0ac(D2(046,(V))) ED4(V), vEloc(V))

Sorts are preserved as well as
the border between the
component and its environment

X7 University of

ICFEM 2005 @ Leicester

Refinement morphisms 59

and, moreover, for every g in T, s.t. o,.(g) is defined
R D o(R
29) 2 oRy(0ec) Effects of actions must be
preserved or made more
* L2(9) © a(L1(0.(9))) deterministic.
and for every g, in T The interval defined by the
safety and progress bounds of
« o(Uy(gy)) D V(gziu(gz):gl) U,(9,) each action must be preserved
- or reduced

X7 University of

ICFEM 2005 v Leicester

Refinement morphisms 59

and, moreover, for every g in I, s.t. o (g) is defined

Effects of actions must be
preserved or made more
deterministic.
and for every g, in T, The interval defined by the
safety and progress bounds of
each action must be preserved

or reduced
ICFEM 2005 ge Uni‘(ersity of
» Leicester
worduser - a refinement of sender 60

design sender (ps+pdf) is

out val:ps+pdf

prv rd:bool

do prod[val,rd]:-rd,false—>rd’
[send[rd] :rd, false — -rd’

design user is

out p:ps+pdf

prv free:bool, w:MSWord

do save[w]: true,false —

[l pr_pslp,free]l: free — p:=ps(w)|/free:=false
[l pr_pdf[p,free]: free — p:=pdf (w)||free:=false
[print[free]: -free — free:=true

X7 University of

ICFEM 2005 @ Leicester

printer: a refinement of receiver 61

design receiver (ps+pdf) is
in val:ps+pdf
do rec|[]:true,false—

design printer is

out rdoc:ps+pdf

prv busy:bool, pdoc:ps+pdf

do rec:-busy—pdoc:=rdoc|busy:=true

[] end print:busy,false—busy:= false

[X] University of

ICFEM 2005 <’ Leicester

Structuring systems vs Refinement 63

If the descriptions of the components of a system
are refined into more concrete ones

|m|‘

L
.

|
*I I*I

[X] University of
ICFEM 2005 @ Leicester

Structuring systems vs Refinement 62

It is essential that

the gross modularisation of a system
in terms of
components and their interconnections

be “respected” when component designs are refined into more
concrete ones

Compositionality

University of

ICFEM 2005 @ Leicester

Structuring systems vs Refinement 63

If the descriptions of the components of a system
are refined into more concrete ones

i

|+| I*I

.

1. Tt is possible to propagate the interactions previously defined

I University of

ICFEM 2005 @ Leicester

Structuring systems vs Refinement 63

If the descriptions of the components of a system
are refined into more concrete ones

I
P g

1. Tt is possible to propagate the interactions previously defined

[X] University of

@ Leicester

ICFEM 2005

Connector instantiation 64

Example

i buffer o

P!

sender val val receiver

v

) 4

ric eJ’ud _pr

erdoc Printer

X7 University of

ICFEM 2005 @ Leicester

Structuring systems vs Refinement 63

If the descriptions of the components of a system
are refined into more concrete ones

L 1 L

1

1. Tt is possible to propagate the interactions previously defined

2. The resulting description of the system refines the previous one

University of

@ Leicester

ICFEM 2005

Connector instantiation 64

Example

i buffer 0 »¢ va| receiver

l

ric eJ’nd |_pr

sender

erdoc Printer

I University of

ICFEM 2005 @ Leicester

Connector instantiation 64

Example
pnod Smf QK\PLC
>‘|der val »e buffer o »# va| Teceiver

rec eJ’nd _pr

rdoc Printer

ICFEM 2005 [X] University of
@ Leicester
Compositionality 66

we YT
i pdf t get rec e+d_Pf‘

o dl buffer o »# rdoc Printer

[X] University of
ICFEM 2005 @ Leicester

Propagation of the interconnections 65
I ———
Example
»e; buffer o
save Lr pspL _pdfprint réc eJ’ud _pr
user p ¢ rdoc Printer
ICFEM 2005 i‘;‘;‘zzgtﬁr
Compositionality 66

user p >

i buffer o »# rdoc Printer

Compositionality ensures that properties inferred from the more
abstract description hold also for the more concrete (refined) one

¥ Universi
ICFEM 2005 FX] University of

@ Leicester

Compositionality 66

pdf t get rec eJ;nd |_pr

4

i buffer o »# rdoc Pprinter

Compositionality ensures that properties inferred from the more
abstract description hold also for the more concrete (refined) one

Eg: in order message delivery does not depend on the speed at which
messages are produced and consumed

] University of

@ Leicester

ICFEM 2005

Connectors - Instantiation 67

m An instantiation of a connector consists of, for each of its
roles R, a desigh P together with a refinement morphism ¢:R—P

(<]

S

v
R, R
v
[

V‘_sﬁ “—

S

The semantics of a connector instantiation is the colimit of
the diagram

X University of

@ Leicester

ICFEM 2005

Connectors - Instantiation 67

= An instantiation of a connector consists of, for each of its
roles R, a design P together with a refinement morphism ¢:R—P

7 T~

_’m
D

R
VPV <¢+— 2
'°<_=ﬂ <+

-
o
s

The semantics of a connector instantiation is the colimit of
the diagram

£X] University of
ICFEM 2005 @ Leicester

Systematising Configurations 68
I ——

We have seen that

= Complex interaction protocols can be described by configurations,
independently of the concrete components they will be applied to: they
can be used in different contexts

= The use of such interaction protocols in a given configuration
corresponds to defining the way in which the generic participating
components are refined by the concrete components

(X} University of
ICFEM 2005 ' Leicester

Systematising Configurations 68
|

We have seen that

= Complex interaction protocols can be described by configurations,
independently of the concrete components they will be applied to; they
can be used in different contexts Connector Types

= The use of such interaction protocols in a given configuration
corresponds to defining the way in which the generic participating
components are refined by the concrete components

Instantiation of Connectors

[X] University of

@ Leicester

ICFEM 2005

Systematising Configurations 69

We may elevate the abstractions used to describe configurations...

X7 University of

ICFEM 2005 @ Leicester

Systematising Configurations 69
|

pJod send t + rec
d val »e; buffer 0 »¢ va| Meceiver
I
r‘ic eJ'-d _pr
int

e rdoc Printer

University of

@ Leicester

ICFEM 2005

Systematising Configurations 70

ric eJ’ud _pr

int
inter
1 K(sender) T](receiver). rdoc Pr

... and define them in terms of computational components and
connectors

I University of

@ Leicester

ICFEM 2005

Concluding remarks 71

The age of “interactions”:
u A truly great challenge!

= Requires "new" Engineering methods and
techniques

= Interactions as first-class entities
= Interaction-centric architectures

= Requires "new" Scientific basis
= General Systems Theory

= A good chance for more work in TAC...

¥ Uni .
ICFEM 2005 University of

@ Leicester

Learn more ... 72

Categories for

Software
Engineering

www.fiadeiro.org/ jose/CommUnity

¥ Uni .
ICFEM 2005 B4 University of

v Leicester

Learn more ... 72

Categories for

Software
Engineering

ICFEM 2005 X University of

@ Leicester

