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Abstract. Web Services offer a widespread standard for making ser-
vices available on the Internet. Of particular interest is the possibility
of composing existing distributed services to create new complex ones.
Existing research has already studied long running transactions within
a formal context. In this other research, compensations are just partly
compositional: a transaction’s failure triggers the compensation of im-
mediately enclosed transactions, but not those of nested transactions. In
this paper we formally model a more compositional protocol with the
asynchronous pi calculus. The resulting behavior is similar to that of the
Business Transaction Protocol of OASIS [1], which also has arbitrary
nesting.

1 Introduction

Web Services offer a widespread standard for making services available on the
Internet, not just to humans but also to other services. Of particular interest is
the possibility of composing existing distributed services, perhaps from differ-
ent companies, to create a new complex service. In this sense each service is a
peer that can behave both as a client and as a service provider. Current work,
under the general heading ‘Choreography’, attempts to standardise this possi-
bility of nested composition. Some examples of proposed standards are BPML
by bpmi.org [2], XLANG by Microsoft [3], WSFL by IBM [4] and BPEL4WS
by a consortium [5]. The W3C Choreography Group is currently working on the
Recommendation for Web Services Choreography (a draft has been public since
August 2003 [6]).

Within this context, where the parts are loosely coupled and not always
trusted, standard ACID transactions (with properties of Atomicity, Consistency,
Isolation, Durability) are too strict. This is especially a problem in business
transactions: for instance, some ‘pay-employee’ transaction must be executed
promptly at the start of the month, even if other necessary sub-transactions have
not yet finished. The payment might subsequently be undone, ‘compensated’, if
it turned out premature. The cycle of perform-then-maybe-compensate is one
characteristic of loosely-coupled long-running transactions. Long running trans-
actions have been introduced in ‘data processing applications’ [7, 8], where they



were called Sagas. Then Web Services led to a renewed interest in long running
transactions that are supported, in a mainly local perspective, by already men-
tioned languages (WSFL, XLANG and BPEL). Other contributions arise in the
context of Web transaction protocols, where loosely coupled Web services are
coordinated as autonomous entities by means of a defined set of transaction mes-
sages. We mention the W3C Tentative Hold Protocol (THP) [9], OASIS BTP [1]
and WS-Transactions [10] by BEA, IBM and Microsoft.

There is general agreement on the importance of such weaker transactions,
but not yet an agreement on their exact meaning. In this paper we choose one
particular form of weak transactions, express it in the pi calculus, and prove
formally its correctness. In particular, correctness refers to deadlock absence
(Eventuality), Durability and partial Atomicity. There is no global Atomicity in
the whole set of transactions, but if a transaction fails then all its sub-transaction
fail. We will discuss more later.

1.1 Related Works

Long running transactions have been described within several formal contexts.
As regards XLANG (used in the product Microsoft BizTalk), its transactional
behavior is informally described in [11], and then implemented in the Join calcu-
lus. In [12] the transactional behavior is formally specified at high level, and then
implemented in the asynchronous pi calculus. In these other works, compensa-
tions are just partly compositional: a transaction’s failure triggers the compen-
sation of the enclosed transactions, but not those of nested transactions. It is
possible to encode the effect of nested triggers, basically though copying a child’s
compensation code into the parent. But this is no longer compositional, and is
clearly inappropriate in a Web Service context where nested transactions might
belong to different (untrusted) companies. The need for compositional nested
transactions is stressed in the current W3C draft of standards for Choreography
and Coordination [6, 10]. The transactions that we encode are compositional: a
failure is able to trigger all the compensations of all its nested transactions.

The issue of the paper is describing Web transaction protocols, which are
based upon message exchange in a distributed setting. We do this with the pi
calculus – it is a message-based formalism, and seems natural for representing
distributed protocols in the sense that it is easy to obtain a straightforward im-
plementation. An alternative would be to use formalisms that express properties
as predicates between states, such as TLA [14] or ACTA [13] (a first-order logic-
based formalism for describing transactional models). These may possibly lead
to a more elegant representation than using the pi calculus, but would probably
no longer be as close to an implementation.

1.2 Structure of the Paper

Section 2 provides a minimal background on the pi calculus and introduces basics
on the described transaction behavior. Section 3 presents an implementation
of transaction managers with the asynchronous pi calculus. Section 4 formally



defines some properties, i.e. Durability, Eventuality and Local Atomicity that are
then proved for the given implementation. Section 5 contains some conclusive
remarks.

2 Preliminaries

We will specify the BTP in the pi calculus. What follows is a brief introduction
on the pi calculus, for a full reference see [15].

The asynchronous pi calculus assumes distributed entities called processes
which exchange messages over channels, named u, v, . . . , z. The content of a
message is also a channel name. A process can send a message z along a channel
u with the non-blocking output action u z. A process can also receive a message
on channel u with the blocking input action u(v).P . The parallel execution of
two processes P and Q can be expressed as P | Q. Parallel processes can com-
municate by performing an input and an output action on the same channel;
for example the process u z | u(v).P will perform an input and an output along
channel u. Communication is described by the reaction u z | u(v).P τ−→ P{z/v}.
Its effects are visible to the receiver as name substitution of the actual parameter
z for the formal parameter v. The continuation P of the input process can be
executed after the input on u has been received. In the polyadic pi calculus a
message is a string of names ṽ instead of a single name v. The process νu.P
declare a local variable u with scope P . It is also possible to define a process
that replicates itself: !P is able to create an arbitrary number of copies of P .
The pi calculus is summarized in Table 1: labelled transitions define the possible
reactions of a process, contexts C are processes with holes filled by other pro-
cesses, and represent environments. Simulation is a relation characterizing when
two processes have the same behavior.

The general behavior of the protocol we propose is similar to that of the
Business Transaction Protocol of OASIS. The expressed relation between trans-
action and the arbitrary nesting is also present in Business Activities (BA) of
WS-Transactions.

A two phase commit protocol is used first to assemble the ‘votes’ of nested
transactions (ie. whether or not they succeeded), and second to inform them all
of the consensus decision. Additional features are provided for controlling which
compensations are to be executed. We illustrate the features in Fig.1. where
a holiday booking might succeed even if some sub-transactions (e.g. car rental)
have failed; where, moreover, some sub-transactions (e.g. an Alitalia flight) might
be cancelled even though the overall booking succeeds. The terminology used
in [1] is that a cohesor needs only some of its children to succeed, while an
atom requires them all to succeed. Cohesors are modelled here as entities able
to flexibly specify the relation with their children. Atoms are a particular case
of cohesor. We in fact consider a partition of all nested transactions into two
groups: we require success from all of one necessary group, and we do not care
about success of the other group. A transaction will report success only if all of
its necessary children have succeeded. If a transaction fails then its sub transac-



Table 1. The asynchronous pi calculus

Terms P and contexts C in the asynchronous pi calculus are as follows. In u(x̃) the
names x̃ are bound, as is x in νx.P . We identify terms up to alpha-renaming of bound
names.

P ::= 0
∣∣ u x̃

∣∣ u(x̃).P
∣∣ P |P

∣∣ νx.P
∣∣ !P

C ::=
∣∣ u(x̃).C

∣∣ P |C
∣∣ C|P

∣∣ νx.C
∣∣ !C

Labelled transitions are as follows, where labels µ range over u(x̃), νz̃.u x̃ and τ .

u x̃
u x̃−→ 0 (out) u(x̃).P

u(x̃)−→ P (in)
P |!P µ−→ P ′

!P
µ−→ P ′

(rep)

P
µ−→ P ′ x 6∈ µ

νx.P
µ−→ νx.P ′

(res)
P

νz̃.u ỹ−→ P ′ x 6= u, x ∈ ỹ\z̃
νx.P

νz̃x.u ỹ−→ P ′
(open)

P
µ−→ P ′ bn(µ) ∩ fn(Q) = ∅

P | Q µ−→ P ′ | Q
(par)

P
νz̃.u ỹ−→ P ′ Q

u(x̃)−→ Q′ z̃ ∩ fn(Q) = ∅
P | Q τ−→ νz̃.(P ′ | Q′{ỹ/x̃})

(com)

Simulation is as follows. We write
τ⇒ for

τ−→∗
, and

µ⇒ for
τ−→∗ µ−→ τ−→∗

when µ 6= τ ,
and P

µ
=⇒ for ∃P ′ : P

µ
=⇒ P ′. A symmetric relation S is a weak ground simulation if

whenever PSQ then

– P
µ−→ P ′ implies there exists Q′ such that Q

µ⇒ Q′ and P ′SQ′.

Write . for the largest ground simulation. S is a weak ground bisimulation, if both S
and S−1 are weak ground simulations. Write ≈ for the largest ground bisimulation. We
note some standard results:

P ≈ Q implies ∀C : C[P ] ≈ C[Q] νx.x().P ≈ 0

P |0 ≈ P P |Q ≈ Q|P P |(Q|R) ≈ (P |Q)|R !P ≈ P |!P
νx.νy.P ≈ νy.νx.P νx.(P |Q) ≈ P |νx.Q if x 6∈ fn(P )

νx.P ≈ νx′.P{x′/x} if x′ 6∈ fn(P )

Notation We write x̃C for an arbitrary sequence x1, . . . , xn of the elements in set C.
We also use these syntactic sugars:

x.P = x().P (empty input)

x̃.P = x1. . . . .xn.P (sequence input)

νx̃.P = νx1. . . . .νxn.P (sequence restriction)

P ⊕Q = νc.(c |c.P |c.Q), c fresh (nondeterministic choice)

x[P, Q] = νu, v.(x u, v|u.P |v.Q), u, v fresh (selection)

x left = x(u, v).u

x right = x(u, v).v



travel

booking

Alitalia flight

BLQ - PSA

Meridiana flight

BLQ - PSA

car

rental

Fig. 1. A prototypical set of nested transactions. Each box represents a transactional
web service, provided by different companies. There are several possible modes of failure
propagation: up-propagation, where if Alitalia and Meridiana fail then we abort the car
and the overall booking fails; non-propagation, where even if the car fails we can still
proceed with the others; down-specific-propagation, where if one of Alitalia or Meridiana
succeed then the other should be aborted; down-propagation, where the booking (the
current job) is told to abort by some higher-up agent (not pictured) and so must abort
all its children; spontaneous-failure, where the booking itself might decide to fail and
so must abort its children.

tions fail (partial atomicity). If a transaction succeeds we also consider a second
partition of the nested transactions: we will accept the success of the first group,
and will abort the others. For instance, Fig.1. uses the following subsets:

If all in this subset succeeded... then accept these... and undo these
{Alitalia} {Alitalia,car} {Meridiana}
{Meridiana} {Meridiana, car} {Alitalia}

To simplify matters, the work in this paper considers only a single row of the
table (ie. one necessary/unnecessary partition and one accept/reject partition),
rather than multiple rows in each protocol specification. To handle multiple rows,
something like Join patterns [16] might be used.

3 Design of Transaction Managers

In this section we implement (nested) transactions and their compensation-
triggering. We implement them in the asynchronous pi calculus, using a general-
ization of the two phase commit implementation given by Berger and Honda [17].

We assume a set I of transactions ranged over by i. The tree-like hierarchy
of these transactions is denoted by a relation par : I 7→ I which indicates
the immediate parent of a transaction; writing parn(i) for n applications of
the pair function, we assume that if i = parm(j) then do not exists n such
that j = parn(i). Define the set of i’s children C(i) = {j : par(j) = i}. As
discussed in the introduction, we consider only a single ‘necessary’ partition of
C(i) into N(i), U(i) – with the meaning that success of all N(i) is necessary
for i to succeed, while U(i) are unnecessary. We therefore consider just a single



consequent partition of C(i) into A(i), R(i) – where all of A(i) are accepted,
while all of R(i) are rejected (undone).

We now describe the operation of each transaction block. We illustrate with
transaction i, which has children c̃.

vsi

msiai

(1) (5)

(2)

(3) (4)

vc dc

vi

oki

faili

di

mc

(1) This transaction i itself makes a non-deterministic ‘self’ vote vsi. Also, all
of the children c make their votes vc. All these votes are made using left/right
notation (Table 1). (2) Each vote is transformed into an ‘internal message’ m.
The purpose of this translation is to separate necessary child votes N(i) from
unnecessary votes U(i). Each internal message mc means that the child either
voted success (left), or it was unnecessary. But if a child should vote failure (right)
and was necessary, it will make an ‘abort’ signal ai instead. (3) If all internal
messages msi/mc arrive, then the transaction i as a whole can succeed, and so
indicates success (left) to its parent over the channel vi. But if even one abort
message ai was received, then the transaction as a whole fails, and so it indicates
failure (right). (4) Eventually the parent p will know whether to accept i, or to
abort/undo it. This decision is communicated to i via the ‘decision’ channel di,
and so determines i’s final state. The transaction i can indicate its final state via
the messages oki/aborti. (5) Finally, the decision is propagated down to all the
children c. The accepted children, those in A(i), will be told the same decision
as i received. The rejected children, those in R(i), will be told to abort/undo
regardless. The code Ti for transaction i plus all its descendants, is as follows.

Ti = νai,msi, vsi, m̃C(i), ṽC(i), d̃C(i). (transaction)

(Ti.sv | Ti.m | Ti.col |
∏

c∈C(i)

Tc)

Ti.sv = vs ileft⊕ vs iright (self-vote)



Ti.m = vsi[ms i, a i] |
∏

c∈N(i)

vc[m c, a i] |
∏

c∈U(i)

vc[m c,m c] (internals)

Ti.col = ai.(v iright | Ti.fail) (collate votes)
| m̃C(i).msi.(v ileft | di[Ti.ok, Ti.fail])

Ti.ok = ok i |
∏

c∈A(i)

d cleft|
∏

c∈R(i)

d cright (ok)

Ti.fail = abort i |
∏

c∈C(i)

d cright (fail)

To explain the code, the transaction Ti consists of three parts: Ti.sv generates
its self-vote, Ti.m fulfills step (2) by converting votes into internal messages, and
Ti.col collates votes and receives the final decision, for steps (3–5). We have also
included all the children transactions Tc, since they refer to the local channels
ṽC(i) and d̃C(i).

The self-vote Ti.sv makes a non-deterministic choice (using ⊕) to become, at
runtime, a vote for success or failure.

The internals Ti.m convert all the votes into internal messages according to
whether the vote came from a needed component N(i) or an unnecessary one
U(i). We count the self-vote as necessary. An internal message mc is generated
if the child c voted success, or if the child c was unnecessary. An internal abort
message ai is generated otherwise (i.e. a necessary child voted for failure).

The collator Ti.col will either receive all the internal messages mc/msi, or
will receive at least one internal abort ai. The abort signifies that a necessary
part failed. If this happens, then the component i signals a failure to its parent on
channel vi, and proceeds with Ti.fail to tell abort its children. But if all internal
messages were received, then it tells its parent about its success, and awaits the
parent’s final verdict.

The ok/fail processes Ti.ok and Ti.fail indicate the final state of this transac-
tion, using the global channels ok i and abort i. In the case of OK, the accepted
children A(i) are told of the positive verdict, while the rejected children R(i) are
told to fail. In the case of FAIL, all children are told to fail.

Let us recall the five modes of propagation identified in Fig.1. and explain
how they are reflected in the code. Let us denote the Alitalia transaction with ia,
Meridiana with im, car rental with ic and travel booking with i. As an example
we consider the following row:

If all in this subset succeeded... then accept these... and undo these
{Alitalia} {Alitalia,car} {Meridiana}



Up-propagation is achieved by enclosing ia in the set N(i) so that if Ti.m receives
the failure vote v ia it eventually fails. It fails by sending a message a i that
unblocks the abort branch of Ti.col. Non-proragation is achieved by enclosing
ic in the set U(i) so that Ti.m reacts to both success and failure messages m ic

.
Down-specific proragation is achieved by enclosing im in the set R(i) so that
Ti.ok communicates, in any case, a failure decision to im. Down proragation is
implemented by the message d i that in case of local success of i notifies the
upper outcome.

Finally, we collect the overall tree of transactions in a test harness H. We
suppose the root of the tree is transaction i:

H = νvi, di.
(
Ti | vi[d ileft, d iright]

)
.

This harness merely executes the root transaction Ti, waits for its overall vote
vi, and immediately sends back the vote as the decision if vote was success. If
vote was fail there is no need of decision communication: the child already had
its outcome without waiting any signal.

The following lemma describes the observable behavior a of generic transac-
tions. Ti takes a local decision on the basis of the votes of its children (if there
are any) and of its non deterministic self-vote. In any case Ti communicates its
vote to the parent. If it locally failed it terminates with failure soon. If it did
not locally fail it waits for the global decision of the parent and its final outcome
depends from it.

Lemma 1. If C(i) = ∅, then Ti ≈ (v ileft | di[ok i, abort i])⊕(v iright | abort i).

Proof sketch. When C(i) = ∅, then also N(i) = U(i) = A(i) = R(i) = ∅. Hence
Ti simplifies to just

Ti =νai,msi, vsi.( (vsi left⊕ vsi righto) | vsi[msi , ai ]

| ai.(vi right | abort i) | msi.(vi left | di[oki , abort i]) ).

Observe that the only action Ti can make is a τ move, choosing whether vsi

votes left or right. This is reflected by the right hand side.

4 Transaction Properties

In this section we prove some properties of the protocol: Durability, Eventuality
and Local Atomicity. Durability means that each node reaches no more than
one outcome and, in general, that the only observable behavior of the protocol
is the set of outcome notifications. Eventuality implies the absence of deadlock
in the protocol: an outcome is achieved in every node of the tree. Finally we
consider Local Atomicity. Normally, atomicity is the property that either every
transaction succeeds or every transaction fails. We have seen that this is too strict
for business transactions. Instead, local atomicity is just the property that if one
transaction fails, then all its children fail. Let us start by defining a transaction’s
descendants set.



Definition 2 (Descendants). Define D(i) = {j : ∃n.i = parn(j)}.

The precise pattern of the ‘mountains’ (Fig.2.) is determined by the compile-time
choice of which failures propagate, ie. by the partitions of D(i), N(i)/U(i) and
A(i)/R(i), and also by the run-time non-deterministic self-vote made by each
transaction. We start with the proposition that, after the transaction has finished
executing, it ends up in a state where every node has made a single choice (either
ok i or abort i), such that the set of all nodes respects local atomicity.

Fig. 2. Local atomicity may be pictured as ‘mountains’, where the shaded mountains
represents those nodes, in the transactions tree, that have failed.

Before starting the lemmas we remark upon conventions. Recall the syntactic
sugar for selection (Table 1):

x[P, Q] = νu, v.(x u, v | u.P | v.Q), with u, v fresh (selection)

x left = x(u, v).u

x right = x(u, v).v

We will use shorthand labels x(left), x(right), x left, x right, with the following
transitions:

x[P, Q]
x(left)
=⇒ P x[P, Q]

x(right)
=⇒ Q

x left
x left
=⇒ 0 x right

x right
=⇒ 0

P
x left
=⇒ P ′ Q

x(left)
=⇒ Q′

P | Q τ
=⇒ P ′ | Q′

P
x right
=⇒ P ′ Q

x(right)
=⇒ Q′

P | Q τ
=⇒ P ′ | Q′

and also equivalent versions of (res) and (par). These rules are satisfactory
abstractions of the actual selection transitions, so long as the process in ques-
tion only ever uses selection channels appropriately (e.g. there is no x[P,Q] |
x(u, v).(u | v )). In some cases we want to refer to generic actions, i.e. votes
and decisions, indifferently from their specific types: v i stands for a generic vote
from i (v ileft or v iright arbitrarily), d i stands for an arbitrary decision (d ileft
or d iright). We will also refer to generic outcome notifications (abort i or ok i)
with ouctome i.



Durability

We now prove durability: the observable behavior is never anything other than a
single outcome notification (ok i/abort i) for each node. The property is proved
in Theorem 5; we present some auxiliary lemmas first.

Lemma 3.

1. νai, msi, m̃C(i).(Ti.m | ai.P | m̃C(i).msi.Q) . vsi[0, 0] | P⊕Q | ∏c∈C(i) vc[0, 0].
2. P ⊕ di[Q,P ] . P ⊕ (di[0, 0] | P ⊕Q).
3. (P1 | P2)⊕ (Q1 | Q2) . (P1 ⊕Q1) | (P2 ⊕Q2).
4. P1 ⊕ P2 ≈ P1 ⊕ (P2 ⊕ P1).

Proposition 4. νvi, di.Ti .
∏

j∈D(i)(abort j ⊕ ok j).

Proof. By induction on the depth of the tree.
Base Case. C(i) = ∅. By Lemma 1, Ti ≈ (v ileft|di[ok i, abort i])⊕(v iright|abort i).
Applying now Lemma 3 (case 2, 1 and 3) to the right hand term

Ti . (ok i ⊕ abort i) | (v ileft⊕ v ileft) | di[0, 0].

Trivially νvi, di.Ti . (abort i ⊕ ok i).
Inductive Case. let us consider a generic node Ti. We have for inductive hy-
pothesis that ∀c ∈ C(i), νvc, dc.Tc .

∏
j∈D(c)(abort j⊕ok j). It is straightforward

that

νṽC(i), d̃C(i).
∏

c∈C(i)

Tc . A where A =
∏

c∈C(i)

∏

j∈D(c)

(abort j ⊕ ok j).

By the standard results properties of ≈ (Table 1) we have the following:

Ti ≈ νvsi, ṽC(i), d̃C(i).(
∏

c∈C(i)

Tc | Ti.sv | νai,msi, m̃C(i).(Ti.m | Ti.col))

. νvsi, ṽC(i), d̃C(i).(A | Ti.sv | vsi[0, 0] |
∏

c∈C(i)

vc[0, 0] | P ⊕Q) (Lemma 3.1)

. νd̃C(i).((P ⊕Q) | νṽC(i).(
∏

c∈C(i)

vc[0, 0]) | νvsi.(vsi[0, 0] | Ti.sv) | A. (structural)

Trivially νvsi.(vsi[0, 0] | Ti.sv) ≈ 0 and νṽC(i).(
∏

c∈C(i) vc[0, 0]) ≈ 0 so

Ti . νd̃C(i).((P ⊕Q) | A)

where P = v iright | Ti.fail and Q = v ileft|di[Ti.ok, Ti.fail]). By Lemma 3.2,

Ti . νd̃C(i).((Ti.fail⊕ di[Ti.ok, Ti.fail]) | (v iright⊕ v ileft) | A)

≈νd̃C(i).((Ti.fail⊕ (di[0, 0] | (Ti.ok⊕ Ti.fail))) | (v iright⊕ v ileft) | A) (Lemma 3.1)

≈νd̃C(i).((abort i ⊕ (ok i ⊕ abort i)) | R | di[0, 0] | (v iright⊕ v ileft) | A) (Lemma 3.2)



where R is obtained extracting the decision propagation from Ti.ok and Ti.fail

R =
∏

c∈C(i)

d cright⊕ ((
∏

c∈A(i)

d cleft |
∏

c∈R(i)

d cright)⊕
∏

c∈C(i)

d cright).

≈ (abort i ⊕ (ok i ⊕ abort i)) | d̃C(i).R | di[0, 0] | (v iright⊕ v ileft) | A (structural)

≈ (abort i ⊕ (ok i ⊕ abort i)) | di[0, 0] | (v iright⊕ v ileft) | A (structural)

. (abort i ⊕ ok i) | di[0, 0] | (v iright⊕ v ileft) | A. (Lemma 3.3)

Note that νvi.(v iright⊕ v ileft) ≈ 0 and νdi.di[0, 0] ≈ 0, so (structural)

νvi, diTi .
∏

j∈D(i)

(abort j ⊕ ok j).

Corollary 5 (Durability). H .
∏

i∈I(abort j ⊕ ok j).

Eventuality

We prove that any node of the tree can always notify an outcome (none of the
nodes deadlocks). Lemma 6 proves that each transaction can eventually vote for
each possible computation. Lemma 7 provides that, depending on the vote of a
node, we can always get a decision from the parent that unblocks one of the final
processes Ti.ok or Ti.fail. Then we prove (Lemma 8) that if a node votes and its
provided with a decision then it and all the subtree is able to have an outcome.
This leads directly to Corollary 9 that deals with the observable behavior of H.
The following lemma is that a transaction can always eventually vote, no matter
what sequence of internal moves it has already made.

Lemma 6. If Ti
τ=⇒ T ′i then T ′i

v ileft
=⇒ or T ′i

v iright
=⇒ .

Henceforth we use the shorthand z̃ = ai,msi, vsi, m̃C(i), ṽC(i), d̃C(i) to refer
to the scope of a node Ti.

Lemma 7.

1. If Ti
v ileft
=⇒ T ′i then T ′i

di(left)
=⇒ νz̃.(Ti.ok | P ) for some P and T ′i

diright
=⇒

νz̃.(Ti.fail | Q) for some Q,
2. If Ti

v ileft
=⇒ T ′i then T ′i

τ=⇒ νz̃.(Ti.fail | P ) for some P .

Proof sketch. 1. If Ti was able to perform a v ileft transition it has previously
unblocked the successful branch of Ti.col that is v ileft | di[Ti.ok, Ti.fail].
After the v ileft transition it will become

νz̃.(ai.(v iright | Ti.fail) | di[Ti.ok, Ti.fail] |
∏

c∈C(i)

T ′c).



The only possible transitions are the following:

di(left)−→ νz̃.(ai.(v iright | Ti.fail) | Ti.ok |
∏

c∈C(i)

T ′c), or

di(right)−→ νz̃.(ai.(v iright | Ti.fail) | Ti.fail |
∏

c∈C(i)

T ′c).

2. If Ti is able to perform a v̄iright action it has already triggered the failing
action of Ti.com. After sending the output v̄iright the process of the node i
is as follows:

νz̃.(Ti.fail | m̃C .msi.(v ileft | di[Ti.ok, Ti.fail]) |
∏

c∈C(i)

T ′c).

Note: by hypothesis, only τ moves have been performed hence Ti.fail has not
reacted.

Lemma 8. If T ′i : Ti
v ileft
=⇒ T ′i or Ti

v iright
=⇒ T ′i then for every j ∈ {i}∪D(i), we

have T ′i | d i
ok j=⇒ or T ′i | d i

abort j=⇒ .

Proof. Let us reason by induction on the depth of the level of i.
Base Case. C(i) = ∅. By Lemma 6, Ti

v i−→ T ′i . Thus by Lemma 7 T ′i |
d i

outcome i=⇒ .
Inductive Case. By Lemma 6 we have Ti

v i−→ T ′i . By Lemma 7 we have
T ′i | d i

τ=⇒ νz̃.(Ti.ok | P ) for some P or T ′i | d i
τ=⇒ νz̃.(Ti.fail | P ) for

some P . Recall the definition of Ti.ok and Ti.abort:

Ti.ok = ok i |
∏

c∈A(i)

d cleft |
∏

c∈R(i)

d cright

Ti.fail = abort i |
∏

c∈C(i)

d cright

In both cases it is possible, from νz̃.(Ti.ok | P ), to perform the following actions:

– d c−→ such that by inductive hypothesis ∀j ∈ D(c) ∪ {c}, T ′c | d c
outcome j=⇒ ,

– outcome i−→ .

It holds so that for any T ′i such that Ti
v i=⇒ T ′i then for every j ∈ {i} ∪ D(i),

T ′i | d i
outcome j=⇒ .

Corollary 9 (Eventuality). For every H ′ such that H
τ=⇒ H ′ then, for every

j ∈ I, where H ′ ok i=⇒ or H ′ abort i=⇒ .



Local Atomicity

To prove Local Atomicity we simplify (Lemma 10) the behavior of Ti by consid-
ering its state after the it voted. Recall that by Lemma 6, each node eventually
votes. Then we show (Lemma 11) that if a node i receives a failure decision or
votes failure itself then none of the nodes in the subtree of i will ever notify
a successful outcome. Finally we show that any node abort just if it received a
failure notification or votes failure itself and generalize the property to the whole
protocol H.

Lemma 10.

1. If Ti
v ileft
=⇒ T ′i then T ′i ≈ νd̃C(i).(di[Ti.ok, Ti.fail] |

∏
c∈C(i) T ′c) with Tc

v c=⇒ T ′c.

2. If Ti
v iright
=⇒ T ′i then T ′i ≈ νd̃C(i).(Ti.fail |

∏
c∈C(i) T ′c) with Tc

v c=⇒ T ′c or
Tc ⇒ T ′c.

Lemma 11.

1. If Ti
v ileft
=⇒ T ′i then @j ∈ {i} ∪D(i) such that T ′i | d iright

ok j=⇒,

2. if Ti
v iright
=⇒ T ′i then @j ∈ {i} ∪D(i) such that T ′i

ok j=⇒.

Proof. For induction on the depth of the tree.
Base Case. the tree is composed by node Ti with C(i) = ∅. From Lemma 1
Ti ≈ Tsi with Tsi = (v ileft|di[ok i, abort i]) ⊕ (v iright|abort i). The only step
that Tsi can perform is a τ action corresponding to the choice of one of the two
branches.

1. If the left branch is chose then the only possible sequence of steps is: Tsi
τ−→

v ileft|di[ok i, abort i]
v ileft
=⇒ di[ok i, abort i]. Hence di[ok i, abort i] | d iright

τ=⇒
abort i

abort i=⇒ .
2. If the right branch is chose then the only possible sequence of steps is: Tsi

τ−→
v iright|abort i

v iright
=⇒ abort i

abort i=⇒ .

Inductive Case. we have that Ti
v i=⇒ T ′i . Depending on the vote type we have

two cases:

1. If Ti
v ileft
=⇒ T ′i then by Lemma 10 T ′i ≈ νd̃C(i).(di[Ti.ok, Ti.fail] | ∏c∈C(i) T ′c).

Hence
νdi.(T ′i | d iright) ≈ Ti.fail |

∏

c∈C(i)

T ′c).

Here i will surely fail (and just fail for durability (Theorem 5)) and will also
provide a d cright decision ∀c ∈ C(i) that for inductive hypothesis grant that

@j ∈ {c} ∪D(c) such that T ′c | d iright
ok j=⇒.

2. If Ti
v iright
=⇒ T ′i then for Lemma 10 T ′i ≈ νd̃C(i).(Ti.fail | ∏

c∈C(i)). The case
is analogue to the previous one here.



Theorem 12 (Local Atomicity). If H
abort i=⇒ H ′ then @j ∈ D(i) such that

H ′ ok j=⇒.

Proof. If H
abort i=⇒ H ′ then i must have failed for one of the following reasons:

– i voted v̄iright, the result follows from Lemma 11.2,
– i voted v̄ileft and received a failure decision from the parent d̄iright. The

result follows from Lemma 11.1.

5 Conclusions

We discussed a possible behavior for long running transactions in a context of
hierarchical relations with other transactions, represented by an arbitrarily deep
tree. The exercise had the aim to clarify two principal aspects.

The first is the role of cohesors and atoms in the protocol, their behavior
and their relation. We proposed a flexible approach for describing the relation
between votes of a sub-transaction and parent outcome type, and again between
parent outcome and children outcome. Atoms can be modelled here as particular
cases of cohesors. This flexible behavior is present in also in BTP and WS-
Transactions. The paper provides an implementation with the pi calculus.

The second aspect discussed in this paper is the mechanism of compensation
triggering. Compensations are a straightforward addition to the current work:
each failure notification aborti is associated to the execution of the compensa-
tion of transaction i. Transactions are thought as independent entities, maybe
from different companies, connected by a superior-inferior (caller-provider) links.
Those links create a hierarchical structure of arbitrary depth. Our mechanism
coordinates the triggering of compensations: when a node i fails the protocol
creates the global compensation process by composing the local compensations
of all the nodes in the subtree of i.

We proved that each transaction has no more than one outcome (Durability)
and that the protocol does not deadlock (Eventuality). We also proved that if
one node fails then its entire subtree will also fail (Local Atomicity).

Other aspects have yet to be considered. It would be desirable to allow an
explicit representation of the choice of sets N(i), A(i), U(i), R(i) at run time, ac-
cording to the computation feedback. This aspect is indirectly managed (it could
be simulated with Join patterns). Other aspects are the introduction of concepts
like localities and unreliability in communication between remote transactions.
Managing these would probably lead to the introduction of timers in order to
avoid deadlock pathologies.

Acknowledgement. The technical part of this paper owes much to discussions
with Lucian Wischik, and the general ideas on transaction behavior also owe
much to Greg Meredith. I thank Paolo Ciancarini, Cosimo Laneve, Gianluigi
Zavattaro and the anonymous referees for their useful comments.
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Appendix: Proofs

Note: the present appendix is intended only for completeness of the submission;
it is not intended to be part of the final paper.

As a shorthand let us denote with C ⊆ C(i) the set of votes that have not
been received from the children; similarly we define N ⊆ N(i), U ⊆ U(i).
Proof of Lemma 3.1
νai,msi, m̃C(i).(Ti.m | ai.P | m̃C(i).msi.Q) . vsi[0, 0] | P⊕Q | ∏c∈C(i) vc[0, 0].

Proof sketch. Let A = νai,msi, m̃C(i).(Ti.m | ai.P | m̃C(i).msi.Q) and B =
vsi[0, 0] | P ⊕Q | ∏c∈C(i) vc[0, 0]. Recall that

Ti.m = vsi[ms i, a i] |
∏

c∈N(i)

vc[m c, a i] |
∏

c∈U(i)

vc[m c, m c]

We consider informally all possible transitions made by A:

1. A transition
vsi(left)−→ derived from Ti.m

vsi(left)−→ ms i |
∏

c∈N(i) vc[m c, a i] |
∏

c∈U(i) vc[m c, m c], or similarly
vsi(right)−→ from Ti.m

vsi(right)−→ a i |
∏

c∈N(i) vc[m c, a i] |∏
c∈U(i) vc[m c, m c]. B can also make the same transition.

2. A transition
vc(right)−→ derived from

– Ti.m
vc(right)−→ vsi[ms i, a i] |

∏
j∈N(i)\c vj [m j , a i] | a i |

∏
c∈U(i) vc[m c, m c]

if c ∈ N(i).

– Ti.m
vc(right)−→ vsi[ms i, a i] |

∏
c∈N(i) vc[m c, a i] |

∏
j∈U(i)\c vj [m j , m j ] |

m j if c ∈ U(i).

or similarly a transition
vc(left)−→ that add a m c term to the process in both

cases (c ∈ N(i) or c ∈ U(i)). In these cases B is able to perform the same

transition: B
vc(right)−→ ∏

j∈C(i)\c vj [0, 0] | . . . or B
vc(left)−→ ∏

j∈C(i)\c vj [0, 0] |
. . ..

3. Further repetitions of steps 1 and 2, producing more āi, more m̄c (but at
most one for each transaction c ∈ C(i)), and at most one self vote m̄si. B is
always able to behave in the same way since it has an input process for all
the possible votes.

4. Subsequently A can also make τ steps deriving from the reaction of a vote
m c with the branch m̃C(i).msi.Q; B can match this without making any
transitions. In every instant, given the set C of votes that A has not collected
yet, B is in the form B = vsi[0, 0] | P ⊕Q | ∏c∈C vc[0, 0] if the self vote has
not been collected or B = P ⊕Q | ∏c∈C vc[0, 0] otherwise.

5. Finally A can make one of the following transitions:
– if an aborting vote has been received we have a process a i in parallel with

the failure branch ai.P . With a τ action the process P can be unblocked.
Also B can make a τ action deriving from the nondeterministic choice
P ⊕ Q

τ−→ P . Notice that if A unblocked P is because it received an
output and, since we have exactly one per child then Q will never be



unblocked. Notice also that now, both A and B can continue to make
analogues inputs on channels vc ∈ C and vsi.

– If a successful vote has been received and caught from each c in C(i) and
from vsi; then A can unblock Q. In this case B can make a τ step and
become Q. We have then A reduced to νai,msi, m̃C(i).(ai.P | Q) and
trivially A . B.

Proof of Lemma 6
If Ti

τ=⇒ T ′i then T ′i
v ileft
=⇒ or T ′i

v iright
=⇒ .

Proof sketch. By induction on the depth of the tree. For the Base Case we
have C(i) = ∅. It follows that Ti ≈ (v ileft|di[ok i, abort i]) ⊕ (v iright|abort i)
(Lemma 1). Let B = (v ileft|di[ok i, abort i]) ⊕ (v iright|abort i). If Ti

τ=⇒ T ′i
then also B

τ=⇒ B′ for some B′, and T ′i ≈ B′. Clearly, for any such B′, then
B′ v i=⇒. Hence also Ti

v i=⇒.
For the Inductive Case we assume that Tj

τ=⇒ T ′j implies T ′j
v j=⇒ for all j ∈ C(i);

we will prove that Ti
τ=⇒ T ′i implies T ′i

v i=⇒. We also define the process T ′i .col as
achieved from Ti.col with zero or more transitions mc−→ with c ∈ C:

T ′i .col = ai.(v iright | Ti.fail) | m̃C .msi.(v ileft|di[Ti.ok, Ti.fail])

Ti can do one of the following τ -steps:

1. a self vote corresponding to the choice vs ileft⊕vs iright → vs ileft (vs ileft⊕
vs iright → vs iright),

2. an internal move by a descendant (d ∈ D(i)),
3. receiving a vote from a child c ∈ U corresponding to

∏

j∈U

vj [m j , m j ]
v c−→ m c |

∏

j∈U\c
vj [m j , m j ]

4. receiving a vote from a child c ∈ N corresponding to one of the following

∏

j∈N

vc[m j , a i]
v cleft−→ m c |

∏

c∈N\c
vj [m j , a i]

∏

j∈N

vc[m j , a i]
v cright−→ a i |

∏

j∈N\c
vj [m j , a i]

5. receiving the self vote: vsc[ms i, a i]
vs ileft−→ ms i for success and vsc[ms i, a i]

vs ilright−→
a i for failure.

6. catching a successful vote from c ∈ C descending from an action T ′i .col
mc=⇒:

mc | T ′i .col τ−→ ai.(v iright | Ti.fail) | m̃C\{c}.msi.(v ileft|di[Ti.ok, Ti.fail])

In all the cases, eventually we have one of the following:



– At least one failure vote has been received from a process in N(i):

a i | T ′i .col τ−→ v iright | Ti.fail | m̃C′(i).msi.(v ileft|di[Ti.ok, Ti.fail]).

Hence the action
v iright−→ is possible, satisfying the lemma.

– No failure votes have been received. In this case, by inductive hypothesis,
∀j ∈ N(i) we have Tj

v ileft
=⇒ ∀j ∈ N(j), Tj

v ileft
=⇒ or Tj

v iright
=⇒ ∀j ∈ U(j).

The set of votes led, via reduction 2 and 3, to a set
∏

c∈C(i) m c of output
messages. Also the vote v̄sileft led, via reduction 4, to the output ms i.

νai, msi, m̃C(i).(
∏

c∈C(i)

m c | ms i | Ti.col)

= νai, msi, m̃C(i).(
∏

c∈C(i)

m c | ms i | ai.(v iright | Ti.fail) | m̃C .msi.(v ileft|di[Ti.ok, Ti.fail]))

τ
=⇒ ≈ νai, msi.(ms i | ai.(v iright | Ti.fail) | msi.(v ileft|di[Ti.ok, Ti.fail]))

τ
=⇒ ≈ v ileft | di[Ti.ok, Ti.fail]

v ileft−→

Hence the lemma is satisfied.

Proof of Lemma 10

1. If Ti
v ileft
=⇒ T ′i then T ′i ≈ νd̃C(i).(di[Ti.ok, Ti.fail] | ∏c∈C(i) T ′c) with Tc

v c=⇒ T ′c.

2. If Ti
v iright
=⇒ T ′i then T ′i ≈ νd̃C(i).(Ti.fail | ∏

c∈C(i) T ′c) with Tc
v c=⇒ T ′c or

Tc ⇒ T ′c.

Proof sketch. If Ti
v ileft
=⇒ T ′i then Ti has gone through all the steps descending

by what follows (not necessarily in given order)

– Ti.sv
τ−→ vs ileft and Tc

v cleft−→ T ′c ∀c ∈ C(i): i needs all the success votes
for unblocking its own success vote,

– Ti.m performed a transition m c−→ for each c ∈ C(i) and the transition ms i−→.
Eventually Ti.m is reduced to 0.

– Ti.col interacted with Ti.m performing a sequence of mc−→ actions for each c ∈
C(i) and a step msi−→. The process Ti.col is eventually reduced to ai.(v iright|Ti.fail) |
v ileft | di[Ti.ok, Ti.fail]



After all these steps (that represent the only possible set of steps) we have

T ′i = νz̃.(ai.(v iright|Ti.fail) | di[Ti.ok, Ti.fail] |
∏

c∈C(i)

T ′c)

≈ νd̃C(i).(di[Ti.ok, Ti.fail] |
∏

c∈C(i)

T ′c).

If Ti
v iright
=⇒ T ′i then Ti has gone through the following steps descending by what

follows (not necessarily in given order)

– at least one between Ti.sv
τ−→ vs iright and Tc

v cright−→ T ′c since i needs at
least one failure vote to unblock the failure branch ai.(v i | Ti.fail),

– optionally one of the Ti.sv
τ−→ vs ileft and Tc

v cleft−→
– Ti.m performed at least one step a i−→ for the (one or more) failure votes

received and optionally some steps m c−→ and the self vote ms i−→.
– Ti.col interacted with Ti.m at least once with a ai−→ action that unblocks the

failure branch. Optionally is could have received some messages along mc.
Ti.col is eventually reduced to v iright | Ti.fail | m̃C .msi.(v ileft|di[Ti.ok, Ti.fail]).

After all these steps (that represent the only possible set of steps) we have

T ′i = νz̃.(Ti.fail | m̃C .msi.(v ileft|di[Ti.ok, Ti.fail]) | G |
∏

c∈C(i)

T ′c).

where G encloses the possibly remaining parts of Ti.sv and Ti.m. It is evident that
νmsi, vsi, m̃C(i), ṽC(i).(m̃C .msi.(v ileft|di[Ti.ok, Ti.fail]) | G) ≈ 0 since it can
just perform τ actions and at least a missing success prevents v ileft|di[Ti.ok, Ti.fail]
to be unblocked. It follows:

T ′i ≈ νd̃C(i).(Ti.fail |
∏

c∈C(i)

T ′c).


