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This thesis develops a new approach to the theory of datatypes based on separating
data and storage resulting in a class of datatype called a container. The extension of
a container is a functor which can be regarded as a generalised polynomial functor in
type variables. A representation theorem allows every natural transformation between
container functors to be represented as a unique pair of morphisms in a category.

Under suitable assumptions on the ambient category container functors are closed
under composition, limits, coproducts and the construction of initial algebras and final
coalgebras. These closure properties allow containers to provide a functorial semantics
for an important class of polymorphic types including the strictly positive types.

Since polymorphic functions between functorial polymorphic types correspond to
natural transformations, every polymorphic function can be represented as a container
morphism; this simplifies reasoning about such functions and provides a framework
for developing concepts of generic programming.

Intuitionistic well-founded trees or W-types are the initial algebras of container
functors in one parameter; the construction of the initial algebra of a container in more
than one parameter leads to the solution of a problem left incomplete by earlier work
of Dybjer.

We also find that containers provide a suitable framework to define the derivative of
a functor as a kind of linear exponential. We show that the use of containers is essential
for this approach.

The theory is developed in the context of a fairly general category to allow for
a wide choice of applications. We use the language of dependent type theory to
develop the theory of containers in an arbitrary extensive locally cartesian closed
category; much of the development in this thesis can also be generalised to display
map categories. We develop the appropriate internal language and its interpretation in
a category with families.
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Chapter 1

Introduction

This chapter introduces the thesis with an overview of the chapters, and provides some

basic definitions and useful background results.

1.1 Introduction

This thesis develops a theory of data types in the form of generalised polynomials,

referred to here as containers. Each container is represented by an internal family in

a suitable ambient category C and has an extension, or associated container functor,

assigning to each X ∈C a type T X ∈C constructed using local exponentials. Thus the

extension of a container can be thought of as a polymorphic data type in one or more

variables.

The polymorphic datatypes represented by containers have a couple of special

characteristics. Firstly, the assignment of types to type variables in a container

extension is functorial; this means that polymorphic types contravariant in type

variables are not captured by containers. Secondly, containers can be regarded as

defining a “data independent” representation of datatypes.

Polymorphic functions between functorial polymorphic datatypes can be regarded

as natural transformations between the functors associated with the datatypes (Wadler,

1990; Bainbridge et al., 1990). In this thesis I show that it is possible to define

morphisms between containers to precisely represent natural transformations between

container functors (theorem 4.3.3); this provides a simple abstract description of

polymorphic functions and helps in the proof of a number of important results about

1



CHAPTER 1. INTRODUCTION 2

containers.

The heart of this thesis is the construction of a category G of containers together

with a full and faithful functor T :G → [C,C] assigning to each container its extension.

An important generalisation of this construction is the extension of a container to

multiple parameters: this corresponds to a polymorphic type with multiple type

variables X1, . . . ,Xn. This notion of a container is extended to define for each set I

the category GI of I-indexed containers with extension functor T :GI → [CI ,C].

I show that these containers have the right closure properties to model the strictly

positive types. Containers can therefore be used to provide a categorical semantics for

a important class of particularly well-behaved polymorphic types. The thesis concludes

with an application of containers to the derivatives of functors.

The theory of containers is developed in a fairly general framework. The ambient

category C is required to be be extensive and locally cartesian closed; with the addition

of W-types and their dual, M-types, this is sufficient to model strictly positive types

and obtain the results of this thesis. In particular, the category C itself supports a full

interpretation of dependent type theory with Sigma, Pi, equality and coproduct types, in

other words, a model of Martin-Löf type theory without universes (Martin-Löf, 1974).

The theory of containers can be interpreted in any category supporting this

structure. This includes any elementary topos with a natural numbers object, including

for example the effective topos (Hyland, 1982). In effect this thesis develops a

theory for the interpretation of “total” functional programming, see for example Turner

(1996). Further work will be required to apply this theory to “partial” programming

and categories of domains; this is discussed briefly in chapter 7.

Throughout the rest of this thesis I will follow well established mathematical

convention in writing “we” in reference to the author (myself) and the reader, in

recognition of the effort required of any reader of mathematics.
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et al., 2003a,b).

Chapters 2 and 3 present my interpretation of fairly standard material derived
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The rest of the thesis is original material, except as cited.
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and greatest fixed points of containers could be constructed uniformly from an initial
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I would like to thank Vincent Schmitt for allowing me time to finish this work while

working on his research grant EPSRC GR/R63004/01; I also thank the University of

Leicester for funding my conference visit to present Abbott et al. (2003b). Finally I
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1.2 Overview of the Thesis

The present chapter introduces the material of this thesis and provides some

background definitions. In particular, a handful of important categorical reasoning

principles about the ambient category need to be introduced: intensional choice,

Currying and the role of disjoint coproducts.

The rest of the thesis makes extensive use of the dependently typed internal

language associated with the ambient category C, and chapters 2 and 3 are concerned

with developing this language and its semantics in some detail.

Chapter 2 concentrates on defining the syntax of the internal language and its

“naı̈ve” interpretation inC. The language allows us to freely treat an object B∈C/A of

a slice as a dependent type A ` B or even a :A ` B(a), and we will freely move between

the various representations of objects and morphisms obtained by mixing the internal

language with the more conventional language of categories.

The internal language developed here is very close to Martin-Löf type theory

(Martin-Löf, 1974; Nordström et al., 1990), and supports a variety of categorical
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interpretations. The presentation here differs from other presentations in that the purely

“substitutional” or “dependently algebraic” part of the language is carefully separated

from the type theory; this helps when dissecting the interpretation of the language.

In chapter 3 we formalise the interpretation of the language and introduce fibrations

as a framework. Most of this thesis is implicitly developed in the context of fibrations

(for example, theorem 4.3.3 depends on the use of fibred natural transformations), but

we will restrict ourselves to working in the codomain fibration throughout this thesis.

In particular this means that every morphism in the ambient category can stand as a

type in the type theory

As observed in chapter 7 all of the work in this thesis can be transferred (with a

number of precautions) into the context of a more general fibration, probably a “full

comprehension fibration” (Jacobs, 1999, 1991). In chapter 3 we set up some of the

appropriate machinery, but we stop with the introduction of categories with families.

In chapter 4 we show that (depending on the ambient category C) the categories GI

have limits and coproducts preserved by T . Similarly, functor composition is reflected

by an operation of container composition making the categories of containers into a

bicategory G equipped with a bifunctor into the 2-category of categories.

Two further notions are introduced in this chapter. An important notion is that of a

cartesian morphism of containers, which can be regarded as a kind of “linear” function;

this plays a key role in the development of derivatives. We also reference the definition

of containers to two previous definitions, namely the shapely types of Jay and Cockett

(1994) and the partial products of Dyckhoff and Tholen (1987).

In chapter 5 we examine the fixed points of container functors and show that

containers are closed under the construction of initial algebras and final coalgebras.

In the case of a container in one parameter this is precisely the construction of the W-

type or its dual, the M-type; in the case of containers in multiple parameters we need

to solve a tricky equation in inductive families.

At the end of chapter 5 we are in a position to see that containers provide a good

model for strictly positive types, namely those polymorphic types built up from type

variables using standard type forming operations but with restricted function types.

Chapter 6 on derivatives introduces a promising application of containers. In the

construction of fixed points we begin to see the significance of “paths” into the data (in

effect this is the import of proposition 5.5.1); in chapter 6 we make the paths into the
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data more explicit.

The notion of the “derivative” of a functor as a linear exponential is rather

surprising; in particular, the fact that the equations familiar from calculus (Leibniz,

1684) are satisfied is unexpected. As example 6.4.7 shows, this does not work

for arbitrary functors, but containers introduce a class of functors with well defined

derivatives.

Finally in chapter 7 we review the work left open by this thesis; two areas of future

development are of particular interest. First note that although we have extensively

used the language of dependent types to discuss containers, the containers in this thesis

cannot themselves capture dependent types. This can be achieved by allowing the index

“set” I in GI to be an object of C; however, to develop this in a fully satisfactory way

the abstract framework needs more work.

Secondly, the work on derivatives is capable of further development. In Joyal

(1986) and Hasegawa (2002) we learn the significance of analytic functors, which can

be captured as quotient containers by a suitable generalisation. Further it should be

possible to reduce the dependence on “decidability” in the work on derivatives.

Introducing the Internal Language

The presentation of the internal language and its interpretation in chapters 2 and 3

addresses a long standing preoccupation of the author, and can be read somewhat

separately from the rest of this thesis. The language of dependently typed algebra

is particularly powerful and is used as the basis for this thesis; we develop enough of

the theory of its semantics in fibrations to express the results about containers presented

here.

This thesis concentrates on developing categories of containers in a categoryCwith

no further imposed type structure, and in particular every morphism in C is allowed to

stand as a type. This substantially simplifies the development and allows us to ignore

the distinction between C and its type theory most of the time.

More interesting systems become possible when a distinction is made between

the category of contexts and the types in each context: this is the motivation behind

the introduction of fibrations in chapter 3. However, when dealing with dependent

type theory every type can generate a new context, so there is an intimate relationship

between the category of contexts and the fibres of types. For the purposes of this thesis
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this is conveniently captured by the categories with families of Dybjer (1995), though

one interesting weakness remains incompletely addressed: the category with families

associated with CI with contexts in C does not adequately describe the morphisms of

CI .

1.3 Introducing Containers

A container in one parameter is given by an internal family B∈C/A, which we’ll write

as (A . B): the object B can be regarded as an “A-indexed family” of objects of C.

The extension of the container (A . B) is then the functor TA.B :C→ C defined by the

expression

TA.BX ≡∑a : A. XB(a) = ∑A XB .

Here the first form (with a bound variable) uses the internal dependently typed

language; the second form is the categorical equivalent. Functors of this form can

be regarded as generalised polynomials or as data independent polymorphic datatypes.

Containers as Generalised Polynomials

Let C be a category with finite products and finite distributive coproducts, in other

words the morphism (A×B) + (A×C)→ A× (B +C) is iso. A polynomial functor

C → C can be described as inductively constructed from the identity functor idC

(representing the type variable X), constant types K and products and coproducts ×
and +. Every such type expression can be normalised into a functor of the form

PX ≡∑n :N. An×Xn ;

functors of this form on Set are referred to as normal functors in Hasegawa (2002) and

correspond to the shapely types of Jay (1995).

If we assume that C has countable coproducts (and thus has a natural numbers

object N) the family n :N ` An of coefficients of the polynomial can be internalised as

the morphism

∑NA = ∑n :N. An
π N

with projection π taking (n ∈ N,a ∈ An) to n.



CHAPTER 1. INTRODUCTION 7

Similarly we can internalise the finite set of size n as a family n :N ` Finn, for

example as the morphism N×N→ N taking (n,m) to n + m + 1. In particular, define

the family

(n,a) : ∑NA ` B(n,a)≡ Finn

by pullback of Finn along π : ∑NA→ N. The extension of this container is isomorphic

to the original polynomial functor, showing that polynomial functors can be captured

as containers.

Containers can be regarded as a generalisation of the standard theory of

polynomials where sums of arbitrary size of arbitrary exponentials are allowed.

Containers as Concrete Datatypes

An element of the extension of a container (A . B) at an object X corresponds to a

pair (a, f ) ∈ ∑A XB, where a ∈ A and f : B(a)→ X . This has a very concrete physical

interpretation in terms of a computational data structure:

• The element a ∈ A represents a choice of “shape” of data structure. Thus the

extension TA.BX can be regarded as a union over the shapes in A; this is the

meaning of ∑A.

• The function f : B(a)→ X fills in all the “positions” associated with the chosen

shape, ie B(a), with values from the type X . When each B(a) is finite this can be

implemented as an array in a concrete implementation.

A couple of examples should help to clarify this. A list [x1, . . . ,xn] consists of a number

n and a function n→ X , thus we can write List(X) ∼= ∑n :N.Xn. Similarly, a binary

tree can be described by its underlying shape (obtained by deleting the data stored at

the leaves) together with a function mapping the positions of those leaves to the data

thus:

•
• x3

x1 x2

∼=

•
•

x1
x2

x3
X

.

Note that theorem 4.3.3 tells us that every polymorphic function between container

types can be captured by a function on shapes together with a function on positions for
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each shape in the domain. In other words, every polymorphic function can be described

as a “data independent” function.

As an example consider the function rev : ListX → ListX to reverse a list; this can

be captured as the container morphism consisting of the identity on N (in other words,

the length of a reversed list is unchanged) together with a function rn : Finn→ Finn for

each n :N which reverses the order of elements in Finn; writing the elements of Finn

as {0, . . . ,n− 1}, we can write rnm ≡ n− 1−m. Having made this observation it is a

triviality to compute that rev · rev = id by simply computing rnrnm = rn(n− 1−m) =

n−1−(n−1−m) = m. Comparison of this simple proof with the proof of this identity

by induction shows the power of the container formulation.

1.4 Background Definitions

For the rest of this chapter we will define the notational background for the rest of the

thesis. A more formal development of the language is in chapters 2 and 3.

The following three notations will be used interchangeably as convenient for an

object of the slice category C/A:

B ∈ C/A A ` B a : A ` B(a) .

The underlying object of B ∈ C/A is written as one of

∑A B ∈ C ` ∑a : A. B(a) A.B ∈ C

with projection (or display map)

πB :∑A B−→ A or (a,b) : ∑a : A.B(a) ` πB(a,b) = a .

The decomposition of a Sigma type into its components will be done without comment,

so in general Γ,A,B `C, an object of the slice category C/Γ.A.B ∼= (C/Γ.A)/πB, can

be written in any of the following equivalent forms without further comment:

Γ,A,B ` C Γ, x : ∑A B ` C(πx,π ′x)

Γ, a : A, b : B ` C(a,b) Γ, (a,b) : ∑A B ` C(a,b) .

The category C will be assumed to be pullback complete and locally cartesian

closed throughout. Each morphism γ : ∆→ Γ in C induces three functors between the
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slice categories C/Γ and C/∆:

C/Γ γ∗ C/∆

∏γ

∑γ

∑γ a γ∗ a∏γ .

The action of the pullback functor γ∗ will be written using substitution in the internal

language wherever possible, and where practical pulling back along a display map πA

will be elided.

For example, given ` X and A ` B the exponential X B ∼= ∏B π∗BX can be written in

any of the following equivalent forms:

A ` XB A ` (π∗AX)B a : A ` XB(a) ,

and given ` a : A (which is to say, a map a : 1→ A) then we can write

` a∗(XB)∼= Xa∗B = XB(a) .

Just as composition of maps f and g in C will be written f ·g throughout, so also we’ll

write f ·g :CA for the composite of terms of type f :CB and g : BA.

A collection of objects (Ai)i∈I indexed by a set can also be written in the type

theory as I ` A or i : I ` Ai; we’ll mix notations as appropriate, sometimes writing ~A

when convenient. We’ll write (δi, j)i, j∈I for the I× I-indexed collection of objects with

δi,i = 1 and δi, j = 0 when i 6= j.

We will also use the notation of Sigma and Pi types for products and coproducts

in C indexed by a set, so that ∑I B can denote the colimit lim−→i∈I
Bi. This conflating of

notation should not cause any confusion for two reasons: firstly, it will be clear in each

context whether the index object is a set or an object of C; and secondly, formally

coproducts and products are Sigma and Pi types respectively in the appropriate

framework. This point will not be developed further in this thesis.

Interchanging Sigma and Pi

This subsection collects together a couple of results involving the interchange of Sigma

and Pi types. The language used here is an application of the conventions above.

Lemma 1.4.1 If C is locally cartesian closed then the following intensional choice

isomorphism holds for types Γ,A,B `C:

Γ ` ∏A ∑B C ∼= ∑∏A B ∏A ε∗C
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where Γ,∏A B,A ` ε : B is derived from the evaluation counit Γ,A ` π∗A ∏A B→ B so

∑∏A B ∏A ε∗C = ∑ f : ∏A B. ∏a : A. C(a, f a) .

Proof. Given f : ∏A ∑B C define ϕ f ≡ (π · f ,π ′ · f ); given f : ∏A B, g : ∏a : A.C(a, f a)

define ψ( f ,g)≡ λa.( f a,ga), and it is easy to calculate (ψϕ f )a = (ψ(π · f ,π ′ · f ))a =

(π f a,π ′ f a) = f a and similarly (ϕψ( f ,g))a = ( f a,ga).

In constructive type theory this principle is often referred to simply as “choice”, but

of course this begs the question of the role of the existential operator ∑B C. Although

“intensional choice” holds in any locally cartesian closed category, choice in the form

“epis split” (where the logic of existence is captured by the image of the display map

πC above) cannot normally be expected to hold. We make no use of images or the

standard logic of subobjects in this thesis, except for reasoning with equality types.

The following two principles are very familiar and are an immediate consequence

of local cartesian closure.

Lemma 1.4.2 If C is locally cartesian closed then for types Γ,A ` B and Γ `C there

is an isomorphism (the Frobenius property)

Γ ` ∑A(π∗AC×B)∼= C×∑A B

and the following Curry isomorphism holds

Γ ` ∏A(π∗AC)B ∼= C∑A B .

Proof. First observe that π∗A(UC) ∼= (π∗AU)π∗AC (we will see this in proposition

3.4.7); we can now compute C/Γ(∑A(π∗AC × B),U) ∼= C/Γ.A(π∗AC × B,π∗AU) ∼=
C/Γ.A(B,π∗A(UC))∼= C/Γ(∑A B,UC)∼= C/Γ(C×∑A B,U) natural in U .

Now use Frobenius to calculate C/Γ(U,∏A(π∗AC)B) ∼= C/Γ.A(π∗AU,(π∗AC)B) ∼=
C/Γ.A(π∗AU×B,π∗AC)∼=C/Γ(∑A(π∗AU×B),C)∼=C/Γ(U×∑A B,C)∼=C/Γ(U,C∑A B)

natural in U .

Disjoint Coproducts

Disjoint coproducts play a key role in the type theory and are essential for proving both

the preservation of coproducts by the functor T (proposition 4.5.2) and key properties

about derivatives of containers.
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Definition 1.4.3 Coproducts ∑I A for (Ai)i∈I are disjoint iff

• each coprojection κi : Ai→ ∑I A is a monomorphism;

• given indexes i 6= j ∈ I the square

0 Ai

κi

A j
κ j ∑i∈I Ai

is a pullback.

A category is extensive iff it has finite disjoint coproducts which are preserved by

pullbacks.

Note that when the ambient category is locally cartesian closed coprojections are

automatically mono and coproducts are automatically preserved by pullbacks. Note

also that in this situation any morphism into 0 is automatically an isomorphism, and so

in particular an arrow 1→ 0 exists only when C is degenerate.

A couple of important results follow immediately from the existence of disjoint

coproducts.

Proposition 1.4.4 If C is locally cartesian closed and has an initial object 0 and I-

indexed coproducts then coproducts are disjoint iff the functor

~κ∗ :C
/

∑i∈I Ai −→∏i∈I(C/Ai)

taking ∑I A ` B to (Ai ` κ∗i B)i∈I is an equivalence.

Proof. ( =⇒ ) First we’ll show that ~κ∗ = (κ∗i )i∈I is full and faithful. Note that

in the fibre C/∑I A we can write 1 ∼= ∑i∈I κi, and since products distribute over

coproducts any X in this fibre can be written as X ∼= X ×∑I~κ ∼= ∑i∈I(X × κi) ∼=
∑i∈I ∑κi

κ∗i X (here ∑I is the external coproduct and ∑κi
is the left adjoint to κ∗i ) and cal-

culate (∏i∈IC/Ai)(~κ∗X ,~κ∗Y ) = ∏i∈IC/Ai(κ∗i X ,κ∗i Y ) ∼= ∏i∈IC/∑I A(∑κi
κ∗i X ,Y ) ∼=

C/∑I A(∑i∈I ∑κi
κ∗i X ,Y )∼= C/∑I A(X ,Y ).

To show that ~κ∗ is essentially surjective let (Ai ` Bi)i∈I be given and construct

∑I A ` ◦∐~B≡ ∑i∈I ∑κi
Bi; in other words, if each Bi is a map πBi : ∑A Bi→ Ai then ◦∐~B

is the map π ◦∐~B ≡ ∑I
−→πB : ∑I

−−→
∑A B→ ∑I A. We now need to show that κ∗i ◦

∐
~B∼= Bi.
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First it will be helpful to calculate κ∗j ∑κi
X for any Ai ` X : since each κi is a

monomorphism it is easy to verify that κ∗i ∑κi
X ∼= X . On the other hand, if i 6= j then

by disjointness of coproducts κ∗j ∑κi
X ∼= ∑!A j

!∗Ai
X ∼= ∑!A j

0∼= 0 where !Ai :0→Ai. Now

we can compute κ∗j ◦
∐
~B = κ∗j ∑i∈I ∑κi

Bi
∼= ∑i∈I κ∗j ∑κi

Bi
∼= B j.

(⇐= ) Conversely, let ~κ∗ be an equivalence with adjoint ◦∐. Fix j ∈ I and let

~δ j ≡ (δi, j ∈ C/Ai)i∈I be defined as δi, j = 0 for i 6= j and δ j, j = 1 = idA j . We can see

that ◦∐~δ j
∼= κ j by the following chain of reasoning natural in u ∈ C/∑I A:

◦
∐

~δ j u in C
/

∑I A

δi, j κ∗i u in ∏i∈I(C/Ai)

1 κ∗j u in C/A j, since δi, j
∼= 0 otherwise

κ j
∼= ∑κ j

1 u in C
/

∑I A ,

and then disjointness of products follows as κ∗i κ j
∼= κ∗i ◦

∐~δ j
∼= 0.

We will write

◦
∐

I
:∏i∈I(C/Ai)−→ C

/
∑i∈I Ai

for the adjoint to ~κ∗ constructed above; in the case of binary coproducts we’ll write

A +C ` B ◦+ D

for the “parallel” coproduct of A ` B and C ` D.

The following two useful equations can be extracted from the proof of proposition

1.4.4. We will use these in the proof of proposition 4.5.2.

Corollary 1.4.5 If C is locally cartesian closed and has disjoint coproducts then for

(Ai ` Bi)i∈A and ∑I A `C the following isomorphisms hold:

κ∗i
(
◦
∐

i∈I
Bi

)
∼= Bi ∑i∈I ∑Ai

κ∗i C ∼= ∑∑I A C .

The following lemma involving disjoint coproducts will be used in the proof of theorem

6.4.3.

Lemma 1.4.6 If C has disjoint coproducts then any morphism f : 1 + A→ 1 + B in C

satisfying f ·κ = κ can be written as f = 1 + g for a unique g : A→ B.
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Proof. First observe that f can be factorised as (1+π ′) · [κ;(idA, f ·κ ′)] = [κ; f ·κ ′] =

[ f ·κ; f ·κ ′] = f thus

1 + A

1 + A

id1+A

[κ;(idA, f ·κ ′)]

f

1 + A×B

1 + π

1 + π ′

1 + B .

In other words, f can be written as a map 1→ 1 ◦+ A∗B in C/1 + A, and by proposition

1.4.4 this map corresponds to a unique 1→ A∗B in C/A; this gives us the required

g : A→ B.

We will assume henceforth that all coproducts in the ambient category C are disjoint.

Full and Faithful Functors

We conclude with a couple of observations about full and faithful functors. First note

that if F :A→ B and G :C→ D are full and faithful functors then so is the functor

F×G :A×C→ B×D.

Given a full and faithful functor G :C→ B the result below allows us to construct

a functor into C from a functor into B by specifying only the objects.

Lemma 1.4.7 If G :C→ B is a full and faithful functor then any map of objects H0 :

A→C which agrees with some functor F :A→B, making GH0X ∼= FX for each object

X ∈ A, extends to a functor H :A→ C with GH ∼= F.

Proof. Write θX :GH0X ∼= FX and ϕX ,Y :B(GX ,GY )∼=C(X ,Y ) and for f :X→Y in A

define H f ≡ ϕ(θY ·F f ·θ−1
X ). By construction θ : F → GH is a natural isomorphism,

and so in particular by reflection the assignment H is functorial.

Similarly limits and colimits can be reflected along a full and faithful functor.

Lemma 1.4.8 Given a full and faithful functor G :C→ B and a diagram D : J→ C

then if the composite diagram GD has a limit or colimit in B isomorphic to some GX

then X is the limit or colimit respectively of D in C.

Proof. Let GX ∼= lim−→GD then CJ(D,∆U)∼= BJ(GD,∆GU) ∼= B(GX ,GU)∼= C(X ,U)

natural in U , and dually for the limit.



Chapter 2

The Internal Language

In this chapter we introduce the formalism of a dependently typed internal language

and show that it can be a useful tool for deducing properties of categories with enough

structure to interpret the language.

2.1 Introducing the Internal Language

The theory of containers is a theory of a sub-class of fibred functors CI → CJ between

set-indexed powers of a locally cartesian closed category C. To support the exposition

of this theory we need to develop enough of the theory of fibred functors and the

associated internal language. In particular, categorical reasoning in this framework

can be substantially simplified once the internal language has been successfully set up.

The internal language gives us a tool for reasoning about functors and morphisms

in a category C. The internal language provides a number of important technical

advantages of which three are of particular interest.

• Reasoning with variables. The internal language allows us to use a term language

to reason about morphisms in C; in certain cases this can substantially simplify

the arguments.

• Implicit weakening. Reasoning with variables allows applications of weakening

functors π∗B :C/Γ→ C/Γ.B to be implicit, which again simplifies arguments.

• Strictness of functors, natural transformations and type constructors. By

reasoning with the internal language and its associated interpretation we are able

14
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to treat pulling back along a substitution as a strictly commutative operation and

can ignore coherence isomorphisms.

In this chapter we introduce the syntax of the internal language, and in the next we

will described its detailed interpretation via “categories with families”. This approach

will allow us to reason at a variety of different levels as appropriate and move fairly

freely between the different interpretations.

C,CI

abstraction
&

localisation
fibrations

splitting,
types &
terms categories with

families

variables,
implicit

weakening internal

language

Figure 2.1: Context of the Internal Language

Figure 2.1 summarises the structure of the presentation. After an introduction to a

simply typed internal language and an overview of its limitations we will work along

the above diagram from right to left in this chapter and the next.

A Simply Typed Internal Language

A good point of introduction is the internal language for a category with products. This

will allow us to present the basics of the full internal language and to indicate some of

the reasons why the simple language is insufficient for this thesis.

The details are fairly straightforward and illuminating, and it will then be possible

to appeal to this explanation when we come to examine the internal language for a

category with families. The following is pretty standard.

Definition 2.1.1 A simply typed signature Σ is given by a set |Σ| of types together with

a map FΣ assigning to each sequence of types 〈σ1, . . . ,σn〉 ∈ |Σ|? and τ ∈ |Σ| a set

FΣ(〈σ1, . . . ,σn〉,τ) of function symbols. Each f ∈FΣ(〈σ1, . . . ,σn〉,τ) is written as

f : σ1, . . . ,σn→ τ .

From any category C with products we can derive the standard signature ΣC for that

category by defining |ΣC| ≡ obC and FΣ(〈σ1, . . . ,σn〉,τ) ≡ C(σ1×·· ·×σn, τ) for a

canonical choice of iterated product.

Conversely, an interpretation of a signature Σ in a category C is given by

assignments J−K : Σ → obC and J−K : FΣ(〈σ1, . . . ,σn〉,τ) → C(J〈σ1, . . . ,σn〉K,JτK)
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where J〈σ1, . . . ,σn〉K ≡ Jσ1K×·· ·× JσnK for a canonical choice of iterated product. It

is clear that the standard signature ΣC is equipped with an interpretation J−K : ΣC→ C

into its original category.

Given a simply typed signature we can derive a language of “simply typed terms

in context”. Every term is defined in some context Γ ` where Γ is a finite sequence of

x : σ variable-type bindings and is assigned a particular type. The statement that t is a

well formed term of type τ in context Γ is written Γ ` t : τ; this is referred to as a “type

judgement”.

Terms are constructed from the signature using two rules. Firstly, each variable in

a context can be written as a term:

x1 : σ1, . . . , xn : σn ` xi : σi for 1≤ i≤ n.

Secondly, for each function symbol f : σ1, . . . ,σn → τ terms in any context Γ can be

constructed inductively:

Γ ` t1 : σ1 . . . Γ ` tn : σn

Γ ` f (t1, . . . , tn) : τ
.

The set of terms in context generated by these rules is the “language generated by Σ”

which we can conveniently refer to as LΣ, or as LC when Σ = ΣC.

An interpretation J−K : Σ→C extends in a straightforward way to an interpretation

on the entire language. Define the interpretation of a term Γ ` t : τ to be a morphism

JtK : JΓK→ JτK as follows:

JΓK = Jx1 : σ1, . . . ,xn : σnK≡ Jσ1K×·· ·× JσnK

JxiK≡ πi : JΓK−→ JσiK

J f (t1, . . . , tn)K≡ J f K · (Jt1K, . . . ,JtnK) .

Associated with this syntactic construction we have a notion of substitution. Here

I will define simultaneous substitution over the entire context, but it is quite usual to

define substitution of a single variable.

Definition 2.1.2 Given contexts ∆ and Γ = (x1 : σ1, . . . ,xn : σn) a context morphism

γ : ∆→ Γ is given by a tuple of terms (Γ ` γ1 : σ1, . . . , Γ ` γn : σn). Given a term

Γ ` t : τ the substitution of γ in t is a term ∆ ` t[γ ] : τ defined inductively as follows:

xi[γ]≡ γi

f (t1, . . . , tm)[γ ]≡ f (t1[γ], . . . , tm[γ]) .
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Define the interpretation of γ to be JγK ≡ (Jγ1K, . . . ,JγnK) : J∆K→ JΓK and then we can

observe that Jt[γ ]K = JtK · JγK. Composition of context morphisms Ξ δ ∆
γ

Γ

can be defined using substitution by defining (γ ·δ )i ≡ γi[δ ] for 1≤ i≤ n.

Note that substitution in a single variable t[u/y] can be constructed by building

a suitable context morphism, in particular for Γ,y : σ ` t : τ and Γ ` u : σ single

variable substitution is obtained by defining u/y : Γ→ Γ,σ by (u/y)i ≡ xi for i ≤ n

and (u/y)n+1 ≡ u.

The point of introducing this language is the calculus that comes with it. In

particular we can reason using equality and substitution in a very familiar way, and

when working in the language associated with a category all the conclusions reached

while working in the language can be reflected directly back into corresponding

conclusions in the original category.

To make this precise we’ll introduce the notion of an equational theory.

Definition 2.1.3 An equation in context in the language LΣ is a pair of terms of the

same type in the same context, written Γ ` t1 = t2 : τ .

An equational theory presentation T = (Σ,E ) is given by a signature Σ together

with a set E of equations in LΣ.

The derived equational theory is the set of all derivable equations under the following

rules of deduction (where each t = u abbreviates an equation in context Γ ` t = u : τ)

reflexivity:
t = t

transitivity:
t = u u = v

t = v
symmetry:

t = u
u = t

together with the two rules involving substitution

Γ ` t : τ γ = γ ′ : ∆−→ Γ
∆ ` t[γ] = t[γ ′]

Γ ` t = u : τ γ : ∆−→ Γ
∆ ` t[γ] = u[γ]

.

That these rules are correct is captured by the observation that if C |= E and E ` u = v

then C |= u = v. That these rules are complete is expressed by saying that E |= u = v

implies that E ` u = v.

Say that an interpretation of Σ in a category C respects an equation Γ ` t = u : τ iff

JtK = JuK in C. We can observe that an interpretation will respect every equation in a

presentation iff it respects every equation in the derived theory.

Finally observe that there is a canonical equational theory TC for the language LC

obtained by defining t = u iff JtK = JuK and we have the following central result.
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Theorem 2.1.4 Two parallel morphisms f ,g : X ⇒ Y in a category C are equal iff the

equation x : X ` f (x) = g(x) :Y holds in TC.

The moral of this theorem is that we can perform equational reasoning in the calculus

of TC to conclude truths about equalities in C.

Adding Types to the Simple Language

The language presented above captures the basics of equational reasoning in a category,

but we will be interested in adding structure to the types. In this section I describe

how finite products and exponentials are handled in this language. The handling of

equalisers and coproducts is postponed to the more general language.

Each type is described here by describing three types of rules: type formers, term

formers and equations. Type formers can be regarded as adding an algebra of types

to the set |Σ| and similarly term formers provide rules for constructing terms into and

out of the constructed types; indeed, term forming rules normally come in pairs: an

introduction and an elimination rule.

The status of products in the language is a little odd, as they are implicitly present

(in particular, note that the language can only be interpreted in a category with finite

products). However, the language so far does not allow us to capture products as types.

The terminal object 1 is captured in a theory T = (Σ,E ) by adding a constant

1 ∈ |Σ| together with a (constant) function symbol ∗ : → 1 and equations Γ ` t = u : 1

for all terms Γ ` t,u : 1.

Binary products are captured by requiring that for each pair of types σ ,τ ∈ |Σ|
there is a type σ × τ ∈ |Σ| together with terms π : σ × τ → σ , π ′ : σ × τ → τ and

(,) :σ ,τ→σ × τ (we’ll write (s, t)≡ (,)(s, t) for short) satisfying equations π(s, t) = s,

π ′(s, t) = t and (πu,π ′u) = u.

It is clear that any interpretation of a T in a category C with the above structure

must have J1K∼= 1 and Jσ × τK∼= JσK× JτK.
Function types are also easy to add to the language (an equational presentation

of cartesian closed categories appears in Lambek and Scott, 1986). In the standard

development of type theory (Barendregt, 1992) the existence of function types is

assumed from the beginning, but I prefer to separate out the exponential part of the

theory from the purely algebraic part.
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For a theory to have function types we have a type σ ⇒ τ ∈ |Σ| (also written τ σ for

conciseness where convenient) for each pair of types together with two term forming

rules

Γ, x : σ ` t : τ
Γ ` λx : σ . t : σ ⇒ τ

Γ ` t : σ ⇒ τ Γ ` u : σ
Γ ` tu : τ

satisfying the equations (λx : σ . t)u = t[u/x] and λx : σ . f x = f .

Note that in the term tu constructed here there is some ambiguity as to whether t is

a term of type τσ = σ ⇒ τ or a function symbol σ → τ . In practice this confusion is

normally of little significance, as the two roles are interchangeable.

2.2 The Dependently Typed Internal Language

In Seely (1984) a theory and language of dependent types based on Martin-Löf’s

type theory (Martin-Löf, 1974; Nordström et al., 1990) is described together with

its interpretation in a locally cartesian closed category. This interpretation (and its

variants, Streicher, 1991; Hofmann, 1997a; Crole, 1993; Jacobs, 1996, 1999) is the

basis for the internal language described here.

As pointed out in Hofmann (1994) the naı̈ve interpretation of the dependently typed

language in a locally cartesian closed category does not work without some adjustment.

This adjustment, being the interposition of a “category with attributes” (Hofmann,

1994) or equivalently a “category with families” (Dybjer, 1995), increases the technical

complexity of the interpretation but has substantial technical advantages. In particular,

coherence isomorphisms that plague the detailed development of the categorical theory

vanish once categories with families are introduced.

In this chapter we concentrate on a purely syntactic presentation of the internal

language and an overview of the naı̈ve interpretation. This presentation is rather

schematic: a fuller description can be found in Hofmann (1997a), Jacobs (1999) or

Nordström et al. (1990).

Defining the Language

The definition of the dependently typed internal language requires a rather complex

mutual induction over the language being defined. This induction leaves places for

types and function symbols to be inserted into the language.
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As before, a dependently typed signature Σ consists of a set TΣ ≡ |Σ| of types and

a set FΣ of function symbols. The difference is that the sets of types and function

symbols depend on the terms in the language, hence the mutual induction mentioned.

We capture this dependency by including contexts in the description of the signature.

So we have to define three concepts simultaneously: well formed contexts, types in

context and typed terms in context. Each of these is captured by “judgements” written

as follows:

Γ ` Γ is a well formed context

Γ ` A A is a well formed type in context Γ

Γ ` t : A t is a well formed term of type A in context Γ

At the same time these judgements are defined using the notions of a morphism of

contexts γ : ∆→ Γ and substitution of types and terms along a context morphism. Note

that the rules of the language will ensure that Γ ` t : A implies Γ ` A implies Γ `.

A valid signature Σ = (TΣ,FΣ) defines for each valid context Γ a set of types TΣ(Γ)

and for each well formed type in context Γ ` A a set of function symbols FΣ(Γ,A). Of

course the valid contexts and types depend on the rules for constructing the language

as described below, and also depend on the signature through the induction.

Here we will define contexts to be built from the empty context by adding in valid

types in context (here ¦ represents the empty context which is always valid).

¦ `
Γ ` Γ ` A

Γ, a : A ` .

The variable a here is “new”, which is to say that it is not already used in Γ. I will

not discuss the various techniques used to avoid variable capture or to implement α-

equivalence. It may be best to think of variables in the context as merely placeholders

for deBruin indexes (de Bruijn, 1972); however in definition 3.3.4 we will see an

alternative representation of variables. In this spirit the extended context may be written

as Γ,A if the variable does not need a name in context.

The above rules define the construction of contexts from well formed types. The

rest of the language needs a simultaneous definition of types, terms, context morphisms

and substitution.

A context morphism is written as γ : ∆→ Γ; this form implies ∆ ` and Γ `, as can

be seen from the rules below for constructing judgements of this form. When Γ is the
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context x1 : A1, . . . ,xn : An a morphism γ = (γ1, . . . ,γn) is a set of n terms of the form

∆ ` γ1 : A1 ∆ ` γ2 : A2[γ1/x1] . . . ∆ ` γn : An[γ1/x1, . . . ,γn−1/xn−1] .

This can be defined inductively by the following two rules (¦Γ names the unique empty

context morphism into the empty context):

Γ `
¦Γ : Γ−→ ¦

γ : ∆−→ Γ Γ ` A ∆ ` t : A[γ]

(γ , t) : ∆−→ Γ,A
.

Types are introduced into the language as substitution instances of types drawn

from the signature through the following single rule:

γ : ∆−→ Γ A ∈ TΣ(Γ)

∆ ` A(γ)
.

Terms come in two forms, just as in the simply typed language. Firstly, every

variable in a context can be a term:

x1 : A1, . . . ,xn : An ` xi : Ai for 1≤ i≤ n ;

secondly, terms are constructed by filling in the place-holders in a function symbol:

γ : ∆−→ Γ Γ ` A f ∈FΣ(Γ,A)

∆ ` f (γ) : A[γ ]
.

Finally we have to simultaneously define substitution and context morphism

composition with the rules (for context morphisms Ξ δ ∆
γ

Γ , A ∈ TΣ(Γ),

f ∈TΣ(Γ,A) and Γ ` t : B[γ ]):

A(γ)[δ ]≡ A(γ ·δ ) f (γ)[δ ]≡ f (γ ·δ ) xi[γ]≡ γi

¦∆ ·δ ≡ ¦Ξ (γ , t) ·δ ≡ (γ ·δ , t[δ ]) . (2.1)

We can now see that the syntactic structure of the language is very simple: every

type is of the form A(γ) and every term is either a variable or else of the form f (γ),

where each γ is itself just a sequence of terms. The substitution t[γ] and γ · δ syntax

is, in effect, part of the meta-language, as the rules above allow substitution to be

eliminated from all terms.

Several important differences between the language described here and its practical

application are worth describing. In practice the empty substitution ¦Γ is never written,

and constant types and function symbols are introduced into the language without

ceremony.
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Types in the signature will be introduced by statements of the form ` A where we

mean A ∈ TΣ(¦) and a :A ` B(a) for B ∈ TΣ(A(¦¦)) and so on. This last form may often

be abbreviated to A ` B where convenient.

Often it is not necessary to write the entire context morphism. For example, given

constant types ` A, A ` B and A,B `C we should properly write a : A,b : B(a) `C(a,b)

and C(t1, t2) for any substitution instance with t1 : A and t2 : A(t1). In practice, however,

the value for b will generally fully determine a which can therefore often be elided as

C(t2).

Note also that the form of arguments described here is rather simplified over

practice. In particular, instead of writing f (a,b) it may be convenient use subscripts

for some arguments, so we may write this as fa(b). Finally, it is often convenient to

elide the brackets thus: fab.

Equational Reasoning

Equational reasoning in the language LΣ is made more complex by the dependency of

types on terms. In particular, equality of terms may result in equality of types, which

of course then allows further terms to be constructed which did not previously exist.

This means that the rules for equational reasoning described here will feed back into

the definition of the language above.

For example, the language with two types ` A and ` B and one function symbol

A ` f : B has only one non-trivial term, namely f . If we add the type equation ` A = B

to the language then the set of terms now includes arbitrary iterations f n of f . Thus

adding equalities can expand the language, so a completely separate treatment of the

language and its equality is impractical.

Corresponding to the three well formed typing judgements in the core language we

have three equality judgements corresponding to equality of contexts, types and terms

respectively:

Γ = ∆ ` Γ ` A = B Γ ` t = u : A ,

together with an equality on context morphisms γ = γ ′ :∆→ Γ. The equalities on types

and terms are the most fundamental, and equality on contexts and context morphisms

can be seen to be derived from these.
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Observe first that equality is an equivalence relation on types

Γ ` A
Γ ` A = A

Γ ` A = B
Γ ` B = A

Γ ` A = B Γ ` B = C
Γ ` A = C

and similarly for terms

Γ ` t : A
Γ ` t = t : A

Γ ` t = u : A
Γ ` u = t : A

Γ ` t = u : A Γ ` u = v : A
Γ ` t = v : A

.

Equality of types allows us to transfer terms between equal types

Γ ` A = B Γ ` t : A
Γ ` t : B

;

applying this rule allows new terms to be formed.

Four further rules complete the core system of the language. Firstly equality is

preserved by substitution

γ : ∆−→ Γ Γ ` A = B
∆ ` A[γ ] = B[γ ]

γ : ∆−→ Γ Γ ` t = u : A
∆ ` t[γ] = u[γ] : A[γ ]

and finally substitution along equal context morphisms preserves equality

γ = γ ′ : ∆−→ Γ Γ ` A

∆ ` A[γ ] = A[γ ′]
γ = γ ′ : ∆−→ Γ Γ ` t = u : A

∆ ` t[γ] = u[γ] : A[γ ]
.

Since both contexts and context morphisms are constructed iteratively from types and

terms we can simply define context and context morphism equality by putting ¦= ¦ `,

¦¦ = ¦¦ :¦→ ¦ and the rules

Γ = ∆ ` Γ ` A = B
(Γ,A) = (∆,B)

γ = γ ′ : ∆−→ Γ ∆ ` t = u : A[γ ]

(γ , t) = (γ ′,u) : ∆−→ Γ,A
.

Define a type equation in context Γ to be a pair of types (A,B) with Γ ` A and

Γ ` B. Similarly define a term equation in context Γ ` A to be a pair of terms (u,v)

with Γ ` u : A and Γ ` v : A. Given sets ET (Γ) of type equations and EF (Γ,A) of term

equations we introduce these equations into the the language via rules

Γ ` A Γ ` B (A,B) ∈ ET (Γ)

Γ ` A = B
Γ ` t : A Γ ` u : A (t,u) ∈ EF (Γ,A)

Γ ` t = u : A
.

We are now in a position to define a complete dependently typed language with

equality as a mutual induction of type, term and equality formers.

Definition 2.2.1 A dependently typed theory is a system L = (T,F ,ET ,EF ) of

mutually dependent types, function symbols and equations as follows (for each context

Γ and each type Γ ` A):
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• T (Γ) is a set of basic types in context Γ;

• F (Γ,A) is a set of function symbols of type A;

• ET (Γ) is a set of type equations in context Γ;

• EF (Γ,A) is a set of term equations of type A.

2.3 Interpreting the Language

A definitive interpretation of the language L will have to wait for the next chapter,

when we will have established the machinery of “categories with families” (Hofmann,

1994) which will be the basis for our interpretation. However, an outline of the

interpretation due to Seely (1984) will be helpful.

In this thesis we will be using the language L as the internal language of a given

“ambient” category C. This derivation of L = LC will allow us to make a number of

further assumptions about L , but first we will discuss the interpretation of a general

L in any suitable C.

The Naı̈ve Interpretation

The basic idea is to interpret each context Γ as an object JΓK ∈ C and each type Γ ` A

as a morphism JAK :JΓ,AK→ JΓK. To make the notation slightly less cumbersome we’ll

write Γ for JΓK, Γ.A for JΓ,AK and πA : Γ.A→ Γ for JAK ∈ C/Γ.

The empty context ¦ is then interpreted as the terminal object 1, and thus the

interpretation of a context A1, . . . ,An ` is a chain of morphisms

A1. · · · .An
πAn · · · A1.A2

πA2 A1
πA1 1 .

A term Γ ` t : A is interpreted as a morphism JtK : Γ→ Γ.A making the diagram

below commute:

Γ
JtK

idΓ

Γ.A

πA

Γ .

The key to the interpretation is the implementation of substitution by pullback.

Given a context morphism γ : ∆ → Γ with interpretation JγK and a type Γ ` A the
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interpretation of ∆ ` A[γ ] is required to make the square below a pullback square:

∆.A[γ]

πA[γ]

Γ.A

πA

∆ JγK Γ .

It is then clear that interpretations of terms ∆ ` t : A[γ ] are in bijection with

interpretations of context morphisms ∆ → Γ.A with first component equal to γ , as

required by the underlying language.

Unfortunately, unless pullbacks can be assigned so that δ ∗γ∗ f = (γ · δ )∗ f in

general, this interpretation will fail to satisfy such equations as JA[γ][δ ]K = JA[γ · δ ]K.
This problem is identified and solved in Hofmann (1994) and in section 3.3.

Essentially however, the idea of the interpretation is that a type Γ ` A represents

an object A ∈ C/Γ, each term of type A is a global section of A in C/Γ, and context

morphisms γ : ∆→ Γ induce a pullback operation γ∗ :C/Γ→ C/∆ which is reflected

by the substitution operation A 7→ A[γ].

The Category of Context Morphisms

The contexts and context morphisms of L themselves form a category C ≡ C (L )

with a canonical interpretation of L in C .

First note that there are three context morphisms of particular interest: idΓ : Γ→ Γ,

πB :Γ,B→ Γ and t/b :Γ→ (Γ,b : B) as follows, for context Γ = (A1, . . . ,An), type Γ ` B

and term Γ ` t : B:

idΓ ≡ (x1 : A1, . . . , xn : An ` x1 : A1, . . . , xn : An)

πB ≡ (x1 : A1, . . . , xn : An, b : B ` x1 : A1, . . . , xn : An)

t/b≡ (x1 : A1, . . . , xn : An ` x1 : A1, . . . , xn : An, t : B)

It will also be convenient to write π ′B for the term Γ,b : B ` b : B, which allows us to

write idΓ,B = (πB,π ′B); the following equations now follow from the definitions:

πB · (γ , t) = γ π ′B[(γ , t)] = t γ = (πB · γ,π ′B[γ]) .

It is clear that contexts and context morphisms form a category with identity idΓ

and that the assignment (Γ ` A) 7→ πA gives us the first part of a naı̈ve interpretation

(where each context is interpreted as itself).
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Similarly, the interpretation of a term Γ ` t : A is just the one variable substitution

morphism t/b (and indeed πA · (t/b) = idΓ, as required).

This particular interpretation of L works without any qualification, which means

that we can work in the category C (L ) with the naı̈ve interpretation if desired. We

can see that C (LC)' C, so nothing categorical will be lost by this translation.

To complete this interpretation we need to know that we can indeed interpret

substitution by pullback, as shown by the following proposition.

Proposition 2.3.1 In C (L ) substitution along γ : ∆→ Γ creates pullbacks: for any

Γ ` A the context morphism πA[γ] is the pullback along γ of πA.

Proof. We want to show that there is a pullback square of context morphisms

∆,A[γ]
γA

πA[γ]

Γ,A

πA

∆ γ Γ .

Define γA ≡ (γ ·πA[γ],π ′A[γ]) and observe that by construction πA · γA = γ ·πA[γ]. Now let

Ξ be a context with morphisms δ : Ξ→ ∆ and ξ : Ξ→ Γ,A satisfying πA ·ξ = γ ·δ .

For any possible factorisation α :Ξ→ ∆,A[γ ] satisfying πA[γ] ·α = δ and γA ·α = ξ

the definition of γA allows us to write γA ·α = (γ · πA[γ] ·α,π ′A[γ][α]) so in particular

π ′A[γ][α] = π ′A[γA ·α] = π ′A[ξ ], and this equation in combination with πA[γ] ·α = δ fully

determines the unique factorisation α = (δ ,π ′A[ξ ]).

This completes the construction of the interpretation of L in C (L ). This gives us a

category generated from the language together with a canonical interpretation of the

language in the category.

Local Morphisms

We can take this construction still further to construct a category CΓ(L ) over each

context Γ in L by taking all types of the form Γ ` A to be objects and defining a “local

morphism” f : (Γ ` A)→ (Γ ` B) to be a term of the form Γ,a : A ` f : B. In this case

where B does not depend on a : A it can be helpful to write B+ as a reminder of this:

Γ,A ` B = B[πA] = B+.
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Proposition 2.3.2 The system CΓ ≡ CΓ(L ) of types in contexts and local morphisms

described above forms a category, and each context morphism γ : ∆→ Γ induces a

substitution functor γ∗ :CΓ→ C∆ with id∗Γ = idCΓ and (γ ·δ )∗ = δ ∗γ∗.

Proof. Take Γ,A ` π ′A : A+ to be the identity and define the composite of Γ,A ` f : B+

and Γ,B ` g :C+ to be Γ,A ` g · f ≡ g[(πA, f )].

To verify the category equations calculate f ·π ′A = f [(πA,π ′A)] = f [idΓ,A] = f and

π ′B · f = π ′B[(πA, f )] = f ; for associativity calculate

(h ·g) · f = h[(πB,g)][(πA, f )] = h[(πB,g) · (πA, f )]

= h[(πB · (πA, f ),g[(πA, f )])] = h[(πA,g[(πA, f )])] = h · (g · f ) .

Given γ : ∆→ Γ define γ∗ to take Γ ` A to ∆ ` A[γ] and Γ,A ` f : B+ to the local

morphism ∆,A[γ ] ` f [γ] : B+[γ] = B[γ]+. This clearly defines a collection of functors

satisfying the given equations.

Note that for each Γ there is a full and faithful functor CΓ → C /Γ taking Γ ` A to

πA, but that for general L this functor is not an equivalence. In this thesis we’ll be

concentrating on L = LC where CΓ ' C /Γ does hold.

2.4 Dependent Type Constructions

In practice we will need six type constructions in the language, namely products,

coproducts, exponentials, Sigma types, Pi types and equality types together with

two constant types 0 and 1. For conciseness of presentation we can define products

using Sigma types and exponentials using Pi types, so given Γ ` A,B we can define

Γ ` A×B≡ ∑a : A.B and Γ ` A⇒ B≡∏a : A.B.

These can all be defined in the same concise style presented as type forming

rules, term forming rules and equations. These rules can all be incorporated into the

dependently typed language as suitable type and term forming operations combined

with equations as shown in figures 2.2 and 2.3.

Note that the rather clumsy term (x Z⇒ κa. t 8 κ ′b.u) is not used elsewhere here;

instead, wherever possible I use the categorical notation of writing [ f ;g] : A + B→ C

for f : A→C and g : B→C, and indeed (x Z⇒ κa. t 8κ ′b.u)≡ [λa : A. t;λb : B.u]x.

These type constructions all generate categorical structure on each CΓ as follows.
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Type Forming Rules

Γ, a : A ` B

Γ ` ∑a : A. B

Γ ` A Γ ` B
Γ ` A×B

Γ ` A Γ ` B
Γ ` A + B

Γ `
Γ ` 1

Γ, a : A ` B

Γ ` ∏a : A. B

Γ ` A Γ ` B
Γ ` A⇒ B

Γ ` A

Γ, a,a′ : A ` EqA(a,a′)
Γ `

Γ ` 0

Introduction Rules

Γ, a : A ` b : B

Γ ` (a,b) :∑a : A. B

Γ, a : A ` κa : A + B

Γ, b : B ` κ ′b : A + B

Γ `
Γ ` !Γ : 1

Γ, a : A ` bB

Γ ` (λa : A. b) :∏a : A. B

Γ ` A
Γ, a : A ` reflA(a) : EqA(a,a)

Elimination Rules

Γ, c : ∑a : A.B ` πc : A

Γ, c : ∑a : A.B ` π ′c : B[πc/a]

Γ, x : A + B, ∆ ` C
Γ, a : A, ∆[κa/x] ` t :C[κa/x]

Γ, b : B, ∆[κ ′b/x] ` u :C[κ ′b/x]

Γ, x : A + B, ∆ ` (x Z⇒ κa. t 8κ ′b. u) :C

Γ ` t : A Γ ` f :∏a : A. B

Γ ` f t : B[t/a]

Γ ` t : A Γ ` u : A
Γ ` p : EqA(t,u)

Γ ` t = u : A

Γ ` t : 0 Γ ` A
Γ ` ?A,t : A

Figure 2.2: Term Introduction and Elimination Rules

• If L has Sigma types then for each Γ ` A the substitution functor π∗A :CΓ→CΓ,A

has a left adjoint ∑A a π∗A which commutes with each substitution γ : ∆→ Γ so

that (∑A B)[γ ] = ∑A[γ] B[γA], and such that the map constructing a Sigma type

from its context (πA ·πB,(π ′A[πB],π ′B)) : Γ,A,B→ Γ,∑A B is an isomorphism.

The first of these is the Beck-Chevalley condition and the second tells us that the

coproducts are “strong” (Jacobs, 1999, §10.5.2), in other words, strong Sigma

types correspond to composition of display maps.

• If L has Sigma types and the type 1 then each CΓ has finite products preserved

“on the nose” by every substitution functor.
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π(a,b) = a (πc,π ′c) = c

π ′(a,b) = b

(κc Z⇒ κa. t 8κ ′b. u) = t[c/a] (c Z⇒ κa. t[κa/x]8κ ′b. t[κ ′b/x]) = t[c/x]

(κ ′c Z⇒ κa. t 8κ ′b. u) = u[c/b]

(λa : A. b)t = b[t/a] λa : A. f a = f

Γ,A,A, p : EqA,q : EqA ` p = q t = !Γ

Figure 2.3: Equations for Types

• If L has coproduct types and the type 0 then each CΓ has finite distributive

coproducts which are preserved by substitution functors.

• If L has Pi types then for each Γ ` A the substitution functor π∗A has a right

adjoint π∗A a∏A such that (∏A B)[γ ] = ∏A[γ] B[γA].

• If L has Pi types and products then each CΓ is cartesian closed with exponentials

preserved by substitution.



Chapter 3

Fibrations and Families

Here we develop the categorical framework required for a strictly formal interpretation

of the internal language and complete the development started in the previous chapter.

3.1 An Introduction to Fibrations

In chapter 2 we developed an internal language suitable for interpretation in a locally

cartesian closed category. Here we develop the categorical framework required to

complete this interpretation.

This thesis extensively uses the machinery of fibrations and indexed categories

(Bénabou, 1975, 1985; Jacobs, 1999; Paré and Schumacher, 1978; Borceux, 1994) to

develop the key properties of container categories. In particular the fullness of the

functor T taking each container to its extension as a functor relies on the use of fibred

natural transformations between fibred functors.

We therefore begin with rapid overview of fibrations over a fixed base category C

(it will not be necessary in this thesis to consider changes of base between fibrations,

but of course this is an essential part of the complete development of the theory).

We begin with the notion of an “indexed category”: this is, as we will see in theorem

3.1.7, essentially the presentation of a fibration.

Definition 3.1.1 An indexed category over a base category C is given by a pseudo-

functor E :Cop → Cat. This assigns to each Γ ∈ C a category EΓ called the fibre of

E over Γ and to each γ : ∆→ Γ in C a reindexing functor γ∗ : EΓ → E∆ together with

30



CHAPTER 3. FIBRATIONS AND FAMILIES 31

canonical isomorphisms id∗Γ ∼= idEΓ and δ ∗γ∗ ∼= (γ · δ )∗, satisfying certain coherence

equations.

When the canonical isomorphisms are identities id∗Γ = idEΓ and γ∗δ ∗ = (δ · γ)∗ the

pseudo functor E is strict and is called a split indexed category.

An object X ∈ EΓ of a fibre category can usefully be thought of as a Γ-indexed

collection of elements of E . Thus for each generalised element γ : ∆→ Γ there is

an object γ∗X ∈ E∆ and so we can in general write X = (Xγ)γ:Γ.

The indexed categories over a given base category can be made into a 2-category by

the appropriate definition of “indexed functor” and “indexed natural transformation”.

Definition 3.1.2 An indexed functor between indexed categories E and E ′ over C is

given by a pseudo-natural transformation F : E → E ′, or equivalently for each Γ ∈ C
a functor FΓ : EΓ→ E ′Γ such that for each γ : ∆→ Γ there is a canonical isomorphism

γ∗FΓ ∼= F∆γ∗. A split indexed functor between split indexed categories is an indexed

functor where these isomorphisms are identities.

An indexed natural transformation α : F → G assigns to each Γ a natural

transformation αΓ :FΓ→GΓ such that γ∗αΓ∼= α∆γ∗ (this isomorphism refers to identity

after composition with the canonical isomorphisms of the functor). If F and G are split

this is an ordinary equality.

The coherence equations on the isomorphisms id∗Γ ∼= idCΓ and γ∗δ ∗ ∼= (δ · γ)∗ alluded

to above are similarly mentioned in passing in Paré and Schumacher (1978) and are

similar to those described in detail for monoidal categories in MacLane (1971). An

explicit presentation can be found in Jacobs (1999) or Borceux (1994).

We make some effort to avoid explicit presentation of these coherence equations

as taking them into account complicates the presentation and the algebra considerably.

This can be done in two ways: firstly, in the definition of a fibration below we have

a system which is equivalent (modulo observations on choice) to an indexed category

but in which the coherence isomorphisms are implicit; secondly, we will present a

construction which constructs a split fibration (equivalent to a split indexed category)

from any fibration, and which is equivalent to the original fibration.

This effort is directly related to the problems of the naı̈ve interpretation of the

internal language discussed in section 2.3. In particular, we will show how the language

is interpreted in a framework obtained by splitting a fibration.
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A fibration over C is defined to be a functor into C satisfying a particular condition

involving “cartesian morphisms” (also referred to as “prone” in Johnstone, 2002 and

Taylor, 1999), so first we must define what a cartesian morphism is.

Definition 3.1.3 Given a functor p :E→ C, for each Γ ∈ C write EΓ, called the fibre

of p over Γ, for the subcategory of E mapped by p onto Γ. In other words, X ∈ EΓ iff

pX = Γ and EΓ(X ,Y ) = { f : X → Y in E | p f = idΓ }. Similarly, for γ : ∆→ Γ in C

and X ∈ E∆, Y ∈ EΓ write Eγ(X ,Y )≡ { f : X → Y | p f = γ } for the set of morphisms

in E over γ .

The morphisms in EΓ are over idΓ and are called “vertical”.

Definition 3.1.4 Given a functor p :E→ C a morphism f : X → Y in E is said to be

cartesian (with respect to p) iff for each Z ∈ E and each γ : pZ→ pX in C the function

f ·− :Eγ(Z,X)→ Ep f ·γ(Z,Y ) taking g to f ·g is an isomorphism.

This definition is illustrated by the figure below: if f is cartesian then every h : Z→ Y

over p f · γ has a factorisation as h = f ·g for a unique g over γ thus:

Z g

h

X
f

Y E

p

pZ
γ

pX
p f

Y C .

Note in particular that if there is a cartesian morphism into X over every map γ into pX

in C then every map into X has a unique (up to isomorphism) factorisation as a vertical

morphism followed by a cartesian morphism.

Now we can define a fibration to be a functor equipped with “enough” cartesian

morphisms.

Definition 3.1.5 A functor p :E→C is a fibration iff for every X ∈ E and every map γ

into pX in C there exists a cartesian morphism into X over γ .

A cleavage on p is a choice of cartesian morphism γX : γ∗X → X for each X and γ .

A cleavage is split iff it satisfies equations (idΓ)X = idX and (γ ·δ )X = γX ·δ γ∗X .

A split fibration is a fibration together with a split cleavage (the splitting of p).

A fibration with a cleavage is also said to be cloven. We will assume throughout this

thesis that all of our fibrations are cloven: this cleavage can either be assumed to already
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exist, or else to arise from a suitable choice principle in the meta-theory. We won’t be

looking at constructions where the construction of a cleavage is problematic.

We can now define a 2-category of fibrations, fibred functors and fibred natural

transformations over C.

Definition 3.1.6 Given fibrations p :E→C and q :F→C a fibred functor F : p→ q is

a functor F :E→F such that qF = p which takes cartesian morphisms inE to cartesian

morphisms in F. A fibred functor between split fibrations is a split fibred functor iff it

preserves the splitting, ie FγX = γFX .

A fibred natural transformation α : F → G between fibred functors is a natural

transformation with vertical components, ie pαX = idpX for each X ∈ E.

Write FibC for the 2-category of fibrations, fibred functors and fibred natural

transformations over C and Fibsplit
C for the 2-category of split fibrations, split fibred

functors and fibred natural transformations.

We now have enough machinery in place to state the following theorem which tells

us that fibrations and indexed categories are essentially the same thing.

Theorem 3.1.7 The 2-categories of indexed categories and of fibrations over a

common base are weakly equivalent. Similarly the 2-categories of split indexed

categories and split fibrations are equivalent.

To be precise, the 2-functors between indexed categories and fibrations establish

an equivalence between each fibration and a class of corresponding indexed categories

(one indexed category for each cleavage on the fibration). On the other hand, the 2-

functors between split indexed categories and split fibrations establish an isomorphism

between each fibration and its corresponding indexed category.

Proof. I will sketch the construction of an indexed category from a fibration and vice

versa, but for further details see Jacobs (1999) or Borceux (1994).

To construct an indexed category from a fibration observe that each cleavage on

a fibration p : E → C allows us to construct an indexed category. First, to each

Γ assign the fibre EΓ. The construction of (γ,X) 7→ (γX : γ∗X → X) given by the

cleavage is sufficient to construct functors γ∗ :EΓ → E∆ for each γ : ∆→ Γ, and it

is a straightforward calculation to discover that the necessary isomorphisms exist and

satisfy the coherence equations.
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Conversely, given an indexed category E :Cop→ Cat a total category
∫
CE called

the Grothendieck completion of E can be constructed with a projection
∫
CE → C

making this into a fibration. The objects of
∫
CE are the pairs (Γ ∈ C,X ∈ EΓ) and a

morphism (∆,Y )→ (Γ,X) is given by a pair of morphisms (γ :∆→Γ, f :Y→ γ∗X). The

projection
∫
CE →C is obvious, and each morphism of the form (γ , idγ∗X ) is cartesian.

The canonical isomorphisms and their coherence equations play an essential role in

this construction.

If p is a split fibration then the reindexing functors γ∗ generated from the splitting

for a split indexed category. Conversely, the Grothendieck completion of a split indexed

category generates a split fibration.

In fact, this theorem establishes a correspondence between indexed categories and

fibrations with a specified cleavage: the reindexing functors between fibres correspond

precisely to a cleavage.

The point of this theorem is that we can work with the fibration representation of

a system or its corresponding indexed category representation, depending on which is

more convenient. In practice it is often easier to work with indexed categories when the

fibration is split, but otherwise working with the fibration can provide a more uniform

perspective. Indeed: “an indexed category is just a presentation of a fibred category”

(Bénabou, 1985).

3.2 Examples of Fibrations

The most important fibration, and the one central to the development of this thesis, is

given by the slice categories of a pullback complete category.

Example 3.2.1 If C is pullback complete then the assignment Γ 7→ C/Γ is the object

part of an indexed category with reindexing functors given by pullbacks.

To be more precise, given γ : ∆→ Γ in C the reindexing functor γ∗ :C/Γ→ C/∆

takes each object ( f : A→ Γ) ∈ C/Γ to the left hand side of the pullback square below

γ∗A

γ∗ f

A

f

∆ γ Γ

regarded as an object of C/∆. This can be referred to as the slice indexed category.
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The corresponding fibration is the codomain fibration codC :C→→ C: objects of C→

are arrows in C, morphisms in C→ are commutative squares in C, and the projection

codC takes f : X → Y ∈ C→ to codC f ≡ Y .

In the 2-category of fibrations the codomain fibration effectively plays the role of

the base category C. In particular in definition 3.2.5 below we make explicit use of

this.

The objects of a slice categoryC/Γ can usefully be regarded as “Γ-indexed families

of objects in C”, and in the case of C≡ Set this can be made more explicit.

Example 3.2.2 The assignment sending each set I ∈ Set to the category of I-indexed

sets and functions is an indexed category, referred to as the family fibration Fam.

The objects of FamI are tuples ~X = (Xi)i∈I with morphisms ~X →~Y given by tuples

of maps ( fi : Xi→ Yi)i∈I . A function u : J→ I induces a pullback functor u∗ defined by

u∗(Xi)i∈I ≡ (Xu j) j∈J .

The following proposition makes it clear that, for Set at least, families and slices are

equivalent.

Proposition 3.2.3 The slice indexed category for Set is equivalent to Fam.

Proof. It is sufficient to show an equivalence Set/I ' FamI for each I compatible

with pullbacks and substitution. Assign the family of sets ({a ∈ A | f (a) = i})i∈I

to each map f : A→ I in Set/I; conversely, given (Xi)i∈I assign to this the function

π : ∑i∈I Xi→ I taking each tuple (i,x) ∈ ∑i∈I Xi to i. These assignments clearly extend

to functions and can easily be seen to define an equivalence of categories which extends

to an equivalence of indexed categories.

A construction of interest is the I-indexed power of a fibration.

Example 3.2.4 Given a fibration p :E→ C the fibration pI is constructed as follows.

Define the objects of a category E(I) to be pairs (Γ ∈ C,(Xi ∈ EΓ)i∈I) with morphisms

(∆,~Y )→ (Γ,~X) given by pairs (γ : ∆→ Γ,( fi :Yi → Xi)i∈I) such that p fi = γ for all

i ∈ I. The projection taking (γ, ~f ) to γ is the fibration pI .

The corresponding indexed category description is perhaps clearer: the fibre over

Γ of pI is EI
Γ and the reindexing functor over γ : ∆→ Γ is (γ∗)I :EI

Γ→ EI
∆.
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Of particular interest is the fibration of I-indexed powers of C: in this case the fibre

of codI
C is (C/Γ)I . When we talk in this thesis about functors to and from CI we will

really mean fibred functors to and from codI
C. In particular, we have the following

definition.

Definition 3.2.5 Write [CI ,CJ ] for the category of fibred functors and fibred natural

transformations codI
C→ codJ

C:

[CI ,CJ ]≡ FibC(codI
C, codJ

C) .

Note that [CI ,CJ ]∼= [CI ,C]J , since pI is the I-fold product of p in the 2-category FibC.

In the caseC= Set the categories [Set,Set] and Cat(Set,Set) are isomorphic: every

functor F : Set→ Set automatically lifts to a fibred functor F : Fam→ Fam, which is

equivalent to a functor codSet → codSet. It is easy enough to see this: simply define

F(Xi)i∈I ≡ (FXi)i∈I .

More generally [SetI ,Set] ' Cat(SetI ,Set), and indeed if we restrict our attention

to the split fibred functors between the equivalent family fibrations we get an

isomorphism Fibsplit
Set (FamI ,Fam) ∼= Cat(SetI ,Set). This observation reinforces the

importance of the role of fibrations when dealing with a base category C other than

Set.

Splitting a Fibration

The observations in this section come from Bénabou (1975, 1985) and Jacobs (1999).

Another important fibration is given by the following.

Example 3.2.6 The functor domΓ :C/Γ→ C taking γ : ∆→ Γ to ∆ is a split fibration.

This fibration plays the role analogous to the discrete category generated by a set: the

fibration domΓ is the discrete fibration generated by an object of C. For instance, the

fibre of domΓ over ∆ is the discrete category generated by C(∆,Γ) — we should think

here of maps γ : ∆→ Γ as “local elements” of Γ in context ∆.

In analogy with the theory of presheaves, where the representable functors are

functors of the form C(−,X) ∈ SetC
op

, so also the fibrations domΓ are called the

representable fibrations. Furthermore, just as the indexed category representation

allows us to regard a fibration as an object of a generalised “presheaf” (2-)category

CatC
op

, we do in indeed have a generalisation of the Yoneda lemma to this context.
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Theorem 3.2.7 (Fibred Yoneda) For each fibration p :E→ C and each object Γ ∈ C
there is an equivalence of categories

EΓ ' FibC(domΓ, p)

natural (up to isomorphism) in Γ and p. When p is a split fibration this equivalence

restricts to an isomorphism EΓ ∼= Fibsplit
C (domΓ, p).

Proof. Given F : domΓ→ p compute F idΓ ∈ EΓ. Conversely, given X ∈ EΓ construct

a functor X̃ taking γ ∈ C/∆ to γ∗X ∈ E∆. Note that this construction of X̃ depends on

a choice of cleavage on p.

Clearly X̃ idΓ = id∗Γ X ∼= X , and conversely, given F : domΓ → p construct

(F̃ idΓ)γ = γ∗F idΓ ∼= Fγ∗ idΓ = Fγ; this establishes the equivalence for each Γ, p.

Each morphism γ : ∆→ Γ extends to a fibred functor domγ : dom∆→ domΓ taking

each δ : Ξ→ ∆ to γ · δ , and so we can define γ∗X̃ ≡ X̃ · γ . It is now easy to calculate

domγ F idΓ = Fγ = Fγ∗ idΓ ∼= γ∗F idΓ. This is enough to show naturality of the

bijection in Γ.

Similarly, each functor F : p→ q induces for each Γ ∈ C a composition functor

F̃Γ : Fibsplit
C (domΓ, p)→ Fibsplit

C (domΓ, p) with F̃ΓX ≡ F ◦X .

EΓ
FΓ

γ∗

DΓ

γ∗

E∆ F∆
D∆

Γ X̃

F̃ΓX̃

p

F

∆

γ
γ∗X̃

F̃∆γ∗X̃ = γ∗F̃ΓX̃
q

The diagram above illustrates this situation and shows both naturality of the bijection

of the theorem and the fact that F : p→ q induces what can be regarded as a split functor

Fibsplit
C (dom−, p)→ Fibsplit

C (dom−,q).

The following corollary follows from Fibsplit
C (dom∆,domΓ)∼= (C/Γ)∆ ∼= C(∆,Γ).

Corollary 3.2.8 Γ 7→ domΓ extends to a full and faithful functor dom− :C→ Fibsplit
C .

The functor domγ taking δ :Ξ→ ∆ to γ ·δ is more familiarly known as ∑γ in its context

as a functor ∑γ :C/∆→ C/Γ left adjoint to γ∗.
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We conclude with another corollary of 3.2.7. This result is of particular interest,

as already observed, as it hints that we can avoid the technicalities of working with

coherence morphisms by working in a split fibration.

Corollary 3.2.9 Every fibration is equivalent to a split fibration, and this equivalence

is part of a pseudo-equivalence FibC ∼ Fibsplit
C .

Proof. Given a fibration p : E → C define a split indexed category with fibre

FibC(domΓ, p) over each Γ and with reindexing functors along γ given by composition

with domγ : dom∆ → domΓ. As we’ve already seen in the proof to 3.2.7 each functor

F : p→ q translates into a split fibred functor.

Given the importance of this construction, a detailed review will be instructive. Let

p = codC, the codomain fibration (also known as the slice indexed category), and recall

that the fibres of this fibration are the slices C/Γ. The problem of coherence arises

because pulling back along maps into Γ cannot in general be made associative, in other

words pullbacks cannot in general be assigned to make the equation δ ∗γ∗ = (γ · δ )∗

hold.

The splitting construction works by replacing the slice category C/Γ with the

equivalent (but much larger) category FibC(domΓ,codC). An object F of this category

can conveniently be thought of as assigning to every map γ into Γ a choice of pullback

γ∗πF of a selected map πF : Γ.F → Γ.

In other words, each A ∈ C/Γ is replaced by a set of equivalent objects F in the

splitting. All the objects F replacing A agree with A on the basic map πF = A, but

each F assigns its own choice of pullback γ∗πF . The beauty of this construction is that

because each F is a morphism in FibC we can implement reindexing of F along a map

γ into Γ by simple composition:

dom∆
domγ

γ∗F ≡ F domγ

domΓ

F
codC

and so of course reindexing is necessarily split!
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3.3 Categories with Families

The following definition ties the splitting of the codomain fibration that we’ve just

described back to the internal language described in the previous chapter. This

definition is from Dybjer (1995) with some minor changes of notation and separating

out the terminal object (or “global” context) as a separate condition.

Definition 3.3.1 A category with families (or cwf) is given by the following data:

• A category C (of contexts and context morphisms).

• A functor Cop → Fam defining for each context a set of types in context and

for each type in context a set of well typed terms. For a type A in context Γ

write Γ ` A, and for a term t of type A write Γ ` t : A. Functorality provides a

substitution operation

γ : Γ−→ ∆ ∆ ` t : A
Γ ` t[γ] : A[γ]

satisfying the equations A[idΓ] = A and A[γ][δ ] = A[γ ·δ ] for types and similarly

t[idΓ] = t and t[γ ][δ ] = t[γ ·δ ] for terms.

• Context comprehension: to each type Γ ` A associate a morphism πA : Γ.A→ Γ

in C, called the display map of A, and a term Γ.A ` π ′A : A[πA], the variable of A,

together with a bijection

γ : ∆−→ Γ ∆ ` t : A[γ]
==================
〈γ , t〉 : ∆−→ Γ.A

satisfying equations πA · 〈γ , t〉= γ , π ′A[〈γ , t〉] = t and 〈πA,π ′A〉= idΓ.A.

If C has a terminal object say that the category with families has a global context.

The following definitions and abbreviations will prove useful.

Definition 3.3.2 For Γ ` A, Γ ` B, Γ ` t : B, γ : Γ→ ∆, Γ.A ` D define:

Γ.A ` B+ ≡ B[πA]

Γ.A ` t+ ≡ t[πA] : B[πA]

γA ≡ 〈γ ·πA[γ],π ′A[γ]〉 : ∆.A[γ]−→ Γ.A

γA,D ≡ (γA)D : ∆.A[γ ].D[γA]−→ Γ.A.D
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The following equations can readily be derived from the definitions

〈γ , t〉 ·δ = 〈γ ·δ , t[δ ]〉 γA · 〈δ , t〉= 〈γ ·δ , t〉 (γ ·δ )A = γA ·δA[γ] .

Note that substitution of display maps creates pullbacks. This result is equivalent to

proposition 2.3.1, and the proof is pretty much the same.

Proposition 3.3.3 For type in context Γ ` A and context morphism γ : Γ → ∆ in a

category with families the following square is a pullback:

∆.A[γ]
γA

πA[γ]

Γ.A

πA

∆ γ Γ .

Proof. Given a cone δ :Ξ→ ∆ and f :Ξ→ Γ.A with πA · f = γ ·δ then any factorisation

g : Ξ→ ∆.A[γ ] must satisfy equations πA[γ] ·g = δ and γA ·g = f . We can now calculate

π ′A[γ][g] = π ′A[γA][g] = π ′A[γA · g] = π ′A[ f ] and conclude that g = 〈γ · δ ,π ′A[ f ]〉 is the

required unique factorisation.

There is a very close relationship between the notion of a category with families and

the internal language defined in section 2.2. Compare the following definition with the

naı̈ve interpretation in section 2.3.

Definition 3.3.4 An interpretation of a dependently typed language L in a category

with families C with category of contexts C and a global context is given by the

following structure.

• Contexts in L are interpreted as objects of C, types in L are types in context in

C , and terms are interpreted as well typed terms in C . We’ll write J−K for the

interpretation function in all cases.

• The empty context ¦ is interpreted as the terminal object in C, ie J¦K = 1.

• Given Γ ` A in L the interpretation of Γ,A is the domain of the display map

πJAK, ie JΓ,AK = JΓK.JAK in C.

• A variable Γ,x : A ` x : A is interpreted as the term JΓ,AK ` π ′A : JAK[πA]. More

generally, a variable Γ,x : A,y1 : B1, . . . ,yn : Bn ` x : A in L is interpreted in C as

the term

JΓ,A,B1, . . . ,BnK ` π ′A[πB1 · · · · ·πBn ] : JAK[πA ·πB1 · · · · ·πBn ] .
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• Filling in place-holders in L is interpreted by substitution in C , so we have

JA(γ)K= JAK[JγK] and J f (γ)K= J f K[JγK].

• The interpretation of the empty context morphism is J¦ΓK : JΓK→ J¦K = 1.

• Context morphisms are combined thus: J(γ , t)K= 〈JγK,JtK〉.

By checking the equations (2.1) used to define substitution and composition in L we

can see that substitution in L is interpreted as substitution in C and context morphism

composition in L becomes composition in C.

In this thesis I am concerned with the categorical models of the language rather than

with the language itself: the internal language is developed here as a tool with which

to reason about the category C (and some other related structures). The development

of the equational part of the theory will largely be taken for granted, so the extension

of the definition of an interpretation of a language to include the equality judgements

of a dependently typed theory will not be developed here.

An important point is that the internal language as described here and the structure

of a category with families are very close indeed. The following proposition captures

part of this.

Proposition 3.3.5 Every category with families with a global context has an

associated dependently typed theory with a canonical interpretation. Conversely,

every dependently typed theory can be used to generate a category with families with

associated theory equal to the original theory.

Proof. Given a category with families C define the language L inductively in a fairly

obvious way. The types of L in the empty context are precisely the types 1 ` A of

C ; given Γ ` A, the types in the context Γ,A in L are the types Γ.A ` B, and so forth.

As this construction proceeds (with similar constructions for terms), the interpretation

according to definition 3.3.4 is simultaneously defined.

Conversely, the construction of the category of context morphisms from a language

(section 2.3 can be used to construct a category with families.

Note that in passing from a language to a cwf and back again, essentially the same

language (with a rather fuller presentation) is recovered. On the other hand, when

passing from a cwf to a language and back again, only those contexts in C which can

be built up inductively from types are recovered.
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Informally this proposition is saying that there is a reflective inclusion of theories into

categories with families thus

Theory Cwf .

However, as we have not defined an appropriate notion of morphism between theory

(or cwfs) this remains informal. One thing is stopping this correspondence being an

equivalence, and that is the key role of the empty context in the language.

The simplest possible example of a category with families is given by the following.

Example 3.3.6 For any category C there are two trivial categories of families with C

the category of contexts:

• If the set of types in context is empty then the empty cwf with no types or terms is

obtained. The corresponding language is empty, and its category of contexts is

the single morphism category.

• If the set of types in each context is a singleton Γ ` 1Γ with one term Γ ` !Γ : 1Γ

then a cwf is obtained by defining π1Γ ≡ idΓ. The corresponding language is

non empty but trivial, and again the category of contexts of the language is the

singleton category.

The canonical example of a category with families is given by the internal language of

a pullback complete category. This construction will be used implicitly throughout the

rest of this thesis.

Proposition 3.3.7 If C is pullback complete then a category with families with

category of contexts C can be constructed by defining the types in context Γ ` A to

be the fibred functors A : domΓ→ codC with display maps πA ≡ A idΓ.

Proof. Define substitution of types by composition with γ , ie A[γ ]≡ Aγ (which we can

also call γ∗A); this is clearly strictly functorial in γ .

Given a substitution γ : ∆→ Γ and a type Γ ` A computing Aγ as a morphism in

C→ (regarding γ as a morphism γ→ idΓ in C/Γ) yields the right hand pullback square
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below

Ξ.A[γ ][δ ]Ξ.A[γ ·δ ] =
δA[γ]

πA[γ·δ ]

∆.A[γ]
γA

πA[γ]

Γ.A

πA

Ξ
δ

∆ γ Γ .

We will frequently use the notation γA for the lifting of γ as above. Note of course that

γidΓ = γ , and it’s easy to see above that (γ ·δ )A = γA ·δA[γ].

Define the well typed terms Γ ` t : A to be morphisms t : idΓ → πA in C/Γ, ie

splittings of πA. Given a substitution γ define t[γ ] : ∆ → ∆.A[γ] to be the unique

morphism satisfying πA[γ] · t[γ] = id∆ and γA · t[γ] = t · γ thus:

∆.A[γ]
γA

πA[γ]

Γ.A

πA

∆ γ

t[γ ]

Γ

t

.

Clearly t[idΓ] = t; so it remains to check the substitution of composites: πΞ ·(t[γ ][δ ]) =

idΞ = πΞ ·(t[γ ·δ ]), and γA ·δA[γ] ·(t[γ ][δ ]) = γA · t[γ] ·γ = t ·γ ·δ = (γ ·δ )A · t[γ ·δ ]. This

is enough to show that substitution of terms as defined here is functorial.

To establish context comprehension, note first of all that for each γ :∆→ Γ and type

Γ ` A there is a bijectionC/Γ(γ ,πA)∼=C/∆(id∆,π∆.A[γ]), since π∆.A[γ] is the pullback of

πA along γ . For a term ∆ ` t :A[γ] write 〈γ, t〉 for the corresponding morphism ∆→ Γ.A

and note that 〈γ , t〉= γA · t and clearly, by construction, πA · 〈γ , t〉= γ .

Finally we need to establish the role of the term Γ.A ` π ′A : A[πA]. Start by defining

π ′A : Γ.A → Γ.A.A[πA] to be the unique map with πA · π ′A = idΓ.A = (πA)A · π ′A. It

remains to show that π ′A[〈γ , t〉] = t, but as we’ve already seen, t is the unique morphism

satisfying πA[γ] · t = id∆ and γA · t = 〈γ, t〉, so it is enough to show γA ·π ′A[〈γ , t〉] = 〈γ, t〉.
First note that γA = γA · t · πA[γ] = 〈γ , t〉 · πA[γ] = πA[πA] · 〈γ , t〉A, and then calculate

γA ·π ′A[〈γ , t〉] = πA[πA] · 〈γ , t〉A = πA[πA] ·π ′A〈γ , t〉.

We will now start to use the internal language and the category of families associated

with C interchangeably to reason about morphisms and types in C. To start with, we

will write Γ ` A for A ∈ C/Γ.

Conversely to the above result, we can construct a fibration from every category

with families. In an important sense this fibration is equivalent to the original category
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with families, but it will take us too far afield to make this correspondence explicit, in

particular we would first need to develop the theory of fibrations with comprehension.

Proposition 3.3.8 Given a category with families C and category of contexts C a split

fibration C → C can be constructed with objects of C the types of C and vertical

morphisms terms of the form Γ.A ` f : B[πA] such that C Γ(A,B)∼= C/Γ(πA,πB).

Proof. Define the objects of each fibred C Γ to be the types Γ ` A and morphisms

A→ B to be terms Γ.A ` f : B+. The bijection C Γ(A,B)∼= C/Γ(πA,πB) is through the

maps

Γ.A ` f : B+ 7−→ Γ.A
〈πA, f 〉

Γ.B

πA
f

πB 7−→ Γ.A ` π ′B[ f ] : B[πB · f ] = B+ .

It is easy to see that defining g · f ≡ g[〈πA, f 〉] respects composition in C and so each

C Γ is a category. For γ : ∆→ Γ define γ∗ :C Γ→ C ∆ to take A to A[γ] and t to t[γ]; this

makes C into a split indexed category.

One further example is important: this is the category of families of “small types” or

“types inside a universe”. Given a family inC, which we can call a “universe” and write

U ` Elt, the families which arise as pullbacks along a map into U can be thought of

as “small” types.

Construction 3.3.9 Given a category with families C with category of contexts C and

a designated type U ` Elt in C then a new category of families CU with the same

category of contexts, called the category of families in the universe U is defined by

restricting the types of CU to types in C of the form Γ ` Elt[γ] for γ : Γ→ U in C.

Terms in CU are the same as terms in C where defined.

For example, ifC has a natural numbers objectN then the morphismN×N→N taking

(n,m) to n+m+1 can be regarded as a family, which we’ll write N ` Fin. For n :N the

object Finn can be regarded as the “finite cardinal with n elements” (Johnstone, 1977,

§6.21) and Fin is the “object of finite cardinals in C”. Then given γ : Γ→ N a type

Γ ` A≡ γ∗Fin has the property that each fibre of A is a finite cardinal, and we can say

that an object of this form is discretely finite.

We will see in section 4.7 that the shapely types of Jay (1995) are the containers

constructed in the universe of finite cardinals.
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Context Morphisms Revisited

Note that the internal language associated with a category with families only allows us

to build contexts out of “small” types, so for example the internal language associated

with the family of finite cardinals N ` Fin only allows us to talk about finite contexts.

As the categories with families are the basic framework in which we wish to work, this

seems to be a weakness in the definition of the internal language.

A note on the treatment of contexts in the language: it seems to be usual (eg,

Hofmann, 1994) to syntactically build up contexts from the empty context using only

types in context in the language. However, this approach is too restrictive in three ways.

• In the context of this thesis we want to talk about functors of the form CI → C,

and in order to do this we need to develop the internal language of CI . To ensure

that the language is close to the interpretation the languages for C and CI need

to share a common category of contexts.

• The internal language has been used to construct categories with families. If we

want to show an equivalence between the language and this semantic structure

we need to extend the contexts of the language.

• In practice all of the constructions we describe using the language are in the

context of an arbitrary context Γ, not necessarily a finite context built up

inductively. The language should reflect this practice.

One solution is to extend the internal language so that there is a more explicit

distinction between “small” types, which can appear either side of a type judgement,

and “large” types which can only appear in the context. To do this explicitly, we would

need to revisit the language in detail; one approach might begin as follows.

A categoryC0 of basic contexts is given. The rules for creating contexts and context

morphisms in section 2.2 are replaced by the following three rules:

Γ ∈ C0

Γ `
γ : ∆−→ Γ in C0

γ : ∆−→ Γ
Γ ` A

πA : Γ,A−→ Γ
.

The introduction of a new special rule to form πA is required to accommodate the fact

that we can no longer inductively construct πA as described in section 2.3. If contexts

and context morphisms are constructed inductively as before, the following rules for

computing context composition suffice:

γ ·δ ≡ γ ·δ (γ , t) ·δ ≡ (γ ·δ , t[δ ]) πA · (γ , t)≡ γ .
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and the analysis in section 2.3 continues to go through.

However, this thesis is not about syntactic structure, and here is not the place to

address any of the issues arising from the discussion above. Instead, we will take the

category of families as our implicit internal language, except that we will use variables

and implicit weakening as provided by the original internal language.

3.4 Types in Fibrations

All the types of the basic language have their expression in the more general fibred

framework. We will develop most of the theory simultaneously in a general fibration

and in the context of a category with families, but we’ll focus on the the structure

specific to a locally cartesian closed category C.

Proposition 3.4.1 If C is closed under pullbacks then for each γ : ∆→ Γ in C the

reindexing functor γ∗ :C/Γ → C/∆ has a left adjoint ∑γ a γ∗. When γ = πX is a

display map, write ∑X ≡ ∑πX
(indeed, every map can be regarded as a display map).

These adjoint functors satisfy the Beck-Chevalley condition: for each X ∈C/Γ and

γ : ∆→ Γ the canonical morphism ∑γ∗X γ∗X → γ∗∑X is iso; also a strength condition is

satisfied: the canonical morphism πA ·πB→ π∑A B in C/Γ is iso.

Proof. For f : X → ∆ in C/∆ define ∑γ f ≡ γ · f ∈ C/Γ. All the properties of the

proposition are a routine verification of properties of pullbacks.

The “canonical” morphism ∑γ∗X γ∗X → γ∗∑X referred to in the proposition arises as

the transpose of

γ∗X
γ∗X η∑X

γ∗X π∗X ∑X
∼= πγ∗X γ∗∑X ,

and similarly πA ·πB→ π∑A B arises from the term Γ,a : A,b : B ` (a,b) : ∑A B.

These left adjoints to substitution correspond directly to Sigma types in the language,

the Beck-Chevalley condition corresponds to the preservation of ∑ by substitution, and

strength allows us to treat the contexts Γ,A,B and Γ,∑A B interchangeably.

Definition 3.4.2 A category with families has Sigma types iff there is a construction

Γ ` A Γ.A ` B

Γ ` ∑A B

with equations π∑A B = πA ·πB and (∑A B)[γ ] = ∑A[γ] B[γA] for each γ : ∆→ Γ.
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In fact, the equation π∑A B = πA · πB is stronger than strictly necessary, but as the

proposition below shows this doesn’t matter.

Proposition 3.4.3 The category with families for C has Sigma types.

Proof. Given A : domΓ→ codC and B : domΓ.A→ codC define ∑A B : domΓ→ codC by

defining (∑A B)γ ≡∑Aγ BγA in C for each γ :∆→ Γ. The equations for Sigma types are

automatically satisfied by this construction.

To relate this to the Sigma types in the language define

Γ,∑A B ` π ≡ π ′A[πA] : A[π∑A B] Γ,∑A B ` π ′ ≡ π ′B : B[〈π∑A B,π〉]

and observe that A[π∑A B] is just A weakened and similarly B[〈π∑A B,π〉] is in fact just

B with π substituted for A; we’ll write this more conveniently as π∗B.

One useful consequence of this result is that in the codomain fibration products in

a fibre can be described using the ∑ construction: given X ,Y ∈ C/Γ then

X×Y ∼= ∑X π∗XY ∼= ∑Y π∗Y X .

Another important construction which is effectively lifting a familiar categorical

construction into the fibred framework is the “equality type”. Just as the equaliser

Eq( f ,g) of parallel pairs f ,g : X ⇒ Y can be constructed as a pullback of the diagonal

δY ≡ (idY , idY ) thus

Eq( f ,g) X
f

g

( f ,g)

Y

Y
δY

Y ×Y

then similarly we can regard the type X ` Eq( f ,g) (which is, incidentally, a subobject

of 1 in C/X , and thus takes the role of a proposition) as a substitution instance

( f ,g)∗Eq of the “equality type” Y ` EqY .

Definition 3.4.4 A category with families has equality types when for each type Γ ` A

there exist type and term

Γ.A.A+ ` EqA Γ.A ` reflA :EqA[〈idΓ.A,π ′A〉]
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together with a deduction rule

Γ ` t : A Γ ` u : A Γ ` e : Eq(t,u)

Γ ` t = u : A
,

writing Eq(t,u) ≡ Eq[〈〈idΓ, t〉,u〉], such that EqA[γ] = EqA[γA,A+ ], or equivalently,

Eq(t,u)[γ] = Eq(t[γ ],u[γ ]); this is the Beck-Chevalley condition.

Of course, the map 〈〈idΓ, t〉,u〉 : Γ→ Γ.A.A+ is the same thing as a term (t,u) : A×A

over Γ, and so we can write Eq(t,u) = (t,u)∗EqA. As one might expect, we have

equality types for C.

Proposition 3.4.5 The category of families for C has equality types.

Proof. Clearly the diagonal δA ≡ 〈idA,π ′A〉 : Γ.A→ Γ.A.A+ is a suitable display map

for the type EqA, but the problem is to construct EqA : domΓ.A.A+ → codC in such a way

that Beck-Chevalley is satisfied.

Observe that any map γ :∆→Γ.A.A+ can be uniquely decomposed into components

γ = 〈〈γ ′, t〉,u〉 for γ ′ = πA ·πA+ ·γ , t = π ′A[πA+ ·γ] and u = π ′A+ [γ]. Now for each context

∆ and each pair of terms ∆ ` t : A and ∆ ` u : A let eq∆(t,u) be chosen making the

following square a pullback

•

eq∆(t,u)

∆.A = ∆.A.A+.EqA

〈idA,π ′A〉= πEqA

∆
(t,u)

∆.A.A+ ,

and define EqA〈〈γ , t〉,u〉 ≡ eq∆(t,u). This is a valid type in the category with families

for C, and the Beck-Chevalley condition is easy to verify: EqA[γA,A+ ]〈〈δ , t〉,u〉 =

EqA(γA,A+ · 〈〈δ , t〉,u〉) = EqA〈〈γ ·δ , t〉,u〉= eqΞ(t,u) = EqA[γ]〈〈δ , t〉,u〉.
The term reflA : idΓ.A → eqΓ.A(π ′A,π ′A) is obtained by factorisation of (idΓ.A, idΓ.A)

through the pullback defining eq.

Any term Γ ` e : Eq(t,u) implies the existence of a morphism f : Γ→ Γ.A with

〈idA,π ′A〉 · f = (u,v); this implies t = u.

The existence of Sigma types and equality types together has some quite important

consequences, perhaps the most important of which is that every term Γ.A ` f : B+ can

be interpreted as a type by defining the type

Γ, b : B ` A ¹ f ≡∑a : A. Eq( f a,b) ,
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and note that πA¹ f = f .

The appropriate notion of structure in a fibration is that it be defined in each

fibre and are preserved by reindexing, so we have the following definition of fibred

exponentials in a fibration.

Definition 3.4.6 Say that a fibration with fibred binary products is fibred cartesian

closed iff each fibre is cartesian closed and the exponential structure is preserved by

reindexing, ie γ∗(AB)∼= (γ∗A)γ∗B.

Recall now that C is locally cartesian closed iff each slice category C/Γ is cartesian

closed. We have the following equivalent formulations of this property.

Proposition 3.4.7 If C is pullback complete then the following are equivalent:

1. the codomain fibration codC :C→→ C is fibred cartesian closed;

2. C is locally cartesian closed;

3. each reindexing functor γ∗ has a right adjoint γ∗ a ∏γ satisfying the Beck-

Chevalley condition: γ∗∏A
∼= ∏γ∗A γ∗A.

Proof. (1 =⇒ 2) This is immediate by definition.

(2 =⇒ 3) For Γ.A ` B define Γ `∏A B≡ ∑ f : (∑A B)A.Eq(π · f , idA) then

Γ ` ( f ,e) :U −→∑ f : (∑A B)A. Eq(π · f , idA)

Γ ` f :U −→ (∑A B)A Γ,U ` e : Eq(π · f , idA)

Γ ` f1 : A×U −→ A Γ,A×U ` f2 : f ∗1 B f1 = π

Γ,A,π∗AU ` f2 : π∗AB

Γ,A ` π∗AU −→ B

showing that π∗A a ∏A. To verify the Beck-Chevalley condition recall that

π∗A ∑γ ∼= ∑γA
π∗A[γ] and compute: C/∆(U,γ∗∏A B) ∼= C/Γ.A(π∗A ∑γ U,B) ∼=

C/Γ.A(∑γA
π∗A[γ]U,B)∼= C/∆(U,∏A[γ] γ∗AB).

(3 =⇒ 1) For X ,Y ∈ C/Γ define XY ≡ ∏Y π∗Y X and verify C/Γ(U, ∏Y π∗Y X) ∼=
C/Γ.Y (π∗YU, π∗Y X) ∼= C/Γ(X×U ∼= ∑Y π∗YU, X) showing that each C/Γ is

cartesian closed. Preservation of exponentials follows immediately from Beck-

Chevalley.
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As for Sigma types, we can define Pi types in the category with families for a locally

cartesian closed C.

Proposition 3.4.8 If C is locally cartesian closed then for types Γ.A ` B there exists a

type Γ `∏A B forming a right adjoint to substitution and satisfying the Beck-Chevalley

condition (∏A B)[γ ] = ∏A[γ] B[γA].

Proof. As for Sigma types, define (∏A B)γ ≡∏Aγ BγA.

Limits and Colimits in Fibrations

By a J-limit in D is meant the limit of a diagram of the form D : J→ D, which we’ll

write in any of the forms lim←−D = lim←−JD = lim←− j∈JD j ∈D. The limiting cone is written

(π j : lim←−D→ D j) j∈J and each cone ~α = (α j : X → D j) j∈J uniquely factors through

〈α j〉 j∈J : X → lim←−D satisfying the equation π j · 〈~α〉 = α j. Similarly the colimit of

a diagram D is written lim−→JD with colimiting cone (κ j : D j→ lim−→D) j∈J and unique

factorisation [β j] j∈J satisfying [~β ] ·κ j = β j.

The natural notion of structure in a fibration is structure that is present in each fibre

and which is preserved by reindexing. Thus we have the following definition of fibred

limit and colimit.

Definition 3.4.9 Say that a fibration p :E→ C has fibred J-limits iff each fibre has

J-limits which are preserved by reindexing functors. Dually, say that p has fibred J-

colimits iff each fibre has J-colimits preserved by reindexing.

Conveniently it turns out that limits in C automatically lift to fibred limits in the

codomain fibration.

Proposition 3.4.10 If C has pullbacks and J-limits then codC has fibred J-limits.

Proof. Limits in C lift to limits in each slice C/Γ: given D :D→ C/Γ construct the

morphism 〈πD j ·π j〉 j : lim←−JΓ.D→ lim←−JΓ and pull it back along δJ ≡ 〈idΓ〉 j :Γ→ lim←−JΓ
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to yield an object of C/Γ. Now let any X ∈ C/Γ be given and consider:

Γ.X

f j

〈~f 〉

πX

lim←− j∈JΓ.D j

〈πD j ·π j〉 j

π j

Γ.D j

πD j

Γ

idΓ

δJ
lim←− j∈JΓ

π j

.

Γ

Any cone ( f j : X → D j) j in C/Γ uniquely factors through 〈~f 〉 as shown, and

furthermore the main square commutes and so 〈~f 〉 factors through the pullback along

δJ constructed above, showing that it is the limit in C/Γ of D.

That limits are preserved by reindexing is immediately obvious since reindexing in

this fibration is by taking pullbacks.

Similarly, if C is locally cartesian closed then we get the same result for colimits.

Proposition 3.4.11 If C is locally cartesian closed and has J-colimits then codC has

fibred J-colimits.

Proof. Given a diagram D :J→ C/Γ compute [πD j] j∈J : lim−→ j∈JΓ.D j→ Γ as an object

of C/Γ. This is the required colimit diagram, since any cone ( f j : D j→ X) j factors as

[~f ] : lim−→Γ.D→ Γ.X necessarily satisfying πX · [~f ] = [πD] = πlim−→Γ.D. These colimits are

preserved by pullback functors since each γ∗ has a right adjoint.



Chapter 4

Categories of Containers

Here we introduce the theory of containers as representatives for a class of functors of

the form

TA.BX ≡∑a : A. ∏ i : I. XBi(a)
i CI TA.B C .

4.1 Introducing Containers

The basic notion of a container is a dependent pair of types A ` B, written (A . B),

yielding a functor TA.BX ≡ ∑a : A.XB(a), and it turns out that the appropriate notion

of a morphism (A ` B)→ (C ` D) is a pair of morphisms (u : A→ C, f : u∗D→ B).

With this definition of a category G of container generators we can construct a full and

faithful functor T : G → [C,C] and show the completeness properties discussed in the

introduction. We refer to each functor of the form TA.B as a “container functor” or the

“extension” of the container (A . B).

An important part of the theory is the extension of this definition to a container

in I parameters, for any set I, generating a category GI of I-indexed containers with

extension given by T : GI → [CI ,C]. These containers with parameters compose to

form a bicategory and play a key role in the development of the theory of fixed points,

which can be thought of as being generated by iterated composition of containers.

There are two different ways of thinking of how a container functor F(X ,Y ) in two

parameters (ie, an object of G2) might arise. One approach is to think of F(X ,Y ) as

being an X-indexed family of containers (A(X) . B(X)). We therefore start with the

52
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following observation about “containers with parameters”.

Proposition 4.1.1 The following constructions of a functor F :Cn→C are equivalent:

1. If n = 0: an object of C equal to F.

If n = m + 1: a container functor S :Cm → C together with an object S~X ` P~X

for each ~X ∈ Cm satisfying the isomorphism P~Y (S~f (s)) ∼= P~X(s) for ~f :~X →~Y

and s : S~X. Define F(~X ,Y ) equal to ∑s : S~X .Y P~X(s).

The families (S~X . P~X) = (S . P)~X should be thought of as a ~X-indexed family

of containers, so here we can think of a container in m + 1 parameters as a

m-indexed family of containers in one parameter.

2. An object A ∈ C together with n objects over A, i.e. A ` (Bi)i∈1 . .n, with F~X

defined equal to ∑a : A.∏i∈1 . .n XBi(a)
i .

Proof. By induction. For n = 0 the two cases are clearly equivalent, so let n = m + 1

and let S~X = ∑a : A.∏i∈1 . .m XBi(a)
i . Observe now that P~X is fully determined by P1,

since P~X ∼= P1(S!~X ), so take Bn ≡ P1. In particular, for (a, f ) :S~X note that P~X(a, f )∼=
Bn(a).

We can now show that the two definitions of F are equivalent:

F1(~X ,Y ) = ∑s : S~X . Y P~X(s) ∼= ∑a : A. ∑ f : ∏i∈1 . .m XBi(a)
i . Y P~X(a, f )

∼= ∑a : A. ∑ f : ∏i∈1 . .m XBi(a)
i . Y Bn(a) ∼= F2(~X ,Y ) .

The second of the constructions above is technically simpler and generalises more

easily and we therefore take this to be our definition of a container in n parameters.

For the purposes of this paper the index set n or I will generally be finite, but in fact it

makes little difference.

Indeed, it is straightforward to generalise the development in this thesis to the case

where containers are parameterised by internal index objects I ∈C; whenC has enough

coproducts nothing is lost by doing this, since CI ' C/∑i∈I 1. This generalisation will

be important for the development of “dependent containers”; see section 7.2.

4.2 Defining Containers

Containers are defined to capture a particular class of functor of the form CI → CJ ;

however, as [CI ,CJ ] ∼= [CI ,C]J it is sufficient to concentrate on the functors CI → C.
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In this section we will define for each indexing set I the category GI of “I-indexed

containers” together with the extension of each container as a functor.

Definition 4.2.1 Given a locally cartesian closed category C with I-indexed products

(for I a set) define an I-indexed container to be a pair A ∈ C, B ∈ (C/A)I . Such a

container will be written as (A . B) and the set of I-indexed containers is written GI .

In the internal language of C we can write (A . B) as

` A in C a : A ` B(a) in CI

Note that the way we have developed the internal language allows us to hide the I-

indexing of B much of the time. When this indexing needs to be made explicit, we will

write this as i : I,a : A ` Bi(a) in C, and the associated container may be written as

(
a : A . (Bi(a))i∈I

)
or

(
a : A .i:I Bi(a)

)
.

Definition 4.2.2 Define the extension of a container (A . B) ∈ GI to be the functor

TA.B :CI → C defined on objects X ∈ CI by the following expression:

TA.BX ≡∑a : A. ∏ i : I. XBi(a)
i

and on morphisms g : X → Y by

(TA.Bg)(a, f )≡ (a,g · f ) .

A functor isomorphic to some TA.B is called a container functor.

It is clear that the above expression defines a fibred functor, but it will be helpful to

look more closely at how an element of TA.BX in a arbitrary context Γ ` X can be

interpreted. We can use the rules of the internal language

Γ ` t : TA.BX = ∑a : A. ∏ i : I. XBi(a) in C

Γ ` a : A Γ ` f :∏ i : I. XBi(a) in C

Γ ` a : A in C Γ ` f : B(a)−→ X in CI

to decompose an element of TA.BX into the two elements a and f as shown; we will

therefore write (a, f ) : TA.BX whenever appropriate. To be precise, f : B(a)→ I∗X

where I∗X is the constant family (X)i∈I ∈ CI ; however, such weakenings will seldom

need to be made explicit.



CHAPTER 4. CATEGORIES OF CONTAINERS 55

To be precise, when we write g · f in definition 4.2.2, we literally mean I∗g · f for

I∗g : I∗X → I∗Y ; again, such weakenings will frequently be elided.

We extend GI to a category by the following definition of morphism. This definition

ensures that morphisms between containers capture precisely natural transformations

between container extensions, as shown by theorem 4.3.3.

Definition 4.2.3 A container morphism (A . B) → (C . D) is given by a pair of

morphisms u : A→ C in C and f : u∗D→ B in (C/A)I . The category of containers

and container morphisms is written GI .

The composite of two container morphisms is defined as

(v,g) · (u, f )≡ (v ·u, f ·u∗g) .

A morphism (u, f ) : (A . B)→ (C . D) can be written in type theoretic notation as

u : A−→C i : I, a : A ` fi(a) : Di(ua)−→ Bi(a) .

This definition of container morphism can be understood with the help of an

example. Consider the map tail : ListX → 1 + ListX taking the empty list to ∗ ∈ 1

and otherwise yielding the tail of the given list:

tail of list

x1 x2 x3 7→ x2 x3 .

This map is defined by i) a choice of shape in 1 + ListX for each shape in ListX , ie

0 7→ ∗, n+1 7→ n; and ii) for each position in the chosen shape a position in the original

shape, ie the function i 7→ i + 1.

We can now extend the construction of the extension of a container to a functor

T :GI → [CI ,C].

Definition 4.2.4 T extends to a functor T : GI → [CI ,C] as follows. For a container

morphism (u, f ) : (A . B) → (C . D) define Tu, f : TA.B → TC.D to be the natural

transformation Tu, f X : TA.BX → TC.DX thus:

(a,g) : TA.BX ` (Tu, f X)(a,g)≡ (ua,g · f ) .

The following proposition follows more or less immediately by the construction of T .

Proposition 4.2.5 For each container F ∈ GI and each container morphism α :F→G

the functor TF and natural transformation Tα are fibred over C.
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4.3 A Yoneda Lemma for Containers

Just as the Yoneda lemma tells us that elements of a presheaf F ∈ SetC
op

are in bijection

with morphisms in SetC
op

from representables to F , so we have a bijection between

local elements of a fibred functor and morphisms from container functors. Thus we

see container functors playing a role analogous to the representable functors. Note

however that the bijection involves an essential change in base, so the analogy is not

exact.

Proposition 4.3.1 For each fibred functor F :CI → C and each I-indexed container

(A . B) in GI there is a bijection natural in F and (A . B):

TA.B F in [CI ,C]

1 FAB in (C/A)I .

Proof. We will conduct the proof entirely in the internal language of C. In this context

an arrow x : 1→ FAB in (C/A)I is regarded as a term a : A ` x(a) : (FB)(a), and the

localisation becomes almost invisible.

Given a natural transformation α : TA.B→ F define xα : 1→ FAB by the term

a : A ` xα(a)≡ αB(a) · (a, idB(a)) .

Conversely, given x : 1→ FAB define a fibred natural transformation αx : TA.B→ F

with component (αx)ΓX : TA.BX → FΓX defined by the term

Γ, (a, f ) : TA.BX ` (αx)ΓX · (a, f )≡ F f · x(a) .

Verify that each (αx)Γ is a natural transformation by calculating for each g : X → Y in

(C/Γ)I :

(αx)ΓY ·TA.Bg · (a, f ) = (αx)ΓY · (a,g · f ) = F(g · f ) · x(a) = Fg ·F f · x(a)

= Fg · (αx)ΓX · (a, f ) .

To see that αx is fibred observe that the definition of (αx)ΓX involves variables a, f and

the constants F and x which are all preserved by substitution.

Now we need to verify that these assignments are bijective. Given x it is easy

to calculate (for a : A) that xαx(a) = (αx)B(a) · (a, idB(a)) = F idB(a) · x(a) = x(a).
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Conversely, let α be given and calculate

(αxα )ΓX · (a, f ) = F f · xα(a) = F f ·αB · (a, idB(a)) = αX ·TA.B f · (a, idB(a))

= αX · (a, f )

showing that αxα = α and establishing the bijection.

To show naturality in F let β : F → G be a fibred natural transformation. It is now

sufficient to verify that xβ ·α(a) = (β ·α)B(a) · (a, idB(a)) = βB(a) ·xα(a), showing that

xβ ·α = βAB · xα .

Naturality in (A . B) is a little more delicate as a change of fibre is involved: given a

container morphism (u, f ) : (C . D)→ (A . B) this induces a correspondence between

TA.B
α

F

TC.D

Tu, f α ·Tu, f
and

1
u∗xα

xα·Tu, f

u∗FAB ∼= FCu∗B

FC f
FCD

where c :C `FC f ·u∗xα = FC f ·αB(uc) ·(uc, idB(uc)) = αD(c) ·(TA.B)C f ·(uc, idB(uc)) =

αD(c) ·Tu, f D(a) · (c, idD(c)) = xα·Tu, f (ignoring the coherence isomorphism by grace of

the internal language) showing naturality as required.

The following lemma gives a bit more depth to the idea that container functors are a

kind of representable functor.

Lemma 4.3.2 There is a bijection between local elements of a container functor and

morphisms in GI thus:

1 (TC.D)AB in C/A

(A . B) (C . D) in GI .

Proof. This is a matter of direct observation in the internal language. An element of

(TC.D)AB can be written as

a : A ` u(a) :C, fa : D(ua)−→ B(a)

which is precisely a pair u : A→C, f : u∗D→ B, ie a morphism in GI .

The following theorem is an immediate corollary and plays a key role in the

development of the theory of containers in this thesis: we will frequently use reflection

along T .
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Theorem 4.3.3 The functor T :GI → [CI ,C] is full and faithful.

This result gives a particularly simple analysis of polymorphic functions between

container functors. For example, it is easy to observe that there are precisely nm

polymorphic functions Xn→ Xm: the data type Xn is the container (1 . n) and hence

there is a bijection between polymorphic functions X n→ Xm and functions m→ n.

Similarly, any polymorphic function ListX → ListX can be uniquely written as a

function u :N→ N together with for each natural number n :N a function fn : un→ n.

Container Functors as Fibred Kan Extensions

We can use proposition 4.3.1 to show that each container functor TA.B is a left Kan

extension in the 2-category FibC.

The notion of a Kan extension is a purely 2-categorical construction, so it makes

sense to talk about Kan extensions in the category of fibrations. Recall the following

definition, which is a natural generalisation of MacLane (1971, §X.3).

Definition 4.3.4 Let C be a 2-category and let F : A→ B and G : A→C be 1-cells in

C . The left Kan extension of G along F is a 1-cell LanF G : B→ C together with a

2-cell η : G→ (LanF G)◦F forming a universal arrow to −◦F :C (B,C)→ C (A,C).

We can now make the following observation.

Proposition 4.3.5 Each container functor TA.B is the Kan extension in FibC of the

constant functor 1 : domA → codC (taking each f : Γ→ A to idΓ ∈ C/Γ) along the

functor B̃ derived via theorem 3.2.7 from B ∈ (C/A)I:

domA
1

B̃

codC

codI
C

TA.B
∼= LanB̃1

in FibC .

Proof. From proposition 4.3.1 we see that for each F : codI
C → C there is an

isomorphism FibC(codI
C,codC)(TA.B,F) ∼= (C/A)I(1,FAB), and using theorem 3.2.7

we can write (C/A)I(1,FAB) ∼= FibC(domA,codI
C)(1,F ◦ B̃). This is natural in F and

so TA.B
∼= LanB̃1.

The significance of this observation is more evident in the development of quotient

containers, not treated in this thesis (Abbott, 2003).
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Comparing this construction of TA.B as a Kan extension in FibC with the

corresponding construction whenC≡ Set may usefully illuminate the role of fibrations

in this thesis. As we have already observed, functors between powers of Set are fibred

as functors over Set, so we can translate proposition 4.3.5 into the construction

A
1

B

Set

SetI
TA.B

∼= LanB1
in Cat .

Here A is the set A regarded as a discrete category and B is the functor B : A→ Set

corresponding to the family (Ba)a∈A. So we see that FibC is, in effect, standing in

for the category of categories, an object A ∈ C as a discrete object is represented by

its representable fibration domA and the correspondence between families A ` B and

functors B : A→ C is precisely the fibred Yoneda lemma (theorem 3.2.7).

4.4 The Bicategory of Containers

Given two containers (A . B) and (C . D) in one parameter their extensions can

be composed to yield a functor which we’ll see is also a container functor. This

composition can be explained with reference to the diagram

↓

D( f b)

f : B(a)→C

· · ·f b ∈C

b ∈ B(a)
(

a : A, f :CB(a) . ∑b : B(a). D( f b)
)

a ∈ A

↓

as follows: a value in TA.BTC.DX is an a ∈ A together with a function B(a)→ TC.DX ;

this function can in turn be decomposed into two parts, a constant part f : B(a)→ C

and the data dependent part, D( f b)→ X . This gives precisely a decomposition of the

composite into shapes and positions.

Just as an I-indexed container (A . B) ∈ GI yields a functor CI → C and so can be

regarded as a morphism I 99K 1, so a J-indexed family of containers (C j . D j) j∈J ∈ G J
I

with extension a functor CI → CJ can be regarded as a morphism I 99K J. We can

extend the composite of containers to this case.
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Definition 4.4.1 Given a container (A . B) ∈ GJ and a J-indexed family of containers

(C j . D j) j∈J define the composite container

(A . B)◦ (C . D)≡
(

a : A, f : ∏ j : J.C
B j(a)
j .i : I ∑ j : J. ∑b : B j(a). D j,i( f jb)

)
.

This definition is, as might be hoped, compatible with composition of container

functors.

Proposition 4.4.2 Container composition extends to a functor −◦− : G J
I ×GJ → GJ

which commutes with composition of container functors: T(A.B)◦(C.D)
∼= TA.BTC.D.

Proof. On objects calculate using intensional choice ∏A ∑B C ∼= ∑∏A B ε∗C and

currying C∑A B ∼= ∏A CB where shown and abbreviating the types as far as possible:

TA.BTC.DX = ∑A ∏J

(
∑C ∏I XD)B

∼= ∑A ∏J ∑CB ∏B ∏I Xε∗D (choice)

∼= ∑A ∑∏J CB ∏J ∏B ∏I Xε∗D (choice)

∼= ∑A ∑∏J CB ∏I ∏J ∏B Xε∗D

∼= ∑A ∑∏J CB ∏I X∑J ∑B ε∗D (curry)

∼= ∑∑A ∏J CB ∏I X∑J ∑B ε∗D = T(A.B)◦(C.D)X .

By lemma 1.4.7 we can now extend composition of containers to morphisms.

Given container morphisms (u, f ) : (A . B)→ (A′ . B′) and (v,g) : (C . D)→ (C′ . D′)

the composite (u, f )◦ (v,g) can be explicitly computed as

(u, f )◦(v,g) =




λa : A, k : ∏J CB(a). (ua, λ j : J. v · k j · f j,a),

i : I, a : A, k : ∏J CB(a) ` λ j : J, b : B′j(ua), d : D′i, j(vk j f j,ab).

( j, f j,ab, g j,k j f j,abd)


 .

The projection and identity container morphisms are worth noting.

Proposition 4.4.3 The projection functors πi :CI →C for i ∈ I are container functors.

The container ~π ≡ (πi)i∈I ∈ G I
I is an identity (up to isomorphism) for composition.

Proof. Define πi ≡ (1 . j∈I Eq(i, j)), in other words the shape of πi is 0 for every

parameter in I, except at i where it is equal to 1. Then TπiX
∼= ∏ j∈I XEq(i, j)

j
∼= Xi.

That F ◦~π ∼= F for any F ∈ GI follows by reflection along T from the observation

that T~π ∼= idCI .



CHAPTER 4. CATEGORIES OF CONTAINERS 61

We’re now in a position to observe that containers and their composition form a

bicategory.

Proposition 4.4.4 The system of containers over C and container morphisms extends

to a bicategory equipped with a 2-functor into the 2-category of fibred functors and

natural transformations between set-indexed powers of C.

Proof. For sets I,J define G (I,J) ≡ G J
I with T : G (I,J) → [CI ,CJ ]. That − ◦ −

is a bicategory composition operation follows by reflection along each T : full and

faithfulness of this functor ensures that since composition of containers is transformed

into ordinary functor composition, all the coherence equations of a bicategory are

automatically satisfied.

A special case of container composition is of particular interest when constructing fixed

points of types. Given a type F(~X ,Y ) corresponding to a a functor F :CI+1→Cwe will

be interested in finding a type G(~X) satisfying the isomorphism F(~X ,G(~X)) ∼= G(~X).

Such a functor is referred to a fixed point of F(~X ,−).

A container F ∈ GI+1 can be written as (A . B,E) for B ∈ (C/A)I and E ∈ C/A.

Given G≡ (C . D) ∈ GI define

(A . B,E)[(C . D)]≡
(

a : A, f :CE(a) .i∈I Bi(a) +∑e : E(a). Di( f e)
)
.

This can be seen to be equal to the composite container F ◦ (~π,G) and so F [G] satisfies

TF [G]
∼= TF [TG] = TF(idCI ,TG) and thus TF [G]X ∼= TF(X ,TGX) and as a shorthand we

can simply write (F [G])X = F(X ,GX).

4.5 Limits and Colimits of Containers

It turns out that each GI inherits completeness and cocompleteness from C, and that T

preserves completeness. Preservation of cocompleteness is more complex, and only a

limited class of colimits is preserved by T .

Proposition 4.5.1 If C has limits and colimits of shape J then GI has limits of shape J

and T preserves these limits.

Proof. We’ll proceed by appealing to the fact that T reflects limits (since it is full and

faithful), and the proof will proceed separately for products and equalisers.
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Products. Let (Ak . Bk)k∈K be a family of containers in GI and compute

∏k∈K TAk.Bk X = ∏k∈K ∑a : A. ∏i∈I X
Bk,i(a)
i

∼= ∑a : ∏k∈K Ak. ∏k∈K ∏i∈I X
Bk,i(πka)
i (choice)

∼= ∑a : ∏k∈K Ak. ∏i∈I X
∑k∈K Bk,i(πka)
i (curry)

= T∏k∈K Ak.(∑k∈K π∗k Bk,i)i∈I
X

showing by reflection along T that

∏k∈K(Ak . Bk)∼=
(
∏k∈K Ak . ∑k∈K π∗k Bk

)
.

Equalisers. Given parallel maps (u, f ),(v,g) : (A . B)⇒ (C . D) construct

(E . Q)
(e,q)

(A . B)

(u, f )

(v,g)
(C . D)

where e is the equaliser in C of u,v and q is the coequaliser in (C/E)I of e∗ f , e∗g. To

show that Te,q is the equaliser of Tu, f ,Tv,g fix X ∈ CI , U ∈ C and let α :U → TA.BX be

given equalising this parallel pair at X .

For x :U write α(x) = (a,h) where a : A, h : ∏i∈I XBi(a)
i . The condition on α tells us

that u(a) = v(a) and so there is a unique y : E with a = e(y). Similarly we know that

h · f (ey) = h ·g(ey) and in particular there is a unique k : Q(y)→ X with h = k ·q.

The assignment x 7→ (y,k) defines a map β : U → TE.QX giving a unique

factorisation of α , showing that Te,qX is an equaliser and hence so is (e,q).

In particular, this result tells us that the limit in [CI ,C] of a diagram of container

functors is itself a container functor. Observe that this proof works by converting a

limit diagram in G into a combination of a limit and a colimit diagram in C.

It’s nice to see that coproducts of containers are also well behaved.

Proposition 4.5.2 If C has products and disjoint coproducts of size K then GI has

coproducts of size K preserved by T .

Proof. Given a family (Ak . Bk)k∈K of objects in GI calculate (making essential use of
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disjoint coproducts):

∑k∈K TAk.Bk X = ∑k∈K ∑a : Ak. ∏i∈I X
Bk,i(a)
i

∼= ∑k∈K ∑a : Ak. ∏i∈I

((
◦
∐

k′∈K
Bk′,i

)
(κka)⇒ Xi

)

∼= ∑a : ∑k∈K Ak. ∏i∈I

((
◦
∐

k∈K
Bk,i
)
(a)⇒ Xi

)

= T∑k∈K Ak.( ◦∐k∈K Bk,i)i∈I
X

showing by reflection along T that

∑k∈K(Ak . Bk)∼=
(
∑k∈K Ak . ◦

∐
k∈K

Bk

)
.

The fate of coequalisers is more complicated. It turns out that GI has coequalisers when

C has both equalisers and coequalisers, but they are not preserved by T .

The following proposition is not proved here, but follows from observations arising

in the abstract framework, section 7.2.

Proposition 4.5.3 If C has equalisers and coequalisers then GI has coequalisers.

The following example shows that coequalisers are not preserved by T .

Example 4.5.4 Consider the following coequaliser diagram in [C,C]

X ×X
idX×X

(π ′,π)

X ×X (X×X)/∼

where (x,y) ∼ (y,x). The functor X 7→ X × X is a container functor generated by

(1 . 2), and the coequaliser of the corresponding parallel pair in G1 is the container

(1 . 0). Note however that T1.0X ∼= 1 6∼= (X×X)/∼.

This particular coequaliser can be represented as a quotient container (section 7.2),

since the quotient ∼ is data independent.

It’s worth noting that in general filtered colimits aren’t preserved by T either.

Example 4.5.5 Consider the ω-chain in G1 given by n 7→ (1 . An) (for fixed A) on

objects and (n→ n + m) 7→ πn,m : An+m ∼= An×Am→ An on maps. The filtered colimit

of this diagram can be computed in G1 to be (1 . AN). However, applying T to this

diagram produces the ω-chain

X Xπ0,1
XA Xπ1,1

XA2 Xπ2,1 · · ·

and the colimit of this chain in Set is strictly smaller than X AN .
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4.6 Cartesian Morphisms

An important group of container morphisms is the class of cartesian morphisms. These

are the container morphisms which preserve the data without either discarding or

duplicating positions, and can be regarded as a kind of linear morphism of container.

We will see an application of this in the definition of the derivative of a container in

section 6.4; in this section we will see that filtered colimits of diagrams of cartesian

morphisms exist in G and are preserved by T .

Definition 4.6.1 A morphism (u, f ) in GI is cartesian iff f is an isomorphism. Write ĜI

for the subcategory of GI with the same objects but only cartesian morphisms.

Note indeed that (u, f ) is cartesian with respect to this definition precisely when it is

cartesian (in the sense of section 3.1.3) with respect to the projection functor π :GI→C
taking (A . B) to A.

Note also that for each map of shapes u there is a bijection between cartesian

morphisms (u, f ) :(A . B)→ (C . D) in GI and morphisms f̄ inCI making each square

below a pullback:

Bi
f̄i

Di

A u C ;

in other words cartesian morphisms in G correspond to pullback squares in C.

We can also translate the notion of cartesian morphism into natural transformations

between container functors:

Proposition 4.6.2 A natural transformation α : TA.B→ TC.D derives from a cartesian

map iff the naturality squares of α are all pullbacks.

Such natural transformations are often also called cartesian; in this case these maps

are cartesian in the sense of fibrations with respect to the “evaluation at 1” functor

[D,C]→ C.

Cartesian natural transformations into container functors are of particular

importance.



CHAPTER 4. CATEGORIES OF CONTAINERS 65

Proposition 4.6.3 Any functor G ∈ [CI ,C] equipped with a cartesian natural

transformation α : G→ TF to a container functor is itself isomorphic to a container

functor.

Proof. Let F ≡ (A . B) then (α1, id(α1)∗B) : (G1 . (α1)∗B)→ (A . B) is a cartesian

map in GI ; this yields a cartesian natural transformation TG1.(α1)∗B → TA.B. It now

follows from the observation that each αX makes GX the pullback along α1 of the

map TA.BX → A that G∼= TG1.(α1)∗B as required.

Filtered Colimits of Cartesian Diagrams

Although GI has coequalisers they are not preserved in general by T , and as seen above

in example 4.5.5 this also applies to filtered colimits. However, all colimit diagrams

constructed in Ĝ are preserved by T , at least so long as we assume that C is finitely

accessible as well as locally cartesian closed.

Definition 4.6.4 (Adámek and Rosický, 1994) A category C is finitely accessible iff

it has all filtered colimits and a generating set of finitely presentable objects.

For the rest of this section only we will assume that C is finitely accessible and draw

on results from Adámek and Rosický (1994) as necessary to show that ĜI has filtered

colimits which are preserved by T (when restricted to ĜI), and hence also by the

inclusion ĜI ↪→ GI .

The lemma below follows directly from the corresponding result in Set and helps

us work with maps from finitely presentable objects to filtered colimits (write
∨

D for

the colimit of a filtered diagram D).

Lemma 4.6.5 Let D : J→ C be a filtered diagram with colimiting cone d : D→ ∨
D

and let U be finitely presentable.

1. For each α :U → ∨
D there exists J ∈ J and αJ :U → DJ such that α = dJ ·αJ .

2. Given α :U → DI, β :U → DJ such that dI ·α = dJ ·β there exists K ∈ J and

maps f : I→ K, g : J→ K such that D f ·α = Dg ·β .

Before the main result we need a technical lemma about filtered colimits in finitely

accessible categories.
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Lemma 4.6.6 Given a filtered diagram in C→ with every edge a pullback then the

arrows of the colimiting cone are also pullbacks.

Proof. We need to show, for each I ∈ C, that the square

EI
eI

αI

∨
E

ᾱ

DI
dI

∨
D

is a pullback, where E
α→ D is the diagram, (d,e) are the components of its colimiting

cone and ᾱ is the factorisation of d · α through e. So let a cone DI
a← U

b→ ∨
E

satisfying dI · a = ᾱ · b be given. Without loss of generality we can assume that U

is finitely presentable and we can now appeal to lemma 4.6.5 above.

Construct first bJ :U→ EJ such that b = eJ ·bJ ; then as dI ·a = ᾱ ·eJ ·bJ = dJ ·(αJ ·
bJ) there exist f : I→K, g :J→K with D f ·a = Dg ·αJ ·bJ = αK ·Eg ·bJ and so we can

construct a factorisation bI :U → EI through the pullback over f satisfying αI ·bI = a

and E f · bI = Eg · bJ . This is a factorisation of (a,b) since eI · bI = eK · E f · bI =

eK ·Eg · eJ = eJ ·bJ = b.

This factorisation is unique. Let b,b′ :U ⇒ EI be given such that eI · b = eI · b′.
Then there exist f , f ′ : I ⇒ J with E f · b = E f ′ · b′; but indeed there exists g : J → K

with h≡ g · f = g · f ′ and so Eh ·b = Eh ·b′. As the square over h is a pullback we can

conclude b = b′.

Now we are in a position to state the main result, that the filtered colimit of a cartesian

diagram of container functors is itself a container functor.

Proposition 4.6.7 For each set I the category ĜI has filtered colimits which are

preserved by T .

Proof. Let a diagram (D . E) :J→ ĜI be given, i.e. for each K ∈ J there is a container

(DK . EK) and for each f : K→ L a cartesian container morphism (D f ,E f ).

For each f :K→ L in J, write Ē f for the map EK→ EL derived from cartesian E f
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so that we get the left hand pullback square below:

EK
Ē f

EL
ēL ∨

Ē

DK
D̄ f

DL
dL

∨
D

.

After taking the colimits shown (with colimiting cones d and ē), we know from lemma

4.6.6 that the right hand square is also a pullback and we can interpret the right hand

side as a container together with a cartesian cone (d,e) : (D . E) ·→ (
∨

D .
∨

Ē).

It remains to show that T∨D.
∨

Ē
∼= ∨

TD.E , so let a cone f : TD.EX ·→U be given

as shown below, where the map kK takes (a,g) to (dK(a),g), using the isomorphism

(
∨

Ē)i(dK(a))∼= EKi(a) (for K ∈ J, i : I, a : DK j) derived from (d,e) cartesian.

∑a : DK j. ∏i∈I(EKi(a)⇒ Xi)
kK

fK

∑a :
∨

D. ∏i∈I((
∨

Ē)i(a)⇒ Xi)

h
U

To construct h let a :
∨

D and g : ∏i∈i((
∨

D)i(a)⇒ Xi) be given and choose K ∈ J,
aK ∈ DK such that a = dK(aK), and so we have (aK ,g) : TDK.EKX and can compute

h(a,g)≡ fK(aK ,g); this construction of h(a,g) is unique and independent of the choice

of K and aK .

In Abbott et al. (2003a) this result is used along with proposition 5.2.7 to show that the

fixed point of a container µY .F(X ,Y ) can be constructed as a container. However, this

approach has quite a serious drawback: the ambient categoryC is required to be locally

finitely presentable, which rules out a number of interesting and important categorical

models. Instead we develop fixed points of containers using W-types in chapter 5.

4.7 Shapely Types

In Jay and Cockett (1994) and Jay (1995) “shapely types” (in one parameter) in a

category C are defined to be strong pullback preserving functors C→C equipped with

a strong cartesian natural transformation to the list type, where the list type is the initial

algebra µY .1 + X×Y (we define this in 5.1.5).

To see the relationship with containers, note that Jacobs (1999, prop 2.6.11)

tells us that strong pullback preserving functors are in bijection with fibred pullback
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preserving functors, and similarly strong natural transformations between such functors

correspond to fibred natural transformations. Since the “list type” is given by the

container (N . Fin), it immediately follows by proposition 4.6.3 that every shapely

type is a container functor. Indeed, lemma 4.8.2 shows that the exponentials required

to construct the container extensions must necessarily exist.

Conversely, a container constructed with object of positions a discretely finite

object is of the form (A . γ∗Fin) for some map γ : A→ N and is therefore evidently

a shapely type. We can therefore identify the shapely types with the containers

constructed with positions in the universe of discretely finite objects, see after

construction 3.3.9.

Definition 4.7.1 An object A ` B is discretely finite iff a morphism u : A→ N exists

such that B∼= u∗Fin, i.e. each fibre a : A ` B(a) is isomorphic to a finite cardinal.

Say that a container (A . B) ∈ GI is discretely finite iff each component Bi for i ∈ I

is discretely finite.

Note that “discretely finite” is strictly stronger than finitely presentable and other

possible notions of finiteness. An immediate consequence of this definition is that

the object of finite cardinals is a generic object for the category of discretely finite

containers, and the following theorem relating shapely types and containers now

follows as a corollary.

Theorem 4.7.2 In a category with a list type the category of shapely functors

and strong natural transformations is equivalent to the category of discretely finite

containers.

However, this thesis tells us more about shapely types. In particular, containers show

how to extend shapely types to cover coinductive types. Finally, the representation

result for containers clearly translates into a representation result classifying the

polymorphic functions between shapely types.

It interesting to note that the “traversals” of Moggi et al. (1999) do not carry over

to containers in general, for example the type N⇒ X does not effectively traverse over

the lifting monad X 7→ X + 1.
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4.8 Partial Products

An alternative perspective on the construction container types is provided through the

notion of a “partial product”. In Dyckhoff and Tholen (1987) and Johnstone (1991)

we are introduced to the notion of the partial product of an object over a family

(presented as morphism in the ambient category), originally attributed to Pasynkov

(1965). Dyckhoff and Tholen (1987) observe that partial products exist precisely when

local exponentials exist, and as noted in Johnstone (1991) the object part of a partial

product is precisely the extension of a container at an object. The partial product can

therefore be regarded as a building block in the construction of containers.

The following is the categorical definition presented in the references above.

Definition 4.8.1 (Dyckhoff and Tholen, 1987) The partial product of an object X

over a morphism f : B→ A is an object P of C together with a pair of morphisms

p : P→ A, e : B×A P→ X such that given any other P′ with maps p′ : P′ → A and

e′ : B×A P′ → X there exists a unique h : P′ → P over A such that e′ = e · (B×A h) as

show in the diagram

B×A P

e

B

fX B×A P′
e′

B×A h

P
p

A .

P′
h p′

It is convenient to translate this directly into the language of slice categories, in which

case we can say that the partial product of X ∈C over B∈C/A is an object PA,BX ∈C/A

equipped with an evaluation morphism

B×PA,BX
e π∗AX in C/A

establishing a bijection

C/A(−, PA,BX)∼= C/A(B×−, π∗AX)∼= C
(
∑A(B×−), X

)
;

this shows that we can regard the partial products over A ` B as constructing a right

adjoint to the functor ∑A(B×−) :C/A→ C.
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The following lemma (which holds in any category C with finite limits) tells us that

the notion of partial product is equivalent to the notion of a container, in particular we

can define TA.BX = ∑A PA,BX .

Lemma 4.8.2 (Dyckhoff and Tholen, 1987, Lemma 2.1) All partial products over a

family A ` B exist inC iff the local exponential X B exists inC/A for each X ∈C/A.

The main interest in this result is that we can now observe that the existence

of containers, which we have described here using partial products, is in effect

synonymous with the existence of exponentials of the positions in the fibre over the

shape.

Thus it is clear that the theory of containers can very naturally be generalised to

take account of subsystems of types with exponentials, for example we can see that

shapely types exist precisely because the exponentials of discretely finite objects exist

in a category with finite limits.



Chapter 5

Initial Algebras and Final

Coalgebras

In this chapter we discuss the construction of initial algebras and final coalgebras for

container functors and the principles in the ambient category C used to construct them.

5.1 Introducing Fixed Points

Initial algebras and final coalgebras can be regarded as the fundamental building blocks

used to introduce infinite data structures into type theory. Initial algebras define “well

founded” structures, which can be regarded as the expression of terminating processes;

final coalgebras include the possibility of infinite processes.

For example, the functor X 7→ X +1 has two fixed points of interest, namely N (the

natural numbers) and N∞, which can be regarded as N plus an “infinite” number.

First some basic results about initial algebras and final coalgebras.

Definition 5.1.1 An algebra for a functor F :C→ C is an object X ∈ C together with

a morphism h : FX → X; refer to X as the carrier of the algebra. An algebra morphism

(X ,h) → (Y,k) is a morphism f : X → Y satisfying the identity f · h = k · F f . An

initial algebra for F is then an initial object in the category of algebras and algebra

morphisms.

More explicitly, an initial algebra is an algebra α : FA→ A such that for any other

algebra h : FX → X there exists a unique morphism h : A→ X satisfying the equation

71
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h ·α = h ·Fh thus:

FA
α

Fh

A

h

FX
h

X .

Similarly, a coalgebra is an algebra for Fop in Cop and a final coalgebra is a terminal

object in the category of coalgebras. Writing this out explicitly, a final coalgebra is

a coalgebra β : B→ FB such that any other coalgebra h : X → FX induces a unique

h̃ : X → B such that β · h̃ = Fh̃ ·h.

The following result tells us that initial algebras and final coalgebras for a functor

F are fixed points of F , and indeed the initial algebra is often called the least fixed point

and the final coalgebra the greatest fixed point.

Proposition 5.1.2 (Lambek’s Lemma) Initial algebras are isomorphisms.

Proof. Given an initial algebra α : FA→ A construct β ≡ Fα by initiality satisfying

β ·α = Fα ·Fβ . Then (α ·β ) ·α = α ·F(α ·β ), so by initiality α ·β = idA, and then

β ·α = F(α ·β ) = idFA and so β = α−1.

The following useful result about initial algebras tells us that initial algebras with

parameters extend to functors.

Proposition 5.1.3 Given a functor F :D×C → C if each endofunctor F(X ,−) on

C has an initial algebra (GX ,αX) then G extends to a functor and α to a natural

transformation.

Proof. Given f : X → Y define G f : GX → GY by initiality satisfying the equation

G f ·αX = (αY ·F( f ,GY )) ·F(X ,G f ). Naturality of α is immediately, and it is easy

to see that this construction is functorial.

Finally an observation to link initial algebras of fibred functors to ordinary initial

algebras.

Proposition 5.1.4 Let C be locally cartesian closed. If the global part of a fibred

functor F :C→ C has an initial algebra (A,α) in C then for each context Γ ∈ C the

algebra (Γ∗A,Γ∗α) is a local initial algebra for each FΓ.
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Proof. Let h : FΓX → X be an FΓ-algebra in C/Γ; the condition that f : Γ∗A→ X be an

algebra morphism is the equation f ·Γ∗α = h ·FΓ f , which can be written as

Γ∗FA

Γ∗α

∼= FΓΓ∗A

FΓ f

Γ∗A

f

FΓΓ∗∏Γ X

∼=
Γ∗F ∏Γ X

Γ∗F f̃

FΓεX
FΓX

h
X

where f̃ is the exponential transpose of f . In particular, if we transpose the outer

square we get an F-algebra ˜h ·FΓεX : Γ∗∏Γ X →∏Γ X with unique algebra morphism

f̃ , which is enough to show that f is also a unique algebra morphism.

We can now define operations µ and ν taking the fixed points of functors. If we regard

a functor F :D×C→C as a type constructor F(X ,Y ) then we can can regard the fixed

points defined below as types.

Definition 5.1.5 Given a functor F : D×C → C regarded as a type constructor

F(X ,Y ) define µY .F(X ,Y ) and νY .F(X ,Y ) to be the initial algebra and final

coalgebra respectively of the functor F(X ,−).

We know from proposition 5.1.4 that this definition is sufficient to ensure that the notion

of an initial algebra behaves appropriately in the internal language.

To extend this definition of µ types observe that for containers F ∈ GI+1 and G∈ GI

the operation G 7→ F [G], with TF [G]X ∼= TF(X ,TGX) as noted at the end of section 4.4,

is an endofunctor on GI .

Definition 5.1.6 For F ∈ GI+1 write µF and νF for the initial algebra and final

coalgebra respectively of the endofunctor F [−] :GI → GI .

We will show in this chapter that functors µ ,ν : GI+1→ GI exist, or equivalently, that

the initial algebra and final coalgebras of a container functor are container functors.

5.2 W-Types and M-Types

In axiomatic type theory (Martin-Löf, 1974; Nordström et al., 1990) the building block

for inductive constructions is the W-type. Given a family of constructors A ` B the
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type Wa : A.B(a) should be regarded as the type of “well founded trees” constructed

by regarding each b : B(a) as a constructor of arity a.

The standard presentation of a W-type is through one type forming rule, an

introduction rule and an elimination rule, together with a pair of equations. As the

type theoretic development in this thesis focuses entirely on categorical models, we

take W types to be extensionally defined, in particular the induction elimination rule

constructs a unique term.

Definition 5.2.1 A type system has W-types iff it has a type constructor

Γ,A ` B
Γ ` WAB

(W-type)

together with a constructor term

Γ, a : A, f : (WAB)B(a) ` sup(a,b) : WAB (sup)

and an elimination rule

Γ, WAB ` C
Γ, a : A, f : (WAB)B(a), g : ∏b : B(a).C( f b) ` h(a, f ,g) :C(sup(a, f ))

Γ,w : WAB ` wrech(w) :C(w)
(wrec)

satisfying equations (for a : A, f : (WAB)B(a) and g : ∏WAB C):

wrech(sup(a, f )) = h(a, f ,wrech · f )

g(sup(a, f )) = h(a, f ,g · f ) =⇒ g = wrech .

The W in W-type stands for “Well-ordering”, and an element of WAB can usefully be

thought of as a well founded tree where each node of the tree is given by an element

a ∈ A and the elements b ∈ B(a) represent the possible descendents of (or branches

from) that node. Thus a tree can be described in two parts: a choice of element a ∈ A

together with a function f assigning to each b ∈ B(a) a descendant tree to the branch

b. Thus we get the constructor term sup : TA.B(WAB)→WAB.

The elimination (or induction) rule (wrec) arises from the fact that every possible

path through a tree w ∈ WAB is finite. The constructor h(a, f ,g) constructs a new

output over the tree w = sup(a, f ) from the values available over all the descendants of

w, namely f b for each b ∈ B(a). The parameter g programs in the availability of these

values.

W-types are initial algebras for a particularly familiar class of functors:
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Theorem 5.2.2 W-types are precisely the initial algebras of container functors in one

parameter:

WAB∼= µX . ∑A XB = µX . TA.BX .

Proof. First observe that the map sup : TA.BWAB→WAB makes WAB into an initial

TA.B-algebra: given an algebra k : TA.BX → X define h(a, f ,g)≡ k(a,g) and construct

k ≡ wrech. To show that this is an algebra morphism, calculate in context a : A and

f : (WAB)B(a)

k sup(a, f ) = wrech(sup(a, f )) = h(a, f ,wrech · f ) = k(a,k · f ) = k(TA.Bk)(a, f )

and uniqueness of this map follows immediately: if a map g : WAB→ X also satisfies

g · sup = k · TA.Bg, then in particular g(sup(a, f )) = k(a,g · f ) = h(a, f ,g · f ) and so

g = k.

Conversely, to show that µX .TA.BX is a W-type we’ll need to do a little more

work. For conciseness write Z ≡ µX .TA.BX and sup : TA.BZ→ Z for the initial algebra

morphism on Z. Now let Z `C and h be given as in the hypotheses of the rule (wrec).

The initiality of Z will only allow us to construct a map into a constant type, so

define D≡ ∑Z C and from h construct h′ : TA.BD→ D as follows.

First observe that TA.BD = ∑A(∑Z C)B ∼= ∑A ∑ f : ZB.∏b : B.C( f b) (by intensional

choice), and so we can write the arguments of h′ as a :A, f :ZB and g : ∏b : B(a).C( f b)

and define h′(a, f ,g) = (sup(a, f ),h(a, f ,g)) as the following composite map:

TA.BD = ∑A

(
∑Z C

)B ∼= ∑A ∑ f : ZB. ∏b : B. C( f b)
(sup,h)

∑Z C .

Initiality of sup induces h : Z → ∑Z C uniquely satisfying h · sup = h′ · TA.Bh. Write

h = (h0,h1) and we can now write TA.Bh · (a, f ) = (a,h0 · f ,h1 · f ) as an element of

∑A ∑ZB ∏B ε∗C. This equation can now be written as a pair of equations

h0(sup(a, f )) = sup(a,h0 · f ) , h1(sup(a, f )) = h(a,h0 · f ,h1 · f ) .

The equation for h0 tells us (by initiality of Z) that in fact h0 = idZ , and then the second

equation tells us that h1 = wrech, and so Z ∼= WAB as required.

Dually we can define M-types by a system of type definitions, or as will be sufficient

for this thesis, to be final coalgebras of containers.

Definition 5.2.3 Given a family A ` B the M-type MAB is the final coalgebra

MAB≡ νX . TA.BX .
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W-Induction over Lists

One consequence of theorem 5.2.2 is the specialisation of the W-recursion rule to the

following deduction rule for lists.

Corollary 5.2.4 Induction over a list ListA ∼= µX .1 + X × A is captured by the

elimination rule

Γ,ListA ` C
Γ ` f :C(nil)
Γ, a : A, l : ListA, c :C(l) ` g(a, l,c) :C(cons(a, l))

Γ, l : ListA ` lrec f ,g(l) :C(l)
(lrec)

satisfying the equations

lrec f ,g(nil) = f lrec f ,g(cons(a, l)) = g(a, l, lrec f ,g(l))

k(nil) = f ∧ k(cons(a, l)) = g(a, l,k(l)) =⇒ k = lrec f ,g .

Note also that the induction equation D ∼= A×D + B can be written as a list:

D = µX . A×X + B∼= (ListA)×B ,

and so each inductively defined term D ` t :C can be constructed from terms

b : B ` f b :C(nil,b)

a : A, l : ListA, b : B, c :C(l,b) ` g(a, l,b,c) :C(cons(a, l),b)

and uniquely satisfies the equations

t(nil,b) = f b t(cons(a, l),b) = g(a, l,b, t(a, l)) . (5.1)

We’ll make use of this observation in the proof of proposition 5.5.1 below.

Constructing W-Types

We can either assume that C has W-types given axiomatically or, if C satisfies the

necessary preconditions, derive them from theorem 5.2.8 below. Alternatively if C is a

topos we can appeal to proposition 3.6 of Moerdijk and Palmgren (2000).

Proposition 5.2.5 (Moerdijk and Palmgren, 2000, proposition 3.6) W-types exist in

any elementary topos with a natural numbers object.
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In the rest of this section we’ll construct W-types from colimits in C. First we need to

set up some auxiliary machinery, deriving largely from Adámek and Rosický (1994).

In particular, the result in this subsection as stated here relies on classical set-theoretic

reasoning.

Recall that a category J is said to be filtered iff every finite and non-empty diagram

in J has a compatible cocone in J. In Adámek and Rosický (1994) we have the

following extension of this notion to an arbitrary regular cardinal ℵ.

Definition 5.2.6 Say that a category J is ℵ-filtered iff every subcategory of J with less

than ℵ morphisms has a compatible cocone.

If a functor F :C→ C preserves all ℵ-filtered colimits say that F has rank ℵ, and

say that F has rank iff it has rank for some ℵ.

Note that an ordinary filtered category is precisely an ℵ0-filtered category.

We now have the following important folklore result. A variant of this theorem

is proved in Adámek and Koubek (1979), and the case for ℵ0 is a standard result in

computer science (eg, Poigné, 1992, §7.3).

Proposition 5.2.7 If C has an initial object and colimits of all filtered diagrams then

any functor F :C→ C with rank has an initial algebra.

Proof. A sketch proof follows. In the finite case (ℵ = ℵ0) we construct the colimit of

the ω-chain

0 F0 F20 . . . lim−→n∈ℵ0
Fn0 .

Since F preserves this diagram, we can compute F lim−→n
Fn0 ∼= lim−→n

FFn0 ∼= lim−→n
Fn0;

it is a straightforward calculation to verify that this is the required initial algebra

morphism.

The generalisation to arbitrary ℵ is a not altogether straightforward set theoretic

generalisation of this result.

We now obtain the following result.

Theorem 5.2.8 If C is locally cartesian closed and locally presentable then C has all

W-types.
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Proof. It will suffice to show that every one-parameter container functor TA.B :C→C
has rank, and hence has an initial algebra. Decompose TA.B into the chain of functors

C A∗ C/A
(−)B

C/A
∑A C .

We appeal to two results of Adámek and Rosický (1994) to show that all of these

functors (and hence their composite) have rank. We know from their theorem 2.39 that

each C/A is accessible, and their proposition 2.23 tells us that every functor between

accessible categories with an adjoint has rank.

Constructing M-Types

We can construct M-types using a dual form of proposition 5.2.7.

Proposition 5.2.9 If C is finitely complete, locally cartesian closed and has limits of

ω-chains then C has all M-types.

Proof. By the dual of proposition 5.2.7 it is enough to show that TA.B preserves

cofiltered limits. Decomposing TA.B as in the proof of theorem 5.2.8, it is clearly

enough to show that ∑A preserves cofiltered limits, since the remaining components of

this decomposition preserve all limits. But we know, for example from Carboni and

Johnstone (1995), that ∑A preserves limits of connected diagrams.

Note that to construct M-types we only need to make use of the limit of an ω-chain,

whereas the construction of W-types can involve the construction of an arbitrarily large

filtered colimit, so in some sense M-types are easier to construct than W-limits.

This observation certainly extends to the construction of ν-types of containers: if

C has ω-limits and colimits (and so G is ω-complete) it is straightforward to show (by

reflection along T ) that the functor F [−] : GI → GI preserves ω limits and hence has a

final coalgebra. However we do not wish to make such a strong assumption about C in

this thesis.

I believe that it is also possible to construct M-types directly from W-types, but no

proof of this is presented here.
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5.3 Initial Algebras of Containers

One consequence of theorem 5.2.2 is that in the presence of W-types we can

immediately construct µ types for containers in one parameter. However, the

construction of a µ type for a container in multiple parameters is a more delicate matter

and will require the introduction of more machinery.

Let F :CI+1→ C be a container in multiple parameters, which we can write as

F(X ,Y )≡ TS.P,Q(X ,Y ) = ∑s : S.
(
∏ i : I. XPi(s)

i

)
×Y Q(s) = ∑S

(
∏I XP×Y Q) .

The task is to compute (A . B) such that TA.BX ∼= µY .F(X ,Y ). Clearly

A∼= TA.B1∼= µY . F(1,Y )∼= µY . ∑s : S. Y Q(s) ∼= WSQ ,

but the construction of WSQ ` B is more tricky.

In the rest of this chapter we will ignore the index set I and write X P for ∏I XP.

In particular, this means that the family B ∈ (C/WSQ)I will be treated uniformly (as

if I = 1). The required extra working to take account of I can be routinely added, but

will further complicate a presentation which is quite complex enough already. We will

therefore take

F(X ,Y )≡∑S(XP×Y Q) .

To simplify the algebra of types we will write S,AQ `P+∑Q ε∗B as an abbreviation

for the type expression (where ε is an evaluation map AQ×Q→ A):

s : S, f : AQ(s) ` P(s) +∑q : Q(s). B( f q) .

For consistency with the subsequent result on final coalgebras write the initial algebra

on A = WSQ as ψ : ∑S AQ→ A.

Proposition 5.3.1 Given the notation above, if WSQ ` B is equipped with an

isomorphism

S,AQ ` ϕ : P +∑Q ε∗B∼= ψ∗B

then TA.BX ∼= µY .F(X ,Y ).
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Proof. First we show that each TA.BX is an F(X ,−) algebra thus:

F(X ,TA.BX) = ∑S

(
XP×

(
∑A XB)Q

)
∼= ∑S

(
XP×∑AQ ∏Q Xε∗B

)

∼= ∑S ∑AQ

(
XP×∏Q Xε∗B

)
∼= ∑S ∑AQ XP+∑Q ε∗B

ϕ−1

∼= ∑S ∑AQ Xψ∗B
(ψ,id)∼= ∑A XB = TA.BX .

With variables s : S, g : XP(s) and h :
(
∑A XB

)Q(s)
note that we can decompose h into

components π · h : AQ(s) and π ′ · h : ∏q : Q(s).XB(πhq) and so the algebra morphism

in : F(X ,TA.BX)→ TA.BX can be conveniently written as

in(s,g,h) = (ψ(s,π ·h),
[
g;π ′ ·h

]
·ϕ−1) ;

conversely, given variables s : S, f : AQ(s) and k : XB(ψ(s, f )) similarly note that k ·ϕ ·κ ′

can be regarded as a term of type ∏q : Q(s).XB( f q) and so we can write

in−1(ψ(s, f ),k) = (s, k ·ϕ ·κ, ( f ,k ·ϕ ·κ ′)) .

To show that in is an initial F(X ,−)-algebra we need to construct from any algebra

α :F(X ,Y )→Y a unique map α :TA.BX→Y satisfying the algebra morphism equation

α · in = α ·F(X ,α):

F(X ,TA.BX)
in

F(X ,α)

TA.BX

α

F(X ,Y ) α Y .

The map α can be transposed to a term A ` α̃ : XB ⇒ Y which we will construct by

induction on A = WSQ. Given s :S, f :AQ(s) and k :XB(ψ(s, f )) construct g≡ k ·ϕ ·κ :XP(s)

and h≡ k ·ϕ ·κ ′ : ∏q : Q(s).XB( f q). In this context define H(s, f ,β )(k)≡ α(s,g,β (h))

and compute

α̃(ψ(s, f ))(k) = α(ψ(s, f ),k) = α · in · (s,g,( f ,h))

= α ·F(X ,α) · (s,g,( f ,h)) = α(s,g,α · ( f ,h))

= α(s,g,(α̃ · f )(h)) = H(s, f , α̃ · f )(k) .

This shows that α̃ = wrecH and thus that TA.BX is an F(X ,−)-initial algebra.

Note that as a corollary of this proposition the isomorphism P + ∑Q ε∗B ∼= ψ∗B over

WSQ defines B up to isomorphism, since the container TA.B is determined up to

isomorphism as an initial algebra.
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Of course, it remains to prove the hypothesis of the theorem above, that a family

A ` B with the given isomorphism ϕ exists; we do this in proposition 5.5.1.

5.4 Final Coalgebras of Containers

The corresponding result for final coalgebras requires a little more structure on B, as

the isomorphism ϕ does not fully determine B over MSQ.

First we need to define what we mean by an initial algebra “over” another fixed

point: the following definition turns out to be a special case of an ordinary initial

algebra.

Definition 5.4.1 Given a functor F :C → C with a fixed point ψ : FA ∼= A and a

functor G :C/A→ C/FA, define an algebra over ψ to be an object A ` B together

with a morphism ϕ : GB→ ψ∗B over FA. An algebra morphism (B,ϕ)→ (B′,ϕ ′) is a

morphism f : B→ B′ such that ψ∗ f ·ϕ = ϕ ′ ·G f . Finally define an initial algebra over

ψ to be an initial object in this category of algebras over ψ .

Note that an algebra (B,ϕ) over a fixed point ψ is equivalent to the algebra (B,ψ−1∗ϕ)

for the functor ψ−1∗G :C/A→ C/A. This observation allows us to see that an initial

algebra over a fixed point must be an isomorphism, and that these are just a form of

ordinary algebras.

We will work with the specific case of initial algebras over fixed points of the

functor TS.Q for the functor GX ≡ P + ∑Q ε∗X . We have already used such a fixed

point over the initial algebra WSQ in proposition 5.3.1, and the following proposition

allows us to perform a similar construction over the final coalgebra.

Proposition 5.4.2 Given F(X ,Y )≡∑S(XP×Y Q) as before, define A≡MSQ with final

coalgebra ψ−1 : A→ ∑S AQ. If an object A ` B exists with initial algebra

S,AQ ` ϕ : P +∑Q ε∗B−→ ψ∗B

over ψ then TA.BX ∼= νY .F(X ,Y ).

Proof. First note that the construction of in−1 : TA.BX → F(X ,TA.BX) in the proof of

proposition 5.3.1 above works unchanged and so in−1 is a coalgebra. We now want

to show that this is a final coalgebra, so let β :Y → F(X ,Y ) be a coalgebra; it will be

sufficient to construct β :Y → TA.BX uniquely satisfying in ·F(X ,β ) ·β = β .
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Start by writing β = (s,g,h) :Y → ∑S(XP×Y Q), which we can write as

Y
s

S Y ` s∗P
g

X Y ` s∗Q h
Y .

The goal then is to construct β = (a,k) :Y → ∑A XB thus:

Y
a

A Y ` a∗B k
X ,

and the equation in ·F(X ,β ) ·β = β translates into the commutative square

Y
(s,g,h)

(a,k)

∑S(XP×Y Q)

∑S(XP× (a,k)Q)

∑A XB

in−1 ∑S

(
XP×

(
∑A XB)Q

)
.

Observe that π · in−1 · (a,k) = s, in other words we can write

a = ψ · (s, f ) for some Y ` s∗Q
f

A .

Evaluating both edges of this square leads to the equation

(s, g, (a ·h, h∗k)) = (s, k ·φ ·κ , ( f , k ·φ ·κ ′))

which can be interpreted as the following three equations in the type theory (where the

detailed dependency of each function symbol is made explicit):

y :Y , p : P(sy) ` gy p = kyϕsy, fyκ p g = k ·φ ·κ

y :Y , q : Q(sy) ` ahyq = fyq a ·h = f

y :Y , q : Q(sy), b : B( fyq) ` khyqb = kyϕκ ′(q,b) h∗k = k ·ϕ ·κ ′ .

Now the equation a = ψ · (s, f ) = ψ · (s,a ·h) fully determines a :Y → A by finality

of A, so the problem remains to determine k. The equations for k can be captured by

the following commutative triangle:

Y ` s∗P +∑s∗Q f ∗B
(s, f )∗ϕ

[g;h∗k]

a∗B

k
X

.
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Note that s∗P+∑s∗Q f ∗B = (s, f )∗(P+∑Q ε∗B) and similarly a∗B = (s, f )∗ψ∗B, so we

can transpose the right hand edge of this triangle to produce the top and right edges of

the square below

S,AQ ` P +∑Q ε∗B
ϕ

idP +∑Q ε∗k

ψ∗B

ψ∗k

P +∑Q ε∗∏a X α ψ∗∏a X .

Here A ` k : B→ ∏a X is the transpose of k. As ψ is an isomorphism we can write

∏(s, f ) X ∼= ψ∗∏a X , and so in particular ψ∗k ·ϕ is the transpose of k · (s, f )∗ϕ . If we

can construct α = [α0;α1] such that α · (idP +∑Q ε∗k) is the transpose of [g;h∗k] then

we can appeal to initiality of ϕ to conclude that k (and hence k) is uniquely determined

and so TA.B is a terminal coalgebra.

Taking α0 to be the transpose of g : s∗P = (s, f )∗P→ X it remains to construct α1.

Start by observing that A `∏a X can be written as

a′ : A ` ∏a X ≡
(
∑y :Y . Eq(ay,a′)

)
⇒ X = X∑y:Y .Eq(ay,a′) ,

or more suggestively, as ∏a X ≡∏y :Y ¹ Eq(ay,a′).X . Now for s′ : S and f ′ : AQ(s′), we

can write ψ∗∏a X = ∏y :Y ¹ Eq(ay,ψ(s′, f ′)).X , and similarly for q : Q(s′) we have

ε∗∏a X = ∏y :Y ¹ Eq(ay, f ′q).X . The map A ` k : B→∏a X can be described by the

equation

a′ : A, b : B(a), y :Y ¹ Eq(ay,a′) ` (ka′b)y≡ kyb .

Now define S,AQ,Q ` α1 : ε∗∏a X → ψ∗∏a X by the equation in context

s′ : S, f ′ : AQ(s′), q : Q(s′), θ : ∏y :Y ¹ Eq(ay, f ′q).X , y :Y ¹ Eq(ay,ψ(s′, f ′)) `

(α1θ)y≡ θ(hyq) .

This is well defined so long as ay = ψ(s′, f ′) =⇒ ahyq = f ′q, but this follows from

the equation ay = ψ(sy,a ·hy), which in particular implies that f ′ = a ·hy.

It remains to verify that α1 ·∑Q ε∗k is the transpose of h∗k; this follows from the

calculation

s′ : S, f ′ : AQ(s′), q : Q(s′), b : B( f ′q), y :Y ¹ Eq(ay,ψ(s′, f ′)) `

(α1k f ′qb)y = (k f ′qb)(hyq) = khyqb .
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5.5 Constructing an Initial Algebra over a Fixed Point

Both propositions 5.3.1 and 5.4.2 rely on the hypothesis that there exists an initial

algebra for the functor X 7→ P + ∑Q ε∗X over fixed points ψ : TS.QA→ A.

Note however, that the existence of the initial algebras over fixed points is not yet

established. In particular, the functor ψ−1∗G is not a container functor, so we cannot

simply construct its initial algebra as a W-type. We can construct this initial algebra,

but the construction requires further work.

Proposition 5.5.1 For each fixed point ψ : TS.QA∼= A the functor

(A ` X)
G (

S,AQ ` P +∑Q ε∗X
)

has an initial algebra over ψ .

Proof. Write S,AQ ` ϕ :P + ∑Q ε∗B→ψ∗B for the initial algebra over ψ that we wish

to construct. As already noted, we cannot directly appeal to W-types to construct this

fixed point, so the first step is to create a fixed point equation that we can solve. Begin

by “erasing” the type dependency of B and construct (writing ∑Q Y ∼= Q×Y , etc)

B̂≡ µY . ∑S ∑AQ

(
P + Q×Y

)∼= µY .
(
∑S(AQ×P) +

(
∑S(AQ×Q)

)
×Y
)

∼= List
(
∑S(AQ×Q)

)
×∑S(AQ×P) ;

there is no problem in constructing arbitrary lists in C so B̂ clearly exists.

The task now is to select the “well-formed” elements of B̂. A list in B̂ can be

thought of as a putative path through a tree in µY .TS.P,Q(X ,Y ); we want B(a) to be the

set of all valid paths to X-substitutable locations in the tree.

An element of B̂ can be conveniently written as a list followed by a tuple thus

([(s0, f0,q0), . . . ,(sn−1, fn−1,qn−1)],(sn, fn, p))

for si : S, fi : AQ(si), qi : Q(si) and p : P(sn). The condition that this is a well formed

element of B(ψ(s0, f0)) can be expressed as the n equations

fi(qi) = ψ(si+1, fi+1) for i< n

which can be captured as an equaliser diagram

∑A B
e

πB

B̂

ϖ

α

β
ListA

A
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where α , β and ϖ are defined inductively on B̂ as follows (and πB ≡ ϖ · e):

α(nil, p′) = nil α(cons((s, f ,q), l), p′) = cons( f q,α(l, p′))

ϖ(nil,(s, f , p)) = ψ(s, f ) ϖ(cons((s, f ,q), l), p′) = ψ(s, f )

β (nil, p′) = nil β (cons(b, l), p′) = cons(ϖ(l, p′),β (l, p′)) .

The property that b : B̂ is an element of B can be written b : B(ϖb) and can be

expressed inductively as follows:

> =⇒ (nil,(s, f , p)) : B(ψ(s, f )) (5.2)

f q = ϖ(l, p′)∧ (l, p′) : B( f q) =⇒ (cons((s, f ,q), l), p′) : B(ψ(s, f )) . (5.3)

The converse to (5.3) also holds, since (cons((s, f ,q), l), p′) : B(ψ(s, f )) ⇐⇒
cons( f q,α(l, p′)) = cons(ϖ(l, p′),β (l, p′)) ⇐⇒ f q = ϖ(l, p′)∧ (l, p′) : B( f q).

The isomorphism ϕ̂ : ∑S ∑AQ(P + Q× B̂) ∼= B̂ can now be used to construct the

initial algebra for B. Writing an element of ∑S ∑AQ(P + Q× B̂) as (s, f ,κ p) or

(s, f ,κ ′(q,b)), the function ϕ̂ can be computed thus:

∑S ∑AQ(P + Q× B̂)
ϕ̂∼=

List
(
∑S(AQ×Q)

)

×∑S(AQ×P)
= B̂

(s, f ,κ p) ←→ (nil,(s, f , p))

(s, f ,κ ′(q,(l, p′))) ←→ (cons((s, f ,q), l), p′) .

To show that ϕ̂ restricts to a morphism ϕ : P + ∑Q ε∗B→ ψ∗B we need to show for

each s : S and f : AQ that x : (P(s) + ∑q : Q(s).B( f q)) implies ϕ̂(s, f ,x) : B(ψ(s, f )).

When x = κ p we immediately have ϕ̂(s, f ,κ p) = (nil,(s, f , p)) : B(ψ(s, f )) by

(5.2) above. Now let (s, f ,κ ′(q,(l, p′))) be given with (l, p′) : B( f q) (which means,

in particular, that ϖ(l, p′) = f q) and consider the equation ϕ̂(s, f ,κ ′(q,(l, p′))) =

(cons((s, f ,q), l), p′), then by (5.3) this is also in B(ψ(s, f )). Thus ϕ̂ restricts to

s : S, f : AQ(s) ` ϕs, f : P(s) +∑q : Q(s). B( f q)−→ B(ψ(s, f )) .
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We have in effect constructed ϕ making the diagram below commute:

∑S ∑AQ

(
P +∑Q ε∗B

) ϕ

π

∑A B

πB

e∑S AQ ψ
A

∑S ∑AQ

(
P + Q× B̂

)

ϕ̂

π

B̂

ϖ

.

Finally to show that ϕ is an initial morphism let A ` X be given together with

S,AQ ` h : P + ∑Q ε∗X → ψ∗X . The condition that a map A ` h : B→ X is an algebra

morphism can be written as the pair of equations

s : S, f : AQ(s), p : P(s) ` hψ(s, f )ϕs, f κ p = hs, f κ p (5.4)

s : S, f : AQ(s), q : Q(s), b : B( f q) ` hψ(s, f )ϕs, f κ ′(q,b) = hs, f κ ′(q,h f qb) . (5.5)

We will construct h : B→ X by induction over B̂, but some preparation is required.

Write A ` B̂ϖ for B̂ regarded as a type over A with display map ϖ , then B̂ ∼= ∑A B̂ϖ .

Similarly observe that B as the equaliser B ∼= Eq(α,β ) can now be written using the

isomorphism A ` B ∼= ∑B̂ϖ
Eq(α,β ). We can now transpose h into a form suitable for

induction over B̂ thus:

A ` B∼= ∑B̂ϖ
Eq(α,β )

h
X

B̂∼= ∑A B̂ϖ ` Eq(α ,β ) ϖ∗X

B̂ ` h̃ : (ϖ∗X)Eq(α,β ) .

We can relate h and h̃ by the equation (the parameter w can be silently ignored: only

its presence is important)

a : A, b : B̂ϖ (a), w : Eq(αb,βb) ` h̃(b) = ha(b) : X(a) . (5.6)

As observed after corollary 5.2.4 we can construct h̃ and verify the equations it

satisfies by constructing two terms h0 and h1 as follows. We can use the membership

rules (5.2, 5.3) to reason about elements of X Eq(α,β ), ie b : B(ϖb) iff αb = βb iff

b∗Eq(α,β ) is inhabited. Now write Wf(b) ≡ Eq(αb,βb) (abbreviating the type that

says that “b is a well formed element of B”), and then Wf(nil,(s, f , p)) ∼= 1 and so we



CHAPTER 5. INITIAL ALGEBRAS AND FINAL COALGEBRAS 87

can define h0:

s : S, f : AQ(s), p : P(s) ` h0 p≡ hs, f κ p : X(ψ(s, f )) .

Now consider the construction of h1 in context:

s : S, f : AQ(s), q : Q(s), l : List
(
∑S(AQ×Q)

)
, p′ : ∑S(AQ×P),

x : (l, p′)∗
(
(ϖ∗X)Eq(α,β )

)
` h1 : (cons((s, f ,q), l), p′)∗

(
(ϖ∗X)Eq(α,β )

)
.

In context s, f ,q, l, p′ define b≡ (cons((s, f ,q), l), p′); this can now be written as

w1 : Wf(l, p′), x : X(ϖ(l, p′)), w2 : Wf(b) ` h1 : X(ϖb) .

Now ϖb = ψ(s, f ) and the existence of w2 : Wf(b) implies ϖ(l, p′) = f q and hence

x : X( f q) and so we can define h1 ≡ hs, f κ ′(q,x). Now h̃≡ lrech0,h1 can be constructed

by induction and finally define h to be the transpose of h̃.

It remains to verify that the equations (5.1) for h̃ transpose using (5.6) to the

equations (5.4, 5.5) for h:

h̃(nil,(s, f , p)) = hψ(s, f )(nil,(s, f , p)) = hψ(s, f )ϕs, f κ p

h0(s, f , p) = hs, f κ p

h̃(cons((s, f ,q), l), p′) = hψ(s, f )ϕs, f κ ′(q,(l, p′))

h1((s, f ,q), l, p′, h̃(l, p′)) = hs, f κ ′(q,h((l, p′))) .

We conclude our development with the following summary result as a corollary.

Corollary 5.5.2 If C has W-types then containers are closed under the construction of

µ-types. Similarly, if C has W and M-types then containers are closed under ν-types

as well.

Note that that since µF and νF are fixed points, they satisfy the isomorphisms

µF ∼= F [µF ] and νF ∼= F [νF ] .
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5.6 Strictly Positive Types

We now have enough machinery in place to observe that all strictly positive types can

be described as containers.

Definition 5.6.1 A strictly positive type in n variables (Abel and Altenkirch, 2000) is

a type expression (with type variables X1, . . . ,Xn) built up inductively according to the

following rules:

• if K is a constant type (with no type variables) then K is a strictly positive type;

• each type variable Xi is a strictly positive type;

• if F, G are strictly positive types then so are F + G and F×G;

• if K is a constant type and F a strictly positive type then K ⇒ F is a strictly

positive type;

• if F is a strictly positive type in n+1 variables then µX .F and νX .F are strictly

positive types in n variables (for X any type variable).

Note that the type expression for a strictly positive type F can be interpreted as a

functor F :Cn→ C, and indeed we can see that each strictly positive type corresponds

to a container in Gn.

Let strictly positive types F , G be represented by containers (A . B) and (C . D)

respectively, then the table below shows the correspondence between strictly positive

types and containers.

K 7→ (K . 0) Xi 7→ (1 . (δi, j) j∈I)

F + G 7→ (A +C . B ◦+ D) F×G 7→ (a : A, c :C . B(a)×D(c))

K⇒ F 7→
(

f : AK . ∑k : K. B( f k)
)

As we have seen in this chapter the construction of fixed points can be described in

a uniform way. Let F be represented by (S . P,Q) ∈ GI+1, then for each fixed point

ψ : TS.QA∼= A of TS.Q we have constructed in proposition 5.5.1 an initial algebra over

ψ , written here as A ` BA, of the form

s : S, f : AQ(s) ` ϕ : P(s) +∑q : Q(s). BA( f s)−→ BA(ψ(s, f )) ;
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we can now define

µY . F 7→ (WSQ . BWSQ) νY . F 7→ (MSQ . BMSQ) .

It is intriguing to observe that µ and ν only differ in the type of shapes and that

in both cases the positions are constructed in the same way. The reason for this is that

each position in a container type, even a coalgebraic type such as the type of streams

XN ∼= µY .X×Y , is accessible in a finite number of steps.

A detailed working of this example is instructive. Define F(X ,Y )≡ X×Y which is

given by the container (S . P,Q)≡ (1 . 1,1). Following the construction of νY .F(X ,Y )

in this chapter, clearly A = νY .Y ∼= 1, and so the task is to construct B as a global

object satisfying the equation 1 + B ∼= B, with initial solution B ∼= N. This gives us the

expected result νY .X×Y ∼= XN.

The equation 1 + B ∼= B also has a final solution, N∞ = νX .1 + X with an extra

“stationary” value ω ∈ N∞, so it is natural to ask why XN∞ is not the solution. A value

f ∈ XN represents a stream, with each n∈N indicating how many iterations of F(X ,−)

are require to reach the position where the value f (n) ∈ X is found. The problem with

XN∞ is that the extra value ω ∈ N∞ represents the unreachable end of the list: thus a

value f (ω) ∈ X assigns a superfluous value.

Conversely it seems that there are containers which do not correspond to strictly

positive types. A probable counterexample is the type of nests, defined as the least

solution to the equation

N(X)∼= 1 + X×N(X×X) .

The datatype N is a container since it can be written as N(X) ∼= ∑n :N.X2n−1, but it

should be possible to show that it is not strictly positive following the argument used

in Moggi et al. (1999) to show that the type of square matrices is not regular.



Chapter 6

Derivatives of Containers

In this chapter we present an application of containers to the construction of the

“derivative” of a data type. This is a useful notion which can be captured by a nice

universal property, but only when attention is restricted to the category of containers or

a related class of functors.

6.1 Introduction

In his classic functional pearl Huet (1997) shows how to represent a tree with one of

its subtrees “in focus” by a pair of the subtree and the one-hole context (or “zipper”)

in which it sits. The unpublished article McBride (2001) gives a “generic program”

for computing the type of one-hole contexts for any regular inductive datatype:

remarkably, the key step is to differentiate the functor which generates the datatype

by the rules we learned from Leibniz (1684). It was an observation in search of an

explanation. In this chapter, derived largely from Abbott et al. (2003b), we find such

an explanation from a categorical perspective.

The treatment of data types as containers provides the key to the mystery. We can

now specify differentiation by a universal property in the category of containers, more

precisely ∂F ∼= X( F where H(− is the right adjoint of−×H in the category Ĝ of

cartesian morphisms between containers. We thus uncover the linear notion of tangent

required for the construction of the zipper and the treatment in McBride (2001).

The extension of a container, ∑A XB can be regarded as a generalised power series

generating a functor in X . In this chapter we will see that the “derivative” of this

90
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container can be defined obeying an isomorphism of the form

(∂TA.B)X ∼= ∑a : A. ∑b : B(a). XB(a)′(b)

where for any suitable object B and b : B we define B′(b) to be “B with b deleted”, or

more precisely,

b : B ` B′(b)≡∑b′ : B. ¬Eq(b,b′) .

In fact, it turns out that this construction yields the derivative only when equality on B

is “decidable”.

Naı̈vely we would expect ∑B B′∼= B×(B\1) where B\1 is B with a chosen element

removed; certainly this does hold in Set. However, in the context of a general category

C it is necessary to keep the dependency of B′ on B; see example 6.3.8.

6.2 Introducing the Zipper

In Huet (1997) the problem of navigating a “cursor” through an inductively defined data

structure is investigated. One programming oriented application is the implementation

of an efficient structure oriented editor: in this case it is desirable to efficiently

implement the operations of moving the point of focus through the data structure and

replacing the part of the structure in focus.

For example, given a binary tree T ≡ µY .1+Y ×Y (with constructors nil and tree),

the constructions of Huet (1997) and McBride (2001) define a “path” into the interior

of the tree to be the data type P ≡ List(2× T )× T where 2 ∼= {L,R} selects which

branch at each node is on the path and which branch is bypassed. Here I will refer to P

as a cursor and the List(2×T ) part of the cursor as the path to the cursor.

A cursor ([(d1, t1), . . . ,(dn, tn)], t ′) can be regarded as putting the sub-tree t ′ “in

focus” in a context given by the path of directions and bypassed subtrees. In effect, this

can be thought of as a “hole” in the data structure (the path) together with a value, t ′,

to be plugged into the hole.

Navigating a cursor is now easy. Moving the focus up towards the root of the

tree can be defined with the help of an auxiliary function which reconstructs the

immediately enclosing context from one element of the path and the subtree in context:

join(t ′,(L, tR)) = tree(t ′, tR) join(t ′,(R, tL)) = tree(tL, t
′) .
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Moving up is only meaningful on a non empty path, and can be defined by a single

application of join as up(cons(s, p), t ′) = (p, join(s, t ′)).

The original tree can be reconstructed from the cursor by iterating join (using the

foldl operation from standard Haskell, Peyton Jones, 2003):

build(l, t ′) = foldl(join, t ′, l) .

In general we can illustrate a cursor in a general inductively defined data structure

as shown in figure 6.1.

Cursor

Structure “in focus”

Path

Figure 6.1: A Path in an Inductive Data Structure

In Huet (1997) we are given an explicit construction of the cursor for two main

data structures: the binary tree described above, and a tree with lists of nodes at each

node, RX ∼= µY .X +ListY (sometimes called a “Rose tree”). McBride (2001) presents

a syntactic generalisation of this construction which is reinterpreted in this thesis as a

semantic construction involving the derivative of a datatype.

Explaining the Cursor

In general the construction of a path into a data structure T X ≡ µY .F(X ,Y ), as

described above, should be thought of as identifying the location of one Y : into this

location we can substitute a further instance of T X . Thus a complete cursor will in

general consist of an instance of T X together with a path providing instructions for

building the rest of the data structure.

In general a cursor will consist either of the entire structure in focus, in which case

the path is empty, or else it will lie below at least one instance of F(X ,Y ). In this case
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to specify the location of the cursor we need to specify two things: first, the particular

location of Y which contains the path to the cursor; secondly, values for T X to fill in

the remaining Y locations.

This value is precisely captured by the construction (∂2F)(X ,T X), the partial

derivative of F with respect to its second argument (the Y position) with T X substituted

in after taking the derivative.

Following this argument we can see that the appropriate data type for a cursor in

a data structure T X ≡ µY .F(X ,Y ) is List((∂2F)(X ,T X))× T X . We will make this

argument more formally in the rest of this chapter.

6.3 Decidable Objects

The building blocks of derivatives will be “decidable objects”, where equality of

positions is decidable. This is required to distinguish the “hole” of the derivative from

the rest of the positions in the data type.

Definition 6.3.1 Say that an object A ` B is decidable iff for each a : A the equality

relation on B(a) is decidable, ie

a : A, b,b′ : B(a) ` Eq(b,b′) +¬Eq(b,b′)∼= 1 .

Say that a container (A . (Bi)i∈I) ∈ GI is decidable at i if A ` Bi is decidable, and say

that it is decidable iff each A ` Bi is decidable.

Note that the notion of decidability is purely local, in that we require that each B(a) be

decidable, and not that the total object ∑A B be decidable. As we will note later, if A is

also decidable then indeed ∑A B is decidable, but not necessarily otherwise.

The notion of decidability corresponds to the ability to separate out each object of

B from its companions, as expressed by the following proposition.

Proposition 6.3.2 An object A ` B is decidable iff there exists an object ∑A B ` B′,

called the complement of B, with an isomorphism A,B ` θ : 1 + B′ ∼= π∗BB in C/∑A B

such that θ ·κ = π ′B : 1→ 1 + B′.

Proof. ( =⇒ ) Let B be decidable, construct B′ ≡ ∑B¬Eq and calculate

A,b : B ` B∼= ∑b′ : B. 1∼= ∑b′ : B. (Eq(b,b′) +¬Eq(b,b′))

∼=
(
∑b′ : B. Eq(b,b′)

)
+
(
∑b′ : B. ¬Eq(b,b′)

)∼= 1 + B′
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and it’s clear that this isomorphism satisfies θ ·κ = π ′B since π ′B represents b.

(⇐= ) Given B∼= 1+B′(b) satisfying θ ·π ′B = κ we can construct B,B`C such that

B ` B′ ∼= ∑B C and conclude that for b,b′ : B there is (since ∑B Eq∼= 1) an isomorphism

Eq(b,b′) +C(b,b′)∼= 1. This is enough to show that B is decidable.

Note that when an object A ` B is decidable we can also write the isomorphism as

A ` B×B∼= ∑B π∗BB∼= ∑B(1 + B′)∼= B +∑B B′ .

It is tempting here to imagine that B′ is essentially independent of B and can therefore

be written as π∗B(B \ 1), yielding the isomorphism B×B ∼= B× (1 + (B \ 1)) and even

perhaps simply B ∼= 1 + (B \ 1). Although this clearly holds in Set, we see below in

example 6.3.8 that this is too much to hope in general.

In an extensive category we have a cancellation rule 1+A ∼= 1+B =⇒ A∼= B; the

following lemma then immediately follows.

Lemma 6.3.3 If A ` B is decidable and π∗BB∼= 1 + D then B′ ∼= D.

Some important properties of decidable objects now follow.

Lemma 6.3.4 If A ` B is decidable then so is its complement ∑A B ` B′.

Proof. Fixing b : B then b1,b2 : B′(b) is equivalent to b1,b2 : B satisfying b1 6= b and

b2 6= b, and clearly decidability in B can then be used to compute decidability in B′.

Lemma 6.3.5 If A ` B is decidable then for each u : C → A the pullback u∗B is

decidable with (u∗B)′ ∼= u∗BB′.

Proof. Observing that b : u∗B can be written as c : C ` b : B(uc) it is clear that

decidability of B is inherited by u∗B. To verify the equation for (u∗B)′, calculate

π∗u∗Bu∗B∼= u∗Dπ∗BB∼= u∗D(1 + B′)∼= 1 + u∗DB′.

Lemma 6.3.6 Complements are closed under products and coproducts, and satisfy the

following equations.

A + B ` (A + B)′ ∼= (A′+ π∗AB)
◦
+(π∗BA + B′)

A×B ` (A×B)′ ∼= π∗A′+ π ′∗B′+ π∗A′×π ′∗B′

0 ` 0′ ∼= 0 1 ` 1′ ∼= 0 .
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Proof. The results for 0′ and 1′ are immediate.

To show that A + B is decidable, note first that since C is extensive we can analyse

a binding x : A + B into cases: a : A ` x = κa or b : B ` y = κ ′b, and we know that

κa 6= κ ′b universally holds. Thus given x,y : A + B decidability of equality reduces to

decidability of equality separately in A and B.

To verify the complement of A + B calculate:

π∗A+B(A + B)∼= π∗A+BA + π∗A+BB∼= π∗A(A + B)
◦
+ π∗B(A + B)

∼= (π∗AA + π∗AB)
◦
+(π∗BA + π∗BB)

∼= (1 + A′+ π∗AB)
◦
+(π∗BA + 1 + B′)

∼= 1 + ((A′+ π∗AB)
◦
+(π∗BA + B′)) .

A×B is immediately decidable. The calculation of its complement is not needed

in this thesis and is omitted.

The corresponding results for ∑ and ◦+ require a little more attention to the base.

Lemma 6.3.7 If A ` B and C ` D are both decidable then A +C ` B ◦+ D is decidable

with complement

(
∑A+C(B ◦+ D) ` (B ◦+ D)′

)
∼=
(
∑A B +∑C D ` B′ ◦+ D′

)
.

If A is also decidable then so is ∑A B with complement

∑A B `
(
∑A B

)′ ∼= B′+∑A′ B .

Can Complements be Simplified?

We’ll conclude this section with an example illustrating the fact that we cannot in

general simplify the complement B`B′ of a global object B into the form B′∼= B∗(B\1)

for some global object B\1.

Let M be an arbitrary monoid and take C≡ SetM , the category of M-actions; we’ll

write an object of this category as X with action m · x for m ∈M, x ∈ X . This category,

being a topos, clearly satisfies all the conditions required for the interpretation of the

container framework.

If an M-action X ∈ SetM has a complement, it is clear that X ′ must satisfy the

isomorphism x : X ` X ′(x) ∼= {x′ | x′ 6= x}, and the action of m on x′ ∈ X ′(x) must be
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given by the action on X . Thus for X to have a complement it is necessary that the

action have the property

x 6= x′ =⇒ m · x 6= m · x′

for each m ∈M, x,x′ ∈ X , in other words each m ·− is a monomorphism.

Thus we see that unless M is a group (in which case all actions are isomorphisms)

the category SetM provides a plentiful supply of non-complementable objects.

The question still arises as to whether a complementable object B∗B ∼= 1 + B′ can

be written in a simplified form B′ ∼= B∗(B \ 1). When this can be done we get the

isomorphism

B×B∼= B +∑B B′ ∼= B +∑B B∗(B\1)∼= B + B× (B\1) .

The following example shows that this cannot be done in general

Example 6.3.8 Let M ≡ (Z,+) be the group of integers under addition. An M-action

can be specified as a cycle, for example take

X ≡ (a,b) (c,d,e) .

This means that X = a,b,c,d,e with 2n ·a≡ a, (2n+1) ·a≡ b, 3n ·c≡ c, (3n+1) ·c≡ d,

etcetera. This object is clearly complementable (since M is a group) and we can write

the product X×X as the following set of 7 cycles:

X { ((a,a),(b,b)) ((c,c),(d,d),(e,e))

∑X X ′





((a,b),(b,a)) ((c,d),(d,e),(e,c)) ((c,e),(d,c),(e,d))

((a,c),(b,d),(a,e),(b,c),(a,d),(b,e))

((c,a),(d,b),(e,a),(c,b),(d,a),(e,b)) .

Note however that ∑X X ′ cannot be written in the form X×K for any object K.

6.4 Derivatives of Containers

In this section we will discuss the treatment of derivatives as linear exponentials. Recall

the definition of the category Ĝ of containers and cartesian container morphisms in

4.6.1.

In the context of this chapter we can regard cartesian morphisms between

containers as a notion of “linear” morphism. From this perspective we make the
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following definition of a “linear exponential”. This idea of the derivative as a linear

exponential appears in Huet (2003).

Definition 6.4.1 If for containers F and H there exists a universal arrow in Ĝ from the

functor −×H to F say that the linear exponential of F by H exists. Write the linear

exponential as H( F.

Note that × here refers to the cartesian product in G , it is just a tensor product in Ĝ . In

this situation we have a bijection of morphisms in Ĝ

G×H −→ F
==========
G−→ H( F

.

In this chapter we investigate the special case when H = πi, ie HX = Xi for X ∈ CI ;

this yields an appropriate notion of derivative.

Now,( gives us a convenient way to introduce the type of one-hole contexts:

Definition 6.4.2 Say that a container F ∈ GI is differentiable at i ∈ I iff the linear

exponential πi( F exists. Call this the derivative at i of F, written ∂iF ≡ πi( F.

In the special case I = 1 and πi = Id we drop the reference to i and simply say that

F is differentiable with derivative ∂F ≡ Id( F.

Write DI for the full subcategory of ĜI of containers differentiable at all i ∈ I.

In particular, the counit sF,i : (∂iF)×πi → F can be regarded as an operation which

takes a derivative (a data type with an i-indexed hole) together with a value to plug into

that hole and returns a value in the original data type F . The bijection of morphisms

can now usefully be written thus:

G×πi −→ F
==========

G−→ ∂iF
.

The mapping F 7→ ∂iF extends (through universality) to a functor ∂i :DI→ ĜI , and

we’ll see in proposition 6.5.1 that in fact this factors as DI →DI ↪→ ĜI .

It is possible to deduce the interchange of coproducts and derivatives using this

universal property, but it is technically much easier to first prove the following key

theorem. Here we write (A . j 6=i B j,C) (for fixed i ∈ I) as a shorthand for the container

in GI with shape B j for j 6= i and with shape C at i.

Theorem 6.4.3 If an I-indexed container is decidable at i ∈ I then it is differentiable

at i with derivative

∂i(A . B) =
(
∑A Bi . j 6=i π∗Bi

B j, B′i
)
.
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Proof. First some preliminary observations. Define F ≡ (A . B), G ≡ (C . D) and

recall that πi = (1 . j∈I δi, j). Note that G× πi
∼= (C . j∈I δi, j + D j) and a cartesian

morphism G×πi→ F corresponds to the following set of maps (taking advantage of

the symmetry of f to write a cartesian container morphism covariantly)

u :C −→ A f j : D j
∼= u∗B j for j 6= i fi : 1 + Di

∼= u∗Bi .

For the purposes of this proof it will be convenient to establish a convention which

separates the constant part from the variable part in the notation, so write this as

(C . j 6=i D j, 1 + Di)
(u, f j, fi) j 6=i

(A . B) .

Let F ≡ (A . B) be decidable at i and write θ : 1 + B′i ∼= π∗Bi
Bi. Define

dF ≡
(
∑A Bi . j 6=i π∗Bi

B j, B′i
)

and define sF : dF×πi→ F to be the cartesian map sF ≡ (πBi , idπ∗Bi
B j ,θ) j 6=i. We will

show that this is a universal arrow and therefore that dF ∼= ∂iF .

As noted in the preamble to this proof a cartesian morphism G× πi → F can be

written as (u :C→ A, f j : D j
∼= u∗B j, fi : 1 + Di

∼= u∗Bi) j 6=i. We will construct a unique

factorisation G→ dF through sF ; write this as

(
v :C −→∑A B, g j : D j

∼= v∗π∗Bi
B j, gi : Di

∼= v∗B′i
)

j 6=i

and the equation to be satisfied is sF · ((v,g)×πi) = (u, f ). Composing in GI this can

be written out in detail as the following three equations:

πBi · v = u g j = v∗ idπ∗Bi
B j ·g j = f j for j 6= i v∗θ · (1 + gi) = fi .

Clearly (g j) j 6=i is fully determined, but it remains to determine v and gi. Define the

term b≡ fi ·κ : 1→ u∗Bi and calculate b = fi ·κ = v∗θ · (1 + gi) ·κ = v∗θ ·κ = v∗π ′Bi
.

The two equations on v, namely πBi · v = u and v∗π ′Bi
= b, fully determine v = (u,b).

Finally to determine gi appeal to lemma 1.4.6 to write v∗θ−1 · fi = 1 + gi for

a unique gi, since (v∗θ−1 · fi) · κ = (1 + gi) · κ = κ . This shows that (u, f ) fully

determines a unique (v,g) with factorisation (u, f ) = sF · (v,g) and thus that dF ∼= ∂iF ,

showing that F is differentiable at i.

This theorem only tells us about the derivatives of decidable containers. As we will see

in example 6.4.4 below, this is not the whole story.
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However, the development of derivatives in this chapter is based on the

representation established by this theorem. We will therefore for the rest of this chapter

concentrate on the special case of decidable containers: from now on let DI be the full

subcategory of ĜI generated by the decidable containers.

Derivatives and Decidability

Theorem 6.4.3 tells us how to construct the derivative of a decidable container. As we

have seen in the preamble to example 6.3.8 there is a plentiful supply of undecidable

containers in a general category C, and indeed any non boolean topos will provide such

a supply.

The question therefore arises as to whether such containers have derivatives.

Example 6.4.4 shows that they can do, which indicates that the treatment of derivatives

in this chapter is incomplete.

To construct the example let M ≡ (N,+) be the monoid of natural numbers under

addition and note that each object of the category SetM of M-actions can be described

as a set equipped with an endofunctor. In particular, let 2 ∈ SetM be the set 2 = {a,b}
together with the function 2→ 2 taking each element of 2 to a. This is not a decidable

object, but we have the following result.

Example 6.4.4 The container (1 . 2) with extension functor X 7→ X 2, for 2 ∈ SetM

described above, has derivative ∂ (X2)∼= 0.

Proof. Let G ≡ (A . B) be a container (constructed with C ≡ SetM), then a cartesian

container morphism G× Id→ (1 . 2) amounts to an isomorphism A∗2 ∼= B + 1 in the

slice category SetM/A. This can be described by a commuting diagram in Set

∼=
θ

A + A A + BA∗2 = ∼=A + A A + B

A

εA [idA;πB]

f
A

β idA +g

where the action of A is f , the action of B is g, the induced action on A∗2 is β ≡ κ · f ·εA

and εA ≡ [idA; idA]; we’ll write α ≡ κ · ε1 for the action on 2 = 1 + 1.

Now let a ∈ A be given and pull back the above diagram to yield an isomorphism

θa : 1 + 1 ∼= 1 + Ba satisfying the equation (1 + ga) · θa = θa · α . This is of course
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impossible, so we conclude that A must be the empty set. Thus given a cartesian

container morphism G× Id→ (1 . 2) then G = 0 and there is indeed a bijection with

maps G→ 0, showing that 0∼= ∂ (1 . 2).

This example informs us that the notion of decidable container used to capture

derivatives in this thesis is incomplete. It seems possible that the construction of the

derivative can be thought of as selecting a decidable sub-component of the container

being differentiated.

This is an irksome gap in the treatment here: the remainder of this chapter uses the

representation in defined in this theorem to define constructions on derivatives. This

means that for the rest of the chapter we will be proving theorems about decidable

containers only.

The Importance of Containers

Note that theorem 6.4.3 only holds if we restrict our attention to the category of

containers. If we instead were to seek a cartesian universal arrow ∂iF×πi→ F in the

category of functors [CI ,C], the theorem above would not hold, and indeed 1 would

not be the derivative of the identity functor. We will present a counterexample to show

this.

First a couple of properties of the functor ¬¬ :C→ C defined by ¬X ≡ 0X and so

¬¬X = 0(0X ).

Proposition 6.4.5 For all X ∈ C the isomorphism X×¬¬X ∼= X holds.

Proof. Write n : X → ¬¬X for the transpose of the evaluation map X ×¬X → 0; we

clearly have maps X
(idX ,n)

X×¬¬X
π

X with π · (idX ,n) = idX , and it is clear that

π · (idX ,n) ·π = π , so it remains to show π ′ · (idX ,n) ·π = n ·π is equal to π ′.

However, observe that all morphisms into ¬X (and hence ¬¬X) are equal (in other

words, ¬X is a subobject of 1) since parallel maps into ¬X transpose into parallel maps

into 0. Since C has distributive coproducts, any morphism into 0 is an isomorphism,

and all maps out of 0 are necessarily equal.

We will now show that the functor ¬¬ cannot be a container.

Proposition 6.4.6 If C has disjoint coproducts then the functor ¬¬ :C → C is a

container only if C is degenerate (ie, equivalent to the single object category).
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Proof. Let ¬¬X ∼= TA.BX for some container (A . B). From ¬¬1 ∼= 1 conclude A∼= 1

and so ¬¬X ∼= XB. Note also that ¬¬(1 + 1) ∼= 1, which means that there is a unique

morphism f :B→ 1 + 1, and by disjointness of coproducts this can be decomposed into

f = f0 + f1 : B∼= B0 + B1→ 1 + 1 for B0 = κ∗B and B1 = κ ′∗B.

Since f is unique the equation [κ ′;κ] ·( f0 + f1) = f0 + f1 holds, and now composing

with κ :B0→ B0 + B1 yields the equation κ · f0 = ( f0 + f1) ·κ = [κ ′;κ] · ( f0 + f1) ·κ =

[κ ′;κ] ·κ · f0 = κ ′ · f0, forming two sides of a commutative square

B0
f0

f0

1

κ ′

1 κ 1 + 1 .

Disjointness of coproducts gives us a map B0→ 0, which implies B0
∼= 0 and similarly

B1
∼= 0 and so B∼= 0. However, 0B ∼= 00 ∼= 1 6∼= 0∼= ¬¬0 unless C is degenerate.

Writing X for the container (1 . 1), observe that ∂X ∼= 1 and the universal arrow sX

is just the isomorphism ∂X ×X ∼= 1×X ∼= X . We can now observe that the universal

property of ∂ does not extend in general from the category of containers to the category

of functors.

Example 6.4.7 The function sX : 1× Id → Id capturing the derivative ∂X ∼= 1 is

not a universal arrow in the category of functors [C,C] and cartesian natural

transformations. In particular, the isomorphism (¬¬)× Id ∼= Id does not have a

factorisation (¬¬)→ ∂ Id∼= 1.

The argument is very simple: the isomorphism ¬¬X × X ∼= X would, through

universality, establish a cartesian natural transformation ¬¬X → ∂X ∼= 1. However,

by proposition 4.6.3 this would imply that ¬¬ is a container.

6.5 Properties of Derivatives

We can now use the concrete representation of a derivative provided by theorem 6.4.3

to show that derivatives behave just like the traditional derivatives of calculus.

The following proposition tells us that derivatives of decidable containers can be

iterated, and that taking a derivative can be regarded as a functor DI →DI .

Proposition 6.5.1 If a container is decidable then so is its derivative.
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Proof. This follows from lemma 6.3.4.

The elementary type operations interact with differentiation as one might expect. For

simplicity the proofs are presented here for derivatives in one parameter of the form

∂ (A . B)∼=
(
∑A B . B′

)

but the generalisation to ∂i is routine.

Proposition 6.5.2 Derivatives of decidable containers satisfy the following

∂ (F + G)∼= ∂F + ∂G ∂ (F×G)∼= ∂F×G + F×∂G

∂K ∼= 0 ∂iπ j
∼= δi, j .

The equations for F + G, F×G and K are unchanged if ∂ is replaced by ∂i.

Proof. Each of these isomorphisms follows pretty directly from the results already

proved for decidable objects. Let F ≡ (A . B), G≡ (C . D), then:

∂ (F + G)∼= ∂ ((A . B) + (C . D))∼= ∂ (A +C . B ◦+ D)

∼=
(
∑A+C(B ◦+ D) . (B ◦+ D)′

)∼=
(
∑A B +∑C D . B′ ◦+ D′

)

∼=
(
∑A B . B′

)
+
(
∑C D . D′

)∼= ∂F + ∂G .

The following derivation of ∂ (F×G) omits both variables and explicit weakening, but

these can be inferred unambiguously:

∂ (F×G)∼= ∂ ((A . B)× (C . D))∼= ∂ (A×C . B + D)

∼=
(
∑A×C(B + D) . (B + D)′

)

∼=
(
∑A×C(B + D) . (B′+ D)

◦
+(B + D′)

)

∼=
(
∑A×C B . B′+ D

)
+
(
∑A×C D . B + D′

)

∼=
(
∑A B . B′

)
× (C . D) + (A . B)×

(
∑C D . D′

)

∼= ∂F×G + F×∂G .

A constant type K ≡ (K . 0) has derivative ∂K = (∑K 0 . 0′)∼= (0 . 0)∼= 0. Similarly

∂iπ j = (δi, j . δ ′i, j)∼= (δi, j . 0)∼= δi, j.

The product and coproduct rules above can be generalised to infinite products and

coproducts thus:

∂
(
∑k∈K Fk

)∼= ∑k∈K ∂Fk

∂
(
∏k∈K Fk

)∼= ∑k∈K

(
∂Fk×∏k′ 6=k Fk′

)
.
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An analogous form of the chain rule for derivatives also holds. Here we’ll prove

the chain rule for the special case of composition of the form F [G] where F takes two

parameters and G takes one parameter. The generalisation to full composition yields

an equation of the form

∂i(F ◦G)∼= ∑ j∈J (((∂ jF)◦G)×∂iG j)

but this will not be proved here, as the proof below is quite complex enough.

Proposition 6.5.3 For decidable F ∈ G2 and G ∈ G1 the chain rule holds:

∂ (F [G])∼= ∂1F [G] + ∂2F [G]×∂G .

Proof. First note that in general

∂ (A . B +C)∼=
(
∑A(B +C) . (B +C)′

)

∼=
(
∑A(B +C) . (B′+ π∗BC)

◦
+(π∗CB +C′)

)

∼=
(
∑A B . B′+ π∗BC

)
+
(
∑A C . π∗CB +C′

)
.

Now let F ≡ (A . B,E) and G ≡ (C . D) and then (omitting explicit variables and

weakening where possible)

∂ (F [G]) = ∂
(
∑A f :CE . B +∑e : E. D( f e)

)∼= (1) + (2)

where (1)≡
(
∑A ∑ f :CE . B . B′+∑e : E. D( f e)

)

(2)≡
(
∑A ∑ f :CE . ∑e : E. D( f e) . B + (∑e′ : E. D( f e′))′

)
.

The first part, (1)∼= ∂1F [G] follows pretty immediately:

(1)∼=
(
∑A ∑B f :CE . B′+∑e : E. D( f e)

)

∼=
(
∑A B . B′,E

)
[(C . D)]∼= ∂1F [G] .

To reduce (2) to ∂2F [G]× ∂G it is necessary to be a little more explicit about the

variables and context. First note in context A, f :CE, e : E, d : D( f e) that

(
∑e′ : E. D( f e′)

)′ ∼= D( f e)′(d) +∑e′ : E ′. D( f e′) .

Next observe that we can rearrange the context to bring e : E before f :CE and can then

write CE ∼= CE ′+1 ∼= CE ′ ×C giving us new bindings f ′ :CE ′ and c :C. The function
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value f e must then be replaced by c, and so finally in context A, e : E, f :CE ′, c :C,

d : D(c) we can write

D(c)′(d) +∑e′ : E ′. D( f e′)

which is isomorphic (modulo the change of base just described) to (∑e′ : E.D( f e′))′.

This finally allows us to write

(2)∼=
(
∑A ∑E ∑ f :CE ′ . ∑C D . B + D′+∑e′ : E ′. D( f e′)

)

∼=
(
∑A E . B,E ′

)
[(C . D)]×

(
∑C D . D′

)∼= ∂2F [G]×∂G .

Derivatives of Fixed Points

An immediate consequence of the chain rule above is that if fixed points ∂ (µF) and

∂ (νF) exist then since µF ∼= F [µF ] and νF ∼= F [νF ] exist they must satisfy the

equations

∂ (µF)∼= ∂1F [µF ] + ∂2F [µF ]×∂ (µF)

∂ (νF)∼= ∂1F [νF ] + ∂2F [νF ]×∂ (νF) .

The development in this thesis of derivatives is incomplete (note for example the

remarks after theorem 6.4.3), and it should be possible to develop the theory here to

prove the following conjecture.

Conjecture 6.5.4 If a container F ∈ G2 is differentiable with fixed point A ∼= F [A] in

G1 then A is differentiable with derivative

∂A∼= µ(∂1F [A] + ∂2F [A]×−)∼= List(∂2F [A])×∂1F [A] .

This is justified by the observation that if it exists ∂A is a fixed point, and as we have

already seen in the construction of the fixed points of containers, paths into fixed points

are always given by initial algebras, and we have already seen that a derivative is

basically a path into a container.

We can show that this conjecture holds for the special case when F is decidable

and the fixed point A = µF is constructed as a filtered colimit. This special case of

the construction of µF is basically an application of theorem 5.2.7 using the cartesian

colimits in section 4.6 (and is the method used in Abbott et al., 2003a).

First we need the following technical lemma that allows us to lift filtered colimits

to decidable containers.
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Lemma 6.5.5 The complement of a cartesian filtered colimit of decidable containers

is the filtered colimit of their complements, hence ∂ (
∨

i Fi)∼=
∨

i ∂Fi.

Proof. Let each Fi ≡ (Ai . Bi) and first observe that
∨

F ∼= (
∨

A .
∨

B). Then for each

i→ j the following diagram can be constructed in C:

B′i B′j . . .
∨

B′

Bi B j . . .
∨

B

Ai A j . . .
∨

A

Since the bottom row consists of pullback squares then so does the top row (since the

pullback of a complement is a complement), and thus
∨

∂F is the top right hand arrow.

The object
∨

B′ is the required complement of
∨

B.

Finally we can make the following statement about derivatives of initial algebras.

Proposition 6.5.6 If F is a decidable container in two parameters and µF can be

written as a filtered colimit in [C,C] then µF is differentiable with derivative

∂ µF ∼= µ(∂1F [µF ] + ∂2F [µF ]×−) .

Proof. Define G[−]≡ ∂1F [µF ] + ∂2F [µF ]×− and use the chain rule to observe

∂ µF ∼= ∂ (F [µF ])∼= ∂1F [µF ] + ∂2F [µF ]×∂ µF = G[∂ µF ] ;

this gives us a morphism θ : µG→ ∂ µF .

Conversely note that µF ∼= ∨
n(Fn[0]) and so ∂ µF ∼= ∂

∨
n(Fn[0]) ∼= ∨

n ∂ (Fn[0]).

We can therefore construct morphisms αn : ∂ (Fn[0])→ Gn[0] inductively by setting

αn+1 ≡ ∂1F [κn] + ∂2F [κn]×αn

where κn : Fn[0]→ µF is the colimiting cone of F. From the morphisms α we obtain a

morphism φ : ∂ µF → µG. It remains only to show that θ and φ are inverses.

Note that this result gives us a decomposition of the derivative of an inductive type

GX ≡ µY .F(X ,Y ) into a path to a structural substitution point (“a path to Y ”) together

with an ordinary derivative in X thus:

(∂G)X ∼= µY . (∂1F(X ,GX) + ∂2F(X ,GX)×Y )∼= PF X ×∂1F(X ,GX)
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where the path PF X is a list of derivatives in the second argument

PF X ≡ List(∂2F(X ,GX)) ,

or more concisely: ∂G∼= PF × (∂1F)[G] and PF = List((∂2F)[G]).

Writing sF,1 : ∂1F(X ,Y )×X → F(X ,Y ) and sF,2 : ∂2F(X ,Y )×Y → F(X ,Y ), or

more concisely, sF,i : ∂iF×πi → F , i = 1,2, for the first and second derivative

reconstruction maps we can decompose the reconstruction map sG for the derivative

of G into the composite sG = bG · (idPF ×sF,1)

∂G×π1
∼= PF × (∂1F)[G]×π1

idPF ×sF,1
PF ×G

bG
G

where the structural reconstruction map bG is given by iterating the second derivative

reconstruction map sF,2G : (∂2F)[G]×G→ G at G along the list PF .

This presentation of the derivative of an inductive type mirrors the construction of

the positions of an inductive container as a set of paths, and ties the development in this

chapter back to the introduction in section 6.2.



Chapter 7

Conclusions and Future Work

The work in this thesis lays the ground for further research into generic programming

as well as opening up other interesting avenues of investigation into the application of

dependent types.

7.1 Conclusions

The theory of containers as data types presented in this thesis provides an abstract

categorical semantics for generic programming. In particular, we have seen how the

semantic properties of containers are strictly tied to specific properties of the ambient

or modelling category.

This thesis has concentrated on showing how containers can provide a functorial

semantic model for a wide class of polymorphic datatypes. We have seen how the

“strictly positive” types are captured as containers, and we have also seen that this

class of types is not exhaustive: it seems likely that “nested” data types generated

using higher-order induction can also be modelled using containers.

The data types modelled by containers are particularly well behaved, and can be

regarded as “data independent” in a very strong sense: all polymorphic functions

between container types are defined purely in terms of their operations on “shapes”

and “positions”.

Note indeed that container types cannot support such operations as equality

comparison on data, since a generic equality operation cannot satisfy the naturality

equations in any category of interest (in particular, naturality of equality implies that

107
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every morphism is monic). It should be possible to capture container types with

equality by making use of “dependent” containers: this is future work of particular

interest, as the generalisation to the dependent case appears to be a direct generalisation

of the current work. We can then look to capture data types similar to the type classes

of Haskell using dependent containers.

One contribution of this thesis is a precise characterisation of how the semantics of

data types corresponds to properties in the ambient category or model. For the purposes

of this thesis we have restricted our attention to locally cartesian closed categories,

but it is possible to extend this interpretation to virtually any category (at the cost

of losing specific closure properties depending on the model) by restricting the fibres

of the interpretation to those morphisms which have enough pullbacks and restricting

the class of “positions” used to construct containers to the exponentiable types. This

generalisation can be dealt with in future work by developing the “abstract framework”

described in the next section. For example we have seen how “shapely types” arise by

restricting positions to the “discretely finite” objects of the model.

We have seen that products of containers depend on products and coproducts in

the ambient category, and similarly that coproducts of containers rely on disjoint

coproducts in the model. As equalisers of containers derive from equalisers and

coequalisers in the model, we can see how container equality types depend on quotients

in the underlying model. Finally we have seen how the construction of fixed points

derives directly from W-types and M-types in the model.

Thus the theory of containers can be adapted to the chosen semantic model:

for example, we see that shapely types are not closed under the construction of

final coalgebras, because the class of discretely finite objects does not support the

construction of the appropriate algebra.

The application of containers to derivatives is one instance of a generic operation

on datatypes, and one which seems to be handled well by the container formulation.

It would be interesting to see if other generic operations on datatypes can be captured

in a similar way: this would constitute a kind of higher-order calculus of datatypes.

The work on derivatives also ties the development of containers to prior work by Joyal

(1986) and Bergeron et al. (1997) in an unexpected way, as well as to more concrete

applications to type theory such as Huet (1997, 2003), McBride (2001) and Gibbons

(2000).
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The derivatives of containers also cast light in another interesting direction: there

is a linkage between the type of paths into a inductively (or coinductively) constructed

type and the construction of fixed points of containers. The construction of the

positions of a fixed point can be regarded as a process of constructing the type of

all possible paths into the datatype: the difference is that the derivative allows one path

to be isolated from the rest as a shape, hence the role of decidability in the construction

of derivatives.

The research in this thesis seems to have opened up a number of interesting

opportunities for both further theoretical work and applications.

Related Work

There is much related work in the area of semantics of data types, particularly the

subject of “types with shape”. In section 4.7 we see how the shapely types of Jay

(1995) can be regarded as a particular class of containers obtained by restricting the

positions to the universe of discretely finite types.

Another important approach to container types is in Hoogendijk and de Moor

(2000), where container types are defined in terms of categories of relations. Some

work will be required to link the work of Hoogendijk and de Moor (2000) to the work

in this thesis; we require very little logical structure on the ambient category, whereas

regularity plays a key role in the correspondence between categories and the allegory

framework (Freyd and Scedrov, 1990; Johnstone, 2002) used in their work.

The more abstract work of Hasegawa (2002) and Joyal (1986) deals with “normal”

and “analytic” functors on Set. In these works the restriction to finite exponentials

rules out the construction of coinductive types with infinite sets of positions (just as for

shapely types), and the restriction to Set rules out weaker model categories.
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7.2 Future Work

The work in this thesis creates a number of opportunities for future work, some of

which are discussed below. The most interesting are the following:

• Extending the the class of types beyond “strictly positive” types.

• Extending containers to capture dependent types. This is a straightforward

generalisation with some very powerful consequences.

• Developing inductive families.

• Developing quotients of containers, extending the treatment to analytic functors.

• Extending the treatment of derivatives.

• Abstracting the framework in which the theory of containers is developed.

Higher-Order Fixed Points

We have already observed that the syntactically generated class of “strictly positive”

types does not necessarily exhaust the class of types which can be captured using the

formalism of containers. For example, “nested types” which are constructed using

higher-order fixed points, eg Abel et al. (2003), should be describable as containers.

Recall that the higher-order recursion equation NX ∼= 1 + X × N(X × X) has

a solution of the form NX ∼= ∑n : N.X2n−1, which we believe not to be strictly

positive, essentially because the syntactic character of strictly positive types restricts

the positions which can be constructed. To show that all equations of this form have

solutions in containers it will be necessary to develop the theory of fixed points of

containers a little further.

The transformation N 7→ λX .1 + X × N(X × X) can be regarded as a functor

F : G1 → G1, and so we can look to construct N as the least fixed point in G1 of F .

This construction should generalised readily to an algebra of higher-order induction on

container types.

Dependent Containers

Throughout this thesis we have taken containers to define container functors of the

form CI → CJ . If, however, we take the indexing sets I and J to be objects of C
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instead, we can define a larger class of container functors of the form C/I → C/J,

where a container (A . B) is now given by a pair (A ∈ C/J, B ∈ C/(I×∑J A)); the rest

of the development of the theory of containers carries through largely unchanged.

It now turns out that a great deal of the interesting type theoretic structure of C can

be described using this framework of dependent containers. For instance, given a map

γ : ∆→ Γ in C, all of the functors γ∗, ∑γ and ∏γ turn out to be container functors.

We can now capture polymorphic dependent types as container types. Just as a

(strictly positive) type theoretic expression ?→ ? is captured as a container functor

C→C, so a type expression ?→ (K→ ?) can be a dependent container functor of the

form C→ C/K. More generally we move from capturing types of the form ?n → ?

(modelled by container functors Cn → C) to types (A→ ?)→ (B→ ?) (for constant

types A and B).

The use of dependent containers will allow the functor G of proposition 5.5.1 to be

captured as a fixed point of a container functor, and indeed we would expect a more

general form of this theorem. This would seem to provide an interesting alternative

approach to the construction of fixed points of families extending the treatment of

Dybjer (1991, 1996).

Quotients of Containers

The category of containers lacks good coequalisers: although G has coequalisers of

parallel pairs, virtually none of them are preserved by T . We can increase the class of

parallel pairs with coequalisers by introducing the notion of a “quotient container”.

A quotient container is a natural generalisation of an analytic functor (Hasegawa,

2002; Joyal, 1986): a quotient container (A . B / G) is a container (A . B) together

with G a (fibre-wise) subgroup of automorphisms on B. The extension of a quotient

container is then a functor TA.B/G :CI → C thus;

TA.B/GX ≡∑A ∏I

(
XB/∼G

)
,

where f ∼G f ′ as maps B→ X iff there exists g ∈ G such that f = f ′ ·g.

It is possible to define a notion of morphism between quotient containers

constructing a category QI equipped with a full and faithful functor T : QI → [CI ,C]

such that a representation result similar to proposition 4.3.1 holds (Abbott, 2003).

The theory of container quotients can be developed in the abstract framework via a
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generalisation of the partial product construction in section 4.8 in a way which naturally

generalises the development in this thesis.

Further Work on Derivatives

Once quotients of containers have been developed, the theory of derivatives of

containers becomes richer. In particular, it is now possible to capture the “bag” functor

which can be defined as

BagX ≡∑n :N. Xn/n!

where n! is the permutation group on the set of n elements. This functor plays a

role analogous to the exponential in classical calculus, in that there is an isomorphism

∂ Bag∼= Bag.

There are several areas for further investigation into derivatives of containers.

Firstly, the development in this thesis makes little use of the universal property and

relies on the description of a derivative as the complement of a decidable container. As

pointed out in example 6.4.4 this approach is incomplete.

Also, there is much prior work in this area. Two references in particular are Joyal

(1986) and the book Bergeron et al. (1997). In particular, the role of analytic functors

needs to be looked at more closely.

The Abstract Framework

Although the first half of this thesis is dedicated to the description of the internal

language and its interpretation in fibrations, we actually make little use of the power of

this framework. In particular, all the results in this thesis are written for application in

a locally cartesian closed category C.

There is much scope for rather more application of the fibrational framework, in

particular there are many categories of interest which fail to be cartesian closed and yet

where Pi types (or local exponentials) can be defined by restricting the class of display

maps used in the type theory.

For example, to interpret containers in categories of domains or related frameworks

for the interpretation of “partial” functional programming we would need to take

account of the fact that these categories cannot be locally cartesian closed. Domain
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theoretic models of dependent type theory (Jacobs, 1999; Taylor, 1986) provide a

promising area for extending the work described here.

A detailed description of this extension of this more abstract framework has been

omitted from this thesis, as otherwise the framework would have dominated the

development. The key notion seems to that of a fibration with comprehension (Jacobs,

1991, 1999), which can be seen (modulo some subtleties) to generalise the notion of a

category with families.

More generally, the theory of containers can be developed with respect to a fairly

arbitrary comprehension fibrations p and q, where p specifies the allowable positions

and q the allowable shapes. So long as p has q-indexed coproducts we can define a

fibration of containers by a construction on fibrations:

GI

Σ∗(pI)op

gI

(E(I))(op)

(pI)op

D
Σ

q

C

C .

In this diagram Σ is part of the comprehension structure on q taking A ∈ DΓ to the

domain of its display map ΣA = Γ.A
πA Γ = pA , and pop :E(op)→C is the opposite

fibration of p obtained by defining (E(op))Γ ≡ (EΓ)op. The fibration gI can be written

as gI = Famq((pI)op) and inherits a considerable amount of fibred and quantification

structure by this construction.

Further structure relating p and q, derivable from an abstraction of the partial

product in section 4.8, allows us to construct a fibred functor t : gI×qI → q, or

equivalently T : gI → (qI ⇒ q). This plays exactly the same role as the more familiar

functor T :GI → [CI ,C], since the fibre over 1 of qI ⇒ q is FibC(qI ,q).

This approach involves the detailed development of rather more of the fibrational

framework than is presented here, including a detailed development of the 2-categorical

properties of fibrations, but can provide more insight into the general construction. In

particular, it appears that some of the theory of container quotients can be developed in

this way using a modification of the partial product construction.
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J. Adámek and J. Rosický. Locally Presentable and Accessible Categories. Number

189 in London Mathematical Society Lecture Note Series. Cambridge University

Press, 1994.

E. S. Bainbridge, P. J. Freyd, A. Scedrov, and P. J. Scott. Functorial polymorphism,

preliminary report. In G. Huet, editor, Logical Foundations of Functional

Programming, chapter 14, pages 315–327. Addison-Wesley, 1990.

114



BIBLIOGRAPHY 115

H. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and T. S. E.

Maibaum, editors, Background: Computational Structures, volume 2 of Handbook

of Logic in Computer Science, pages 117–309. Oxford University Press, 1992.

J. Bénabou. Fibrations petites et localement petites. C. R. Acad. Sc. Paris, 281:A831–

A834, 1975.

J. Bénabou. Fibred categories and the foundation of naive category theory. Journal of

Symbolic Logic, 50(1):10–37, 1985.

F. Bergeron, G. Labelle, and P. Leroux. Combinatorial Species and Tree-Like

Structures, volume 67 of Encyclopedia of Mathematics. Cambridge University

Press, 1997.

F. Borceux. Handbook of Categorical Algebra 2, volume 51 of Encyclopedia of

Mathematics. Cambridge University Press, 1994.

A. Carboni and P. Johnstone. Connected limits, familial representability and Artin

glueing. Math. Struct. in Comp. Science, 5:441–459, 1995.

R. L. Crole. Categories for Types. Cambridge University Press, 1993.

N. G. de Bruijn. Lambda-calculus notation with nameless dummies: a tool for

automatic formula manipulation with application to the Church-Rosser theorem.

Indag. Math., 34(5):381–392, 1972.

P. Dybjer. Inductive sets and families in Martin-Löf’s type theory and their set-theoretic
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number 1234 in Lecture Notes in Mathematics, pages 126–159. Springer, 1986.

J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. Number 7

in Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1986.

G. Leibniz. Nova methodus pro maximis et minimis, itemque tangentibus, qua nec

irrationals quantitates moratur. Acta eruditorum, 1684.

S. MacLane. Categories for the Working Mathematician. Number 5 in Graduate Texts

in Mathematics. Springer, 1971.
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A. Poigné. Basic category theory. In S. Abramsky, D. M. Gabbay, and T. S. E.

Maibaum, editors, Handbook of Logic in Computer Science, volume 1 of Handbook

of Logic in Computer Science. Oxford University Press, 1992.

R. A. G. Seely. Locally cartesian closed categories and type theory. Math. Proc. Camb.

Phil. Soc., 95:33–48, 1984.

T. Streicher. Semantics of Type Theory. Progress in Theoretical Computer Science.
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