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Abstract. There are many formalism for mobile system specification, but until very
recently, there was no satisfactory graphical notation for modelling of such systems.
In a previous paper, we have introduced the so-called Sequence Diagrams for Mobil-
ity (SDM), a graphical notations based on UML Sequence Diagram. This notation has
been used in several case studies and proved very useful. In this paper we introduce
a formal, partial order based semantics for SDM. We define the notion of run and
show how to figure out the system topology from the information contained in a run.
We formalize the zoom-out abstraction mechanism introduced in a previous paper
and show that its application does not depend on the particular order it is applied. We
formalise also the notion of lifeline introduced informally in the previous paper. We
integrate our semantics with UML2.0 and show that they fit well together. We explain
our approach using series of examples.

1 Introduction
The developments in areas of communication and information technology allow one to
equip tools, with processors and software to facilitate their use. The tools used in everyday
life are getting more and more smart due to build in electronic. One of the most important
new concepts is the concept of mobile systems and of mobile computation. Code mobility,
which emerged in some scripting languages for controlling network applications, is one of
the key features of the Java programming language. Agent mobility has been supported by
Telescript, AgentTcl, or Odyssey (cf. e.g. [7]). In addition, hardware can be mobile too:
Mobile hosts such as laptops, handhelds and PDAs can move between networks. Moreover,
entire networks can be mobile as well, such as for example IBM's Personal Area Network
(PAN) and networks of sensors in airplane or trains. Mobile computations can cross barri-
ers and move between virtual and physical locations. The goal is to turn remote calls into
local calls to avoid the latency caused by communication. But there is a price to pay since
the administrative barriers and multiple access pathways interact in very complex ways. 

These developments lead to enormous challenge of designing and configuring mobile
and distributed systems that interact to achieve expected tasks. At the moment, this is a field
of a very active multi disciplinary research. There are several aspects of such systems re-
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quiring different approaches. Specification, modelling and design belong to the most chal-
lenging ones. There exist several formalisms for specification of mobile systems (cf. e.g.
[5, 4]), but until very recently, there was no satisfactory graphical notation for modelling
mobile systems. Graphical Modelling Languages are influencing a great impact on the soft-
ware development, but in the case of mobile systems, this aspect was neglected. These sys-
tems require special means for the modelling, specification and implementation. 

Recently the gap was filled by designing appropriate graphical UML based notations.
The so-called Sequence Diagrams for Mobility (SDM) [10] is a trace based, Sequence Di-
agrams like notation for the specification of mobile computation. There exists also an ex-
tension of UML Activity Diagrams for modelling of mobile system behavior [2]. The idea
is similar to the idea of Ambients [4], in that a mobile object can migrate from one host to
another and at the same time such an object can host other mobile objects. Like a place, a
mobile object can host other mobile objects; it can locally communicate and receive mes-
sages from other places. Objects can be nested in an arbitrary way, generalizing the limited
place-agent nesting of most agent and place languages. This concept generalises the Use
Case Maps [3] in that we graphically model an object moving from one location to another,
but also we allow moving objects to play the role of locations. The SDM notation general-
izes the notion of object lifeline as defined in UML Sequence Diagrams [12]. 

One of the most important principles in science is the principle of abstraction. Ideally,
there should be a notation allowing for displaying relevant and hiding irrelevant informa-
tion. It should provide the possibility to abstract from features, which are irrelevant at a giv-
en stage of development. In the previous paper we have introduced a powerful mechanism
for hiding irrelevant information [10]; the so-called zoom-out mechanism allows us to ab-
stract from internal details of selected objects; we call such objects boundary. In particular,
it allows us to hide the objects located in boundary objects and their behaviour. Similarly,
we have introduced the so-called zoom-in mechanism for displaying details of objects and
their behaviour. 

The extension of Activity Diagrams [2] is very close to its origin, it uses only few new
primitives form modelling of mobility and extends the standard UML notation a bit. The
new primitives are defined using stereotypes, the standard UML extension mechanism. The
SDM notation extends UML Sequence Diagrams in much more radical way and cannot be
reduced so simply to the standard UML. Therefore in this paper we introduce formal partial
order semantics for SDM only. We formalize the temporal ordering of event occurrences
using partial order relations, more precisely quasi orders. The information stored in mes-
sages is accessible via labelling functions defined on elements of the partially ordered set.
We show how to systematically define such models for SDM diagrams. We formally define
the notion of lifeline, introduced in [10]. We have given some examples of its use, but we
were not able to define it precisely there due to lack of proper terminology. Our formal se-
mantics allows us to define it now in precise formal terms. We define the notion of a run
and show how to figure out the system topology from the information contained in a run. 

The tricky part in our semantics is the definition of object’s location. We define loca-
tions only for objects participating in an event occurrence. Locations of other objects not
related to the event occurrence are not fixed. For example, if an event occurrence is not tem-
porally related to a move, then the move can happen before or after the event occurrence
and the location of the moving object should not be fixed during the move.



The definition of our semantics is based on well defined topological artefact such as
cross points, arrow directions and the relation of being located inside. Let us point out that
there exist some formal partial order based semantics of Message Sequence Charts (MSC)
[6], a graphical notation analogous to UML Sequence Diagrams (cf. e.g. [9]). MSC are a
subject of a very intense research (cf. e.g. [11]). 

We define semantics of the abstraction mechanism. The idea is to abstract from the in-
formation concerning hidden objects but to keep the partial ordering on visible communi-
cation events. We show, that the order, in which this mechanism is applied, does not matter.
The local definition of object’s location works fine also for the abstraction mechanism. 

We show that our semantics fits very well to the concept of interaction defined in UML
2.0. Interestingly enough, the concept of SDM fits well to UML 2.0, but it was really hard
to integrate with earlier versions of UML. We integrate the notion of partial order and run
with the notions of trace and GeneralOrdering from UML 2.0. We formalise also the
notion of lifeline as it is defined in UML 2.0. 

Our paper is structured as follow. Section two presents the basic ideas of Sequence Di-
agrams for Mobility. In section three we define the formal model, which is the base of our
semantics; we show how to define the semantics for concrete SDM diagrams. In section
four we formalize the notion of abstraction. We conclude our paper with some remarks on
the applications of our semantics.

2 The SDM Notation
Mobility is the ability to cross barriers. In our approach, a mobile object is also a location
where interaction may happen. Action boxes are indicated by different locations. The ac-
tion boxes describe what is inside and what is outside; they allow one also to show in a
transparent way message exchange and object’s migration. Locations can be arbitrarily
nested and form a tree structure, this is aimed at modelling firewalls, administrative do-
mains networks and so on. For example, a personal area network may be located in a car,
which is located in a ferry; the ferry may enter a harbour and so on. We assume that the
nested structure has the form of forest, i.e. an object can be located in at most one object
and there no cycles of objects such that one is contained in another. 

In the paper [2], we have introduced the stereotype <<location>> and the stereotype
<<mobile>> to specify objects which can play the role of locations and objects which
can be mobile, respectively. Each object of a class having stereotype <<mobile>> pos-
sesses attribute atLoc; this attribute has values of a class having stereotype <<loca-
tion>>. If an object is not mobile, it does not possess this attribute. The idea is that a
change of location of a mobile object is modelled by the change of the attribute atLoc.
Objects which are locations only, and in general objects, which are not stereotyped with
<<mobile>>, do not possess this attribute.

Mobile objects may interact with other objects by sending messages and changing lo-
cations. In UML, objects can communicate in synchronous as well as asynchronous way.
We stick to this principle. Unlike Ambients Calculus [4], in our notation it is possible to
express actions at a distance even if many barriers are involved. 

A description of a mobile object’s behaviour starts with a box containing optionally the
object name and/or its class. A mobile object may move into another object, or move out
of an object. If an object moves into or out of another object, then the action box ends in



the former location and the object is moved to another location. This move is indicated by
a stereotyped message arrow which starts with a black circle; we call it move arrow. 

A mobile object cannot continue its operation outside a host, if it is already inside an-
other host; consequently, the arrow starts strictly at the end of the first action box to indicate
that all action in the box must precede the move. The start of operation of a mobile object
(and if this object was not active before elsewhere) is indicated by a box as in the case of
sequence diagrams. We indicate the end of mobile object description by two horizontal
lines, where the upper line is dashed. Let us point out that it does not mean that the object
was terminated (cf. [10]).

 Fig. 1. Object mobility 

Fig. 1 shows what a mobile object looks like. The passenger ps enters airplane ap.
Since there is no conflict concerning the identity of objects inside ap; the corresponding
action box does not bear any name. Than ps deplanes ap and starts its operation outside
ap. The name in the last action box is not necessary either, since the identity of ps can be
uniquely traced [10]. No message arrow is attached to the action boxes except of the move. 

 Fig. 2. Object copying and cloning

Fig. 2 shows a virus v located in PC 131. The virus proliferates attacking other PCs.
We use here a message arrow with UML stereotype <<copy>>, the copied virus v' is as-
sumed to behave as its origin would do inside the new location (cf. [12]).

3 Partial Order Semantics
In this section we introduce partial order semantics for SDM. We define a mathematical
model containing a partially ordered set and a number of labelling functions, which allow
us to extract information from the elements of this set. We present a general method of ex-
tracting such models from SDM diagrams. We show how to apply this method to concrete
SDM diagrams. We formally define the notion of lifeline. 

ap:

ps:

ps:

131 : PC 742 : PC

v:Virus

v':Virus

<<copy>>



3.1 The Formal Model 

In this subsection we define the formal model which will be the base of our semantics. The
model is based on a partial order formalizing temporal relationship between event occur-
rences; it contains labelling functions for extracting information. This model is constructed
in a similar to the partial order semantics of Message Sequence Charts (cf. e.g. [9, 11]). The
tricky point in our semantics is the definition of object locations. We define locations only
for objects participating in an event occurrence; locations of other objects not related to the
event are not fixed. For example, if an event occurrence is not temporally related to a move,
then the move can happen before or after the event occurrence and the location of the mov-
ing object should not be fixed during the move. If the object moves from location a to lo-
cation b, then when the event occurs it can be in a or in b (see below).

According to UML 2.0 [12], an InteractionFragment consists of a number of so-
called GeneralOrderings. A GeneralOrdering represents an ordering of two
event occurrences; it specifies that one event occurrence must proceed the other in a valid
trace. This concept provides the ability to define partial orders of event occurrences. In
UML, a message is a specification of a particular communication between instances in an
interaction. A communication can be raising a signal, invoking an operation, creating or de-
stroying an instance. Message specifies not only the kind of communication, but also the
roles of the sender and the receiver, the dispatching and the relative sequencing of messages
within the interaction. A message may have two message ends corresponding to two event
occurrences: sending and receiving of a message (cf. Fig. 3). Event occurrences corre-
sponding to message ends can be ordered using GeneralOrdeing.

 Fig. 3. UML event diagram

Our model is a tuple of the form: (E, ≤, e0, lab, p, lP). The binary relation ≤ is a quasi
order, in particular a partial order. It corresponds to UML GeneralOrdeing. Conceptu-
ally, E is the set of event occurrences. We consider here four kinds of events: send event,
receive event, method or constructor return and cross event; the last one corresponds to the
event of crossing objects boundary2. Further, we identify three kinds of send events: mes-
sage send, method call, constructor call, object departure and send message. Similarly, we
identify three kinds of receive events: message receive, method start, constructor start, ob-
ject arrival and receive message. The relation ≤ defines temporal ordering of such event oc-
currences. We assume that, there exist an initial, auxiliary, event occurrence e0, which we
use to define the initial topology of a mobile system (see below). This event precedes all
other event occurrences, i.e. for all e ∈ E, e0 ≤ e. 

2. One could split such an event into to a send event and a receive one. 
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An event occurrence includes information about the values of all relevant objects at the
corresponding point in time [12]. In our model, the information corresponding to an event
occurrence can be accessed using labelling functions. There are three labelling functions:
lab, p and lP.

The function lab labels elements of the set E specifying the corresponding communica-
tion kind; it can be sending or receiving of a message, method call or return and so on (we
have listed the types of events above): 

lab : E → EventKind
Every communication involves some objects; for example a message or a moving ob-

ject may cross several object boundaries. The function p identifies objects participating in
an event occurrence; it returns a finite set of event participants:

p : E → Fin(ObNames)
We assume that in the case of object departure and arrival, function p identifies the moving
objects and all objects hosted in the moving object (see the next subsection). 

Let MO be the set of mobile objects, i.e. objects whose class has the stereotype <<mo-
bile>>. Similarly, let Loc be the set of locations, i.e. objects whose class has the stereo-
type <<location>> (see section 2). We define a partial function: 

lP : MO × E → Seq(Loc)
lP(o, e) returns a sequence of locations, if o participates in event occurrence e. In the other
case, the value is undefined. We call this sequence location path of object o (see below).

In UML 2.0 [12], the semantics of an interactions is given in the term of traces. A trace
is a sequence of event occurrences of the form <e0, e1,..., en>. Two interactions are equiv-
alent if their trace-sets are equal. Similarly, in our model, system behavior can be specified
as a set of system runs. A partial run of model (E, ≤, e0, lab, p, lP) is an not empty sequence
of elements e0, e1,..., en such that the following conditions are satisfied:

• If ei ≤ ej, then i ≤ j.
• If e ≤ ej, then there exists an index i ≤ j such that ei = e.

In other words, a partial run is a linearization, which preserves the temporal ordering; more-
over for every event occurrence belonging to the run, all preceding event occurrences be-
long to the run as well. Let us observe, that any not empty prefix of a partial run is a partial
run. 

Partial runs define particular moments in system execution. For such moments we can
determine system topology. Let e0,..., en be a partial run, we say that after this run object
o2 is located in location o1 (inside o1, resp.) iff there exists an event occurrence ei and an
object o such that:

• The location path lP(o, ei) has the form l1,..., ln, contains locations lj = o1 and
lj+1 = o2 (contains locations lj = o1 and lk = o2, such that j < k, respectively).

• For all event occurrences ek, such that i < k, and for all objects o∈ p(ek), the loca-
tion path lP(o, ek) does not include o2. 

The location of an object is determined by the most recent information concerning its loca-
tion. Similarly, we can define location path of an object after a run. The topology of a mo-
bile system at a particular moment of time is derived from the information contained in the
events occurring in the corresponding partial run; it is the sum of object locations.



Models that are semantics of SDM diagrams have certain properties, which formal
models in general may violate. We call such properties consistency conditions. For exam-
ple the topology of a mobile system should not change during method call or return. The
topology changes only in the case of object departure or arrival and constructor return.
Moreover, departure and arrival change only the location (i.e. the atLoc attribute) of the
moving object. Locations of all other objects remain unchanged. Constructor return doesn’t
change locations of already existing objects. As mentioned in section 2, we assume that the
locations form a forest. Consistency conditions can be used when proving or model-check-
ing properties of SDM diagrams. 

3.2 Definition of the Partial Order Semantics

In this section, we introduce a generic method for defining a partial order semantics for a
concrete SDM diagram. This method includes three steps: identification of event occur-
rences, derivation of the partial ordering and labelling of the occurrences. 

We associate an element of the set E to every graphical artefact of the form: beginning
and end of a message arrow (e.g. move message), a message arrow crossing an object box
by going in or out as well as method and constructor termination indicated by a correspond-
ing rectangle. Let us point out that if an arrow crosses an object box twice, then it does not
interfere with the action box, such as for example a message arrow crossing a lifeline of an
object in UML sequence diagram3. 

The definition below does not guarantee that we obtain a partial ordering. It yields only
a quasi order, i.e. a reflexive and transitive relation. In fact, it depends on the SDM diagram
being formalized, if we obtain a partial order or not. As in the case of general Sequence Di-
agrams, it is possible to draw diagrams with circular dependences. In such a case, the result-
ing quasi order is not a partial order. 

For simplicity, we do not talk about the topological artefacts, but about the correspond-
ing event occurences (see above). The temporal ordering of event occurrences ≤ is defined
as the smallest reflexive and transitive relation satisfying the following conditions: 

• If event occurrence e1 is located above event occurrence e2 on a rectangle being a
border of the same action box, then e1 ≤ e2.

• If e1 and e2 are located on the same message arrow and e1 proceeds e2 in respect to
the direction of the arrow, then e1 ≤ e2.

For every element of E we define the values of functions lab, p and lP. The function lab
returns the type of an event: message send, message receive, method or constructor call,
method or constructor start, method or constructor return, cross event; method call, object
departure and object arrival. 

The function p identifies participants of a communication event e. If it is a send of a mes-
sage, arrival of a message, method call, start of a method execution, method return, then p(e)
includes only the sender, message receiver, caller, executing object, respectively. In the case
of object departure and arrival, we assume that the event participants are the moving object
and additionally all objects located directly or indirectly in the moving object; those objects

3. For simplicity, we do not consider cases when a message arrow crosses object boxes of the same
object several times.



can be identified by figuring out if the corresponding action boxes are located inside the ac-
tion box of the moving object. The reason for including such object is that an object located
in a moving object changes its location path when its host moves. The move is also a kind
of caesura for the participating objects (see below). 

The auxiliary element e0 defines the initial topology of the system. p(e0) includes all
objects which exist initially, i.e. objects whose object boxes start with a rectangle bearing
a name of an object (see for example 131 on figure 4). If an event occurrence e corresponds
to a message arrow crossing an action box of object o, then we assume that p(e) = {o}. If
an event e corresponds to the moving of object o, then p(o) contains all objects with object
boxes located in the object box of o before the move. 

For every event e and every object o taking part in this event (i.e. for every o∈ p(e)),
location path lP(e, o) is defined as the sequence of objects such that their object boxes con-
tain the object box of o on which e is located; the objects are listed from the inner most to
the outer most. If an object o' neither takes part in e nor occurs at a location path of an par-
ticipating object, then the value of lP(e, o') is undefined. This is due to the fact that we do
not want to restrain locations of objects not involved in an event. Concurrently executing
objects may change locations independently. Let us observe that location paths are defined
for all objects existing initially, since they belong to p(e0). Consequently, the initial topol-
ogy is fully determined. Let us also observe that in the case of move, the locations of par-
ticipating objects before and after the move are defined by the location paths corresponding
to the departure and arrival event occurrences, respectively. In general the topology in dif-
ferent moments of time is determined by location paths. The location of an object is deter-
mined by the last relevant event. 

3.3 Example

 Fig. 4. Object copying and creation 

In this subsection we show how to define the partial order semantics for a concrete SDM
diagram. For simplicity, we assume that all objects occurring in the diagrams are mobile,
i.e. the corresponding classes have the stereotype <<mobile>> (see section 2). Fig. 4
makes explicit the event occurrences from Fig. 2: e1 is a method call, e1' corresponds to
crossing the boundary of 131. e2 is the start of the method execution, e3 is a constructor
call, e4 is the termination of the method and e5 is the start of constructor execution. 

There set of event occurrences has the form E = {e0, e1, e1',..., e5}. e0 proceeds all other
events. e1 proceeds e1' and e1' proceeds e2; this is due to the ordering of these occurrences
on the corresponding message arrow. e2 proceeds e3 and e3 proceeds e4; this is due to the

131 : PC 742 : PC

v:Virus

v':Virus

<<copy>>
e1 e2

e3
e4

e5

e1'



to down ordering of events on the object box of 742. Finally, e3 proceeds e5. The labelling
function lab returns call for e1, since it is of type call. It returns cross for e1', start for e2,
call for e3, start for e5 and return for e4. 

Initially, there exist three objects: v, 131 and 742; therefore p(e0) = {v, 131, 742}.
The participants of occurrence e1 are: v, 131. Similarly, p(e1') = {131}, p(e2) = {742},
p(e3) = {742}, p(e4) = {742} and p(e5) = {v'}. The topology is defined by the function lP:
lP(e0, v) = <131> and lP(e0, 131) = lP(e0, 742) = <>. The location of object v during oc-
currence e1 is 131, i.e. lP(v, e1) = <131>. lP(131, e1) is an empty list and lP(742, e1) is
undefined (see below).

 Fig. 5. Complex move

Fig. 5 shows communicating objects which change their locations. Object b moves
from location a to location c. Objects b1, b2 communicate before and after the move. The
communication between objects c1 and c2 does not depend temporally on the move. The
initial topology is defined as follows:

p(e0) = {a, b, b1, b2, c, c1, c2}, 
lP(b, e0) = <a>, lP(b1, e0) = lP(b2, e0) = <a, b>, lP(c1, e0) = lP(c2, e0) = <c>. 
Object b1 is the only participant of occurrence e1. When occurrence e1 takes place, the

location of b1 is b and the location of b is a. Consequently the location path of b1 during
e1 equals (b, a). There are three participants of the occurrence e3, i.e. p(e3) = {b, b1, b2},

and for participants of e3', i.e. p(e3') = {a, b, b1, b2}4, this corresponds to the assumption
that objects located in a moving object participate in the move. Similarly, p(e4') = p(e4) =
{c, b, b1, b2}. The move is a kind of caesura for the involved objects. It separates events
before the move and events after the move.

Let us observe, that we cannot infer from the diagram the temporal ordering of e1 and
e7. Similarly, we cannot infer from the diagram where object b is located when occurrence
e7 happens; the location of object b during occurrence e7 may be a or c or none of them.
This explains why lP is a partial function. 

4. Let us notice, that there is difference between p(e1'), from figure 4 and p(e3') from figure 5. In the
first case, the message causes an object creation, but the object does not exist when the message
is sent. In the second case, the object move all together and therefore they are listed as event par-
ticipants. 
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r
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There are several partial runs of the system shown on Fig. 5. For example, e0, e1, e2, e3,
e3', e4', e4,e5, e6, e7, e8 is a maximal partial run in the sense that it contains all event occur-
rences. Similarly, e0, e7, e8, e1, e2, e3, e3', e4', e4, e5, e6 is another maximal partial run. Of
course, all prefixes of these runs are partial runs. Let us consider the first run, the initial
topology is not changed after e1 nor after e2. After occurrence e3, object a does not contain
any other object and object c contains objects c1 and c2 only. The topology changes once
more after occurrence e4: object c contains now additionally b1 and b2. 

3.4 Lifelines

In this subsection, we formally define the notion of lifeline. We have introduced this notion
in the paper [10] already. We have given some examples of its use there, but we were not
able to define it precisely due to lack of proper terminology. Our semantics allows us to
define the notion of lifeline in precise formal terms. This notion generalizes the notion of
object lifeline as defined in UML Sequence Diagrams [12]. It generalizes also the idea of
Use Case Maps [3]; this notation strictly separates mobile objects and locations. In SDM
an object can be mobile, if its class has the stereotype <<mobile>> and at the same time
it can play the role of location, if its class has the stereotype <<location>>.

Let in UML 2.0 “The semantics of the lifeline (within an interaction) is the semantics
of the interaction selecting only event occurrences of this Lifeline.” Our definition of object
lifeline corresponds strictly to this definition: a lifeline of an object is the set of all events
the object participates in. Formally: let (E, ≤, e0, lab, p, lP) be a SDM semantics, and let o
be one of the participating objects, the lifeline of the object o is the set 

{e ∈ E | o ∈ p(e)}
The partial order relation on the set E orders the event occurrences belonging to a lifeline.
So the temporal ordering of the lifeline is simply inherited from the superset E. 

 Fig. 6. Lifeline

As example let us consider the diagram in Fig. 6. The lifeline of object b1 has the form:
{e0, e1, e3, e3', e4', e4, e5}. The lifeline of object b consists of occurrences: e0, e3, e3', e4'
and e4. 

4 Abstraction Mechanisms
One of the most important principles in science is the principle of abstraction. Ideally, there
should be a notation of abstraction allowing one for displaying relevant and hiding irrelevant
information. In the previous paper we have introduced a powerful graphical mechanism for
hiding irrelevant information [10]. The zoom-out mechanism allows us to abstract from in-
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ternal details of so selected objects, called boundary. In particular, it allows us to hide the
objects located in boundary objects and their behaviour. Similarly, we have introduced the
so-called zoom-in mechanism for displaying details of objects and their behaviour. 

In the first subsection we formalize the zoom-out mechanism. In the second subsection
we explain how the formal machinery works using an example. In the third subsection we
show how to formalize zoom-in to a move.

4.1 Formalization of the Zoom-Out Mechanism

In this subsection, we formalize the zoom-out mechanism. This mechanism allows us to ab-
stract from the internal structure and behavior of selected objects, which we call boundary.
We define which event occurrences are visible and which not. The zoom-out mechanism
can be applied to whole models, but it can be applied as well to selected time intervals. The
definitions prove to be simple, thanks to the local definition of object’s locations. 

 Fig. 7. Boundary objects

Fig. 7 shows the basic idea of boundary objects. The objects located in a selected object
can be seen as a tree. The objects located in boundary objects are invisible, i.e. an object is
invisible, if its location path contains a boundary object, in the other case it is visible. The
objects located above boundary objects are visible. For example, let o1 and o2 be two ob-
jects participating in an event occurrence; o1 is visible, but o2 not. Similarly, we can de-
fine visible and invisible events.

Formally, let BO be a set of boundary objects, and let e be an event occurrence, we say
that e is not visible in respect to BO iff one of the following conditions is satisfied:

• For all objects o1 ∈ p(e), the location path of o1 contains a boundary object.
• e is a send event, the initiating object (i.e. the caller, the departing object or the

sender), respectively is a boundary object and the target object (i.e. the receiver, the
target location or the receiver, respectively) is located within the caller. 

A event occurrence is visible if it is not invisible. In other words, an occurrence is not vis-
ible, if all objects participating in the occurrence are invisible or it is a send event, the ini-
tiating object is a boundary object and the target object is not visible. Partial runs
correspond to points of execution. We say that an object is visible after a partial run, if this
object is not located within a boundary object (see subsection 3.1). 

Let us observe, that in the case of formal models satisfying the consistency conditions,
for every two partial runs ending with the same event occurrence e, the sets of visible ob-
jects participating in this event occurrence are the same. In other words, for every occur-
rence and every object participating in the occurrence the fact whether the object is visible
or not, does not depend on run the event is part of. More generally, if two event occurrences

boundary objects

o2

location path of o2

invisible objects

visible objects

o1



concern the same object, then they are temporally related. This follows from the fact that
event occurrences on the same object box are temporally related. If an object moves or if
its host moves then the object is involved and the move is a kind of ceasura.

We define an abstraction function F. This function has two arguments: a set of boundary
objects and a model: 
F(BO, (E, ≤, e0, lab, p, lP)) = (E', ≤', e0, lab', p', lP'), if the following conditions are satisfied:

• E' = {e ∈ E | e is visible in respect to BO}.
• ≤' is the restriction of ≤ to E'.
• lab' is the restriction of lab to the set E'. 
• p'(e) = {o∈ p(e) | lP(o, e) does not include objects from BO}. 
• lP'(o, e) is defined as lP(o, e), if e is a visible event occurrence and o∈ p'(e); lP' is

undefined for other pairs of objects and occurrences.
E' is the set of visible events. p' contains objects visible during occurrence of e. lP' is defined
as lP for objects visible during event occurrence, for other objects it is undefined. Let us
observe, that by definition, for all visible event occurrences e and all o ∈ p'(e), lP'(o, e) does
not contain boundary objects. 

We may perform abstraction several times; the result should not depend on the order we
apply the zoom-out mechanism. The following statement says that this requirement is sat-
isfied. It is due to associativity and commutativity of set theoretical union.

Statement
F(BO1, F(BO2, (E, ≤, e0, lab, p, lP))) = F(BO1 ∪ BO2, (E, ≤, e0, lab, p, lP))

The statement follows from the fact, that it does not matter whether we abstract from
event occurrences invisible in respect to BO1 first and then from occurrences invisible in
respect to BO2, or we abstract from occurrences invisible in respect to BO1 ∪ BO2 in one
step. Consequently, the resulting set of visible occurrences depends only on the union. The
resulting partial order is just the restriction of the initial partial order. The resulting partic-
ipation function and the function returning location paths depend only on the union
BO1 ∪ BO2. 

We may apply the zoom-out mechanism in a much finer way. It can be applied not only
to whole lifelines of objects, but also to particular time intervals when the behaviour and
internal structure of selected objects is unimportant. 

Let (E, ≤, e0, lab, p, lP) be a partial order semantics of a mobile system and let N be a
subset of E. We say that N is convex iff for every three occurrences e1, e2, e3, if e1, e2 ∈ N
and e1 ≤ e2 ≤ e3, then the element e2 belongs to N as well. The definitions above can be
formulated for convex sets of occurrences N: 

An event occurrence is invisible relative to N iff it belongs to N and it is invisible in the
above defined sense. We can redefine the functions lab, p, lP for event occurrences from N
in an analogous way.



4.2 Zoom-Out: Examples 

 Fig. 8. Abstracting from internal details

In the first example we show how to gradually abstract from the details of the interaction
shown on Fig. 2. We present two views on the interaction. The left hand side of Fig. 8
shows the receiver view. The receiver of a virus usually cannot see the structure of the virus
sender, but it may figure out who the sender of the virus was. A network observer can see
only the communication over the network, but not the internal structure of the communica-
tion participants. 

In the case of the first diagram, 131 is the only boundary object, i.e. BO1 ={131}. e1
is the only invisible event, consequently M' = {e0, e1',..., e5}. There are initially two objects:
131 and 742; therefore, p'(e0) = {131, 742}. 131 is the only participant of the occurrence
e 1', i.e. p'(e1') = {131}. p'(e2) = {742}, and so on. The the function lP'(_, e0) is defined
for objects 131 and 742. 

In the network view, the set of boundary object is equal {131, 742}. There are only
three event occurrences in this view: e1', e2 and e4. Only the visible objects participate in
these events. 

The next example concerns partial zoom-out. We can abstract from internal structure
and behavior of selected objects during certain time intervals. Fig. 9 abstracts from the be-
haviour and internal structure of b after it moves. 

 Fig. 9. Partial zoom-out

Objects b1, b2 communicate before and after the move. The initial topology is defined
as follows: p'(e0) = {a, b, b1, b2, c, c1, c2}, lP'(b, e0) = <a>, lP(b1, e0) = <a, b>, lP'(b2,
e0) = <a, b> and so on. There are four participants of occurrence e4: p'(e4) = {c, b, b1,
b2}. lP'(_, e4) is defined only for objects b and c.
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4.3 Zooming into move

In this subsection we formalize the zoom-in mechanism allowing us to display and to hide
the details of object’s move. It is possible to zoom into the object’s move arrow to see the
behavior of the participating objects. The top part of Fig. 10 shows the move of object b
from location a to location c. All objects hosted by b participate in this move. In the top of
the figure, the move is shown in the zoom-out view. The second diagram in Fig. 10 shows
the move details, i.e. the zoom-in view. It displays the communication between b1 and b2
during this move. The zoom-in version of the move arrow has only one black circle and
one sharp end. We introduce this notation in order to make explicit that the communication
happens between start of the move and the end of the move. 

 Fig. 10. Zooming into a message

The zoom-out view can be seen as an abstraction of the detailed view. In this case the
convex set is the interval (e3, e4) = {e | e3 ≤ e ≤ e4}, and the boundary set contains the object
b only. The set of event occurrences corresponding to the first class diagram has the form
{e0, e1,..., e6}. The temporal order is linear: e1 ≤ ... ≤ e6. In the detailed view new occur-
rences are added and the temporal ordering is extended: 

e0 ≤ e1 ≤ e1 ≤ e3 ≤ e3' ≤ i1 ≤ i2 ≤ i4, i1 ≤ i3 ≤ i4 ≤ e4' ≤ e4 ≤ e5 ≤ e6. 

Concluding Remarks
The formal, partial order based semantics, presented in this paper explains the meaning of
Sequence Diagrams for Mobility. It allows us also to formalize the abstraction mechanism
introduced in the previous paper [10]. This semantics is well integrated with UML 2.0. Let
us observe that it is possible to have a bit different semantics of SDM which assigns events
only to send and receive actions (cf. [10]). For example, when an object located in another
object sends a message, the message may cross the object box of the outer object; we may
skip event occurrences corresponding to crossing of those boxes. 

In the future, we are going to use this semantics to implement tools for graphical mod-
elling of mobile systems. We are also going to investigate to what extend the decidability
results and algorithms concerning Message Sequence Charts (cf. [11]) apply to SDM. 
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