
Specification of Invariability in OCL

Piotr Kosiuczenko ?

Department of Computer Science
University of Leicester
piotr AT mcs.le.ac.uk

Abstract. The paradigm of contractual specification provides a trans-
parent way of specifying systems. It clearly distinguishes between client
and implementer obligations. One of the best known languages used for
this purpose is OCL. Nevertheless, OCL does not provide primitives for
a compact specification of what remains unchanged when a method is
executed. In this paper, problems with specifying invariability are listed
and some weaknesses of existing solutions are pointed out. The question
of specifying invariability in OCL is studied and a simple but expressive
and flexible extension is proposed. It is shown that this extension has a
simple OCL based semantics.

1 Introduction

Contracts are the prevailing way of specifying systems from the client point of
view (see [10]). They clearly assign responsibilities to client/caller and to sys-
tem implementer/callee. They allow one to trace back a contract violation to
the corresponding party. Unfortunately, the current high-level object-oriented
specification languages, such as OCL [16], do not provide primitives to specify
what can and what must not be changed when a method is executed. OCL al-
lows explicit comparison of object attributes before and after method execution.
A method execution usually changes only a small part of a system and conse-
quently most of the system remains unchanged. In the case of large systems,
it is not feasible to specify what happens with all attributes and associations.
This problem is not restricted to object-oriented specification languages (see [2]
for an overview). In general there exist three approaches to this problem: axiom
frames, modifies clauses and nonmonotonic logics.

The axiom frames are used in artificial intelligence (cf. [11, 17]). The idea is
to specify modification of attributes using axiom schemata. It requires explicit
listing of all attributes which remain unchanged. This results in large number
of frame formulas. In principle, it is possible to specify invariable system parts
correctly, but of course it is error prone and not feasible in the case of large
systems.

? To appear in O. Nierstrasz et al. (Eds.): MoDELS’06, Springer, LNCS 4199, 2006.

The second approach dates back to Hoare logic [7]. In this logic all variables
which are not mentioned in the formulas of a Hoare triple are assumed to be
unchanged. This works fine for verification of procedural programs, since all
variables used in a procedure are plainly specified. However it does not work
well for object-oriented specifications because of the encapsulation principle,
which allows hiding private attributes of objects, and because of the fact that
a method execution can have very complex side effects. In particular, it may
result in changes to objects different from method’s parameters. Java Modelling
Language (JML, see [3] and the references there) provides compact specifications
of invariable parameters [12]. It allows one for static checking of invariability
properties. On the other hand, it is possible to specify invariability requirements,
which cannot be check statically and in general the problem of what remains
unchanged is undecidable.

The third approach uses nonmonotonic logics (see [17, 9] and the references
there). It provides compact specifications and allows one to deal with side effects,
but it is not appropriate for large specifications due to complex fixed-point se-
mantics. The problem is that one specification may result in several fixed points
and the number of such points may be high in the case of a large specification [9].

There exist an approach which relies on a completion procedure [2]; basically
the specifier must specify for every method and every predicate the circumstances
under which the predicate changes its truth value. Unfortunately, in the case
of large systems it is not feasible. Interestingly, there exists also an approach
allowing extending graph rewriting rules with invariability constraints [1].

Basically, the above mentioned approaches fall into two categories. Either
they specify the system parts which don’t change (frame axioms) or they specify
the islands of change (JML, Hoare logic, nonmonotonic logics, design by con-
tract advocated by Meyer). The problems with invariability specification can be
classified as follows:

– oversize - huge formulas
– non-scalability - inability to deal with large specifications
– inflexibility - the user cannot customize the approach to specific needs
– fragility - the resulting formulas must be modified after every system change
– over-specification - the specification exposes details, which should be hidden

The need of extending OCL with primitives for specifying invariability has
been recognized long time ago. For example, a working group was set to deal with
this problem at “The Constraint Language for UML 2.0” workshop (a satellite
workshop of UML’01 conference in Toronto).

OCL is a very expressive, high-level language for specification of object ori-
ented systems [15] (see also [18]). There are tools for monitoring the satisfaction
of OCL constraints (cf. e.g. [5]). This language can be used directly to specify
what cannot change, but such specifications are usually very extensive, fragile,
hard to understand and modify. What we need is a compact way of localizing
change, with simple and monotone semantics.

2

In this paper, we propose a simple extension of OCL allowing us to specify in-
variability in a compact way. We delimit the islands of changes using appropriate
primitives and we translate those primitives into “standard” OCL. Views proved
to be a very powerful mean of specification and presentation (cf. [4, 13]). There
are different specification styles as there are different oo-programming styles. A
specification can be written from the client or from the implementer point of
view; it can be restricted to a single component or package. Proposed extension
allows us to specify systems from different points of view. In our approach, the
specification of invariable part can be restricted to the appropriate view. With
the help of the UML metamodel [16], we define the notion of view in the UML
framework and restrict specification of invariability to views. The OCL formulas
defining the user views may be sophisticated, but it is possible to define them
in a generic way and to reuse them. One can also define a view corresponding
to the implicit invariability assumption as it is used for example in Eiffel [6].

We study the usefulness of this extension in a series of examples and ex-
plain in which way it addresses the above mentioned problems. We show how
to translate expressions containing invariability primitives into OCL. Thanks to
this translation, our proposed extension has well defined semantics.

The paper is organized as follows. In Section 2, we consider a simple example
and use it to explain problems with invariability specification; we indicate also a
possible solution. In Section 3, we relate our extension to the UML metamodel
and show how to define views. In Section 4, we present the formal syntax of
proposed extension. In Section 5, we present the OCL based semantics of the
extension. Section 6 concludes this paper.

2 Specification of Invariability

In this section, we consider a simple example of a bank account and explain
problems with specification of invariability. We show how to specify invariability
using a rather basic OCL extension, how to deal with inheritance and side effects.

2.1 Problems with Invariability Specification

Design by contract is a very powerful method of specifying class and component
behaviour (cf. e.g. [10]). Unfortunately this approach may cause problems when
a high level specification language such as OCL [15] is used.

Let us consider the class diagram shown on Fig. 1. We can specify the method
credit in OCL in the following way:

context p1::BankAccount::credit(amount : real)
post : self .balance = self .balance@pre + amount

This specification does not mention what happens to the attribute name, to
the association os, nor to the attribute x. Therefore we have to add the follow-
ing frame formula:

3

+BankAccount

-name : string

+credit(amount : real)

p1

+OtherStuff

-x : integer-balance : real 1

os

Fig. 1. Basic Class Diagram.

and self .name = self .name@pre
and self .os = self .os@pre
and self .os.x = self .os@pre.x@pre

Moreover, to make this specification complete, we need a formula guaran-
teeing that all objects of the class BankAccount different from self are not
influenced by the execution, i.e. all their attributes remain unchanged. This re-
quires a separate equation for every attribute and association-end. Clearly in the
case of larger systems, writing all such axioms results in large formulas. Such
formulas are fragile in respect to modifications. It is easy to omit something or
to add an erroneous constraint. Let us point out that this problem is not OCL
specific and occurs in other object-oriented languages such as Eiffel (cf. e.g. [8]).

One of the possible solutions to the frame problem is to use the implicit in-
variability assumption. In simplistic case, this assumption says that all what is
not specified to change does not change (see for example [10, 8]). It allows one to
write simple specifications. The implicit approach to invariability is appealing,
since it does not put an extra burden on the specifier. Nevertheless, it is not
always clear what that assumption really means. In fact, the implicit invariabil-
ity assumption seems to implicitly include some best practices used to specify
object-oriented systems.

Literal interpretation of that assumption is problematic when a high level
specification language such as OCL is used. Let us consider the OCL expression
self .os.x = self .os@pre.x@pre + 1. It does not explicitly say whether self .os,
x, or perhaps both have to change. It is only clear that at least one of those
properties is supposed to change. The solution could be for example to say that
all objects mentioned in a post-condition are allowed to change. However in such
a case, logically equivalent formulas may have different meaning. In particular,
adding a tautological expression to a constraint may change its meaning. Let us
consider the following tautology:

OtherStuff .allInstances−>forAll(o |not o.oclIsNew() implies
o.x = o.x@pre or not(o.x = o.x@pre))

4

That assumption would allow arbitrary change of x, despite the fact that
this formula is a tautology. This disallows the use of logical deduction, since in
logic tautologically equivalent formulas are semantically equivalent.

In the case of derived attributes, one does not specify what happens to them
when a method is executed, since their values are derived from values of other
attributes. But if the implicit approach is interpreted literally, then they should
not change even if the values of the corresponding attributes change. Similarly,
specification of subclasses causes problems, which can be hardly dealt with by
the simplistic interpretation of the invariability assumption.

Another problem is the specification of side effects, i.e. effects which are not
meant to be visible to a client or concern objects different from actual param-
eters. Often, clients access component functionality via so called facades, i.e. a
number of selected classes and methods, but don’t have any knowledge about
other classes. For example let us assume that we want to save the old value of
attribute balance of the class BankAcount whenever it is changed and that this
operation should be invisible to the client. The values of the attribute balance
can be saved in a class which is not navigable from the class BankAccount
(see Section 2.4). The assumption that all objects mentioned in a clause can be
modified would disallow that kind of logging unless the changes were specified
explicitly. However this would force exposition of information, which should be
hidden. All those issues are dealt with using best practices which emerged over
years of experience in specification and implementation of object-oriented sys-
tems. Unfortunately their solution can not be simply derived from the simplistic
assumption.

2.2 Solution in the Simple Case

In this subsection, we propose a solution for the case of single classes and pack-
ages. In UML, packages are used to group model elements. They can be used to
define system views, in particular so called facades [16], which play the role of
client window on the system. It is natural to restrict a client side specification
to the corresponding facade.

In the case of the bank account (see Fig. 1, Subsection 2.1) we need to
specify what can and what must not change. In our approach we restrict the
specifications to packages and to sets of model elements in general (see below).
We use the in keyword to indicate the package. The modifies clause specifies
variable object attributes.

Let us specify explicitly what changes in the package p1. The following for-
mula relativizes the specification to p1, more precisely to all properties contained
in this package. The keywords are indicated by the bold characters:

context p1::BankAccount::credit(amount : real)
post : self .balance = self .balance@pre + amount
in p1modifies : self ::balance

5

We use the OCL primitive :: to indicate that the attribute balance of object
self can be modified. The clause in p1modifies : self ::balance says that if we
restrict our view to the package p1, then an execution of the method credit can
change only the value of the attribute balance of the actual implicit parameter.
This specification focuses entirely on package p1 and does not say anything about
any other package.

2.3 Inheritance

+BankAccount

-name : string

+credit(amount : real)

p1

+SavingsAccount

-savingsLimit : real

-balance : real

p1a

+OtherStuff

-x : integer1

-credibility : real

os

Fig. 2. Extra Package Extension.

In this subsection we deal with the problem of specifying invariability in
the presence of inheritance. We investigate to what extent we need to change a
specification, if a class is sub-classed.

Let us consider Fig. 2. We subclass the class BankAccount using another
package. The class BankAccount is extended by the class SavingsAccount. The
attribute savingsLimit specifies the lower limit of the corresponding balance,
and the attribute credibility specifies the credibility of a client. We assume that
the second attribute is correlated with the balance; if for example the balance
grows, credibility grows as well. The previous specification does not say any-
thing about the behavior of the attributes savingsLimit and credibility when
the method credit is executed. Consequently, they can change arbitrarily. To re-
strain changes in respect to the package p1a, we have to specify them explicitly:

context p1::BankAccount::credit(amount : real)
in p1amodifies : (if self .isKindOf (SavingsAccount) then

self .oclAsType(SavingsAccount) else Set{} endif)::credibility

Let us point out that unlike Java, OCL requires that every if keyword has
to be followed by else and end up with endif . In this case, the else part is just
an empty set.

6

+BankAccount

-name : string

+credit(amount : real)

p1

+SavingsAccount

-savingsLimit : real

-balance : real
+OtherStuff

-x : integer1

-credibility : real

os

Fig. 3. Intra Package Extension.

The specification of invariability is stable in respect to extensions, which do
not change the corresponding view (the package p1, for example), but changes
may be necessary, if the view is modified. Indeed, Fig. 3 shows another way of
extending the BankAccount class. In this case, the view given by package p1 is
changed. We have to change the specification of credit, since it was done rela-
tively to the view defined by p1.

context p1::BankAccount::credit(amount : real)
post : self .balance = self .balance@pre + amount
in p1modifies : self ::balance, (if self .isKindOf (SavingsAccount)

then self .oclAsType(SavingsAccount) else Set{} endif)::credibility

When specifying a method in a class, which is meant to be subclassed and
which forwards method calls to other classes, it is a good specification style to
abstract from changes the method has on attributes in subclasses and in the del-
egatee classes. In the case of our notation, it is possible to restrict a specification
to a particular class. The following specification restricts the view to the class
BankAccount only.

context p1::BankAccount::credit(amount : real)
post : self .balance = self .balance@pre + amount
inBankAccountmodifies : self ::balance

2.4 Side Effects

A method execution may result in modification of objects different from method
parameters and their immediate neighbors. It may also modify attributes, which
are invisible in a certain view. For example, this is usually the case of method
logging. When aspect-oriented programming is used, it is possible to change
attributes, which are not navigable from methods parameters. In this subsection
we show how to deal with side effects.

7

p2

#HistoryItem

-value : real

* ordered-items

#AccountHistory
-name : string

+BankAccount

-name : string

+credit(amount : real)

p1

+SavingsAccount

-credibility : real

-balance : real

+OtherStuff

1

-savingsLimit : real

Fig. 4. Dependent Packages.

Fig. 4 shows the class AccountHistory. An object of this class stores infor-
mation about the history of a bank account object. When the method credit is
executed and when the values of the attribute name of a bank account and the
value of the attribute name of a history object are equal, then the old balance
of the bank account is stored in a newly created object of class HistoryItem
and appended at the end of the list items. In the previous subsection, we have
shown how to specify changes in respect to the package p1. However we may
also need to specify a system internal view, which includes package p2:

context p1::BankAccount::credit(amount : real)
post : self .balance = self .balance@pre + amount and

AccountHistory.allInstances−>forAll(o | o.name = self .name
implies o.items−>one(hi |hi.oclIsNew() and hi.value = self .balance@pre

and o.items = o.items@pre−>including(hi)))
in p1modifies : self ::balance, (if self .isKindOf (SavingsAccount) then

self .oclAsType(SavingsAccount) else Set{} endif)::credibility
in p2modifies : AccountHistory.allInstances

−>select(o | o.name = self .name)::items

The OCL expression one means that there is exactly one object satisfying the
corresponding condition. including(hi) means that the object hi is appended to
the end of the sequence items. The last clause restricts the changes in package
p2 to the attribute items of the history objects, which have the same name as
the credited bank account.

We may want to make sure that the method does not change anything more
than specified above. To achieve this, we use the construct modifies only. The
expression modifies only : p1::∗, p2::∗ specifies that the changes are restricted
to packages p1 and p2. That sentence seals the specification of variable parts. It
uses the absolute modifies only clause which concerns all properties of a model.

8

2.5 Specification of Operations on Lists

In this subsection, we show how to specify operations on lists. In standard OCL,
it is not easy to specify what remains unchanged when a list is sorted, an element
is inserted or another list is appended. Consequently invariability specification
tends to be left out.

List
0..1
first

0..1next

sort()
+ListElement

+x : integer

Fig. 5. List with an Anchor.

The class diagram in Fig. 5 shows a list composed of an anchor object of
class List and a number of elements instantiating the class ListElement. The
method sort is meant to sort lists according to the value of attribute x. We
assume that self .elements denotes the set of all elements of the list self . (We
skip the definition of elements.) We consider here only finite acyclic lists. This
constraint is expressed by an invariant saying that a nonempty list must contain
an element, which does not have a successor. We use the term elements@pre to
denote all list elements, which exist in the pre-state.

contextList inv :
elements−>notEmpty() implies elements.exists(el | el.next−>isEmpty())
contextList::sort()
post : self .elements = self .elements@pre and
self .elements−>forAll(el | el.next−>notEmpty() implies el.x <= el.next.x)

We can make that specification precise by adding the following two invariability
clauses:

inListmodifies : self ::first
inListElementmodifies : self .elements::next

The first clause says that the element associated to the list anchor can be
replaced. Those clauses in conjunction with the first part of the post-condition
say that the elements of the list can be rearranged, but no element can be added
or removed.

9

3 Views

There are different specification styles as there are different oo-programming
styles. In the preceding sections we have restricted our specifications to packages
and classes. In general, it is possible to tune a specification to specific needs. A
specification can be written from the client or from the implementer point of
view. It may focus for example on public or reachable model elements. In general,
a user may construct his/her own view. We introduce an abstract concept of
view, which defines the focus of a specification (cf. [4]). In our approach, the
specification of invariable part can be restricted to the appropriate view. The
first subsection relates the OCL extension to the UML metamodel. The second
subsection investigates in which way users may define their own views.

3.1 Relation to the UML Metamodel

UML metamodel [16] allows us for a precise definition of a view. The basic
views are defined by packages. A package is a grouping of model elements. It
owns and imports classes, other packages and model elements such as properties.
Client’s view of a system is often defined by a facade. In UML a facade is just a
package [16].

Let us observe that the inmodifies clause is defined on two levels of ab-
straction. The in part is defined on the level of class diagrams and the modifies
part is defined on the level of objects. The in part refers to class diagrams and
it is not fine enough to deal with run-time configuration. The modifies part on
the other hand is defined in terms of the in part but concerns objects.

The in pmodifies clause refers to a number of model elements grouped in a
package p. According to the UML metamodel, a class and more generally a clas-
sifier is composed of behavioral features (in particular methods and attributes).
It is also associated to association-ends. The following OCL expression defines in
the context of the UML metamodel all OCL-properties contained in a package.
It selects all properties owned or imported (ownedElemens, importedElements,
respectively) by the package p.

p.ownedElemens−>select(pr | pr.isKindOf (StructuralFeature) and
(pr.isKindOf (Operation) and pr.oclAsType(Operation).isQuery or

pr.isKindOf (Attribute) or pr.isKindOf (AssociationEnd)))
−>union(
p.importedElements−>select(pr | pr.isKindOf (StructuralFeature) and

(pr.isKindOf (Operation) and pr.oclAsType(Operation).isQuery or
pr.isKindOf (Attribute) or pr.isKindOf (AssociationEnd))))

This OCL formula demonstrates that the content of packages can be defined
in the metamodel by OCL terms. Similarly, one can defined all properties cor-
responding to a class (cf. subsection 2.3).

10

3.2 User defined Views

The notion of view is fundamental for this approach. One can use predefined
views provided by packages, however one may want to define own views corre-
sponding to different perspectives. For example, a specification can be restricted
to public or protected model elements. In fact, we can select an arbitrary set of
model elements using an OCL term defined on the meta-level. It allows us to
specify different system views and to express what is mutable and what is not.
For example, for each class one can specify a view corresponding to all classes
which are navigable from that class and restrict the invariability constraints only
to that view. One can also explicitly define a view corresponding to the implicit
invariability assumption including the best practices used in this approach.

Let us consider Fig. 4 again. We can define different views depending on
the visibility of model elements. It is possible to restrict views to public or to
protected model elements. Let us assume that for every attribute a there is a
corresponding query method getA returning the value of the attribute a and
that this method has the same visibility as its class. If we focus on the behav-
ior of public and protected properties, then the corresponding view contains
the following queries: getBalance, getSavingsLimit, getCredability, getName,
getV alue and so on. A restriction to public properties would remove getV alue
since it is a method of the protected class HistoryItem.

In Subsection 2.3, we have shown how to deal with the specification of sub-
classes in a package. Actually, it is inelegant to specify what happens to sub-
classes at the level of their superclass. Let p but subclasses mean all model ele-
ments which occur in package p, but are not a part of a subclass of the context
class. This set can be defined by an OCL term. Due to lack of space, we skip the
formal definition of this construct. The constraint specifying the method credit
can be then written in the form:

context p1::BankAccount::credit(amount : real)
post : self .balance = self .balance@pre + amount
in p1 but subclassesmodifies : self ::balance

This clause relativizes the immutability clause to classes, which do not sub-
class the class BankAccount. In this case, every class subclassing that class
requires its own contract.

In some cases it may be reasonable to restrict method specification to classes,
which are navigable from the method parameters via association-ends and gen-
eralization relationships traversed bottom up, since only objects of those classes
can be modified during a method execution. It is possible to define the set of
navigable properties, though the corresponding OCL formula would be quite
large. Such a specification can have the form:

contextC::Op(p1 : C1, ..., pn : Cn) : D
...
innavigableFrom(typesOfParams(Op))modifies : ...

11

where typesOfParams(Op) is the list containing parameter types of method Op,
i.e. C,C1, ..., Cn, D. We assume that the term navigableFrom denotes all prop-
erties owned by classes navigable from those types; as in the previous case we
skip the definition.

In our opinion, a general specification language should not restrict users to a
particular view, such as for example navigableFrom. In contrary, a user should
be free to define own views as suits him/her best. The OCL formulas defining
on the meta-level the user view may be sophisticated and therefore hard to
write and hard to understand, but it is possible to define them in a generic and
reusable way.

4 Extension’s Grammar

In this section we define the syntax of proposed OCL extension. We restrict
this syntax with some constraints, which cannot be expressed by a context free
grammar. The grammar is presented using the EBNF notation: [] means optional
occurrence, { } means arbitrary number of repetitions and | means option. We
use capital characters for nonterminals and small characters for terminals. The
invariability constraints have the following form:

contextC ::OP
pre :Pre
post :Post
{ inP modifies :M {, M }}
[modifies only : [P ::]M{, [P ::]M}]

C is a context specification, Op is a method signature, Pre is a pre-condition and
Post is a post-condition as defined by OCL [15]. M describes what can change
and P is a package or more generally a term specifying a view. Furthermore:

P = (Pn::P |Pn[r] |Cn |Mt)O, O = [+] [#] [∼] [−]
M = nothing | [T]::(Pr | ∗)

Pn is a package name. The terminal r is optional; it specifies all sub-packages,
like −r in Unix. Cn is a class name. Mt is an OCL term defining a set of OCL-
properties; Mt is defined on the class diagram level. O specifies visibility of
considered properties; the visibility can be private, public, package public and
protected respectively. We allow the use of multiple visibility predicates meaning
that all listed options are possible. nothing is a terminal specifying that nothing
can change. T is an OCL term defining a collection of objects; it is defined at
the object level. Pr is an attribute or an association-end. ∗ denotes all OCL-
properties. Let us point out that terms such as p1 but subclasses correspond to
the nonterminal P (cf. Subsection 3.2).

12

Context free grammars are not expressive enough to deal with types. There-
fore, in addition we require that in the case of the clause:

in pmodifies : t1::a1, ..., tm::am

the term ti, for i = 1, ...,m, must be valid in the corresponding context, that
it does not contain the primitive @pre, that all objects defined by ti must have
property ai and that ai is a property of a class belonging to p, if p is a package,
and that ai is defined by p, if p is a term.

To facilitate the localization of changes we use the symbol ∗. C::∗ means all
properties of class C. Similarly, p+::∗ means all public properties contained in the
package p. We write modifies only : p1::∗, ..., pn::∗ to specify that only proper-
ties contained in packages p1, ..., pn can be modified. Similarly, modifies only :
C::∗ specifies that only properties of class C can be modified.

5 The Semantics

In this section we define the semantics of invariability clauses. We discuss the
OCL primitive allInstances and its role in the semantics. This semantics allows
us to translate invariability primitives to standard OCL. However translating
even a medium size class diagram may result in a huge OCL formula. A language
can have several semantics; one can modify the semantics proposed below by a
proper tuning of the OCL translation. The advantage of this semantics is that
one can rely on existing formal semantics of OCL and use standard OCL tools
(cf. eg. [5]).

In our semantics, we need to relate sets of objects, which exist before method
execution to sets of objects, which exist after method execution. There are two
OCL primitives, which can be used for that purpose: allInstances and @pre.
allInstances is a predefined feature of each type, which results in the set of all
instances of the type in existence at the time when the expression is evaluated
(c.f. [15], Subsection 7.5.10). In the case of program execution, C.allInstances
can be interpreted as the set of all objects of class C, which can be navigated
from variables present in the program stack at a given moment of time.

Below we will use C.allInstances@pre in post-conditions to refer to all in-
stances of class C, which exist at the moment when the underlying method is
invoked. Interestingly, allInstances@pre is rarely used in specifications, though
its meaning is as clear as the meaning of allInstances itself. In general, OCL
allows us to use properties in invariants, pre- and post-conditions. A feature is
a property, like operation or attribute, which is encapsulated within a classi-
fier. Actually, the OCL standard (c.f. [15], Subsection 7.5) restricts the notion
of property to queries, attributes and association-ends “for the purpose of this
document”. We refer to the restricted notion of property as OCL-property. Inter-
estingly, the OCL grammar doesn’t restrict the use of @pre to OCL-properties.
On the other hand, it is common to use the feature allInstances in invariants
and post-conditions.

13

The semantics is defined via frame formulas. Initially we define the semantics
of constraints of the form:

contextX::Op
pre :Pre
post :Post
in pmodifies : t1::a1, ..., tm::am

We assume that a1, ..., am are attributes and association-ends, but not queries.
Moreover for simplicity we assume that packages, classes and properties have
unique names.

The term p is obtained from the nonterminal P and defines a number of OCL-
properties (see section 4). We define an invariability formula for every attribute
and every association-end belonging to p. There are two cases. Such a property
may belong to the sequence a1, ..., am (i.e. it may have the form ai); in this case
the term ti defines the scope of change of property ai during execution of Op. In
the other case, the attribute or the association-end cannot change. Let us notice
that comparing the value of a property before and after method execution makes
sense only for objects, which exist before and after operation execution.

More precisely for i = 1, ...,m, let ti be an OCL term defined in the context
X::Op, which defines a set of objects of a class Ci. We assume that ti does
not contain @pre. Let ai be an attribute or association-end of the class Ci. We
assume also that the properties ai are pairwise different; because if ai is equal
to aj , then we can consider (ti−>union(tj))::ai. Let b1, ..., bn be all attributes
and association-ends defined by p, which are different from properties a1, ..., am.
For j = 1, ..., n, let Bj be the class corresponding to the property bj . Let t@pre
denote a term, which is obtained from the term t by suffixing all OCL-properties
by @pre. We translate the above constraint to standard OCL as follows:

contextX::Op
pre :Pre
post :Post and

Ci.allInstances@pre−>intersection(Ci.allInstances)−>forAll(o |
ti@pre−>excludes(o) implies o.ai@pre = o.ai), for i = 1, ..., m, and,
Bi.allInstances@pre−>intersection(Bi.allInstances)−>forAll(o |
o.bj@pre = o.bj), for j = 1, ..., n

The resulting post-condition is a conjunction of the original post-condition
Post and a frame formula. The frame formula has two parts. The first one
identifies OCL-properties, which may change. For i = 1, ...,m, the term ti defines
the scope of change of property ai. The corresponding clause means that for
every object o of class Ci, which exist before and after execution of Op, if o is
not defined by ti in the pre-state, then the property ai of o remains unchanged.
The second part concerns all other OCL-properties defined by p; it says that for
every such property bj and every object o of the corresponding class Bj , if o
exists before and after execution of Op, then its property bj cannot change. Let
us point out that the term ti can include the implicit parameter self and other
parameters of Op.

14

Let us observe that the resulting post-condition does not exclude creation or
deletion of new objects, as far as properties of objects existing before and after
method execution conform to above mentioned constraints.

For example, let us consider the specification of method credit in subsec-
tion 2.4. There is no pre-condition in this case. In the case of package p2, the
change is restricted to association-end items of those account histories, which
correspond to self . More precisely, it is restricted to those objects o of class
AccountHistory, which exist before and after operation execution and which
have the same name as self in the pre-state: o.name@pre = self .name@pre.
According to the first part of the frame formula, o.items = o.items@pre must
hold for every object o of class AccountHistory, such that o exists before and
after method execution and o’s name is different from the name of self . The
post-condition says that the method appends a new object to the end of the
associated sequence of items. The attribute value does not occur in the modifies-
clause. Therefore according to the second part of the frame formula, for every
object o of class HistoryItem, which exists before and after operation execu-
tion, it must be true that o.value = o.value@pre. However as stated above,
this does not disallow proper initialization of the attribute value in the newly
created objects. The case of attribute name is similar to the case of value.

Other kinds of invariability clauses can be treated as abbreviations. In the
case of the absolute invariability clause modifies only : t1::a1, ..., tm::am, the
localization of changes is not relativized, but concerns all properties. This kind of
constraint can be seen as an abbreviation of in apmodifies : t1::a1, ..., tm::am,
where ap defines all OCL-properties in a model.

We have mentioned that it is possible to use ∗ as an abbreviation for any
property. Formally, the clause modifies only : p::∗ means that for any OCL-
property a, which is not defined by p and for the corresponding class C the
following holds:

C.allInstances@pre−>intersection(C.allInstances)
−>forAll(o | o.a@pre = o.a)

The relative expression in pmodifies : nothing means that no property
contained in p is modified. It can be equivalently expressed by the formula
in pmodifies :, which uses an empty list of terms.

6 Conclusion

Specification of invariability in OCL has been a long standing problem. OCL
extension proposed in this paper provides a solution to that problem. The UML
metamodel and OCL allow us for an elegant definition of the notion of view; this
notion proved to be essential for specification of invariability. Interestingly, OCL
turned out to be proper language to define the semantics of proposed extension.
There are only few invariability primitives with simple semantics expressed in
terms of OCL itself; so that the invariability clauses can be understood as merely
OCL macros. Consequently the existing OCL tools can be used.

15

In the future we are going to perform a realistic case study to demonstrate
scalability of our extension. We are going to develop methodology for specifica-
tion of invariability. On the other hand, we are going to implement a tool for
automatic generation of OCL constraints from the invariability clauses and to
integrate this tool with existing OCL tools. The notion of view proved to be very
flexible and powerful; we are going to study its applicability for layered modeling
of complex systems.

Acknowledgement. We would like to thank the anonymous referees for their
helpful comments, which helped us to improve this paper.

References

1. Baar, T., OCL and Graph-Transformations - A Symbiotic Alliance to Alleviate the
Frame Problem. Proc. of MoDELS’05 Satelite Workshop on Tool Support for OCL
and Related Formalisms, Montego Bay, Jamaica, October 4, 2005, pp. 83-99, 2005.

2. Borgida, A., Reiter, R. and Mylopoulos, J., On the Frame Problem in Procedure
Specifications. 15’th Int. Conf. on Software Engineering, Baltimore, IEEE Com-
puter Society Press, 1993.

3. Darvas, A., Mueller, P., Reasoning About Method Calls in JML Specifications. Pro-
ceedings of the 7th Workshop on Formal Techniques for Java-like Programs (FT-
fJP’05), Glasgow, Scotland, July, 2005.

4. Finkelstein A., Kramer J., Nuseibeh B., Finkelstein L., and Goedicke M., View-
points: A Framework for Integrating Multiple Perspectives in System Development.
International Journal on Software Engineering and Knowledge Engineering, 1991,
pp. 31 – 58.

5. Gogolla, M, Richters, M. Use: A UML-based Specification Environment.
http://www.db.informatik.uni-bremen.de/projects/USE/.

6. Jezequel, J. M., Object-Oriented Software Engineering with Eiffel. Addison-Wesley,
(Eiffel in Practice Series), 1996.

7. Hoare, T., An Axiomatic Basis for Computer Programming. CACM, 12(10), 1969.
8. Mitchell, R., McKim, J. Design by contract by example. Addison-Wesley, 2001.
9. Marek, W., Truszczynski, M., Nonmonotonic Logic, Context-Dependent Reasoning.

Series: Artificial Intelligence, Springer, 1993.
10. Meyer, B., Object-Oriented Software Construction. Prentice, Hall, N.J., 1998.
11. Minsky, M., A framework for representing knowledge. Technical Report 306, Arti-

ficial Intelligence Laboratory, MIT, 1974.
12. Mueller, P., Poetzsch-Heffter, A., Leavens, G. T., Modular Specification of Frame

Properties in JML. Concurrency and Computation: Practice and Experience, Vol-
ume 15, pp. 117–154, Wiley, 2003.

13. OMG, MDA Guide, Version 1.0.1, Jun 2003.
14. OMG, Meta-Object Facility Specification, Version 1.4, April 2003.
15. OMG, OCL Specification, Version 2.0. October 2004.
16. OMG, Unified Modeling Language Specification, Version 2.0, October 2004.
17. Schubert, L., Monotonic Solution of the Frame Problem in the Situation Calculus.

In Kyburg, H., Loui, R., Carlson, G. eds: Knowledge Representation and Defeasible
Reasoning, Kluwer, 1990, pp. 23–67.

18. Warmer, J., Kleppe, A., Object Constraint Language: Getting Your Models Ready
for MDA. Addison Wesley Professional, 2003.

16

