Internal memory sorting and searching

By

Naila Yasmeen Rahman

A dissertation submitted in partial fulfilment of

the requirements for the degree of

Doctor of Philosophy in Computer Science

2002

King’s College University of London

Abstract

In this thesis we consider methods of designing fast, practical algorithms for sorting and
searching data in the main memory of a computer system. Algorithms are tradition-
ally analysed on the Random Access Machine (RAM) model, but such analyses often
give inaccurate predictions of performance. This is partially due to the fact that the
RAM model assumes the same time for arithmetic operations and memory accesses,
while on today’s computer systems a main memory access may take more than 100
times as long as an arithmetic operation, and this difference is likely to increase in the
future. To minimise main memory accesses computer systems use one or more fast,
small memories called caches, which store copies of recently accessed data. The RAM
model also does not capture the translation of virtual memory addresses into physical
memory addresses. Computer systems use a specialised, fast, small memory called the
translation-look-aside buffer (TLB) to facilitate such translations.

Main memory, caches and the TLB constitute the internal memory hierarchy, while
main memory, fast external memory (disks) and slow external memories (such as tapes)
can be referred to as the external memory hierarchy. The main challenge in designing
fast algorithms for the internal memory hierarchy is to minimise the number of cache
and TLB misses, that is the number of accesses to data which are not in the cache or
TLB. We show how algorithms and their analyses for the external memory hierarchy
can be converted to corresponding algorithms and analyses for the internal memory
hierarchy. We are the first to systematically consider TLB misses in this context.

We then consider the problems of sorting independent random floating-point num-
bers using distribution sorting and sorting integers using radix sort. We analyse the
number of cache and TLB misses for these problems and design algorithms which com-

prehensively outperform Quicksort. We also analyse the number of cache and TLB

misses for search tree data structures and design new search tree data structures that
outperform existing ones.

We include extensive experimental results, which support the presented analyses.

Declaration

I declare that this doctoral thesis was composed by myself and the work contained

herein is my own, except as stated now. Some parts of the thesis contain work from

the following jointly-authored papers:

[70]

[71]

[72]

[73]

N. Rahman, R. Cole and R. Raman. Optimising Predecessor Data Structures for
Internal Memory. In Proc. 5th International Workshop on Algorithm Engineer-
ing, LNCS 2141, pp. 67-78, 2001.

N. Rahman and R. Raman. Analysing Cache Effects in Distribution Sorting.
ACM Journal of Experimental Algorithmics 5, Article 14, 2001. Preliminary
version in Proc. 3rd Workshop on Algorithm Engineering, LNCS 1668, pp. 184—
198, 1999.

N. Rahman and R. Raman. Adapting radix sort to the memory hierarchy. ACM
Journal of Ezperimental Algorithmics, (to appear). Preliminary version in Proc.

2nd Workshop on Algorithm Engineering and Experiments, 2000.

N. Rahman and R. Raman. Analysing the Cache Behaviour of Non-uniform
Distribution Sorting Algorithms. In Proc. 8th Annual European Symposium on
Algorithms, LNCS 1879, pp. 380-391, 2000.

Acknowledgements

I am extremely grateful to my supervisor, Prof. Rajeev Raman. Rajeev got me started
in this area of research and has given me constant support and encouragement through-
out my PhD studies. He has taught me how to do the highest quality research.

I would especially like to thank my husband, Tomasz Radzik, for his love and
support. I would also like to thank Tomek for reading and commenting on the various
drafts of the thesis.

I would like to thank the EPSRC for the PhD studentship. Without their financial
support, completing my research in any reasonable timeframe would have been very
difficult.

I owe many thanks to my friends and colleagues at Avaya Communications for their
support over the years. I would also like to thank the management at Avaya for always
allowing me to work there when other sources of funding were unavailable.

I would also like to thank my friends and family for their encouragement. Most

importantly, I would like to thank my parents for their love and guidance.

Contents

1 Introduction 15
1.1 Imternal memory hierarchy 0oL 20
1.1.1 Caches e 20
1.1.2 TLB . ..o 20

1.2 Sorting and searching L. 22
1.2.1 Sorting random numbers.o 22

1.2.2 Sorting integers Lo 23
1.2.3 Searching 24

1.3 Methodology 24
1.4 Contributions of the thesis, 26
1.5 Organisation of the thesis 27
2 Previous work 29
2.1 Memory Models. 30
2.1.1 Discrete hierarchical memory models 30
2.1.2 Smooth hierarchical memory models 34
2.1.3 Cache-Oblivious Model 36
2.1.4 Cache Memory Model (CMM) 39

2.2 Algorithms for internal memory 41
2.2.1 System support 41
2.2.2 Algorithms 43

2.3 Cache misses and power consumption 46
2.4 Summary e e e e e 47

3 Internal Memory Model and emulations
3.1 Internal Memory Model (IMM)
3.1.1 Criticisms of the model
3.1.2 Designing and evaluating internal memory algorithms
3.2 Sun UltraSparc-IT. o
3.3 Emulations
3.3.1 Emulation of EMM algorithm
3.3.2 Emulation of 3-EMM algorithms

3.4 General techniques to obtain simultaneous cache and TLB optimality

3.5 Summary e e e

Sorting and searching
4.1 Sorting e e e e e
4.1.1 Lower bounds for sorting
4.2 Distribution sorting L
4.2.1 Count phase
4.2.2 Permute phase
4.3 Radixsorting
4.4 Bundlesorting
4.5 Multi-partition Quicksort and k-way Mergesort
4.6 Searching
4.6.1 B-trees. oL
4.6.2 BF-trees
Analysing the permute phase of distribution sorting in the CMM
5.1 Processes
5.1.1 Process to model an in-place permutation
5.1.2 Process to model an out-of-place permutation
5.2 Preliminaries
5.3 Cache analysis of in-place permutation
5.3.1 Average case analysis oL
5.3.2 Upperbound
53.3 Lower bound oo

5.4

9.5
5.6

5.7

5.3.4 Upper and lower bounds for uniformly-random data 88

Cache analysis of out-of-place permutation. 90
5.4.1 Average case analysis oL 90
54.2 Upperbound 93
54.3 Lower bound 96
5.4.4 Upper and lower bounds for uniformly-random data 96
Cache analysis of multiple sequences access 97
Correspondence between the permute phase and Processes “in-place”

and “out-of-place” 98

SUMMATY o oo e e e e e e e e e e e 99

Approximate analysis and validation of predictions in the CMM 101

6.1 Approximate analysis Lo oL o 102
6.1.1 Dissimilar key and count array element sizes 108
6.2 Cache simulations o oo 109
6.3 Accuracy of predictions L Lo oL oL 109
6.4 Heuristic 1 for selectionof k& L. 111
6.5 Heuristic 2 for selectionof k. oo 112
6.6 Summary e e e e 113
Sorting random numbers in the CMM 114
7.1 Cache analysis of count phase 114
7.1.1 Dissimilar key and count array element sizes 117
7.2 Flashsort e 119
7.2.1 Flashsortl L 119
7.2.2 Multi-pass algorithm 0oL 121
7.2.3 Experimentalresults L oL 123
7.2.4 Cache simulations oL 127
7.3 MSBradixsort e 130
7.3.1 Radix sorting floating-point numbers 131
7.3.2 Using Quicksort 132
7.3.3 Cacheanalysis 132
7.3.4 Tuning MSB radixsort 133

7.3.5 Experimental results

T4 SUMMATY . . . o o o e e e e e e e e e

8 Sorting integers in the IMM
8.1 Techniques to reduce TLB misses
8.2 LSBradixsort
8.2.1 Worst-case cache miss analysis
8.2.2 Worst-case TLB miss analysis
8.3 Implementing LSB radixsort
8.3.1 Reducing working set size
8.3.2 Speeding up the count phase,
8.4 Explicit Block Transfers
8.4.1 EBTradixsort
8.4.2 Implementing EBT Radix Sort
8.5 Pre-sorting
8.5.1 PLSBRadix Sort
8.5.2 EPLSB Radix Sort,
8.6 Asymptotic number of cache and TLB misses
8.7 Experimental results Lo Lo
8.71 Random inputs Lo o
8.7.2 Testing robustness oL
8.7.3 Sortedkeys
8.8 Permuting anarray oL
8.9 Summary e e

9 Optimising predecessor searches in the IMM
9.1 Data structures L
9.2 Experimental results L Lo
9.3 SUMmMATry i e e e e e e e e

10 Limitations of the CMM and IMM
10.1 Simple abstraction of reality oL
10.1.1 Multi-level caches

136
136
138
138
139
141
141
142
143
143
143
144
144
150
154
155
156
158
163
163
164

166
168
172
175

11

10.1.2 Replacement policies
10.1.3 Pre-fetching data
10.1.4 Faster miss processing
10.1.5 Cache-coherency
10.1.6 Memory bandwidth o000
10.1.7 Physically mapped caches oo L.
10.2 Summaryo e e e e

Conclusions and future work

Simulation results

Cache Architecture
B.1 CPU and memory sub-system
B.2 Cache organisation o
B.3 Blocked memory
B.3.1 Block placement o oL
B.3.2 Block identificationo oL
B.3.3 Block replacement o oo
B.4 Read and write accesses to memoryo
B.4.1 Read access to a memory location
B.4.2 Write access to a memory location
B.5 Instruction and data caches
B.6 Non-cacheable memory,
B.7 Read only memory
B.8 Performance measurement L Lo
B.9 Improving performance 0.
B.9.1 Reducing cache misses
B.9.2 Reducing miss penalties
B.9.3 Reducing hit time L oL
B.10 Cache-coherency problem
B.10.1 Coherency in single processor systems

B.10.2 Snooping using the cache’s actual directory

10

B.10.3 Snooping using a dual directory L. 220

B.10.4 Snooping using inclusiono 220
B.10.5 Snooping using dirty inclusion 221
B.10.6 Coherency in virtual caches 221
B.10.7 Coherency in multi-processor systems 222
Glossary 224

11

List of Figures

1.1
1.2
1.3
1.4
1.5

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4

7.1
7.2

7.3
7.4
7.5

8.1
8.2

The typical memory hierarchy in computer systems before the mid 1980’s. 16

The typical memory hierarchy in recent computer systems. 16
Flashsortl vs Quicksort. 17
Photograph of the Intel StrongArm chip.. 19
Virtual memory, physical memory and TLB. 21
Pseudo-code for count phase. 62
Pseudo-code for out-of-place permute. 62
Out-of-place permutation. oL 63
Pseudo-code for in-place permute. 64
In-place permutation. Lo o oL 64
Process “in-place”. 73
Process “out-of-place”. e 74
Cache analysis of Process “in-place”. 79
Cache analysis of Process “out-of-place”. 91
Flashsortl, MPFlashsort and MTQuicksort. 125
Flashsort1l, MPFlashsort, MTQuicksort and Sanders Heapsort. 8 -byte

keys. . . o 127
L2 cache misses per key: Flashsortl vs MTQuicksort. 129
L2 cache misses per key: MPFlashsort vs MTQuicksort. 129
Predicted vs simulated L2 cache misses per key: MPFlashsort. 130
Time per key for LSB: random integers. 156
Time per key for LSB5: random versus worst-case inputs. 159

12

8.3
8.4
8.5
8.6
8.7

9.1
9.2
9.3

B.1
B.2
B.3

Time per key for LSB6: random versus worst-case inputs. 160

Time per key for EBT11: random versus worst-case inputs. 160
Time per key for PLSB11: random versus worst-case inputs.. 161
Time per key for EPLSB10: random versus worst-case inputs. 161
Time per key for EPLSB11: random versus worst-case inputs. 162
Layout of Prokop’s cache-oblivious search tree. 170
External cache-oblivious search tree. 170
A paged B-tree. 171
CPU and memory sub-system 204
Cache components. Lo 205
Memory address. L 206

13

List of Tables

7.1
7.2

7.3

7.4
7.5

8.1
8.2
8.3
8.4

8.5

9.1
9.2

Al
A2
A3
A4
A5
A6
AT

Flashsortl, MPFlashsort and MTQuicksort. 124
Flashsort1l, MPFlashsort, MTQuicksort and Sanders’s Heapsort. 8-byte

keys. . . o 126
Flashsortl, MPFlashsort and MTQuicksort on an Intel Mobile Pentium

IIL. . 128
MTQuicksort and Naivel MSBRadix. 134
MPFlashsort, MTQuicksort and MSBRadix. 134
LSB11 with random and worst-case inputs. 140
LSB556, LSB6 and FLSB6 on random integers. 157
LSB on random integers. 158

EPLSB11, PLSB11, EBT11, LSB556, LSB6, LSB11, MTQuick and TMerge

on random integers. 158
Pre-sorting and explicit block copy permutation of random integers. . . 164
Query time per random key. oL L oL 174
Computation time per query. 174
Accuray of approximate analyses: small classes. 196
Accuray of approximate analyses: large classes. Part 1. 198
Accuray of approximate analyses: large classes. Part 2. 199
n = 22%: more than 5% between predicted and actual v. 199
n = 222: more than 5% between predicted and actual v. 200
n = 22*: more than 5% between predicted and actual v. 201
Accuracy of ¢ heuristic. o oL o oL 202

14

Chapter 1

Introduction

Application programs, dealing with increasingly large data sets, require a large memory
to hold data and the results of computation. In many cases they also require the
computation to be done as fast as possible. Increases in CPU speeds go some way
towards meeting the need for speed. However the time to access data is usually a
significant proportion of the overall computation time. The designers of computer
systems need to meet the demand for a large storage capacity which can be accessed at
high speeds, but at the same time they must minimise overall system costs. The cost of
memory varies with the technology used. A tradeoff is made, where computers instead
use a hierarchy of memories, where the size of each memory varies inversely with its
speed and unit storage cost. The size of the memory also varies with its distance from
the CPU. Such that, memories which are increasingly closer to the CPU are smaller,
faster and more expensive. The hierarchy of memories exploits the fact that many
computer programs have good locality of reference, where nearby memory locations
are, often repeatedly, accessed around the same time. The faster, smaller, memories
are used to keep subsets of data likely to be referenced in the near future. This allows
data to be supplied at high speed to the CPU, as most memory accesses take place at
the same speed as the faster memories, only when the subsets of data held in the faster
memories do not contain the required data are the slower memories accessed.

Until the mid 1980s most CPUs were only a few times faster than main memory
and the memory hierarchy in most computers consisted of the CPU registers, main
memory and disk, see Figure 1.1. If all the data used by a program fitted in main

memory then, until the mid 1980s using the random access machine (RAM) model of

15

] o

increasing increasing
speed ’ ‘ Main memory size

Disk

Figure 1.1: The typical memory hierarchy in computer systems before the mid 1980’s.

A

|| cru
|:| L1cache))
increasing increasing
speed e

’ ‘ Main memory

Disk Y

Figure 1.2: The typical memory hierarchy in recent computer systems.

computation [9] gave a fairly good prediction of performance. In the RAM model it is
assumed that accessing a location in memory costs the same as a built-in arithmetic
operation, such as adding two word-sized operands. Unfortunately this is no longer
true. Consider the following example, which compares the performance of two sorting
algorithms on a more recent computer system. Figure 1.3 shows the time per key to sort
n uniformly-random single-precision floating-point numbers using a distribution sorting
algorithm, Flashsortl, with an expected O(n) running time and using Quicksort with
an expected ©(n logn) running time. Both the algorithms have small constant factors.
We consider quite large values of n, up to 67M. The asymptotic analysis of the running
times tell us that, for sufficiently large n, as n grows the time per key for Flashortl
should remain constant and for Quicksort it should grow proportional to logn. This
suggests that for sufficiently large n, once Flashsortl becomes faster than Quicksort,
it should remain faster as n grows. However this is not true for n up to 67M. We
see that for small n Flashsortl is fast but for large n it is considerably slower than
Quicksort. The algorithms are ‘in-place’, in that they use little additional memory,
Flashsortl uses ~ 4.4n bytes and Quicksort uses ~ 4n bytes. The running times are
reported on a computer with 1GB of main memory, so there is almost no possibility of
swapping code or data to disk during these experiments. In order to understand these

running times we have to consider more recent developments in the memory hierarchy

16

2 T T T

Flashsortl ——
Quicksort -+--

time per key (microseconds)

0.2

Il Il
"1 2716 2721 2726
number of keys

Figure 1.3: Time per key to sort single-precision floating-point keys using Flashsort1
and Quicksort on a Sun UltraSparc-II. For n = 2%,4 = 10,...,26. Note that the z-axis

is on a log scale.

of modern computer systems.

Over the last 20 years or so, CPU clock rates have grown explosively, and CPUs with
clock rates exceeding 2GHz are now available in the mass market. Unfortunately, the
speed of main memory has not increased as rapidly: today’s main memory typically
has a latency of about 60ns. This implies that the cost of accessing main memory
can be 120 times greater than the cost of performing an operation on data which are
in the CPU’s registers. Since the driving force behind CPU technology is speed and
the primary driving force behind memory technology is storage capacity, this trend is
likely to continue. In order to bridge this ever increasing performance gap, since the
mid 1980s computer systems intended for the mass market have used one or more levels
of cache memory between the CPU registers and main memory, see Figure 1.2.

Due to costs, caches are much smaller than main memory. In the example in
Figure 1.3 the computer has a 512KB cache which is about 10-15 times faster than
main memory. Since each key is four bytes, in both the algorithms, for n < 26 all the
keys and additional data fit in cache. We see that for n < 2'6, the time per key grows
more slowly for Flashsort1 than for Quicksort, however when the problem no longer fits
in cache we see that the rate of increase in the time per key is much more for Flashsort1.

This suggests that the performance of Flashsortl is affected quite dramatically by the

17

cache. It is clear that the RAM model may fail spectacularly to predict performance
on modern computers. We need a model that considers both computation and memory
access costs.

It is only fairly recently that improving cache usage has been identified as an im-
portant issue. For example, for many years the database community has been aware
of the importance of improving algorithm and data structure design in order to reduce
disk accesses, however it has only fairly recently been reported that in many standard
database applications the bottleneck is main memory computation, caused by poor
cache usage [10].

Movement of data between the disk and main memory is under software control, this
may be through system or application software. This approach gives more flexibility
than with hardware control but with relatively small overheads. The cost of an access
to disk may be equivalent to a million CPU clock cycles (referred to as cycles in the
future) and the cost of software control is amortised in the overall costs of the access.
In contrast, movement of data between the main memory and cache(s) is always under

hardware control. There are several reasons for this:

e Controlling the efficient movement of data between multiple levels of memory is a
complex task, instead programmers like to develop software on a relatively simple
model of the underlying machine architecture. Most programs are developed on
the von Neumann architecture, which is modelled by the RAM model. This
architecture assumes a single, sequentially addressed, memory. The programmer
assumes that the operating system and compiler are responsible for the messy

details of providing this virtualisation.

e By the time caches became widespread, a large number of applications had al-
ready been developed assuming the von Neumann architecture. If caches required
programmer control then these applications would have to be rewritten in order

to take advantage of the cache.

e The constant factors between main memory and CPU speeds are much less than
those between disk and CPU speeds, so it is much more important to keep the
overheads of using a cache low. Hardware control is much faster than any software

control would be.

18

=
(%)
>
e
I
m

[9]
layng slim

i?hoto courteéy of Intel Corp.
Figure 1.4: Photograph of the Intel StrongArm chip.

A large number of algorithmic techniques have been developed to improve locality
in main memory accesses and so reduce accesses to disk. It seems reasonable to exploit
these techniques to improve locality in caches and reduce accesses to main memory.
However, since placement of data in a cache is hardware rather than software controlled,
these techniques can not always be applied directly.

Caches not only improve speed of computation, but can also help with reducing
power consumption, an important issue for handheld computing devices. The impor-
tance of the cache in the design of modern computer systems is demonstrated by the
design of the Intel StrongArm chip. Figure 1.4 shows a photograph of this chip. This
unit is used in many handheld computing devices such as PDA, and we see that a large
proportion of the chip is occupied by two 16KB caches, the DCACHE and the ICACHE. Off-
chip accesses to main memory consume more power than accesses to on-chip locations,

and the large caches are used to improve locality and reduce off-chip accesses.

19

1.1 Internal memory hierarchy

We now give a brief overview of the memory hierarchy between the CPU and main

memory.

1.1.1 Caches

A cache is a fast memory which holds the contents of some main memory locations. If
the CPU requests the contents of a main memory location, and the contents of that
location is held in some level of cache, the CPU’s request is answered by the cache itself
(a cache hit); otherwise it is answered by consulting the main memory (a cache miss).
A cache hit has small or no cost (penalty), 1-3 CPU cycles is fairly typical, but a cache
miss requires a main memory access, and is therefore very expensive. To amortise the
cost of a main memory access in case of a cache miss, an entire block of consecutive
main memory locations which contains the location accessed is brought into cache on a
miss. Programs which have good spatial locality, where an access to a memory location
is followed by an access to a nearby memory location, benefit from the fact that data
are transferred from main memory to cache in blocks. While programs which have
good temporal locality, where a memory location once accessed is soon accessed again,
benefit from the fact that caches hold several blocks of data. Such programs make

fewer cache misses and consequently run faster.

1.1.2 TLB

There is an important optimisation which can contribute as much or more to perfor-
mance as minimising cache misses, namely minimising misses in the translation-look-
aside buffer (TLB). Some papers from the early and mid 90’s (see e.g. [5, 66]) have
noted the importance of minimising TLB misses when implementing algorithms, but
there has been no systematic study of this optimisation, even though TLB misses are
often at least as expensive as cache misses. A major contribution of this thesis is to
study TLB misses systematically.

The TLB is used to support wvirtual memory in multi-processing operating sys-
tems [45]. Virtual memory means that the memory addresses accessed by a process

refer to its own unique logical address space. This logical address space contains as

20

Physical !
TLB Memory P7 ‘Pll ‘ QS‘ P1 ‘

A
P1
P11

Virtual Memory
(Process A) ’ PO‘ Pl‘ PZ‘ P3 ‘P4 ‘ P5 ‘P6 ‘ P7‘ P8‘ P9‘ Plo‘ Pll‘

process & | @0 01| @[0sfos [os]0e [o7 o8] ao] o] aut

Figure 1.5: Virtual memory for processes A and B, each with 12 pages. Physical
memory with 4 pages. TLB holds virtual (logical) page to physical page translations
for 2 pages.

many locations as can be addressed on the underlying architecture, which far exceeds
the number of physical main memory locations in a typical system. Furthermore, there
may be several active processes in a system, each with its own logical address space.
To allow this, most operating systems partition main memory and the logical address
space of each process into contiguous fixed-size pages, and store only some pages from
the logical address space of each active process in main memory at a time. Owing to
its myriad benefits, virtual memory is considered to be “essential to current computer
systems” [45]. The disadvantage of virtual memory is that every time a process accesses
a memory location, the reference to the corresponding logical page must be translated
to a physical page reference. This is done by looking up the page table, a data structure
in main memory and would lead to unacceptable slowdown. In case the logical page
is not present in main memory at all, it is brought in from disk. The time for this is
generally not counted in the CPU times, as some other task is allowed to execute on
the CPU while the I/O is taking place.

The TLB is used to speed up address translation. It is a fast memory which holds
the translations of recently accessed logical pages. If a memory access results in a TLB
hit, there is no delay, but a TLB miss can be significantly more expensive than a cache
miss; hence locality at the page level is also very desirable. In most computer systems,
a memory access can result in a TLB miss alone, a cache miss alone, neither, or both:

algorithms which make few cache misses can nevertheless have poor performance if they

21

make many TLB misses. Figure 1.5 shows large virtual memories for two processes, a
smaller physical memory and a TLB which holds translations for a subset of the pages
in physical memory.

The sizes of cache and TLB are limited by several factors including cost and
speed [43]. Cache capacities are typically 256 KB to 4MB, which is considerably smaller
than the size of main memory. The size of TLBs are also very limited, with 64 to 128
entries being typical. Hence simultaneous locality at the cache and page level is needed
for internal memory computation.

We refer to the caches, TLB and main memory of a computer system as the internal
memory hierarchy. In this thesis we deal systematically with the internal memory

hierarchy.

1.2 Sorting and searching

Caches and TLBs have been designed to exploit the locality exhibited in “typical”
computer programs. In this thesis we study how some algorithms for fundamental
problems such as sorting and searching behave with respect to the internal memory
hierarchy. We show that algorithms that have good performance in the RAM model
are “atypical”, i.e. they naturally have poor TLB and/or cache performance. In this

thesis we design new algorithms with improved performance.

1.2.1 Sorting random numbers

For many real-world problems we find that the data to be sorted is randomly dis-
tributed. We consider the problem of sorting random numbers independently drawn
from a known distribution. The algorithms we use to solve this problem are ‘in-place’,
in that they use relatively little auxiliary space in addition to the array holding the
keys.

Many sorting algorithms are comparison-based, in that they compare keys in order
to determine their relative order. Several cache-efficient comparison-based sorting al-
gorithms already exist, examples are cache-tuned versions of Quicksort and Mergesort.
Distribution sorting is a popular alternative to comparison-based sorting for indepen-

dent random numbers. It involves placing n input keys into & < n classes based on

22

their value [53]. The classes are chosen so that all the keys in the ith class are smaller
than all the keys in the (7 4+ 1)st class, for 1 = 0,...,k — 2, and furthermore, the class

to which a key belongs can be computed in O(1) time (e.g. if the keys are floats in

the range [a,b), we can calculate the class of a key x as [§=+ - k]). Thus, the original
sorting problem is reduced in linear time to the problem of sorting the keys in each
class. A number of distribution sorting algorithms have been developed which run in
linear (expected) time under some assumptions about the input keys.

We analyse the cache misses in distribution sorting algorithms and use the analyses
to design fast new algorithms. We compare these distribution sorting algorithms to
‘in-place’ comparison-based sorting algorithms.

When we refer to distribution sorting, we are interested in the following:
e the keys are independent random numbers,

e the algorithm is ‘in-place’.

1.2.2 Sorting integers

We also consider the problem of sorting w-bit integers in the range 0,...,2% — 1. The
input may be from any distribution including the worst-case. The algorithms that we
consider are stable, in that equal value keys have the same relative order at the start and
end of sorting. These algorithms are ‘out-of-place’, in that they use O(n) additional
space.

Radix sorting, applied to integers, consists in viewing w-bit integer keys as [w/r|
consecutive r-bit digits. The records are sorted in [w/r] passes: in the i-th pass, for
i=1,...,[w/r] we sort the records according to the i-th least significant digit. There
are a number of ways of implementing a single pass in O(n + 2") time, the best one in
practice being counting sort [32]. We follow current usage and refer to radix sort plus
counting sort as ‘LSB radix sort’.

LSB radix sort has an overall running time of O([w/r](n + 2")) for w-bit keys. For
medium-to-large input sizes, LSB radix sort may be considered to be a linear-time al-
gorithm for practical purposes. However, experimental work has shown that LSB radix
sort, even when tuned for cache performance, fails to outperform good implementations

of O(nlogn) comparison-based algorithms on modern architectures [59].

23

We analyse the cache and TLB misses in LSB radix sort and design fast new algo-
rithms. We compare the new algorithms to distribution and comparison-based sorting
algorithms.

When we refer to the problem of integer sorting, we are interested in the following:
e the keys are integers,
e the keys may be from a non-random distribution,

e the algorithm is stable.

1.2.3 Searching

In the context of searching we consider the dynamic predecessor problem, which involves
maintaining a set S of keys drawn from a totally ordered universe. The keys are
maintained along with associated satellite data. We allow search, insert and delete
operations on the set. A search operation takes a key ¢ and returns the key z, along
with its satellite data, such that x is the largest key in S satisfying = < q.

Search tree data structures are usually used to solve this problem. A binary search
tree is known to lead to too many cache misses and the standard solution for two levels
of hierarchical memory is to use the B-tree data structure [31, 53], which has nodes
of higher degree and is consequently shallower than a binary search tree. The nodes
are stored such that visiting each node incurs a small constant number of access to
slower memory. With appropriately selected parameters, the B-tree has optimal cache
misses, however its performance is still poor with respect to the TLB. We design new
search tree data structures which simultaneously optimise cache and TLB misses and

we compare these to B-trees.

1.3 Methodology

In this thesis we analyse algorithms on reasonably realistic models for the internal
memory hierarchy. We use the analyses to obtain algorithms which are fast on modern
computer systems. Our algorithms improve TLB and/or cache performance without an
excessive increase in the instruction count. We show several instances where algorithms

simultaneously optimised for the TLB and cache outperform algorithms optimised just

24

for the cache. We are the first to systematically consider the TLB and cache together
to improve the performance of internal memory algorithms.

Our methodology can be summarised as follows:

e (Caches have complex architectures and are varied in their details, we ignore many
of these details and give fairly simple and abstract models which capture the
essential features of most caches and allow the memory behaviour of algorithms
and data structures to be studied. We treat the TLB in the same abstract manner.

The models we use are reasonably realistic, but simple and practicable.

e Assembly code and the CPU can make even very simple algorithms quite complex.
So we again give simple abstract models of the behaviour of algorithms. One
reason for having a simple model for algorithm behaviour is that a compiler will
modify the details of the code and it is not always easy to determine what these

modifications will be.

e We use a model which considers the TLB, cache and main memory to obtain
better predictions of performance and to design faster algorithms than would be

possible using a model which considers just the cache and main memory.

e Although many algorithms and techniques already exist for hierarchical memory,
consisting of the disk and main memory, they are not directly applicable to the
internal memory hierarchy. We adapt these algorithms and techniques for the

internal memory hierarchy.

e We carefully balance the often conflicting demands of keeping instruction counts

low, reducing cache misses and reducing TLB misses.

e We use the models to analyse sorting and searching algorithms. A precise analysis
can often be quite complex and we demonstrate the usefulness of simple but
accurate approximate analyses. Where appropriate, we use simulations to validate

our analyses.

e We use our analysis to design algorithms which are fast in the models. We measure
the running time of our algorithms to show that they are fast in practice and to

validate the models and analyses.

25

1.4 Contributions of the thesis

The contributions of the thesis are as follows:

1. We give a model for the internal memory hierarchy of modern computer systems.

Our model incorporates the cache, TLB and main memory.

2. We give emulation theorems to convert algorithms and analysis from other mem-

ory models to our model for the internal memory hierarchy.

3. We give two general techniques to obtain algorithms and data structures which

are simultaneously optimal for the cache and TLB.

4. We give upper and lower bounds on the number of cache misses during the most
time consuming phase of distribution sorting when the keys are drawn indepen-
dently and randomly from a uniform distribution and when they are drawn inde-
pendently and randomly from non-uniform distributions. We also give upper and
lower bounds on the number of cache misses when accessing multiple sequences

of data ‘concurrently’.

5. We give a simple approximate analysis for the probability of a cache miss during
the most time consuming phase of distribution sorting when the keys are drawn

independently and randomly from a uniform distribution.

6. We demonstrate how to use our cache analysis, the cache miss penalty and an
analysis of the instruction count in a distribution sorting algorithm to obtain a
multi-pass variant of the algorithm which outperforms the original algorithm and

highly optimised Quicksort and Mergesort.

7. We use our cache analysis to design an algorithm for distribution sorting when
the keys are drawn independently and randomly from a non-uniform distribution.

Our new algorithm outperforms highly optimised Quicksort and Mergesort.

8. We demonstrate the importance of reducing TLB misses as well as cache misses
in the context of integer sorting. We give three techniques to simultaneously
reduce cache and TLB misses in integer sort. Using these techniques we obtain

several new integer sorting algorithms which all outperform highly optimised

26

Quicksort and Mergesort when tested on random integers independently drawn
from a uniform distribution. The fastest of these algorithms is over twice as fast

as highly optimised Quicksort and 2.8 times as fast as highly optimised Mergesort.

9. We show that standard integer sorting can have a very large number of cache
and TLB misses in the worst-case. We give examples of input key sequences
which cause this worst-case. We show that one of our fastest new integer sorting

algorithms does not suffer this worst-case.

10. We further demonstrate the importance of reducing TLB misses and cache misses
in the context of search trees. We show that a cache-tuned search tree is out-
performed by cache and TLB tuned search trees, even when the latter are quite

complex.

11. We also discuss the limitations of the models used in this thesis. We believe this

will lead to future work in obtaining yet more precise but still practical models.

1.5 Organisation of the thesis

In Chapter 2 we review some important existing models for hierarchical memory, in-
cluding one for cache memory. We also survey existing research in improving the
performance of algorithms and data structures designed for the internal memory of
computer systems. In Chapter 3 we introduce a model for the cache, TLB and main
memory. We also give emulation theorems which allow algorithms designed on other
memory models to be exploited on our memory models. In Chapter 4 we describe the
problems of sorting and searching and we discuss in some detail existing results for
these problems in internal memory and for external memory. We discuss distribution
sort, integer sort, Mergesort and Quicksort. In the context of searching, we describe
the B-tree data structure.

In Chapter 5 we give a precise cache analysis of a process which models the most
time consuming phase in distribution sorting. The precise analysis is quite complex
and we give an approximate analysis of the same phase in Chapter 6. In Chapter 7
we demonstrate how to design two distribution sorting algorithms, one for keys in-

dependently and randomly drawn from a uniform distribution and the other for keys

27

independently and randomly drawn from a non-uniform distribution. We discuss an
important tradeoff for internal memory algorithms, where we allow the number of cache
misses to increase beyond the optimal in order to decrease the overall execution time.

In Chapter 8 we systematically analyse the TLB and cache misses in integer sorting.
Again we demonstrate the tradeoff between minimising instruction count, cache misses
and TLB misses in order to decrease the overall execution time. In Chapter 9 we de-
sign and implement several predecessor search data structures that are simultaneously
optimal for the cache and TLB, and we show that all these outperform predecessor
search data structures tuned just for the cache.

In Chapter 10 we consider the limitations of the models that we use for the internal
memory hierarchy and in Chapter 11 we draw conclusions from the research presented

in this thesis and suggest directions for future research.

28

Chapter 2

Previous work

There are several ways of measuring the number of cache or TLB misses that a program
makes. However any measurement is for a particular execution of an algorithm and
on a particular platform, and it may not tell us how an algorithm might behave on a
different platform or with different parameters. Simple and precise analytical models
allow us to study factors in an algorithm or in a machine platform that affect the
number of cache and TLB misses and so allow us to predict behaviour as parameters
vary.

Several models have been introduced to capture the memory hierarchy in a computer
system and have been used to analyse algorithms and design new algorithms with
improved performance with respect to the memory hierarchy. The models address the

following issues:
e there may be two or more levels of memory,

e memories closer to the CPU are smaller and faster than memories further from

the CPU,
e each memory has a limited capacity,

e in order to amortise the cost of access to slower memory, computer systems often

transfer blocks of data between memory levels.

Algorithms designed on most of these models aim to reduce the number of accesses
to the slower memories. Memory closer to the CPU is said to be at a higher level than

memory further from the CPU. Since memories have limited capacities, when data

29

is transferred to a higher level of the memory, some existing data in the higher level
memory may have to be evicted in order to accommodate the new data. The strategy
used to determine where to place the new data, and hence which existing data to evict,
is referred to as the replacement policy. Some memories, such as main memory or disk,
allow the programmer to implement a replacement policy, others enforce an automatic
replacement policy that is controlled by the system, usually by the memory hardware.
The replacement policy in a cache or TLB is always hardware controlled.

In this chapter we introduce several existing models for hierarchical memory and
discuss their advantages and limitations, especially with regards to using them to model
the internal memory hierarchy. We then introduce the Cache Memory Model (CMM)
which has been used by several researchers to design and analyse algorithms for cache
and main memory. This is one of the models that we will use extensively in this thesis.
We discuss the advantages and limitations of this model.

We also review existing techniques and algorithms that reduce the number of ac-
cesses to main memory by utilising the cache, and in some cases the TLB, more effec-
tively. Finally we review some research that demonstrates the affect of cache utilisation

on power consumption.

2.1 Memory Models

In this section we introduce several existing models for hierarchical memory and discuss
their advantages and limitations, especially with regards to using them to model the
internal memory hierarchy. These models are of two broad types. In the first type
of model, running times are expressed in terms of the parameters in the model, we
refer to these as discrete hierarchical memory models. In the second type of model,
running times are expressed in terms of the input size, we refer to these as smooth
hierarchical memory models. In this section we also introduce a model specifically for

cache memory.

2.1.1 Discrete hierarchical memory models

In this section we describe the Ezternal Memory Model (EMM), also referred to as the
Single Disk Model, and the Parallel Disk Model (PDM). These models are for a 2-level

30

memory hierarchy with a fast main memory and a slow disk. In both these models
blocks of data at consecutive memory location are moved between main memory and

disk using explicit I/O operations. These models make the following assumptions:
e at the start and end of a program all data resides on disk,
e all computation is assumed to take place on data in the main memory,
e a block of data from disk can be placed at any block in main memory,
e blocks on disk can be accessed randomly.
The performance measures in these models are:
e the number of I/Os between main memory and disk,
e the number of disk blocks used.

Computation cost is usually not a performance measure, the assumption being that cost
of I/O is much greater. Algorithms and data structures designed for these models aim
to minimise the number of I/Os. An algorithm or data structures for a given problem
is said to be optimal if it meets the lower bound for the number of I/O operations for
that problem.

Both the models have the following parameters:
N = number of items in the problem,
M = number of items that can fit in internal memory,
B = number of items that can be transferred in a single block,

where 2 < B < M < N. It is assumed that the disk size in unbounded.
For batched query processing problems, the size of the query and the size of the
result are also performance measures, see for example [17]. So the following parameters

are added to the models:
(Q = number of items in an offline query,

Z = number of items in the query result.

31

The analytical approach in these models is to determine the number of I/Os for four
fundamental problems: scanning N items, sorting N items, searching online through
N data items and outputting Z items as the results for a query operation. The I/O
performance of many algorithms and data structures can then be expressed in terms
of the I/O bounds for these fundamental problems. A large number of algorithms and

data structures have been designed on these models, see [17, 89].

External Memory Model (EMM)

In the EMM, introduced by Aggarwal and Vitter [8], there is a single disk which allows
read or write operations to multiple blocks during one I/O operation. In this model

the parameters above are augmented with:
D = number of blocks that can be transferred concurrently,

where 1 < D < |M/B].

Aggarwal and Vitter [8] give upper and lower bounds on the number of I/Os for
the problems of sorting, matrix multiplication, computing FFT graphs, permutation
networks and permuting in this model.

The model is generally considered to be unrealistic for D > 2 as most systems do
not support multiple concurrent accesses to a single disk. We will occasionally use this

model, but in our case D = 1.

Parallel Disk Model (PDM)

In the PDM, introduced by Vitter and Shriver [91], there are multiple disks which are
accessed by multiple processors. The model is a more restrictive and realistic version

of the EMM. The parameters above are augmented with:
D' = number of disks that can be accessed concurrently,
P = number of processors,

where 1 < D'B < M/2. If P < D' then there are D'/P disks per processor, if D' < P
then each disk is shared by about P/D’ processors. The main memory size for each

processor is M /P and the processors are connected by an interconnection network.

32

Since this model is a more restrictive version of the EMM, any lower bound results
from the EMM apply in this model. The EMM can be simulated randomly on the
PDM with an expected constant factor more I/Os [78], and deterministically with a
factor of O(log(N/D")/loglog(N/D")) more I/Os [18].

3-level External Memory Model (3-EMM)

The 3-EMM is a three-level external memory model, where there is a main memory
and two levels of disk memories. It is assumed that there is a single disk in each level
of the disk memories and concurrent accesses to the same disk are not allowed. The

parameters for this model are as follows:
N = number of items in the problem,
M, = number of items that can fit in internal memory,

By = number of items that can be transferred in a single block between internal

memory and the first-level of disk memory,
Ms = number of items that can fit in the first-level of disk memory,

By = number of items that can be transferred in a single block between the first and

second levels of disk memories,

where 2 < By < By < M; < My < N and By, By, M7 and My are all powers of two. It
is assumed that the second-level disk size is unbounded.

A E-EMM is a generalisation of the model for multiple levels of memory.

Criticisms of these models

The advantage of the EMM and PDM is their simplicity, which eases analysis and design
of algorithms. Though the parameters can get quite unwieldy in a discrete hierarchical
memory model with three or more memory levels. There are three main reasons why
these models can not easily be used directly to analyse and design algorithms for internal
memory. The first problem is the assumption that the algorithm can implement its
own policy for replacing data in the faster memories, whereas in a cache or TLB this is
strictly under hardware control. The second reason is that if an algorithm is tuned for

both the cache and TLB then it needs to optimise for more than two levels of a memory

33

hierarchy, whereas these models deal with strictly two levels. The final reason is that
it is generally assumed that the cost of accessing the disk is so high that operation
counts can essentially be ignored. This does not lead to the design of algorithms which

minimise running time by taking both I/O and computation costs into account.

2.1.2 Smooth hierarchical memory models

In this section we describe various models that have been proposed for multiple levels
of the memory hierarchy. Algorithms for fundamental problems such as sorting, com-
puting FFT graphs and matrix multiplication have been described for these models.
Whereas in the EMM and PDM an algorithm or data structure is analysed in order
to determine the number of I/Os between main memory and disk, these hierarchical
memory models analyse the time for solving problems by using cost functions associated

with accessing data at various levels of the memory hierarchy.

Hierarchical Memory Model (HMM)

The Hierarchical Memory Model (HMM) of Aggarwal et al. [6] is a RAM model where
access to memory address z requires time f(z), where typically f(z) = [logz] or
f(x) =z, for some o > 0. Aggarwal et al. note that the cost function f(z) = [logx]|
seems suitable for semiconductor memories [64, pp. 316]. In the model there are an
unlimited number of memory locations 1, o, . . ., each of which can hold a unit of data.
The model allows standard RAM operations. A RAM operation involving addresses x
and y takes time f(x)+ f(y) +O(1), i.e. the cost of accessing = and y and unit time for
the operation. Efficient programming in this model requires data items to be copied
from high addresses to low addresses during periods of high use.

Aggarwal at el. give upper and lower bounds on the time to solve the problems of

sorting, computing a FFT graph, n X n matrix multiplication and searching in their
model [6].
Hierarchical Memory Model with Block Transfer (HMM-BT)

The Hierarchical Memory Model with Block Transfer (HMM-BT) of Aggarwal et al. [7]
is like the HMM but allows block transfers. This model is intended to capture the fact

that accesses to a slower memory have a high latency followed by high throughput.

34

In this model the contents of [consecutive locations starting at x can be copied to [
consecutive locations starting at y at a cost max(f(z), f(y)) + 1. Aggarwal et al. give
upper and lower bounds on the time for scanning data, computing the dot product
of two vectors, merging two sorted lists, performing a shuffle permutation, odd-even
exchange permutation, rational permutations, arbitrary permutations, matrix trans-
position, computing FFT graphs, sorting and matrix multiplication [7]. For the cost
function f(z) = x®, for some constant 0 < « < 1, they show that algorithms and their
analyses on the Concurrent Read Concurrent Write PRAM model can be converted to
equivalent algorithms and analyses on the HMM-BT model.

Vitter and Shriver [92] describe parallel versions of the HMM and HMM-BT models,
where there are P memory hierarchies which are interconnected via a network and
operate simultaneously. They describe parallel algorithms which are optimal in the
hierarchical memory model for the problems of sorting, computing FFT graphs and

matrix multiplication.

Uniform Memory Hierarchy Model (UMH)

In the uniform memory hierarchy model (UMH) of Alpern et al. [11] a memory at each
level holds several blocks of data and the block size and number of blocks at each level
grow at a uniform rate. Formally, a memory at level I has ap! blocks each of size
ol, for integer constants a,p > 2. The memory at level [is connected to memories
at level [— 1 and [+ 1 by a bus. A block at level [can be randomly accessed and
transferred to or from level [+ 1 at a bandwidth of b(l), so each transfer takes time
p!/b(l). Typical values for the bandwidth at level [are 1, [or p!. Computation takes
place at level 0. A program is said to be communication efficient if it spends more time
in computation at level 0 than in moving data between the other levels. Alpern et al.
describe algorithms for matrix transpose, matrix multiplication and FFT on the UMH.
For the above problems, they give threshold functions which separate bandwidth cost
functions for which an algorithm is communication-efficient from those that are too
costly.

Vitter and Nodine [90] describe a parallel version of the UMH, where there are P
memory hierarchies which are interconnected via a network and operate simultaneously.

They describe several optimal and near-optimal sorting algorithms on their model for

35

a wide range of bandwidth functions, where the optimal time for sorting n items is

O(nlogn).

Criticisms of these models

Since these hierarchical memory models analyse the time for solving problems by using
cost functions associated with accessing data at multiple levels of the memory hierarchy,
analysis and design of algorithms is considerably more complex in these models than
in the EMM or PDM, so few researchers have designed algorithms for these models.

As for the EMM and PDM, these models can not be used directly for caches and
TLBs as they assume that the replacement policy is under programmer control, rather
than hardware control.

Another criticism of these models is that they use ‘fixed’ costs functions which are
not expressive enough to capture the true cost of a memory access in a system with

hardware controlled replacement policies.

2.1.3 Cache-Oblivious Model

Algorithms designed for the models introduced in the previous sections need to know
parameters of the memory hierarchy in order to tune performance for specific memories.
Frigo et al. [38] introduced the notion of cache-oblivious algorithms, where algorithms
do not have any parameters that tune it for a specific memory. They introduced a
two-level hierarchical memory model called the ideal cache model or the cache-oblivious
model for the analyses of these algorithms. In this model algorithms access an infinitely
large slow memory, where some locations from the slow memory are stored in a fast

memory. The fast memory is called an ideal cache and has the following characteristics:

e data is transferred between the slow memory and the ideal cache in blocks of B

data items, where algorithms have no knowledge of the value of B,

e the ideal cache can hold C' blocks, where algorithms have no knowledge of the

value of C,

e the replacement policy in the ideal cache is automatic, this means that decisions

about where to place a block of data from the slow memory is not under the

36

control of the algorithm, instead it is under the control of hardware or system

software,

e the ideal cache is fully-associative, meaning that a block of data from the slow

memory can be placed in any block in the ideal cache,

e the ideal cache uses an optimal offline replacement strategy of replacing the cache

block whose next access is furthest in the future.

It is generally assumed that the ideal cache is tall, meaning C' = Q(B). The performance

measures in this model are:

e cache complexity, the number of data blocks transferred from the slow memory

to the ideal cache, expressed as a function of C' and B,
e work complezity, the number of instructions.

The assumptions in the ideal cache may seem far removed from reality. For example,
in real computing systems there may be multiple levels of cache between the CPU and
main memory; clearly the cache can not use an optimal offline policy to decide which
block to evict in order to accommodate a new block of data, in reality it may select the
least-recently used (LRU) block or a random block for replacement; a main memory
block can usually only be placed in one of a few cache blocks rather than any cache
block. However Frigo et al. show how each restriction can be removed in practice.
They prove that an algorithm that is optimal for two levels of the memory hierarchy
has optimal data transfers between each level of a multiple level memory hierarchy.
Using a result by Sleator and Tarjan [81], see Theorem 3.1 in Chapter 3, they show
that an algorithm executed on a cache using an LRU replacement policy has no more
than a constant factor more data transfers between cache and main memory than if it
was executed on a cache with an optimal offline replacement strategy. They also show
that, using a hash table and doubly linked lists, a fully-associative cache with an LRU
replacement policy can be implemented using O(C) main memory locations such that
the cache can be accessed in O(1) expected time.

Frigo et al. describe algorithms for FFT, rectangular matrix transpose and sorting
which have optimal work and cache complexities when analysed on the ideal cache.

Bender et al. describe optimal cache-oblivious B-trees [21]. Brodal et al. describe

37

optimal cache-oblivious search trees [25]. Bender et al. describe a locality-preserving
cache-oblivious dynamic dictionary [22]. Arge et al. describe optimal cache-oblivious
priority queues with applications to graph algorithms [14]. Bender et al. describe cache-
oblivious exponential search trees [20]. We describe the design and implementation of
a cache-oblivious exponential search tree in this thesis.

The advantages of the ideal cache model are that it is portable, elegant and avoids
explicit I/O. Another advantage is the fact that an optimal algorithm designed on a

two-level memory is also optimal for a multi-level memory.

Criticisms of the model

The cache-oblivious model could be considered the most suitable for the design and
analysis of algorithms for internal memory. However this model has the following

disadvantages:

e The use of a hash table, and hash function, to maintain a fully-associative cache,
means that the algorithms are randomised rather than deterministic. Though
in practice this may not be a major issue as most systems have virtual memory

which uses hashing to access page tables.

e Algorithms designed for this model seem to be considerably more complex than
algorithms designed on most other memory models. This could lead to a high
operation count, which may lead to algorithms which are slower than those which

are carefully tuned for a given internal memory hierarchy.

Some practical implications of algorithms designed on the cache-oblivious model
are demonstrated by the results of a study by Chatterjee and Sen [28]. They show
that for large matrices, the cache-oblivious matrix transpose algorithm applied to a
matrix with a canonical layout (such as column-major or row-major) has up to 5.7
times as many cache misses and up to 60 times as many TLB misses as a recursive
architecture-aware matrix transposition algorithm performed on a matrix with a non-
linear layout. They state that the cache-oblivious algorithm’s poorer performance can
partly be attributed to the facts that it is highly recursive and to the fact that the
algorithm is analysed and designed for a fully-associative cache. As another example,

we show that highly optimised cache-oblivious search trees outperform B-trees, but

38

they are in turn outperformed by cache and TLB aware search trees. This is in part

due to the complexity of the cache-oblivious search algorithm.

2.1.4 Cache Memory Model (CMM)

Several researchers have used a model where there is a random access machine, con-
sisting of a CPU and main memory, augmented with a cache [24, 56, 59, 65, 77, 80].
We will use this model fairly extensively in this thesis.

The model has the following parameters:
n = the number of items in the problems,
B = the number of data items in a cache block,
C = the number of blocks in the cache,
S = the number of sets in the cache,
a = the associativity of the cache,
and the performance measures in this model are:
e the number of cache misses,
e the number of instructions.

For the cache, we view main memory as being partitioned into equal-sized blocks of
locations, each consisting of B memory words. Blocks are aligned, that is, they begin
at addresses which are congruent to 0 modulo B. The model assumes a single cache
consisting of S sets each consisting of ¢ lines. Each line can hold a memory block,
and memory block 7 can be stored in any of the lines in set (1 mod S). We denote by
C = aS the capacity of the cache, and a is called the associativity of the cache. When
a = 1, the cache is said to be direct-mapped, and when a > 1, we say the cache is a-way
associative. If the program accesses a location in block ¢, and block ¢ is not in the cache,
then one of the blocks in the set (i mod S) is evicted or copied back to main memory,
and block ¢ is copied into the set in its place. We assume that blocks are evicted from
a set on a least recently used (LRU) basis. Note that for a direct-mapped cache, there

is only one block in each set, and the replacement policy becomes trivial.

39

The advantage of counting instructions and cache misses separately is that it allows
the use of the coarse O-notation for simple operations and also to analyse the number

of cache misses more carefully, if necessary.

Criticisms of the model

The CMM is useful for virtual caches, where a virtual memory address can be used to
search the cache. However most caches are physical, meaning they can only be searched
using a physical address, and these caches require an address translation, which accesses
the TLB, before checking for data. The model does not address hits and misses for
TLB accesses.

Another criticism is that the above model simplifies the architecture of real ma-
chines considerably. For instance, the experiments in this thesis are performed on a
Sun UltraSparc-I1, which supports two levels of cache, as do most other current archi-
tectures. However, in the UltraSparc-II, the L1 (faster, smaller) cache is write-through,
i.e., in case of a cache hit during a write, the value of the memory location is simul-
taneously updated in the L1 cache and in the L2 (slower, larger) cache. Since most
cache misses in the algorithms we consider occur during writes to memory locations,
this simplification is reasonable in our case. In Chapter 10 we discussion several other

features of caches that the model fails to capture.

Classifying cache misses

Hill and Smith [49] classified cache misses as compulsory misses, capacity misses and

conflict misses. These are as follows:

e A compulsory miss occurs on the very first access to a memory block, since the

block could not have been in cache.

e A capacity miss occurs on an access to a memory block that was previously
evicted because the cache could not hold all the blocks being actively accessed by

the CPU.

e If all @ ways in a cache set are occupied then an access to a memory block that

maps to that set will cause a block in the set to be evicted, even though there

40

may be unused blocks in other cache sets. The next access to the evicted block

will cause a conflict miss.

As an example, suppose we have an empty direct-mapped cache with C' blocks,
where each block holds B items and we have an array DATA with n = 2C'B items. In
the direct-mapped cache memory address x is mapped to cache block (z div B) mod C.
If we sequentially read all items in DATA then we have n/B compulsory misses. The first
access to DATA causes B items to be loaded into a cache block, then after B accesses
another B items are brought into the cache. If we sequentially read all items in DATA
again, then we have n/B capacity misses. Now suppose the cache is empty and we read
DATA[0] and then DATA[C B], repeatedly n/2 times. DATA[0] and DATA[C'B] map to the
same cache block, so we have 2 compulsory misses, for the first accesses to DATA[0] and
DATA[CB], and n — 2 conflict misses.

Clearly a fully-associative cache will not have conflict misses, as all blocks in the
cache are in a single set, so if a block is evicted then we have a capacity miss. Similarly,

conflict misses do not occur in the EMM.

2.2 Algorithms for internal memory

We now review existing techniques and algorithms to improve cache and TLB efficiency.
Most of these are for caches, though a few researchers have noted the importance of
the TLB. We first review general techniques and then algorithms for specific problems.

As stated earlier, a program is said to have good temporal locality if memory ad-
dresses once accessed are accessed again in the near future. A program is said to have
good spatial locality if accesses to memory addresses are followed by accesses to nearby
memory addresses. Programs that exhibit good temporal and spatial locality generally
have fewer misses. Most of the techniques and algorithms we discuss aim to improve
temporal or spatial locality in a program. A few address the problem of reducing

conflict misses, which may occur even if a program has good locality.

2.2.1 System support

There are many hardware techniques for improving the cache performance of computer

systems. These techniques aim to either reduce the cache miss rate or to reduce the

41

penalty of a cache miss or to reduce the time for processing a cache hit. See Appendix B
or the books [45] and [43] for further details.
Several techniques have been used by compilers to improve the cache performance

of algorithms [45]. Examples are:

e Pre-fetching is used to load data into cache before the data is needed, thus re-

ducing CPU stalls.

e If multiple arrays are accessed in the same dimension with the same indices at
the same time then this can cause conflict misses. By merging elements from each
array into an individual structure, which resides in one cache block, the conflict

misses are avoided. This improves spatial locality.

e If nested loops access data in a non-sequential order then spatial locality may
be improved by reordering the nesting of the loops such that data is accessed

sequentially.

e If the same array elements are accessed in multiple loops, then temporal locality

can be improved and cache misses can be reduced by fusing the loops into one.

e In algorithms which manipulate multi-dimensional arrays, such as matrix multi-
plication, the technique of operating on tiles of the arrays, rather than rows or

columns, can be used to reduce cache misses.

Most of these compiler techniques can also improve the TLB performance of algorithms.

Accessing multi-dimensional arrays in a tiled manner is a technique that has com-
monly been used to reduce the number of accesses to slower memory in a system with
multi-level memory hierarchies. Lam et al. [57] did cache simulations and analyses of
the misses in tiled matrix multiplication and showed that unless the tile size is much
less than the cache size there can be a large number of conflict misses. Temam et
al. [84] also suggested blocking techniques which take into account conflict misses in
cache memory.

Most of the above compiler techniques are for programs with regular data access
patterns. More recently Chilimbi et al. [29, 30] have suggested compiler controlled

techniques such as:

42

e clustering, which places structure elements which are likely to be accessed in

succession in the same cache block,

e colouring, which segregates heavily and infrequently accessed elements in non-

conflicting cache regions,

e compression, which reduces structure size or separates the active and inactive

portions of structure elements

to improve the spatial and temporal locality of pointer-based data structures. They
also propose a cache conscious malloc routine, a cache conscious garbage collector and
a runtime memory re-organiser.

By considering the memory allocation algorithm used by the gnu malloc routine,
Zhang and Martonosi [97] analyse the cache misses during the construction and traversal
of linked-list and binary search tree data structures.

Romer et al. [74] have suggested using an online page size selection policy to improve

TLB performance.

2.2.2 Algorithms
Matrix Algorithms

Several researchers have looked at the problems of matrix multiplication, matrix trans-
position, FFTs and permutations in cache memory [23, 28, 34, 44, 76, 98]. Venkatara-

man et al. [88] give a blocked algorithm to solve the all-pairs shortest-paths problem.

Sorting

Nyberg et al. [68] describe the AlphaSort algorithm which sorts records stored on disk.
In order to obtain good performance, they note the importance of minimising the cost of
tasks completed in internal memory. They note that replacement-selection tree sort, a
commonly used internal memory sorting technique, has poor cache behaviour, whereas
Quicksort, due to its sequential memory accesses, has good cache behaviour. They
suggest organising the nodes in the replacement-selection tree such that parent and
children are in the same cache block, they report that this reduces cache misses by a

factor of 2 or 3. Alphasort uses Quicksort to generate small sorted lists of data, and

43

then merges these using replacement-selection tree sort. For large records, they state
that sorting keys and pointers to records has better cache performance than sorting
records.

LaMarca and Ladner [58, 59] evaluate the cache misses in Quicksort, Mergesort,
Heapsort and Radix sort algorithms using cache simulations and analysis. To reduce
cache misses in Heapsort they suggest using d-ary heaps, where the root node occupies
the last element of a cache block, rather than the normal binary heaps. For Mergesort
they suggest using tiling and k-way merging, see Chapter 4. For Quicksort they suggest
using a multi-partition approach, see Chapter 4. For Quicksort they also suggest using
Sedgewick’s technique of stopping the partitioning when the partition size is a few ele-
ments [79], but they suggest insertion sorting these small partitions when they are first
encountered, rather than in one single pass over the data after all small partitions have
been created. They report that Radix sort has poor cache performance, even though
they did not analyse an important source of conflict misses, due to concurrent accesses
to multiple locations in the destination array. Their new algorithms are derived al-
most directly from EMM algorithms and hence reduce capacity misses, but not conflict
misses. They show that their algorithms outperform non-memory tuned algorithms on
their machine.

Xiao et al. [96] observed that the tiled and k-way Mergesort algorithms in [59] can
in the worst-case have a large number of conflict cache misses. They also observed that
k-way Mergesort can have a large number of TLB misses. They suggested padding
subarrays that are to be merged in order to reduce cache misses in tiled Mergesort
and cache and TLB misses in k-way Mergesort. They give equations for fewer worst-
case number of misses in the algorithms which use padding. Using cache and TLB
simulations they show that the algorithms which use padding have fewer cache misses
on several machines. They also show that the new mergesorts outperform existing
Mergesort implementations.

Agarwal [5] notes the importance of reducing both cache and TLB misses in the
context of sorting randomly distributed data. In their bucket sort implementation they
choose the number of buckets to be less than the number of TLB entries.

Mehlhorn and Sanders [65] give upper and lower bounds on the number of cache

misses in a set-associative cache when accessing multiple sequences of data at the same

44

time. In their model an adversary determines when a sequence is accessed and it
is assumed that the start of the sequences map to cache blocks that are randomly
distributed in cache. They give a bound on the number of sequences, dependent on
the cache associativity, block size and cache capacity, that can be accessed such that
the number of conflict misses is of the same order as the number of compulsory misses.
Their sequences accesses model the accesses to data in k-way Mergesort and multi-
partition Quicksort. More generally, they suggest that when EMM algorithms that
access multiple sequences concurrently are used in the CMM, their analysis be used to
select parameters such that the number of conflict misses is low. They extend their
analysis to include accesses to another work array, which models accesses to a count

array in counting sort, and they give upper bounds on the number of cache misses.

Searching

Acharya et al. [1] note that in a ¢rie [53], a search tree data structure, the nodes nearest
the root are large and those further away are increasing smaller. For large alphabets

they suggest using
e an array which occupies a cache block for a small node,
e a bounded depth B-tree for a larger node,

e a hash table for a node which exceeds the maximum size imposed by the bounded

depth B-tree.

The B-trees and hash tables hold data in arrays. They also note that only one pointer,
to a child node, is taken out of a node, whereas several keys may be compared, so they
suggest storing keys and pointers in separate arrays. For nodes with small alphabets
they again suggest storing the keys and pointers in separate arrays, where the pointers
are indexed using the characters in the alphabet. They experimentally evaluate their
tries against non-memory tuned search trees and report significant speed improvements
on several machine. Using cache simulations for several machine, they show that their
data structures have significantly fewer cache misses than non-memory tuned search

trees.

45

Priority Queues and Heaps

Sanders [77] notes that most EMM priority queue data structure have high constant
factors which means they would not perform well if adapted to the CMM. He describes
the sequence heap EMM data structure which has smaller constant factors in terms
of the number of I/Os and space utilisation than other EMM priority queue data
structures. The lower constant factors make sequence heaps very suitable for the CMM.
This data structure uses k-way merging, so before it is used in the CMM, the results in
[65] are applied to select k appropriately for the cache parameters. On random 32-bit
integer keys and 32-bit values and when the input is large, sequence heaps are shown to
outperform implicit binary heaps and aligned 4-ary heaps on several different machine
architectures.

Bojesen et al. [24] analyse the cache misses during heap construction on a fully-
associative cache. They find that Floyd’s [36] method of repeatedly merging small
heaps to form larger heaps has poor cache performance and that Williams’ [94] method
of repeated insertion performs better. They give new algorithms using repeated inser-
tions and repeated merging which have close to the optimal number of cache misses.
They note that divide and conquer algorithms are good for hierarchical memory. They
note that by traversing a tree in depth-first order rather than breath-first order im-
proves locality. They also note the importance of code tuning in order to obtain good

performance in the CMM.

More complex models

Several researchers have developed models to analyse the execution time of an algorithm

by considering the number of instructions and the cache or TLB miss penalty [88, 96].

2.3 Cache misses and power consumption

Power consumption is an important consideration in the design of computer systems,
especially for mobile computing. Since caches consist of a large amount of the CPU
chip they are a good target for trying to reduce power consumption. Kaxiras et al. [52]

note that a cache block has a flurry of activity when data is first brought into the

46

cache block and then it has a period of inactivity, during which there can be power
leakage. They discuss policies for switching cache blocks off when they hold data that
is not likely to be reused. Joseph et al. [51] report that power consumption on the
Intel Pentium Pro increases as the data cache, see Appendix B, hit rate increases and
it reaches a peak when the hit rate is approximately 80 — 85%. This is because as the
cache hit rate increases the CPU performs more instructions per cycle which require
additional power. When considered as a tradeoff between performance and power usage
they report that the increased power consumption is cost effective. They also report
that while reading data from the cache, power consumption on the Pentium Pro is

dependent on the number of bits set to 1 in the value read from a cache block.

2.4 Summary

In this chapter we have described several models for hierarchical memory and a model
specifically for the cache and main memory of a computer system. We have also re-
viewed existing work in improving the cache and TLB performance of algorithms and

data structures.

47

Chapter 3

Internal Memory Model and

emulations

The CMM introduced in Section 2.1.4 in Chapter 2 is useful for virtual caches, where
a virtual memory address can be used to search the cache. However most caches are
physical, meaning they can only be searched using a physical address, and these caches
require an address translation before checking for data. A page table, held in main
memory, stores the translations for virtual to physical page addresses, but accessing
the page table for each memory access would be prohibitively slow. The TLB is used
to speed up address translations. It is a small, fast, associative memory, which holds
the translations of recently accessed pages. In this chapter we introduce the Internal
Memory Model (IMM) which extends the CMM to take account of virtual memory
and the TLB. We also give two emulation theorems that allow algorithms and analyses
from other memory models to be converted to equivalent algorithms and analyses in
the IMM. We give two general techniques to obtain algorithms that simultaneously

minimise cache and TLB misses.

3.1 Internal Memory Model (IMM)

As discussed in Section 2.1.4, the CMM models one level of cache memory with the
parameters n, C, B, S, a and it counts the number of instructions and cache misses that
an algorithm makes. We extend the CMM to take account of virtual memory and the

TLB by adding the following parameters:

48

P = the number of data items in a page of memory,
T = the number translations held by the TLB,

and we add the following to the performance measures:
e the number of TLB misses.

For the TLB, we consider main memory as being partitioned into equal-sized and
aligned pages of P memory words each. A TLB holds address translation information
for at most T pages. If the program accesses a memory location which belongs to
(logical) page i, and the TLB holds the translation for page 7, the contents of the TLB
do not change. If the TLB does not hold the translation for page i, the translation for
page ¢ is brought into the TLB, and the translation for some other page is removed,
again on a least-recently-used (LRU) basis.

We assume that TLB misses and cache misses happen independently, in that a
memory access may result in a cache miss, a TLB miss, neither, or both. This is
because caches are usually physically-tagged, i.e., the values stored in cache are stored
according to their physical, and not their logical, memory addresses. Hence, when a
program accesses a memory location using its logical address, the address first has to
be translated to a physical address before the cache can be checked. Furthermore, a
memory access which results in both a cache miss and a TLB miss pays the cache miss
penalty plus the TLB miss penalty (there is no saving, or loss, if both kinds of misses
occur simultaneously).

We make a number of assumptions regarding the parameter values to simplify the
analyses. These assumptions normally hold in practice, as explained below (see [45] for
further details). The first assumption is that B, C, P and T are all powers of two. The

remaining assumptions are:

49

(1) B<LP Data is transferred from secondary memory as a page,
and since secondary memory has much higher latency
than main memory a page is much larger than a block.

Indeed we should assume that B < P.

(2) T<C A TLB is fully-associative. This makes the hardware
realisation of a TLB much more complex than a cache
with limited associativity. Furthermore, a TLB hit must
be serviced very quickly. These two factors imply that a
TLB must be much smaller than a cache, and we should

assume that T' < C.

(3) BC < PT PT < BC implies that some portion of cache will
always lead to a TLB miss, thus effectively wasting part
of cache. However, PT > BC makes sense and does

occur in practice.

(4) T<P, These are technical assumptions, which are similar to
C the tall cache assumption of [38] and appear to hold in
practice (strictly speaking, we make a ‘tall cache’ and

‘short TLB’ assumption).

3.1.1 Criticisms of the model

Again, this model is a simplification of real TLBs. In principle a TLB miss can be
much more involved than a cache miss, requiring software intervention. Hence some
architectures may provide hardware support for handling TLB misses. For example, on
the Sun UltraSparc-II, a TLB miss can cost any of: (i) a L2 cache hit (2-3 CPU clock
cycles) (ii) a memory access (= 30-100 cycles) or (iii) a trap to a software miss handler
(hundreds of cycles) [86, Chapter 6]. Another simplification is that TLBs almost always

implement an approximation to LRU replacement, rather than a true LRU policy.

50

3.1.2 Designing and evaluating internal memory algorithms

Algorithms designed in the CMM and IMM aim to reduce the number of TLB and/or
cache misses without an excessive increase in the number of instructions. We say that
an algorithm is cache-efficient in comparison with some other algorithm if it makes
fewer cache misses. We say that it is cache-optimal if the number of cache misses meet
the asymptotic lower bound for I/Os in the EMM for that problem. We similarly define
algorithms to be TLB-efficient or TLB-optimal.

Analyses in the CMM and IMM are usually backed up with experimental evalua-

tions. Running times are used because:

e Cache misses, TLB misses and instruction counts do not tell us the running times

of algorithms.

e The relative miss penalty is much lower for caches or the TLB than for disks, so
constant factors are important. We find that asymptotic analysis is not enough

to determine the performance of algorithms.

e The models simplify the architecture of real machines considerably, see Ap-
pendix B for a detailed discussion of cache architectures. Experimental evalu-

ations are used to validate the model.
We also use simulations because:

e As we will see in Chapter 5, precise analysis in these models is often quite difficult,
so an approximate analysis may be used, which again has to be validated with

empirical techniques, such as measuring TLB and/or cache misses.

3.2 Sun UltraSparc-11

In this thesis we present extensive experimental results on our Sun UltraSparc-II and
we now briefly describe the characteristics of this machine. Our Sun UltraSparc-IT has
2 x 300 MHz processors and 1GB of main memory. There is a 16KB direct-mapped
L1 cache with 32-byte blocks and a 1 cycle hit time. This cache holds the data that
a program uses. There is a separate 16KB L1 cache for program instructions, but

since most of the programs that we use are very small and fit into cache we have not

ol

considered the issue of caching instructions, so we can ignore the characteristics of this
cache. There is also a 512KB direct-mapped L2 cache with 64-byte blocks and a 2-3
cycle hit time. The L2 cache holds instructions and data but since our programs are
very small we assume that the whole L2 cache is available for data. The L2 cache has
a 30 cycle miss penalty. The L2 cache is inclusive of the L1 cache, meaning that all
entries held in the L1 caches are also in the L2 cache. As mentioned earlier, the L1
cache is write-through, so if the CPU modifies data held in the L1 cache then the data
is updated in the L2 cache.

The machine has 64 fully-associative TLB entries and the page size implemented by
the operating system is 8KB. A TLB hit has no penalty. The UltraSparc-II provides
hardware support for “caching” translations evicted from the TLB in a Translation
Storage Buffer (TSB). The is an address translation table held in main memory. The
TSB can hold between 1K and 128K translations and its contents may be held in the
L2 cache. If the required address translation is in the T'SB then the TLB miss penalty
can be a few cycles (if the TSB is held in the L2 cache) or about 30-100 cycles (if the
TSB is not held in the L2 cache).

Since most of the experiments on this machine were performed on 32-bit single-
precision floating-point numbers or on 32-bit integers, we now express the machine
parameters in the CMM and IMM for this data size. So, for our Sun UltraSparc-II

machine we have that:

C = 8192,
S = 8192,
a =1,

B =16, the number of 32-bit data elements that fit in a 64-byte cache block,
P = 2048, the number of 32-bit data elements that fit in a 8KB page,

T = 64.

3.3 Emulations

A large number of algorithms and data structures have been designed for the EMM,

see the survey papers [17] and [89], which could potentially be used on the CMM and

92

IMM. However in the EMM block placement in fast memory is under the control of
the algorithm whereas in the IMM it is hardware controlled. This can lead to conflict
misses which would not have been considered in the EMM. Gannon and Jalby [40]
showed that cache conflict misses could be avoided by copying frequently accessed non-
contiguous data into contiguous memory. This ensures that the non-contiguous data
are mapped to their own cache block. Lam et al. [57] used this technique to reduce
conflict misses in blocked matrix multiplication.

Using the technique suggested by Gannon and Jalby [40], Sen and Chatterjee [80]
formalise the statement that an EMM algorithm and its analysis can be converted to
an equivalent algorithm and analysis on the CMM. We now give two theorems that
allow algorithms and their analysis to be converted from the EMM to the IMM and
from a 3-EMM to the IMM. In the proofs of our theorems, we make extensive use of

the following, which are restatements of a result by Sleator and Tarjan [81]:

Theorem 3.1 (i) For any given sequence of memory accesses, a TLB which has size
7 and uses LRU replacement makes at most /(1 — 7% 4+ 1) times as many misses as a
(hypothetical) TLB of size 7* < T which knows the memory access sequence and follows
the optimal offline replacement policy for that sequence. This assumes that both the
LRU and the optimal TLBs are initially empty.

(1) For any given sequence of memory accesses, an a-way associative cache which uses
LRU replacement makes at most o/ (o — o + 1) times as many misses as a (hypothet-
ical) o -way associative cache with the same number of sets, which knows the memory
access sequence and follows the optimal offline replacement policy for that sequence.
This assumes that o < a and that both the LRU and the optimal caches are initially

empty.

3.3.1 Emulation of EMM algorithm

We now show how an EMM algorithm and its analysis can be converted to an equivalent
algorithm and analysis on the IMM.

Let C(a,B,C,P,T) be the IMM model described in Sections 2.1.4 and 3.1, where
a is the associativity of the cache, B is the block size, C is the capacity of the cache in
blocks, P is the page size and T is the number of TLB entries. Recall that the model
assumes that BC < PT.

93

Let I(B, M) denote the following model, which is the EMM discussed in Sec-
tion 2.1.1, specialised to disallow parallel disk access. There is a fast main memory,
which is organised as M /B blocks mq,...,m m/B of B words each and an unbounded
secondary memory, which is organised as blocks dy, ds, ... of B words each as well. An
algorithm in this model performs computations on the data in main memory, or else it
performs an /0 step, which copies a specified block from main memory into a specified

block in secondary memory or vice versa.

Theorem 3.2 An algorithm A in the I(B, BC/2) model which performs I I/0s and
t operations on data in main memory can be converted into an equivalent one A’ in
the C(a, B,C, P,T) model which performs at most O(t + I - B) operations, O(I) cache
misses and O(I) TLB misses.

PROOF. As noted by Sen and Chatterjee in [80], an algorithm A designed for the
I(B, BC/2) model can be emulated by an algorithm A’ in the C(a, B,C, P,T) model,
such that A" incurs at most O(1) (amortised) cache misses for every I/O performed by A
and performs at most O(t+ I - B) operations. Their emulation is quite simple: an array
Main of size C'/2, each entry of which can hold B words, emulates the main memory
of A, with m; corresponding to Main[i]. The secondary memory of A is emulated by
another array D, each entry of which can also hold B words, and an I/O operation is
emulated by copying Main[i] to D[j] or vice versa. In order to avoid conflict misses
during copying if Main[i] and D[j|] map to the same set, the copying may be done
through an intermediate buffer of B words. Two such buffers may be needed; it suffices
to extend Main by two elements and use Main[C/2 + 1] and Main[C/2 + 2] as these
buffers. The copying requires an additional O(IB) operations.

The (extended) array Main occupies at most T/2 + 1 pages. If we assume that
the TLB has only 7/2 + 1 entries but that TLB replacement is done by an optimal
offline algorithm, the optimal offline algorithm need never make more than 2 misses for
each I/0 performed by A—it can simply swap in the appropriate page for the D array,
evicting a Main page which will not be needed immediately, and swap back the Main
page just evicted at the expense of the D array page once the copying is complete.
Since a LRU TLB with T entries never makes more than twice as many misses as an

optimal TLB with T'/2 4+ 1 entries on a given sequence of page accesses (Theorem 3.1),

o4

it follows that the emulation makes O(I) TLB misses over the course of the emulation,

if A performs I I/O operations. O

3.3.2 Emulation of 3-EMM algorithms

We now show how a 3-EMM algorithm and its analysis can be converted to an equivalent
algorithm and analysis on the IMM.

Let C(a, B,C, P,T) be the model described in Sections 2.1.4 and 3.1, where a is the
associativity of the cache, B is the block size, C' is the capacity of the cache in blocks,
P is the page size and T is the number of TLB entries. Let I(B, M, B', M') denote
the following model. Which is the 3-EMM discussed in Section 2.1.1. There is a fast
main memory, which is organised as M/B blocks my,... ymprp of B words each, a
secondary memory which is organised as M'/B’ blocks di,da,...,dyy g of B' words
each, and a tertiary memory, which is organised as an unbounded number of blocks
t1,t2,... of B' words each as well. We assume that B < B’ and that B and B’ are
both powers of two. An algorithm in this model performs computations on the data in
main memory, or else it performs an I/0 step, which either copies a block of size B to
or from main and secondary memory, or copies a block of size B’ to or from secondary

and tertiary memory.

Theorem 3.3 An algorithm A in the (B, BC/4, P, PT/4) model which performs Iy
I/0s between main and secondary memory and Iy I/Os between secondary and tertiary
memory, and t operations on data in main memory can be converted into an equivalent
one A’ in the C(a, B, C, P,T) model which performs at most O(t+1,-B+15) operations,
O(I1 + Is) cache misses and O(Iy) TLB misses.

PROOF. The emulation assumes that the contents of tertiary memory are stored in
an array Tert, each of whose elements can store B’ words. The emulation maintains
an array Main of size C/4 + 2, each entry of which can hold B words. The first C'/4
locations of Main emulate the main memory of A, with m; corresponding to Mainli],
fori=1,...,C/4. As discussed above, the last two locations of Main are buffers that
are used for copying data to avoid conflict misses. For convenience, we assume that the

arrays Main and Tert are aligned on cache block and page boundaries respectively.

95

We now assume a TLB with 7'/2 + 2 entries, but with a replacement strategy that
we specify. By definition, the optimal (offline) replacement strategy will make no more
misses than our strategy. Then we note that an LRU TLB with T entries never makes
more than a constant factor more misses than an optimal (offline) TLB with 7'/2 + 2
entries, see Theorem 3.1, and so the LRU TLB with T entries makes no more than
a constant factor more misses than our replacement strategy. Our TLB replacement
strategy will set aside T//4 TLB entries d1,...,d7/4 to hold translations for the blocks
which are currently in secondary memory. In particular, if (tertiary) block ¢; is held
in (secondary) block d; then §; holds the translation for the page containing Tert[].
Also, our TLB replacement strategy will never replace the translations for the pages
containing Main. Since Main occupies at most (C/4+2)B < (T/4 + 2)P words, only
T/4 + 2 TLB entries are required for this.

A read from t; to d; (tertiary to secondary) is simulated by “touching” the page
containing Tert[i] (e.g. reading the first location of Tert[i]). Our TLB replacement
algorithm brings in the translation for Tert[i] and stores it in TLB buffer 6;. This
causes one TLB miss and O(1) cache misses. A read or write from d; to m; (primary to
secondary) is done as in Theorem 3.2 above. Since all translations are held in TLB, the
only cost of this step is O(1) amortised cache misses and O(B) instructions. Finally,
emulating the operation of the algorithm on data in main memory incurs no cache or

TLB misses. u

3.4 General techniques to obtain simultaneous cache and

TLB optimality

We now give two general techniques to obtain algorithms and data structures which
have simultaneous cache and TLB optimality.

The first is to simulate, using the emulation of Theorem 3.3, optimal algorithms for
3-EMM. The second is the use of cache-oblivious algorithms [38]. As noted in [38, 69]
a cache-oblivious algorithm gives optimal performance across each level of a multi-level
hierarchy. By our emulation theorem, an optimal cache-oblivious algorithm makes an
optimal number of cache and TLB misses (in general, the emulation is needed as some

cache-oblivious algorithms are analysed on an ‘ideal cache’ model, which assumes an

o6

omniscient replacement policy).

3.5 Summary

In this chapter we have given a model for the internal memory hierarchy of a computer
system. We have given emulation theorems to convert algorithms and their analyses
from other memory models to this new model. We have given two general techniques

to obtain algorithms which are simultaneously optimal for the cache and TLB.

o7

Chapter 4

Sorting and searching

In this chapter we describe the problem of sorting and we discuss in some detail existing
results for this problems in internal memory and for external memory. We discuss
distribution sorting, integer sorting, Mergesort and Quicksort. We then describe the
problem of searching and describe the B-tree data structure and its variant the B*-tree,

which are typically used for searching in external memory.

4.1 Sorting

Sorting is acknowledged to be a very important computing problem in itself and it is an
important sub-problem in many other areas such as database systems, searching and
graph algorithms. A definition of a sorting problem is, given a sequence z1, %3, ..., Ty
generate a permutation m = m(1),m(2),...,7(n) such that 21y < Tr2) < ... < Trpp)-
In practice the z; are in an array and the sorting procedure would return an array where
the z; are permuted according to w. The sort is said to be stable whenever z; = z; and
i <j,m(i) <m(j).

In practice the data to be sorted are keys associated with records and the permuta-
tion involves moving pointers to the records along with the keys, though in this thesis
we generally assume the problem is one of reordering just the keys.

In this chapter we discuss some sorting algorithms which are related to the results
in this thesis. We initially describe the problem of sorting and discuss the computation
and I/O lower bounds for this problem. We then describe a generic distribution sorting

algorithm, radix sorting algorithms, Bundle sort, which is used to sort keys with £k < n

o8

distinct values, k-way Mergesort and multi-partition Quicksort. The discussion on the
generic distribution sorting algorithm will be quite detailed, as it is built upon in the
next three chapters. Radix sorting algorithms will be dealt with in more detail in later

chapters. Discussion of the other algorithms will be fairly brief.

4.1.1 Lower bounds for sorting

The computation costs of most sorting algorithms are analysed on the comparison model
of computation, which assumes that comparisons are the only operations allowed to
determine the order of keys. The operations allowed are <, <,=, > or >. In this model,
Q(nlogn) comparisons are required to sort a sequence of n unique keys. Quicksort,
Mergesort and Heapsort are classic examples of algorithms analysed in the comparison
model.

Some sorting algorithms are analysed making an assumption that the keys are of a
particular kind, for example integers or floating-point numbers. These algorithms are
analysed on a model which allows +, —, %, /, MASK and SHIFT operations to determine
the order of keys. These algorithms make several passes over the data. One pass works
as follows. Any of the operations may be used to map a key to an integer value dis-
tributed in the range 1 to k in O(1) time. The mapped values can be used as an address
in a table, thus allowing keys to be permuted directly to their destination. Each pass
takes O(n+k) time, when k = O(n) one pass runs in O(n) time. Distribution sorting is
a popular technique for sorting data which is assumed to be randomly distributed, and
involves distributing the n input keys into k classes based on their value. After one pass
of the algorithm, the keys should have been permuted so that all elements of class i lie
consecutively before all elements of class 2+ 1, for i = 0,...,k — 2. Several algorithms
have been devised which use a constant number of passes and run faster than cor-
responding comparison-based algorithms. Most distribution sorting algorithms, radix
sorting algorithms and Bundle sort applied to integers are analysed using this model.
Note that sometimes comparison based algorithms which recursively partition keys into
multiple sets are referred to as distribution sorting algorithms, however in the thesis
we refer to these as multi-partition comparison-based sorting algorithms.

Aggarwal and Vitter [8] proved upper and lower bounds for the number of I/O

operations required in the EMM, introduced in Section 2.1.1, in order to sort n unique

99

keys. They showed that

(E log(1 + log N/B))
Blog(1 + log M/B)

I/0 operations between main memory and disk were required. They described a multi-
partition Quicksort algorithm and a k-way merge sorting algorithm which achieved this
bound.

Since the replacement policy is more complicated in the CMM and IMM than in
the EMM, the lower bound is also a lower bound for cache and TLB misses. Applying
Aggarwal and Vitter’s result, we get the following lower bound for the number of cache

misses:

<ﬁlog(1 —i—logn/B))
B log(l+1logC) /)’

and for the number of TLB misses:

(ﬁlog(l —i—logn/P))
P log(l+1logT)

4.2 Distribution sorting

In distribution sorting the classes are chosen so that all the keys in the ¢-th class are
smaller than all the keys in the (i + 1)st class, for ¢ = 0,...,k — 2, and furthermore,
the class to which a key belongs can be computed in O(1) time. In O(n) time, the
problem is reduced to sorting the & < n classes. Distribution sorting can be used to
sort independent randomly distributed keys in O(n) time on average [53, Ch 5.2, 5.2.1],
which is asymptotically faster than the ©(nlogn) average running time of comparison-
based approaches.

After one pass of the algorithm, the keys should have been permuted so that all
elements of class ¢ lie consecutively before all elements of class i+ 1, for: =0,...,k—2.
While describing this algorithm, the term data array refers to the array holding the
input keys, and the term count refers to an auxiliary array used by these algorithms.
Each pass consists of two main phases, a count phase followed by a permute phase.
There are two main variants of the permute phase. In the first variant keys are permuted
from the data array to the auxiliary destination array; this is called an out-of-place
permutation. In the second variant keys in the data array are permuted within the

data array; this is called an in-place permutation.

60

In the next few chapters we analyse in-place permutations and out-of-place permu-
tations in the CMM. Ladner et al. [56] give an analysis of frequency counting in the
CMM, which, with a few minor adaptations, is quite accurate for calculating the num-
ber of cache misses during the count phase of a generic distribution sorting algorithm.
We discuss their analysis and the required adaptations in Chapter 7. In the same
chapter, we show how to use cache analysis to tune a distribution sorting algorithm.

Frigo et al. [38] describe a cache-oblivious distribution sorting algorithm. Ku-
mar [55] implemented this algorithm and reported that, due to high computation costs,
the algorithm was easily outperformed by Quicksort implementations.

We now describe the count phase and the two variants of the permute phase. In
the description below it is assumed that k& has been appropriately initialised, and that

the function classify maps a key to a class numbered {0,...,k — 1} in O(1) time.

4.2.1 Count phase

The count phase counts for each class ¢+ > 1, the total number of keys in classes
0,...,72— 1. For class + = 0 this cumulative count is 0.

Figure 4.1 shows the pseudo-code for a generic count phase. This phase consists of
four steps. Step 1 initialises each element of COUNT to zero. Step 2 counts the frequency
of keys in each class by applying the classify function. Steps 3 and 4 perform a
prefix-summation of the count array, after which COUNT[0] =0 and fors=1,...,k—1,
COUNT [2] holds the total number of keys in classes 0, ...,7— 1. Clearly this phase takes

O(n) time whenever k < n.

4.2.2 Permute phase

The permute phase uses the cumulative count of keys generated during the count phase,
to permute the keys to their respective classes. We now describe the two variants of the
permute phase, starting with the simpler out-of-place permutation. We then describe

the in-place permutation phase which uses a cyclic permutation strategy.

Out-of-place permute

During an out-of-place permute phase, for any class j, unless all elements of that class

have already been moved, COUNT[j] points to the leftmost (lowest-numbered) available

61

Count phase
1 for s := 0 to k—1 do
COUNT[¢] := 0;
2 for 7+ :=0 ton—1 do
COUNT [classify (DATA[z]1)]++;
3 COUNT[k —1] := n - COUNT[k —1];
4 for ¢ := k—2 downto 0 do

COUNT[¢:] := COUNT[:+ 11 - COUNT[];

Figure 4.1: Count phase for one pass of a generic distribution sorting algorithm. DATA

holds the input keys and COUNT is an auxiliary array.

Permute phase(out-of-place permutation)
1 for 7 :=0 ton—1 do

key := DATAL[:];

z := classify(key);

tdr := COUNT[z];

COUNT [x] ++;

DEST[idx] := key;

Figure 4.2: Permute phase for one pass of an ‘out-of-place’ permutation in a generic
distribution sorting algorithm. DATA holds the input keys. COUNT and DEST are auxiliary

arrays.

location for an element of class j in an n element auxiliary array, DEST. Figure 4.2
shows the pseudo-code for out-of-place permutation. In Step 1, for each element in
DATA: we determine its class; using the count array we determine the next available
location for this key in the DEST array; we increment the count array, thus setting the
location for the next key of the same class; finally we move the key to its location in
DEST. Since each step takes constant time, this out-of-place permutation takes O(n)

time whenever k < n.

62

Count

Data| 1 | O[O0 1| 2|0 1]1|0] 2 4

Dest

Figure 4.3: Each key in DATA is moved to its destination, which is an empty location
in the DEST array. For example, key 1 from DATA[O] is moved into its destination at
DEST[4], as specified in the count array. Then key 0 from DATA[1] is moved into its
destination at DEST[0]. As keys are moved the appropriate count array locations are

incremented.

In-place permute

The in-place permutation strategy that we describe here is similar to that described by
Knuth [53, Soln 5.2-13] and used by Neubert [67] in his implementation of Flashsortl,
discussed in Chapter 7. Before an in-place permute phase begins, a copy of the count
array is made in a k element auxiliary start array. During the permute phase, for any
class j, an invariant is that locations START [7],START[5] +1,...,COUNT[5] — 1 contain
elements of class j, i.e. COUNT[j] points to the leftmost (lowest-numbered) available
location for an element of class j. Thus, for j = 0,...,k — 2, all elements of class
7 have been permuted if COUNT[j] > START[j + 1], and such a class will be called
complete in what follows. Class k — 1 is complete when COUNT [k — 1] > n. Figure 4.4
shows the pseudo-code for in-place permutation. We now describe this permutation,
which consists of two main activities: cycle following and cycle leader finding. In cycle
following, keys are moved to their final destinations in the data array along a cycle in
the permutation (Steps 2 and 3). Once a cycle is completed, we move to cycle leader
finding, where we find the ‘leader’ (index of the rightmost element) of the next cycle
(Steps 1, 4 and 5). A cycle leader is simply the rightmost location of the highest-
numbered incomplete class. By the definition of a complete class, initially the leader

must be position n — 1. In more detail, the steps are as follows:

e In Step 1, n — 1 is selected as the first cycle leader.

63

Permute phase(in-place permutation)
1 leader := n—1;

idz := leader; key := DATA[idz];
.1 2 := classify(key);

.2 idx := COUNT[z];

.3 COUNT [z] ++;

.4 swap key and DATA[:idz] ;

.5 if idzr # leader repeat 3.1;

B W W W ww N

while (z > 0 A COUNT[z — 1] > START[z])
T==;
5 if (x > 0) leader := START[z]-—1;

go to 2;

Figure 4.4: Permute phase for one pass of an ‘in-place’ permutation in a generic dis-
tribution sorting algorithm. DATA holds the input keys. COUNT and START are auxiliary
arrays. After the count phase, COUNT is copied into START.

2 Count
e B
Data| 1| 0| 0| 12|02 |1]0]| 2 4
_/\/ 8

3 4

Figure 4.5: Keys are cyclically permuted within the DATA array. The cycle starts at
the index 9. The key at index 9, the 2, is moved into its destination, at index 8, as
specified in the count array. The key at index 8, the 0, is moved to its destination, at
index 0. The key at index 0, the 1, is moved to its destination, at index 4. The key at
index 4, the last 2, is moved to its destination at index 9. This completes the cycle. As

keys were moved the appropriate count array locations were incremented.

64

e In Step 2 the key at the leader’s position is copied into the variable key, thus

leaving a ‘hole’ in the leader’s position.

e In Steps 3.1-3.5 the key key is swapped with the key at key’s final position. If

key ‘fills the hole’, the cycle is complete, otherwise we repeat these steps.

e In Step 4 the algorithm searches for a new cycle leader. Suppose the leader of
the cycle which just completed was the last location of class j. When this cycle
ends, class 7 must also be complete, as a key of class j has been moved into the
last location of class j. Note that classes j + 1,7 + 2,... must already have been
complete when the leader of this cycle was found. Note that the program variable
x has value 5 at the end of this cycle, so the search for the next leader begins

with class j — 1, counting down (Step 4).

e In Step 5 we check to see if all classes have completed and terminate if this is the

case.

It is important to note that this in-place permutation algorithm leads to a non-stable
sorting algorithm, so it can not be used in algorithms which require stable sorting, such
as some radix sorting algorithms.

Clearly the in-place permutation in one pass of distribution sorting takes O(n) time

whenever k£ < n.

4.3 Radix sorting

Radix sorting views each key as consecutive digits and in the i-th pass sorts according
to the i-th digit. There are two main variants of radix sort, least-significant bit (LSB)
radiz sort and most-significant bit (MSB) radiz sort.

LSB radix sort views w bit keys as [w/r] consecutive r-bit digits. Keys are sorted
in [w/r] passes, where in the i-th pass, for i = 1,...,[w/r], we sort keys according
to the i-th least significant digit. The correctness of the algorithm requires keys to
be stably sorted in each pass. All n keys are sorted together in each pass and it can
be implemented using the count phase and out-of-place permute phase described in

section 4.2. The classify function masks off the appropriate r bits, digit, and the

65

count array holds up to 2" elements. The computation time to sort n keys using this
algorithm is O([w/r](n + 27)).

Most significant bit radix sort is a distribution sorting algorithm which views each
key as consecutive digits. In one pass of MSB radix sort with radix r for some integer
r > 1, we distribute the keys into k = 2" classes by letting the classify(z) return the
value of the r most significant bits of z. If it is known that all keys being sorted have
the same value in their most significant v’ bits, as may happen in a recursively-solved
sub-problem, then classify(z) returns the value of the next most significant r bits.
The algorithm can be implemented using the count phase and either of the permute
phase methods described in section 4.2.

LaMarca and Ladner [59] analysed LSB radix sorting in the CMM, however their
analysis does not consider the cache conflict misses that occur due to the fact that any
of Q(k) locations may be accessed during the permute phase. Our analysis for out-of-
place permutations in the CMM in Chapter 5 gives a far more accurate prediction of
the number of cache misses.

In Chapter 8 we study LSB radix sort extensively in the IMM, obtaining several
LSB radix sorting algorithms which are highly tuned for the cache and TLB and exhibit
much better performance than the standard algorithm designed in the RAM model.

In Chapter 7 we show how to design MSB radix sort for the CMM. The keys that
we use induce a non-uniform distribution of keys to classes, and we demonstrate how

to use the cache miss analysis of Chapter 5 to tune the algorithm.

4.4 Bundle sorting

Matias et al. [62] describe a sorting algorithm in the EMM, introduced in Section 2.1.1,
for the special case of sorting where there are a limited number of distinct keys. Their
algorithm bundles together identical keys and places the bundles in order, so they refer
to this as bundle sorting. For a data set of N keys, consisting of k distinct keys,
the algorithm has a running time of ¢(N/B)logy g k 1/Os, where 2 < ¢ < 4, which
circumvents the lower bound for general sorting when k <« N. They show that their
algorithm is optimal by proving that Q((N/B)logy p k) I/Os are required for this

problem.

66

Their algorithm works as follows. If kB < M the algorithm sorts in three passes.
In the first pass it counts the keys in each bundle, after which it determines the starting
location for the destinations of keys in each bundle. This is similar to the count phase
of distribution sorting. The first block from the starting location of each bundle is
then loaded in main memory. The keys in each block are scanned and swapped around
to their appropriate blocks. When all the keys in a block have been scanned, the
block is written back to disk and the next block in the bundle is loaded in main
memory. This requires a total of three passes over the data. If kB > M, then the
algorithm bundles into M /B super-bundles and recursively sorts each super-bundle,
which requires log,, g k recursive steps.

They describe implementations of the algorithm for sorting keys in the range 1, ..., k,

effectively integer sorting, and for sorting general keys.

4.5 Multi-partition Quicksort and k-way Mergesort

Divide and conquer algorithms designed on the RAM model typically deal with two sets
of data. For example Quicksort recursively partitions data into two sets, and Mergesort
repeatedly merges two sorted lists. These techniques require Q(logn) passes over the
data and applying them directly to EMM algorithms can lead to an unnecessarily large
number of capacity misses. To reduce the number of such misses, divide and conquer
algorithms for the EMM deal with & = O(M/B) sets of data, which reduces the number
of passes over the data to Q(logn/logk). For example, the analogue to Quicksort in
the EMM is distribution sorting, which recursively partitions data into k sets, and a
merge sort which merges k sorted lists.

Multi-way or k-way mergesort algorithms [53] are used to minimise the number of
I/0 operations between two levels of memory, and we describe such a sorting algorithm
in terms of the EMM. The algorithm works by recursively merging sorted runs. Initially
the N keys are loaded into internal memory in groups of M keys and each group is
sorted. These are written to disk as N/M sorted runs. Now the k-way merging starts.
In each pass of the merging phase, k& runs of sorted keys are merged at a time. To
ensure that during merging a buffer full of keys from each run being merged can reside

in internal memory, we have to limit k¥ < M/B, so the resulting number of merging

67

passes is (log,;/g N/M). Since each merging pass requires O(N/B) 1/Os, to load the
data in all the runs, the algorithm achieves the optimal I/O bound.

LaMarca and Ladner [59] describe an implementation of k-way Mergesort tuned for
the cache on a DEC Alphastation 250. They show that this implementation outper-
forms highly tuned two-way Mergesort and tiled Mergesort (where the keys are initially
sorted into lists of C'B/2 keys and then merged using two-way merging).

Mehlhorn and Sanders [65] analyse the number of cache misses in a set-associative
cache when an adversary makes n accesses to k sequences. Their analysis assumes
that the start of each sequence is uniformly and randomly distributed in the cache.
They show that in order to have O(n/B) cache misses, asymptotically the same as the
number of misses that must be made in order just to read the data, the algorithm can
use only k = C/B 1/a sequences. This suggests that if EMM algorithm techniques such
as k-way merging or partitioning into k sets are used in the CMM, then the parameter
k must be reduced by a factor of B/®. Sen and Chatterjee [80] confirmed this result
in their average case cache analysis of k-way Mergesort.

In the next chapter we obtain upper and lower bounds for the average case number
of cache misses in k-way merging in the CMM, and we show that this result is better
than the result obtained by Sen and Chatterjee [80].

Frigo et al. [38] describe a cache-oblivious k-way Mergesort algorithm. We do not
know of any implementation of this, and we would speculate that, as for the cache-
oblivious distribution sort, the performance of an implementation would not be com-

petitive with cache and TLB tuned algorithms due to high computation costs.

4.6 Searching

Like sorting, searching is an important computing problem with applications in many
areas such as database systems and graph algorithms.

We consider the dynamic predecessor problem, which involves maintaining a set S
of pairs (z,i) where z is a key drawn from a totally ordered universe and 7 is some
satellite data. Without loss of generality we assume that i is just a pointer. We assume
that keys are fixed-size, and we assume that each pair in S has a unique key. The

operations permitted on the set include insertion and deletion of (key, satellite data)

68

pairs, and predecessor searching, which takes a key ¢ and returns a pair (z,7) € S such

that x is the largest key in S satisfying z < ¢.

4.6.1 B-trees

A B-tree [31, 53] is a balanced search tree designed for external memory. For d > 2, it

has the following characteristics:

e The root has between 2 and 2d — 1 children.
e Internal nodes have between d — 1 and 2d — 1 children.

e All leaves are at the same depth.

For a tree with N items the height is O(log; N). The maximum branching factor,
the number of children at a node, is selected such that all data at a node fits in a
memory block. A node with x keys has = + 1 children and the keys are arranged in
non-decreasing order. Each key in an internal node has a pointer to a child that is
the root of a sub-tree containing all nodes with keys less than or equal to the key but
greater than the preceding key. A node also has an additional rightmost pointer to a
child that is the root for a sub-tree containing all keys greater than any keys in the
node.

Searches are performed by searching between all the keys at a node and following
the appropriate child pointer. The keys inside a node are stored in sorted order and
may be searched using a binary or linear search. If a new key is to be inserted into the
tree then we have to search for the leaf node which will hold the new key and insert at
that point. This may cause an overflow at the node, if so we split the node into two
and insert the new node into the parent. We may have to recursively split nodes all the
way up to the root. Delete operations may cause an underflow at a node in which case
the node may merge with its sibling. Again an underflow may occur at the parent, so
we may have to recursively merge nodes all the way up to the root.

B-trees support searches, inserts and deletes in O(logg N) I/Os if 2d — 1 = O(B)
and in O(logy N) operations. B-trees can be used for caches by selecting the branching
factor such that a node fits in a cache block. The data structure then makes O(logg N)
cache and TLB misses per search, insert or delete operation, where B is the cache block

size.

69

4.6.2 DB*-trees

B*-trees are a variant of B-trees where the nodes remain at least 66% full by sharing
with a sibling node the keys in a node which has exceeded its maximum size [31]. By
packing more keys in a node, B*-trees are slightly shallower than B-trees. Like B-trees,
B*-trees support searches, updates and deletes in O(logg N) I/Os if 2d — 1 = O(B)
and in O(log, N) operations. Like B-trees, if adapted for the cache, B*-trees make

O(logg N) cache and TLB misses per search, insert or delete operation.

70

Chapter 5

Analysing the permute phase of
distribution sorting in the CMM

In this chapter we analyse cache misses in the CMM during the permute phase of
distribution sorting when the keys are independently drawn from a non-uniform random
distribution. Distribution sorting involves distributing n keys into k classes based on
their value. In the permute phase of distribution sorting, when a key is moved to its
destination, the algorithms described in Chapter 4 access any one of k elements in
the COUNT array and any one of k locations in the DATA or DEST arrays, depending
on whether the permutation is in-place or out-of-place. The actual locations accessed
are dependent on the value of the permuted key, so, if the keys are independently and
randomly distributed then, for every key permuted there are two accesses to random
memory locations, one in the count array and one in DATA or DEST. These random
accesses can potentially lead to a large number of cache conflict misses.

Our approach is to define two stochastic processes which model in-place or out-
of-place permutation. Process “in-place” models an in-place permutation and Process
“out-of-place” models an out-of-place permutation. Each round of a process models
moving a key to its destination, and we analyse the expected number of cache misses in
n rounds of these processes. Our precise expressions for the expected number of cache
misses are difficult to compute so we also prove closed-form upper and lower bounds
on these precise equations. We use our results for in-place permutations to get upper

and lower bounds on the expected number of cache misses in a process which models

71

accesses to multiple sequences.

The assumptions in the processes mean that, over n rounds, we have to access
at least n distinct locations in memory, which requires 2(n/B) cache misses. In the
analysis, we will say that a process is optimal if it incurs O(n/B) cache misses. In
distribution sorting, the larger the value of k, the fewer the number of passes over the
data, hence the fewer the capacity misses. However, as we will see, if k£ is too large,
then there can be a large number of conflict misses. One of the aims of the analysis in
this chapter is to determine the largest value of k, for a particular distribution of keys,

such that there are O(n/B) misses in one pass of distribution sorting.

5.1 Processes

We now give the two processes which model the distributing of keys drawn indepen-

dently and randomly from a non-uniform distribution into k classes.

5.1.1 Process to model an in-place permutation

Let k£ be an integer, 2 < k < CB. We are given k probabilities py,...,pg, such that
Zlepi = 1. The process maintains k£ pointers D1,..., Dy, and there are also k con-
secutive ‘count array’ locations, C = ¢1,...,cg. The process (henceforth called Process
“in-place”) executes a sequence of rounds, where each round consists in performing

steps 1-3 below:

Process “in-place”

1. Pick an integer = from {1,...,k} such that Pr[z = i] = p;,

independently of all previous picks.

2. Access the location c;.

3. Access the location pointed to by D,, increment D, by 1.

We denote the locations accessed by the pointer D; by d; 1,d;2,...,fori =1,... k.

We assume that:

72

1) Randomly select x from1,.., k

2]

access Cx

accessat Dx
increment Dx

Figure 5.1: Process “in-place”.

(a) the start position of each pointer is uniformly and independently distributed over
the cache, i.e., for each 7, d; 1 mod BC is uniformly and independently distributed

over {0,...,BC — 1},

(b) during the process, the pointers traverse sequences of memory locations which

are disjoint from each other and from C,
(c) ¢ is located on an aligned block boundary, i.e., ¢; mod B = 0,
(d) the pointers D;, for i = 1,...,k, are in separate memory blocks.

Assuming that the cache is initially empty, the objective is to determine the ex-
pected number of cache misses incurred by the above process over n rounds, with the
expectation taken over the random choices in Step 1 as well as the starting positions
of the pointers.

Process “in-place” is shown in Figure 5.1.

5.1.2 Process to model an out-of-place permutation

This process is like Process “in-place”, but it is augmented with accesses to a sequence
of consecutive locations in a source array, S, determined by an index s, where s = 0 at
the start of the process. The process, henceforth called Process “out-of-place”, executes

a sequence of rounds, where each round consists in performing steps 1-4 below:

73

s s T

access g9

2) Randomly select x from1,.., k

o [T T T T IT T IT]

accessat Dx
increment Dx

Figure 5.2: Process “out-of-place”.

Process “out-of-place”
1. Access the location S[s], increment s by 1.

2. Pick an integer z from {1, ..., k} such that Pr[z = i] = p;,

independently of all previous picks.

3. Access the location cg.

4. Access the location pointed to by D,, increment D, by 1.

We make assumptions (a), (c), and (d) from Process

“in-place”, assumption (b) is

modified as below:

(b) during the process, the pointers traverse sequences of memory locations which

are disjoint from each other, from C and from S.

and we add a further assumption:

(e) S is located on an aligned block boundary, i.e., S[0] mod B = 0,

Assuming that the cache is initially empty, again the objective is to determine the

expected number of cache misses incurred by the above process over n rounds, with the

expectation taken over the random choices in Step 2 as well as the starting positions

of the pointers.

Process “out-of-place” is shown in Figure 5.2.

74

5.2 Preliminaries

We first set out some propositions that are used in the proofs in the remainder of this

chapter.

Proposition 5.1 For all real numbers x;,i = 1,...,k, such that |x;| <1 we have that:
1_[(1—$Z > 1—z:$Z
=0

Proposition 5.2 (a) For all real numbers x, such that |x| < 1, we have that:

o0
> "=
m=0

(b) For all real numbers x, such that |z| < 1, we have that:
T
Z ma™ 11—z

(¢) For all real numbers x, such that 0 < x < 2, we have that:

— T

> 1
Z z(l—z)"m=—-—1.
m=0 z

PROOF. Proposition 5.2(a) is the standard summation for an infinite decreasing geo-
metric series. We obtain Proposition 5.2(b) by differentiating both sides of the equation

in Proposition 5.2(a). Proposition 5.2(c) is obtained using Proposition 5.2(b). O

Proposition 5.3 For all real numbers p and q such that 0 < p — q < 2, we have that:

n;iop(l_p)m (1-5) =7

p+q

PROOF. Since (1 —p) (1 — L) = 1 —p — q, using Proposition 5.2(a) we get that:

1-p
gop(l—)m<1——> Zp l—p—q)™ piq

Proposition 5.4 (a) For all real numbers x, we have that:
e T>1—x.
(b) For all real numbers x > 0, we have that:

2

T
Tl - —.
e * < x+2

75

PrROOF. These follow from the Taylor series expansion of e”. O

Proposition 5.5 For all real numbers x and y, such that £ <1 and y > 0, we have
that:

e > (1—ux).
PRrROOF. This proposition is immediate from Proposition 5.4(a). O

Proposition 5.6 (a) For all real numbers x and p and integers y, such that 0 < p <1,
y >0 and 2(1/p+y) = O(1), we have that:
J 1
Z p(1—p)"mz = =z <— - 1) —O(e™?).
m=0 p
(b) For all real numbers x and p and integers y, such that 0 < p < 1, y > 0 and
x = O0(1), we have that:
y
S pl-p)"s = z- 0@ ™).
m=0
Note that we are misusing the O notation here to hide constant factors that are inde-
pendent of x.

PROOF. Using Proposition 5.2(c) and Proposition 5.5, Proposition 5.6(a) is proved as

follows:
Y 00 00
Yop(l=p)"mz = Y p(l—p)"mz—1=p)" D p(l—p)"(m+y+ Dz
m=0 m=0 m=0
1 1
= x (— —1> —(1—p)¥tiz (—-i—y)
p p
1
— 2 (— - 1) —O(e).
p
The proof of Proposition 5.6(b) is now trivial. O

The vector of random variables X = (X1, ... X,), is negatively associated [50] if for

every two disjoint index sets, I, .J C [n],
E[f(Xi,i €)g(X;,j € J)] < E[f(X;,i € I)|E[g(X;,j € J)]

for all functions f : R/l - R and ¢ : R’I — R that are both non-decreasing or

non-increasing.

76

Proposition 5.7 If the random variables X1, ... Xy are negatively associated, then for

any non-decreasing function f;,i € [k], we have that:
k k

E[J] fi(Xy)] < H E[fi(X3)]-

i=1
PrOOF. The proof follows directly from the definition of negatively associated variables.

a

We now introduce some notation that will be used for the analysis in this chapter.
We use k to denote the number of classes that the keys will be distributed into, and
throughout the analysis we assume that B divides k. Assume that we are given a set
of k probabilities p1,...,p, such that Zf:[] p; = 1. The expected value of a function
f of a random variable X is denoted as E[f(X)]. When we wish to make explicit
the distribution D from which the random variable is drawn, we will use the notation
Exp[f(X)]. All vectors have dimension k (the number of classes) unless stated oth-
erwise, and we denote the components of a vector Z by z1, z3,...,zr. We now define
some probabilities:

(i) For alli € {1,...,k/B}, Pi= %1, 151 p1-

(ii) For all 4 € {1,...,k}, we denote by a' the following vector: a§~ =0if: = j, and
a;- = p;/(1—p;) otherwise and by b the following vector: b;- =0if (i—1)B+1 < j <iB,
and b;- = p;/(1 — P;) otherwise. (Note that 3 aé- =3 b;- =1).

Let m > 0 be an integer and ¢ be a vector of non-negative reals such that >, ¢; = 1.
We denote by ¢(m,q) the probability distribution on the number of balls in each of
k bins, when m balls are independently put into these bins, and a ball goes in bin %
with probability ¢;, for i € {1,...,k}. Thus, p(m,q) is a distribution on vectors of

non-negative integers. If g is drawn from ¢(m, q), then:

k k
Priuy =my,... o = my] = (H q;nj) m!/ T] m;! (5.1)
= =

whenever Zle m; = m; all other vectors have zero probability!. We now define func-

tions f(z) for £ > 0 and g(m) for a vector m of non-negative integers:

1 ifx=0,
flz) = ¢ 1-2B1l if0<s <BC-B+1, (5.2)
0 otherwise.

'"We take 0° = 1 in Eq. 5.1.

77

k/B iB

glm) = %Zmin{l, Z my}. (5.3)
=1

1=(i—1)B+1
5.3 Cache analysis of in-place permutation

In this section we analyse the cache misses in a direct-mapped cache during n rounds
of Process “in-place”, introduced in Section 5.1.1. We derive a precise equation for the
expected number of cache misses and then give closed form upper and lower bounds on
this equation. We then derive upper and lower bounds assuming the keys are drawn

independently from a uniform distribution.

5.3.1 Average case analysis

We start by proving a theorem for the expected number of cache misses during n rounds

of Process “in-place”.

Theorem 5.1 The expected number X of cache misses in n rounds of Process “in-

place” satisfies n(pe + pg) < X < n(pc +pa) + k(1 +1/B), where:

k/B %0 [k]
pe = Y P (1 = > Bl = P)"Epepmp) [H f(vj)) and
i=1 m=0 _

Pa = B + B Zpi - pi(1 —pi) Eump(m,a}) (1 —g(n)) H f ()
i=1 m=0 j=1

)

where the function f is as defined in FEq. 5.2 and the function g is as defined in Eq. 5.5.

ProOOF. We first analyse the miss rates for accesses to pointers Dq,..., Dy. Fix an
i1, 1 <1 < kandaz>1. Let y be the random variable which denotes the number
of rounds between accesses to locations d; , and d; .11 (¢ = 0 if these locations are
accessed in consecutive rounds). Figure 5.3 shows the other memory accesses between
accesses z and z + 1 to D;. Clearly, Pr[u = m] = p;(1 — p;)™, for m =0,1,.... Let
X; denote the event that none of the memory accesses in these p rounds accesses the
cache block to which d;, is mapped. We now fix an integer m > 0 and calculate
Pr[X;|p = m]. Let fi be a vector of random variables such that for 1 < j <k, p; is
the random variable which denotes the number of accesses to D; in these m rounds.
Clearly g is drawn from ¢(m,a;) (note that D; is not accessed in these m rounds by

definition).

78

Figure 5.3: m rounds of Process “in-place”. Between two accesses to D;, there are m

accesses to “other” pointers, and m + 1 accesses to C.

Fix any vector m, such that Pr[z = m] # 0, and let u; be the number of accesses
to pointer D; in these m rounds. Since m; must be zero, f(m;) = 1, and for j # i,
f(mj) is the probability that none of the m; locations accessed by D; in these m
rounds is mapped to the same cache block as location d; ,, as in [65, 80]. Similarly
g(m) - C is the number of count blocks accessed in these rounds, and so 1 — g(m) is the
probability that the cache block containing d; , does not conflict with the blocks from
C which were accessed in these m rounds. As the latter probability is determined by
the starting location of sequence 7 and the former probabilities by the starting location
of sequences j,j # i, we conclude that for a given configuration m of accesses, the
probability that the cache block containing d; , is not accessed in these m rounds is

(1 —g(m)) H?Zl f(mj). Averaging over all configurations /m, we get that:

k
Pr(X; | p=m] = Eyepim,a) [(1 —9(@) I1 f(Mj)] : (5.4)
j=1
Finally we get:
Pr[X;] = Z Pr{p = m] Pr[X;|u = m]
m=0

00 k
= Y pi(l = p)™Eppimar) [(1 —g(m) [I f(Mj)] : (5.5)
m=0 ji=1

If d; . is at a cache block boundary or if X; does not occur given that d; . is not
at a cache block boundary (Pr[X;] does not change under this condition), then a cache

miss will occur. The first access to a pointer is a cache miss. So other than for the first

79

access, the probability pg of a cache miss for a pointer access is:

pi = 1 sz — Pr[X;]). (5.6)

Including the first access misses, the expected number of cache misses for pointer

accesses is at most
k

5 (1 + (np; — 1) ((%(1 _ Pr[Xi])> + %)) < npa+ k. (5.7)

i=1

We now consider the probability of a cache miss for an access to a count array
location. It is convenient to partition C into count blocks of B locations each, where
the i-th count block consists of the locations c;_1)p41,---,¢iB, for i = 1,...,k/B.
So P; = fo(ifl)BH p; is the probability of access to the i-th block. We fix an ¢ €
{1,...,k/B} and a z > 1. Let v be the random variable that denotes the number of
rounds between the z-th and (z + 1)-st accesses to the i-th count block. We have that
Prjv = m] = Pj(1 — P;)™, for m = 0,1,.... Let Y; denote the event that none of the
memory accesses in these m rounds accesses the cache block to which the i-th count
block is mapped.

We now fix an integer m > 0 and calculate Pr[Yj|lv = m]. Let ¥ be a vector of
random variables such that for 1 < j < k, v; is the random variable which denotes
the number of accesses to D; in these m rounds. Given that k¥ < BC' and assumption
(c) mean that two blocks from C cannot conflict with each other. As the pointers
D¢ _1)B41,---,Dip will not be accessed between two successive accesses to count block
i, the probability of accessing pointer D; is given by b;- and @(m, b;) is the distribution

for . Arguing as above:

o0

Pr[Y;] Z Pr[v = m| Pr[Y;|lv = m)]

o0

Z -Pz(]- - -PZ) 1/~Lp [H f V]] . (58)
m=0

The first access to a count array block is a cache miss, for all other accesses there is a
cache miss if event Y; does not occur. So other than for the first access, the probability

pe of a cache miss for a count array access is:

k/B

pe =) P(1-Pr[Y})). (5.9)
=1

80

Including the first access misses, the expected number of cache misses for count
array accesses is at most

k/B
> (L+ (P, = 1)(1 = Pr[Yi])) < npe + k/B. (5.10)
i=1

Plugging in the values from Eq. 5.5 into Eq. 5.7 and from Eq. 5.8 into Eq. 5.10 we
get the upper bound on X, the expected number of cache misses in the processes. The

lower bound in Theorem 5.1 is obvious.

5.3.2 Upper bound

We now prove a closed form upper bound on the expected number of cache misses

during n rounds of Process “in-place”.

Theorem 5.2 The expected number of cache misses in n rounds of Process “in-place”

is at most n(pg + pe) + k(1 + 1/B), where:

1,k k(& piPj PiD;
pi < =t i)
“ = B BC B 2(] pit P]lez‘f‘pj
Ic/Bk
k B zp]
<
Pe = Bo T BC Z;]ZIPH)J

PROOF. In the proof we derive lower bounds for Pr[X;] and Pr[Y;] and use these to
derive the upper bounds on py and p..
Again, we consider a fixed 7 and consider the event X; defined in the proof of

Theorem 5.1. We now obtain a lower bound on Pr[Xj].

Lower bound on Pr[X]

Letting I'(z) = 1 — f(x) and using Proposition 5.1 we can rewrite Eq. 5.5 as:

00 k
Pr[Xi] > Z Pr [N m]E/LNLp (m,a;) [1 - g(ﬁ) - ZF(N]')] . (5'11)
m=0 j=1

While deriving the lower bound on Pr[X;] we assume that [is drawn from the distri-

bution ¢(m, ;) and we omit the subscript in Ej;y(m.q;)-

81

We know that the j-th count block contributes 1/C to g(z) if there is an access to
L]
—pi’

that block and Pr[j-th count block accessed|yp =m] =1 — (1 — c]) , where cg =1

So we have that,

kB
Blg(@)] = Y- (1 - (1-¢)™)
7=1
and we get:
0o k/B 1 _
> Prlu=mlE[g(p)] = Z pil=p)" > 51— (=)
m=0 7=1
k/B 00 .
= _Z sz 1L —pi)™ (1_C;)m)’
7=1m=0
and using Proposition 5.3 we get:
S bri— gl = £ 3" D (5.12)
— C S pit+ P

We now evaluate
k

o
> Prlu=m]) E[l(u)]
m=0 j=1
Our approach is to first fix j and evaluate E[I'(11;)]. For m < BC, we know that

BIDGs)] = D0 Prly = 1t~ il = 0L

The last term is due to the fact that T'(x) is discontinuous and T'(0) = 0. Similarly for

m > BC we know that

n I+B-1 B-1
EB[M(s;)] = 3 Prluy =l —F7— — Prlp; = 0] ——
— BC BC
n I+B-1
B S T =
[=BC—-B+1 BC

The last term is due to the fact that T'(z) = 1 for z > BC — B + 1. If we drop this last

term when m > BC, we get that for all m:

1

Bl < 55 L; Prip; =11+ (B —1)(1 — Prp; = 0])] -

The summation term is the expected value of y;, which is clearly ma . So we get that:

BT (1)) < BLC [mat + (B —1) (1- (1-a%)")]. (5.13)

82

We now evaluate Y o°_, Pr[u = m)] Z?:l E[T'(115)] as

00 k 0
m;OPr[u:m]jzl mz rfp = m]ZBIC [ma _|_(B—1)(1—(1—a;~))]

; = m, we get > oo Pr{u = m] Z?Zl maé- = L _ 1 by an application

: k
ince >0
Since }_;_; ma >

of Proposition 5.2(c). By applying Proposition 5.3 we get that E?Zl Yoo o Prlp =
m](B—1)(1— (L —a})™) =(B-1) Y5 | gty So we get:

IN

00 k k .
> Prlu=m] 3 E[0(n))] BLC (i +(B-1)) pij) :

j=1 pi + p]
(5.14)

Substituting Eq. 5.12 and 5.14 in Eq. 5.11 we obtain the following lower bound for

k/B k
1 P; 1 1 P
Pr(X;] > 1—-— J _ | —+(B-1 J) 5.15

Upper bound on py

Finally, substituting Pr[X;] from Eq. 5.15 in Eq. 5.6 we get:

1 B-1& 1B p L1,
S Y .
bd = BTTp ;pl(czpﬁp- BC sz—i-p]

Jj=1 Jj=1

1 (B—1)k B k /B

pipj
= E_’_ B2C ZZ B2C ZZ ——

1] lpZ Zl] lpl+p]

1 k B-1¢& (’“/B piP;

S +t5~+ ZpZ+P Z e) : (5.16)

< J—
- B BC BC Z iz 1 Di +Dj

=1 \j=1
We can evaluate p. using a very similar approach, as sketched out now. We again
consider a fixed ¢ and consider the event Y; defined in the proof of Theorem 5.1. We

now obtain a lower bound on Pr[Yj].

Lower bound on Pr[Y;]

Again letting I'(z) = 1 — f(x) and using Proposition 5.1, we can rewrite Eq. 5.8 as:
oo

Pr[Yi] > Y Pr[v = m]E, i, [1 - ZF v] : (5.17)

m=0

83

While deriving the lower bound on Pr[Y;] we assume that © is drawn from the distri-

bution ¢(m, b;) and we omit the subscript in Eyo(m b)-

Arguing as for the derivation of Eq. 5.13, we get:

E[L(v;)] < B—C [mbi+ (B —1) (1= (1-8))")].

Then arguing as for the derivation of Eq. 5.14, we get:

1 (1 koop,
Prly = E[T — |5+B-1)> ——].
Z v = m]z C(();a+pj>
Substituting this into Eq. 5.17, we get:
1 (1 Foop;
Prly;] > 1—-— [+ (B-1 - . 5.18

Upper bound on p.

Substituting Pr[Y;] from Eq. 5.18 in Eq. 5.9 we get:

k/B 1 k Y
< _ J
Pe = ZPBC((B l)i:ZIPi+pj>

k/B k
k B — zp]
= mot Z 2. (5.19)
B2C ' BC it P +pj
Combining Eq. 5.16 and Eq. 5.19 proves the theorem. O

5.3.3 Lower bound

We now prove a closed form lower bound for the expression in Theorem 5.1.

Theorem 5.3 When p; > 1/C then the expected number of cache misses in n rounds

of Process “in-place” is at least npg + k, where:

I COFACE s

LI B—1<(B—1)k_1>
j:lpi+pj BC BC

—(Bf;;)’“ (1- —“i;é?’“)

) o= pi(1 ;)
+ QZ

= z+p3)

(

1
(B)2 k k _ -|

- 2(BC)? ZZPZer]erz pjpz_o(e B)J'

j=1l=1

84

PrOOF. We again consider a fixed ¢ and consider the event X; defined in the proof
of Theorem 5.1. Let iz be as defined in the proof of Theorem 5.1. We now obtain an
upper bound on Pr[X;].

Upper bound on Pr[X;]

In [33] it is shown that the variables ;1; are negatively associated. Noting that f(z) is

a non-increasing function of z, then using Proposition 5.7 we have that:

k k
E[IT f(e)) < T ELf (1))
j=1 j=1
So we can rewrite Eq. 5.5 as:
BC-B 0o
Z PI‘ :U* m] H EuNLp (m,a;) Nj)] + Z PI‘[,U, = m]

m=BC—-B+1
(5.20)

While deriving the upper bound on Pr[X;] we again assume p is drawn from the
distribution ¢(m, a;) and we omit the subscript in Epcp(m,a)-

We first bound the last term. We know that

o0 o0
> Prp=m] = (1-p)PE Y Prju=m)]
m=BC—-B+1 m=0

= (1—p)Pe=B+

Using Proposition 5.5 we get that (1—p;)B¢~ B+l < e (BC-B+Upi - Agsuming p; > 1/C
the last term is at most O(e™B).

We now bound the first term in Eq. 5.20. We use an approach similar to the
derivation of Eq. 5.13 and since u < BC' — B, so pij < BC — B, we don’t have to drop
any terms in the simplification, so we get that:

BIf (15)] = 1~ 5 (ma + (B = 1)(1 = (1 - ai)™))

Letting ¢;(m) = %(maé +(B-1)(1-(1- a;)m)) and using Proposition 5.4(a) we get

B
that e 2= (™ ™ > [L;(1 —t;(m)). So we have that
BC-B
Pr[X;] < Z Prp = m]eBC Ea 1 (maj+(B-)(1-(1—aj)™)))+O(e_B).
m=0
BC-B iym
< Z Prly — m]eBO(er(B 1)(k— Z] L (1-a}))) +0(eB).

m=0

85

Assuming 5 (m +(B-1)(k - Z 1(1—al))) > 0, using Proposition 5.4(b) and
letting 5; = (1 —a’) we get that:

BB B-1)k ((B-1 m?
PrlX;] < mX::O Prlp = m] [1—(BO L BC))) 3B
1 k k
e (m—(Zﬁj) (2m2;5] +2(B —1)19215;“>
j= j=
(B-1) kE k o '|
*3Bo)y (2 k+(B ;;)J (5.21)

We now evaluate the terms in Eq. 5.21 assuming that p; > 1/C, so k < C. For the
simplifications of the subtractive terms we use the fact that e Pi(BC—B+1) < =B 1y
some of the simplifications we will use « = BC — B + 1.

Since p; > 1/C, (B —1)k/(BC) < 1, so using Proposition 5.6(b), we get that:

(B-1)k (B-1k

_ _ _ -B
2::0 Pripy = m] BC - BC O(e 7). (5.22)
Since p; > 1/C, (1/p;+ BC — B)/(BC) = O(1), so using Proposition 5.6(a), we get
that:
a—1
m 1 1 _B
mzo Prlp = m]BC B0 <— - 1) O(e™5). (5.23)

We now evaluate the term

koo
= OIS S P mimsy
j=1m=0

k
—(1 —pz-)“((BC Z Prlp=m](m + o)) B

J=1

_ pi(1 P;)

pz +p])
(1 _a(sz)"‘Xk: ap;
i) = pz+p]) Spitp
Pi) (B
2; pﬁp]) O(e™P). (5.24)

The second simplification used Proposition 5.2(b) and Proposition 5.3. The last simpli-
fication is due to p; > 1/C and k < C, 50 -1 ;< (pi(1 —pi —pj))/ (pi +pj)* < kC < C?

86

and 30, << (api)/(pi + pj) <kCB < BC?.

Substituting back (1 — a*) B and using Proposition 5.3 we get that:

(B 1 BC B

ZﬁumZ@

CB-E ko LB-D%RE p

- (BOY? jzlpierj SNV TeE jzlpﬂrpj
_(B-1D’% & p _

=By jzlpi+pj_0(e By, (5.25)

The last step used Z?Zl pi/(pi +p;) <k and ((B—1)k)*/(BC)?) < 1

We now evaluate the additive terms, starting with:

BC—-B
mk(B—1) (B—1)k (1
Z Pl = m] (BOE = (BOY? (E_1>' (5.26)
Since m < BC' we now get that:
BC-B 2 1 1
mzo Prjp = m] 3(BO)? < 550 < 1) . (5.27)

Substituting back (1 —a’,) Bj and using Proposition 5.3 we get that:

B BCB lk

Z Prlp = m]ZIBJ S

Di
C iSipitD;

(5.28)

Finally we evaluate >%_ Pr[u = m)] Z?Zl SF B;"™ 6™, by first evaluating

(1-pi)BiB = (l—pz')(l—a)(l—az)
1 —2p; —pj — pi +pi(pi + pj + 1) +Pim1
(1—pi) '

Using this result and Proposition 5.2(a), we get that:

o0

a—1 m

1 —2p; —pj — pr +pilpi +pj +p1) +pip
S Prlu=mgman < Y p (LD (1_Z(pf) i TP+
— — 7

_ pi

pi +pj +p —pipi/(1 —pi)
< Y4 _

pi +pj+p—Dpin

So we get that:

(B-1> & (B-1? & &
e < — . 5.29
SBOP 2, S ABOY 5t m (529)

87

Lower bound on py

Plugging Eqs. 5.23 , .., 5.29 into Eq. 5.21 we get that:

1 /1 (B=1)k (B —1) <~ pi(1 —pi — p;)
Pr[X;] < 1-— ——1) - —
Xl < BC () BC (BC)?]Zl (pi +pj)?
(B—1)%k &~ p; (B—1)k (1 1 /1
s G () e)
(BC)? —pitp; (BC)* \pi 2BC
B-1¢ ; B-1)2 &
+ Di ()2 Z
BC = pit+p; 2(BO) j”1m+m+m PP
(B —1)k)? B
+ Symop toe) (5.30)
Plugging Eq. 5.30 into Eq. 5.6 we get:
1 1 1 2(B — 1)k
— = - ; ~—_1 1—
puz gt Zp Kp) 2BC (BC)
k . — —
N pi B 1<u3 Uk_1>
P +p; BC BC

L (B-1k (1_ (B—l)k>

BC 2BC
k
pzl_pz)
l’
QZ; (pi +pj)?
(B-12 &

2(BC)?

S,

k
-0 (e ?)|.
z::l = Pi TP + P — pip (e)]

O
REMARK: The assumption that p; > 1/C, so k < C, is not unreasonable, if we consider
that the lower bounds for I/Os in the weaker EMM requires that at most C' partitions

are used for multi-partition comparison sort and at most C streams are merged during

k-way merging.

5.3.4 Upper and lower bounds for uniformly-random data

Using the upper and lower bound Theorems just proven for general probability distri-

butions, we now derive corollaries for upper and lower bounds for uniform distribution.

Corollary 5.1 Ifp; = ... =py = 1/k then the number of cache misses in n rounds of
Process “in-place” is at most:

1 k(B+5) &k 1

88

PROOF. Since P; in p. and P; in p4 are both B/k in the equations in Theorem 5.2, we

get that:
1 2(B-1)k* B/k B—-1)? ,1/k k k
patpe = (BC)§B4/—1 (320) kQ%JFB?CJrB—C
_ l+2(B—1) k +(B—1)2§+ k +i
B BC B+1 B2C 2 B2?2C BC
- i+£[i+ﬁ}+L
- B ' C|B 2B B2C

B 1+k(B+5)+ k
- 2BC B2C"’

|

a

REMARK: As we will see later, Process “in-place” models the permute phase of distri-
bution sorting and Corollary 5.1 shows that one pass of uniform distribution sorting

incurs O(n/B) cache misses if and only if ¥ = O(C/B).

The following corollary is from the lower bound result in Theorem 5.3.

Corollary 5.2 If py = ... =pi = 1/k then the number of cache misses in n rounds of

Process “in-place” is at least:

n n(B—1) 1—k 2B —-1)k\ (B—1)k
F+5+T B {%BC (1 - T BC) * B0
+% (k5 —2B) - Tk +2)|.

PRrROOF. Plugging p; = 1/k in the equation in Theorem 5.3 we get that:

1 B-1 [1—k <1_2(B—1)k>

>_
Piz gt g 2%BC BC

(B—1)k ((B-1)k (B— 1)k (B— 1)k
BC 5(BC _1>+ BC (1_ 2BC)
(B-1)(k—2)k (B-—1)2(&3
+ (BC)2 4 2(BC)? \3k—1
1 B-1 1—k 2B -1)k\ (B-1)k
“BT B 2%kBC (1 T T BC) T 3BC
(B—1) ((k? —2k)(3k — 1) —2(B — 1)k?
T yBOY 3% —1
1 B-1 1—k 2B -1)k\ (B-1)k
5T B [ZkBC (T T BC) T 3BC
+% (k2(5 —9B) — Tk + 2)] :

89

REMARK: From Corollary 5.1 we have that for uniformly-random data and k& = aC,
where a < 1, other than for small values of B, the upper bound for the number of

cache misses in n rounds is roughly
an

2)
and from Corollary 5.2 we have that for uniformly-random data and k& = «C, where

a < 1, other than for small values of B, the lower bound for the number of cache misses

a_ o

The ratio between the upper and lower bound is 3/(3 — «). So we have that for

in n» rounds is roughly

uniformly-random data the lower bound is within a factor of about 3/2 of the upper

bound when k& < C and is much closer when k <« C.

5.4 Cache analysis of out-of-place permutation

In this section we analyse the cache misses in a direct-mapped cache during n rounds
of Process “out-of-place”, introduced in Section 5.1.2. We derive a precise equation for
the expected number of cache misses and closed-form upper and lower bounds. During

the analysis we reuse k, D;, ¢;,C, p;, Pi,a,b, f(x) and g(m) introduced in Section 5.3.

5.4.1 Average case analysis

We start by proving a theorem for the expected number of cache misses during n rounds

of Process “out-of-place”.

Theorem 5.4 The expected number X of cache misses in n rounds of Process “out-

of-place” is n(pe + pa+ps) < X < n(pe+pqg+ps) +k(1+1/B) + 1, where:

k/B 00 k
pe = Y. P (1— > B(1—P)"E |f(m+1) Hf(Vj)D :
i=1 m=0

J=1

=

= e Y (1=X w0l = p)™B | (1= g(m)fm+) T]) |]
i=1 m=0

— l+E 1— <1_l>2
P« = BT 7B c))
where the function f(z) is as defined in Eq. 5.2 and the function g(i) is as defined in
Eq. 5.5.

90

= B ; B g B 5 B

Figure 5.4: m rounds of Process “out-of-place”. Between two accesses to D;, there
are m accesses to “other” pointers, and m + 1 accesses to C, and m + 1 accesses to

consecutive locations in S.

PrOOF. We first analyse the miss rates for accesses to pointers Dy, ..., Dy. Fix an 1,
1 <i<kandaz>1 and consider the probability of a miss between access z and
z 41 to pointer D;. We define p, i, m, fi,m,d; -, ¢(m,a;) and X; as in the proof of
Theorem 5.1. Again f(m,;) is the probability that none of the m; locations accessed by
Dj; in m rounds is mapped to the same cache block as location d; ,. Similarly g(m) - C
is the number of count blocks accessed in m rounds, and so 1 — g(m) is the probability
that the cache block containing d; , does not conflict with the blocks from C which were
accessed in these m rounds. We also have accesses to m + 1 contiguous locations in &
and f(m 4+ 1) is the probability that these m + 1 accesses are not to the cache block
containing d; ,. Figure 5.4 shows the other memory accesses between accesses z and
z+1to D;.

For a given configuration m of accesses, as the probabilities f(m;), g(m) and f(m+
1) are independent, we conclude that the probability that the cache block containing
d;» is not accessed in these m rounds is (1 — g(m))f(m + 1) H?Zl f(m;). Averaging

over all configurations m, we get that:

PrX; | 1= m] = Bpeppman)[(1 - g (5.31)

=
=
3
+
=
~
=
S,

Using which we get:

Pr[X;] = Z Pr[p = m] Pr[X;|p = m]

m=0

91

o0

Z (1 —p)™ Mth(m,a’i) {(1 —g(m)f(m+1) H f(ﬂj)} .

m=

(5.32)

Arguing as for Eq. 5.6 we get that, other than for the first access, the probability

pq of a cache miss for a pointer access is:

1
pa = sz — Pr[Xj]). (5.33)
Including the first access misses, the expected number of cache misses for pointer

accesses 1s at most

k

> <1 + (np; — 1) <<%(1 — Pr[Xi])> + %)) < npq + k. (5.34)

i=1

We now consider the probability of a cache miss for an access to a count array
location. Fix an 7 € {1,...,k/B} and a z > 1 and consider the probability of a miss
between access z and z + 1 to count block ¢;. We define v, v;, m, v, m, P;, p(m, b;), and
Y; as in the proof of Theorem 5.1.

Again, given that ¥ < BC and assumption (c) mean that two blocks from C cannot
conflict with each other. So we need to determine the probability of a conflict given m;
accesses to the pointer D;, for all j € {1,...,k}, and m accesses to contiguous locations
in §. Again f(m;) is the probability that none of the m; locations accessed by D; in
m rounds is mapped to the same cache block as ¢; and f(m+ 1) is the probability that
the accesses to m + 1 contiguous locations in S are not to the same cache block as ¢;.

So we have:

PrlY;] = Z Prlv = m] Pr[Y;|v = m]
k
= Y P(1=P)"Epoyimpy |Fm)] Fwi)]- (5.35)
m=0 j=1
Arguing as for Eq. 5.9, the probability p. of a cache miss for a count array access
is:

k/B
pe = Pi(1—PrlYi)). (5.36)

92

Including the first access misses, the expected number of cache misses for count
array accesses is at most

k/B
> (1+ (nP; = 1)(1 = Pr[Y}))) < np. + k/B. (5.37)
i=1

We now calculate cache misses for accesses to the array S. We consider the prob-
ability of a cache miss between accesses to S[s| and S[s + 1]. We know that there is
exactly one access to a count block and one access to a pointer between two accesses
to S. The probability that the pointer access is to the same cache block as S[s] is 1/C.
The probability that a block from C maps to the same cache block as S[s] is k/(BC).
Given that a block from C maps to the same cache block as S[s], the probability that
the access to the count array is to the same cache block as S[s| is B/k. So the prob-
ability that the pointer access is to the same cache block as S[s] is also 1/C. So the
probability that there are no memory accesses to the cache block that S[s] is mapped

to before the access to S[s + 1] is
(1—-1/C)%

We have a cache miss if S[s] is at a cache block boundary, otherwise the probability of

a cache miss is 1 — (1 — 1/C)2. So the probability p, of an cache miss for an access to

S is
1 B-1 1\2
=+ " |1-(1=-=)
PTBT B ((C>>

The first access to S is always a cache miss, so the expected number of cache misses
in accesses to S is:

nps + 1.

Plugging in the values from Eq. 5.32 into Eq. 5.34 and from Eq. 5.35 into Eq. 5.37
we get the upper bound on X, the expected number of cache misses in the processes.

The lower bound in Theorem 5.4 is obvious.

5.4.2 Upper bound

We now a closed form upper bound to the expected number of cache misses during n

rounds of Process “out-of-place”.

93

Theorem 5.5 The expected number of cache misses in n rounds of Process “out-of-

place” is at most n(pg + pe + ps) + k(1 + 1/B) + 1, where:

1 2(B—1)k B k /B

B-1) D
Pe = Bt T pg ZZ (Bzc (1+ZZ P)

i=1j= lpl i=1j 1pZ+pj

k/B k
2k B-1 Pip
< == 1 J
Pe = BQC+ (+ZZP+p])

i=1 j=1
_ 1. B-1(<1 1)2
b« = B7 7B c))

PROOF. As for the upper bound for in-place permutation, in this proof we derive lower
bounds for Pr[X;] and Pr[Y;] and we will use these to derive the upper bounds on py
and p.. We make extensive use of the results obtained during the proof of Theorem 5.1.

Again, we consider a fixed ¢ and consider the event X; defined in the proof of The-

orem 5.4. We now obtain a lower bound on Pr[Xj].

Lower bound on Pr[Xj|]

Letting I'(z) = 1 — f(x) and using Proposition 5.1 we can rewrite Eq. 5.5 as:

00 k
PIX] > S Prlp = mlBpepiman |1 - 9(8) — Tlm+1) = S T(w)| . (5.38)
m=0 j=1

While deriving the upper bound on Pr[X;] we again assume i is drawn from the dis-

tribution ¢p(m, @;) and we omit the subscript in Ejp(m,a;)-

We can use Eq. 5.12 as a simplification for

ZPTM m]E[g(

and Eq. 5.14 as an upper bound on

)l;

tl

00 k
> Prip = mlELY. I(uy)]
m=0 j=1

So we just have to evaluate

Z Pr[p = m]E[l'(m + 1)].

94

Since we always have at least one access to S, we have that:

S Prly = mlE[M(u + 1)) = Z Prlpe = m] "7
m=0
_ m+ B _
- ng(;_B Pr[p = m] (BC 1)
1 o0
< BC anzo Prly =m]m + B
- BLC (l 1 B) (5.39)

where the last simplification used Proposition 5.2(c). Substituting Eq. 5.12, Eq. 5.14
and Eq. 5.39 in Eq. 5.38 we obtain the following lower bound for Pr[X;]:

k/B
1 P; 1 2
PrlX;] > 1-——= I _ 1+ (5.40
Kl = Cjzlpi—i-Pj BC ((]lez pg)))

Upper bound on py
Finally, substituting Pr[X;] from Eq. 5.40 in Eq. 5.6 we get:

B-1¢&
e

B
1 M2 p 1 (2
J
d +(1+
(lepz—i—P] BC((Jz:lmep])))
1

1, 2B-Uk B-1 kKB P,
B BC BC

| —

Pd <

== Pit P

B —1)?
+(320) (ZZ _Dbipj)

i= 1] lpZ +p]
(5.41)

We can evaluate p. using a very similar approach to that used in the proof of The-
orem 5.2. We again consider a fixed 7 and consider the event Y; defined in the proof of

Theorem 5.4. We now obtain a lower bound on Pr[Yj].

Lower bound on Pr[Y]]

We can rewrite Eq. 5.35 as:

k
Pr[y;] > Z Pr[v = m]E; . p(mi) {1 L(m + 1)21“@-)} . (5.42)

Jj=1

95

While deriving the lower bound on Pr[Y;] we assume that © is drawn from the distri-

bution ¢(m, b;) and we omit the subscript in Eyo(m b)-

Eq. 5.18 gives us
00 k
S Prly = m] 3 BID(v;)]
m=0 j=1
Arguing as for Eq. 5.39
> 1 1
> Prlv=m]E[I'(m+1)] < B0 <— —1+ B) (5.43)

Substituting Eq. 5.18 and Eq. 5.43 in Eq. 5.42 we obtain the following lower bound for
Pr[X;]

Pr[Y;] > 1—BLC (%Jr (1+Zp+p])) (5.44)

Upper bound on p,
Finally, substituting Pr[Y;] from Eq. 5.44 in Eq. 5.9 we get:

be = %?PBC(Q <1+ZP+p]>>

k/B k
2k B _Ppj
= — Dl B (5.45)
BZC (i=1 j=1 P; +pj
Combining Eq. 5.41 and Eq. 5.45 proves the theorem. O

5.4.3 Lower bound

It is quite obvious that the lower bound for in-place permutation, given in Theorem 5.3,
is a lower bound for out-of-place permutation.

5.4.4 Upper and lower bounds for uniformly-random data

Using the upper bound Theorem just proven, we now derive a corollary for an upper

bound to the number of cache misses if the data is uniformly distributed.

Corollary 5.3 If py = ... =pi = 1/k then the number of cache misses in n rounds of
Process “in-place” is at most:

<l+k(B+3)+ B k>+k< l)
"\BT 2BC T B2 BC B)

96

PROOF. Since P; in p. and P; in p,4 are both B/k in the equations in Theorem 5.5, we

get that:
2 2(B-1)k B/k (B-1)? ,1/k
< = — k
PatPetPs = BTT B BB+1' BIC " 2
N 2k +2(B—1)k+B—1 1_(0—1)2
B2C B2C B C2

2 2(B-1) k (B—-1)%k
= Bt BC B11 BC 2
2k 2(B—1)k B-120-1
et e "B 0
S
= B'C|B' 2B B2C ' C
2 KB+T7) 2k 2
= 5t Tmcte

a

REMARK: Corollaries 5.1 and 5.3 shows that for uniformly distributed data, other
than for small values of B, the number of cache misses during in-place and out-of-place
permutations are quite close. As for an in-place permutation, one pass of uniform
distribution sorting using out-of-place permutations incurs O(n/B) cache misses if and
only if K = O(C/B).

Using Corollary 5.2 for the lower bound and Corollary 5.3 above, we see that when
k < C the lower bound is again within 3/2 of the upper bound and is much closer when

k<C.

5.5 Cache analysis of multiple sequences access

Accessing k sequences is like Process “in-place” in Section 5.1.1 except that there is no
interaction with a count array, so we delete step 2 and assumption (c). An analogue
of Theorem 5.1 is easily obtained. An easy modification to the proof of Theorem 5.2

gives:

Theorem 5.6 The expected number of cache misses in n rounds of sequence accesses

18 at most:

L K(B-1) B-12 I E pip
k+n<§+ B0 B0 =i)

= 1] 1p2+p]

97

Corollary 5.4 Ifp; = ... =py = 1/k then the number of cache misses in n rounds of
sequence accesses 1S at most:

1 k(B+3)

REMARK: From Corollary 5.4, k = O(C/B) random sequences can be accessed incur-
ring an optimal O(n/B) misses. This essentially agrees with the results obtained by

Mehlhorn and Sanders [65] and Sen and Chatterjee [80].

REMARK: Since its derivation ignored the effects of the count array, the lower bound
in Theorem 5.3 applies directly to sequence accesses. Note that the lower bound we
obtain for uniformly-random data, as stated in Corollary 5.2, is sharper than the lower
bound of 0.25(1 — e~ 2%%/C) obtained in [80]. For example, for k = 2,C/2 and k = C,
the expected number of misses per item predicted by our analysis is 1/B,1/4 and 1/3.
6—0.25k/C)

The predictions for the same values of k£ using 0.25(1 — and e™* =~ 1 — x for

small z are 1/(8C),1/32 and 1/16.

5.6 Correspondence between the permute phase and Pro-

cesses “in-place” and “out-of-place”

We now show how the Processes “in-place” and “out-of-place” model the permute phase
of a generic distribution sorting algorithm.

The correspondence between Process “in-place” of Section 5.1.1 and the pseudo-
code in Figure 4.4 is as follows. Each iteration of the inner loop (steps 3.1-3.5) of the
pseudo-code corresponds to a round of Process “in-place”. The array COUNT corresponds
to the locations C, and the pointer D; points to DATA[idz]. The variables z in the
process and the pseudo-code play a similar role. It can easily be verified that in each
iteration of the loop in the pseudo-code, the value of z is any integer 1,...,k with
probability p1, ..., pg, independently of its previous values, as in Step 1 of Process “in-
place”. A read at a location immediately followed by a write to the same location is
counted as one access. Thus, the read and increment of COUNT [z] in Steps 3.2 and 3.3
of the pseudo-code constitutes one access, equivalent to Step 2. Similarly the “swap” in

Step 3.5 of the pseudo-code corresponds to the memory access in Step 3 of the process.

The process does not model the initial access in Step 1 of the pseudo-code, and nor does

98

it model the task of looking for new cycle leaders in Steps 4 and 5 of the pseudo-code.

The correspondence between Process “out-of-place” of Section 5.1.2 and the pseudo-
code in Figure 4.2 is as follows. The array COUNT corresponds to the locations C, the
array DATA corresponds to the locations S, ¢ in the pseudo-code corresponds to s in the
process, and the pointer D; points to DEST [idz]. The increment of ¢ in the pseudo-code
is equivalent to the increment of s in the process, and the accesses to DATA[:] and S[s]
are equivalent. As above, the variables z in the process and the pseudo-code in the
pseudo-code play a similar role. Again, the read and increment of COUNT[z] of the
pseudo-code constitutes one access, and is equivalent to Step 3 of the process. The
access to DEST [idz] of the pseudo-code corresponds to the memory access in Step 4 of
the process.

Assumption (b) of the processes is clearly satisfied and assumption (¢) can normally
be made to hold. Assumption (d) and k¥ < CB or k < C may not hold in practice, in
the next chapter we give an approximate analysis which deals with this. Assumption
(a) of the processes, that the starting locations of the pointers D; are uniformly and
independently distributed, is patently false, we discuss this in more detail in Chapter 6.
We may force it to hold by adding random offsets to the starting location of each pointer,
at the cost of needing more memory and adding a compaction phase after the permute,
this has also been suggested by Mehlhorn and Sanders [65]. This only works if the
permute is not in-place, and if k is sufficiently small (e.g. k¥ <n/(CB)). In Chapter 6
we study assumption (a) empirically in the context of uniform distribution sorting.
Another weakness is that our processes are continuous, so the sequence lengths are not
specified, whereas in distribution sorting we sort n keys and each sequence is of a finite

length.

5.7 Summary

In this chapter we have analysed the average-case cache performance of the permute
phase of distribution sorting when the keys are independently but not uniformly dis-
tributed. We have presented equations for the number of misses during in-place and
out-of-place permutations and have given closed-form upper and lower bounds on these.

We have shown that the upper and lower bounds are quite close when k£ < C and the

99

data is known to be independently and uniformly distributed. We have shown how this
analysis can easily be extended to obtain the number of cache misses during accesses

to multiple sequences.

100

Chapter 6

Approximate analysis and

validation of predictions in the

CMM

In this chapter we again consider the problem of sorting floating-point numbers in the
CMM. We now assume the keys are independently drawn from a uniform distribution.
We present an approximate analysis of the number of cache misses for the permute
phase of distribution sorting. The reasons the analysis in Chapter 5 may not always

be applicable and why this analysis is needed are:

e Knuth tells us to use ©(n) classes for distribution sorting [53], this means that
the classes can be quite small, such that there may be more than one class in a
cache block. Due to assumption (d) of processes “in-place” and “out-of-place” the
analysis in Chapter 5 is inaccurate if there are multiple pointers in each memory

block.

e In theory we can use Theorems 5.1 and 5.4 with uniform probabilities to de-
termine the exact number of cache misses when permuting uniformly-randomly
keys. However the expressions in Theorems 5.1 and 5.4 are hard to evaluate and
can in practice only be approximated, using a Monte Carlo method or with the
closed form upper and lower bounds. We will see in the next chapter that be-
cause the approximate analysis gives closed form expressions it can be used to

tune distribution sorting algorithms more easily than the analysis in Chapter 5.

101

e The closed form upper and lower bounds from Chapter 5 are apart by a factor
of 3/2, so either of these bounds could be quite far from the actual number of

misses.

The analysis is for an in-place permutation and could easily be extended to handle
out-of-place permutations. We consider the accuracy of the approximate analysis by
comparing predicted cache miss rates against measured cache miss rates. We then
consider why assumptions made in the analysis in this chapter and in Chapter 5 about
the random distribution of pointers in the cache may not be true in practice and then

give heuristics that attempt to satisfy these assumptions.

6.1 Approximate analysis

In this section we present an approximate analysis of an in-place permutation in a
generic distribution sorting algorithm when the keys are independently drawn from a
uniformly-random distribution. The analysis is based on the fact that for given values
of n, C' and B, there is only one parameter that can be changed in one pass, the number
of classes to distribute into, k. We determine how cache miss rates vary as k varies.

The permute phase can be viewed as alternating cycle-following with finding cycle
leaders. During the cycle following phase we make 2n memory accesses which may
lead to cache misses. These comprise alternating accesses to the count array and to
the data array. Any access to the data array must be to one of the k active locations
pointed to by the data pointers for the k classes (the data pointer for class j points
to the next available location for a key of class j). Since the keys are independently
and uniformly-random distributed, it is not hard to see that for any fixed i, the ith
access to the count array is equally likely to be to any of the k£ count array locations,
independently of the previous accesses to the count array; similarly, the ith access to
the data array is equally likely to access any of the k active locations, independently
of the previous accesses to the data array.

However, this is not enough to analyse the permute phase exactly. For example,
it appears difficult even to get a good understanding of the distribution of the active
locations at the start of the permute phase. This analysis uses the idea that although

the active locations change as keys are moved to their destinations within classes, the

102

movement is at roughly the same rate and thus the active locations should maintain
roughly the same relative position. Therefore, we fix some ‘typical’ positions of active
locations, giving a ‘snapshot’ of the algorithm, and analyse a simple process which
involves accesses to the count array and to the fixed active locations. Of course, the
accuracy of the formulae obtained will depend heavily on how well the active locations
are fixed. The analysis also ignores other accesses, such as those for the cycle leader
finding phase.

In what follows, an active block is either a count block or a data block that has
an active location in it. Having fixed the active locations, we consider a sequence of
memory accesses, where each access reads or writes one of the k count array locations or
one of the k active locations with equal probability 1/k, independently of the previous

1

accesses . We calculate the probability py of a miss if an active location is accessed,

and the probability p. of a miss if a count array location is accessed; we then estimate:
Pperm = 1/B 4+ (1 —1/B)pgq + pe. (6.1)

The reason for using this formula is that pg only estimates the probability of misses on
data array accesses due to conflicts between active blocks. However, the n accesses to
the data array cover n distinct locations in all, resulting in at least n/B compulsory
misses. Thus, pg should be applied only to the approximately n(1 —1/B) accesses that
remain. If we wish to compare the results to those obtained in Chapter 5, we can use
Nftperm to get the approximate number of misses in one permutation pass.

Using the probabilities specified in the above process, and having fixed the active
locations, we can easily calculate the probability that the process accesses a given
active block. For example, we can infer that a count block has an access probability of
B/k. After this, the analyses make extensive use of the following elementary idea [59].
Suppose we consider a process which accesses [blocks of memory by, ..., b, with each
access being made independently to block b; with probability p;, for 1 = 1,...,l. Let
S C {1,...,1l} and suppose that exactly the blocks {b;|i € S} are mapped to some
cache block c. Let ¢ be randomly initialised to b;, i € S with probability p;. Then, at

!These probabilities add up to 2, and should be normalised to 1/(2k) each. Since we are only

interested in the ratios of probabilities, we can omit the normalisation to improve readability.

103

any stage in the process, for any i € S:

Di

Pr[b; is in cache block ¢] = .
jes Pj

(6.2)

An arbitrary initialisation of the cache may result in at most one more miss per cache
block than given by the above equation, which is negligible. Equation 6.2 implies the
following as well. If there are 7 data blocks mapped to a cache block and the number
of active locations in data block 1,...,7 is ni,ng,...,n; and N = Y7, n; then the

probability of a hit in accesses to that cache block is:

1 T 2
— > ni’ (6.3)
N 1=1

For a given value of N, by Jensen’s inequality (see e.g. [75]), the probability of a hit is
minimised when n; = N/7 for i = 1,...,7. A similar calculation can be made when 7
data blocks, with N active locations in all, conflict with one or more count blocks.

In order to fix the active locations, we consider four cases. The first pair of cases
deal with the situation that the expected class sizes are smaller than the block size B.
If so, it will often be the case that there are multiple active locations in a single data
block. The third and fourth case deal with the situation where the expected class sizes
are much larger than B. In this case it is (intuitively) very unlikely that two active
locations are present in a single data block. We have chosen to cover these four cases

as they occur in the algorithms that we will study.

Case 1: k< CB and n/k < B

In this case the count array fits in cache and the expected class size is less than a
cache block. We assume that there are p = k/(n/B) data pointers in each data block,
allowing p to be non-integral. By the reasoning associated with Equation 6.3, this
should overestimate the number of misses. There are two regions in the cache: region
R; which has no count blocks mapped to it, and region R, which has count blocks
mapped to it.

We first consider the case n > C'B. In this case each cache block in Ry has 7 =
n/(CB) data array blocks mapped to it, whereas each block in Ry has one count
block and 7 data blocks mapped to it (recall that 7 is assumed to be integral). The

probability of accessing a count array block is B/k and of accessing any data block

104

is p- (1/k) = B/n. For any cache block ¢ in Ry, an access to a data block which is
mapped to c¢ is a hit only if that data block is currently stored in ¢. As the sum of the
probabilities of the blocks mapped to ¢ is B/k + 7 - B/n, by Equation 6.2 we have:

B 1
Pr[Data access in Ry is a hit] := BTk +/n B/ = s (6.4)
7-B/n n T

Similarly, we get:

B B
Pr[Count access in Ry is a hit] := Bk +ik B/n =57 C (6.5)

In region Ry, there are 7 active blocks (from the data array) mapped to each cache
block. As each active block has the same probability of being accessed, we get that
Pr[Data access in R; is a hit] = 77!. Since a data access goes to R; with probability

1 —k/(CB), and Ry with probability k/C B, we have:

pem (1) (-2 + 4 (), o)

As there are no count array accesses in Ry, 1 — p. is given by Equation 6.5. By

Equation 6.1:

- 3 (a
Hperm = o B+k/C

(B 0-2) (-2 o))

if n > CB, and where 7 = n/(CB).

We now consider the case n < CB. In this case data blocks cannot conflict with
each other so there are no cache misses in Ry. To determine the cache misses in Ry
we assume the start of the data array is uniformly and randomly distributed at cache
block boundaries so the probability of a data block being mapped to a cache block

k/B

in region Ry is =7 . Using the above reasoning, if a data block is mapped to Rs

the probability that an access to it results in a hit is 5 /]i{% Tn =
/

n/li—i—l' This gives

Pg = % (1 — ﬁ) A given count block has probability “4= of being in conflict

with a data block. In case there is a conflict, the probability of a hit on a count array

access is 1/(1 + k/n). This gives p. = &5 (1 — ﬁ) Using Equation 6.1 we get:

o = 1) + () [()] o0

105

if n < CB. Equation 6.8 is applicable to a distribution sorting passes where all the
keys in a problem fit in the cache. The misses for a given sorting problem may be
more or less than the expected value, depending on the exact number of data blocks
in Ry. However, averaged over sorting problems which are consecutive in memory, the
result should be accurate since an under-estimate for some problems will lead to an

overestimate for other problems.

Case 2: k> CB and n/k < B

In this case the size of the count array exceeds the cache size and the expected class
size is less than a cache block. Equation 6.11 is derived in a manner similar to Case 1.
First, we assume that k£ is a multiple of C'B, and apply the above reasoning, taking
region Ry to be empty and Ry as the whole cache. We will use the same formula when
k is not a multiple of CB. If k is a multiple of C'B, then we have k/(CB) count blocks

mapped to each cache block, so we get that:

B 1 CB
Pr[Data access is a hit] := /Ctr B/n +/n Bin "2 o (6.9)
T-B/n 27 n

Similarly, we get:

B B
Pr[Count access is a hit] := o [k B/ = n2/k = Z—k
T-B/n T

(6.10)

Since R; is empty, 1 —py is given by Equation 6.9 and 1 — p,. is given by Equation 6.10,

so the final formula is:

fiperm = 1/B + (1 — CB/(2k)) + (B — 1)/B) - (1 — C'B/(2n)). (6.11)

Case 3: k< CB and n/k> B

In this case the count array fits in cache and the expected class size is much larger
than a cache block. Since n/k > B we assume that there is at most one data pointer
per data block. Again, we divide the cache into two regions: region R; which has no
count blocks mapped to it, and region Ry which has count blocks mapped to it. Note
that Ry occupies a k/(CB) fraction of the cache. We assume that N =k - (k/(CB))
data pointers are mapped to Re. Again, by Jensen’s inequality, the overall hit rate is
minimised when each of the k/B blocks comprising Ry has N/(k/B) = k/C = p data

pointers mapped to it. We proceed with the calculation based upon p data pointers

106

mapped to each cache block in Ry, each with an access probability of 1/k; note, however,
that p may be non-integral, and possibly even much smaller than 1. Consider a cache
block i in Ry. The count block mapped to i is accessed with probability B/k, and each
of the p data blocks mapped to i are accessed with probability 1/k. The sum of the
access probabilities of the blocks mapped to i is B/k+ p- (1/k) = B/k + 1/C. Thus:

B/k B
B/k+1/C B+p’

Pr[Count access in Ry is a hit] := (6.12)

1k 1
B/k+1/C B+p

It is more interesting to study the hit rate in region R;, which only has data pointers

(6.13)

Pr[Data access in Ry is a hit] :=

mapped to it. It will be convenient to assume that R; covers the entire cache, and has
k data pointers mapped to it; as we will see, we can scale down the values without
changing the hit rate. Let the number of data pointers mapped to cache block 7 be
m;. If cache block ¢ has m; # 0, then the probability that a data array access reads
cache block i is m;/k, but the probability of this access being a hit is 1/m;. Hence,
the probability of a hit given that cache block i was accessed is 1/k. Summing over
all ¢ such that m; # 0 gives the overall hit rate as simply v/k, where v is the number
of cache blocks such that m; # 0. Assuming that the data pointers are independently

and uniformly located in cache blocks, we calculate the expected value of v as:
C-1-(1-1/0)"~C-(1—e"). (6.14)
Hence we have:
Pr[Data access in Ry a hit] := v/k = p1(1 — e), (6.15)

and note that this is invariant to scaling C' and & by the same amount. We now derive
the misses per key for this case. First, the probability that a data access is to R; is
1 — k/(CB); using Equations 6.15 and 6.13, we get that py = (1 — k/(CB)) - 1/(B +
p) — (1 —=k/(CB))-p~'(1 —e~?), and hence using Equations 6.1 and 6.12 we get that:

1 B
Mperm = E"‘ 1_B—-|-p +

"t -y () - (-) 0. o

where p=k/C.

107

Case 4: k> CB and n/k > B

Finally, for the sake of completeness we study the case where k > CB and n/k > B.
The approach is similar to that of Case 2: we assume that k is a multiple of C'B, and
use the formula even in the case that it is not. If k is a multiple of C'B, then we have
k/(CB) count blocks mapped to each cache block, along with p = k/C active locations;
this gives the probability of a count hit as M-TB/(C’B) = CB/(2k). The probability of

a data hit is L = C/(2k). Thus:

p+Bk/(CB)
iperm = 1/B + (1= CB/(2k)) + (B - 1)/B)1 = C/@k)), (6.17)
where p = k/C.

6.1.1 Dissimilar key and count array element sizes

The above analysis assumes that count array elements and keys are of the same size.
This may not always be true in practice, for instance, when sorting 64-bit double-
precision floating-point keys one may well use 32-bit integers for count array elements.
We let B be the number of keys in a cache block and aB be the number of count array
elements in a cache block. Following the approach above, we now give the probability

of a cache miss for the above four cases in terms of B and aB.

Case 5: k <aCB and n/k < B

- 3 -
Hperm = g aB + k/C

(-) (1) g (-)] 619

if n > CB, and where 7 = n/(CB).

wen = g a5 (o) * (05 laes (- e 009

if n < CB.

Case 6: k> aCB and n/k < B

fiperm = 1/B + (1 — aC'B/(2k)) + ((B — 1)/B) - (1 — CB/(2n)). (6.20)

108

Case 7: k <aCB and n/k > B

. 1 n (1 aB) n
Mperm = B OéB—i—,O
B

];1 {1 - aéiB (aBl+ p> - (1 - aC%) (- e‘p))] ,(6.21)

where p=k/C.

Case 8: k> aCB and n/k > B
fiperm = 1/B + (1 — aCB/(2k) + (B = 1)/B)(1 = C/(2F)), (6.22)

where p = k/C.

6.2 Cache simulations

In order to validate the cache analysis we ran implementations of the algorithms in a
mode where we simulated accesses to a single-level, direct-mapped cache.

Whenever the program makes an access to a data structure used in the algorithm,
the simulator checks if the address being accessed is in the cache. When simulating
sorting algorithms, we checked the cache for all array accesses but not for accesses to

control variables, such as indices, which, it can be assumed, would be held in registers.

6.3 Accuracy of predictions

Appendix A summarises extensive experiments which study the cache misses during
the permute phase in a generic distribution sorting phase. The experiments are for
n/k < B, covering Cases 1 and 2 of the approximate analysis, and & < CB and
n/k > B, covering Case 3 of the approximate analysis.

Table A.1 in Appendix A shows cache misses per key during the permute phase for
n = 218 219 220 921 922 923 924 925 and n = 226 at expected class sizes of B/4, B/2
and B, where B = 16. We see that the values predicted by Equations 6.7 and 6.11 are
quite accurate.

Tables A.2 and A.3 in Appendix A shows cache misses per key during the permute
phase for n = 22* and 100 random values of k& between 25 and 8192 and for some

selected values of k. Excluding the selected values of k£ we see that the values predicted

109

using Equation 6.16 are quite close to the simulated values, indicating that the equation
seems to be accurate for most values of k. However, the equations are very inaccurate
for the selected values of k, which are: 128, 256, 384, 512, 640, 768, 896, 1024, 1152,
1280, 1408, 1536, 1664, 1792, 1920, 2047, 2048, 2049, 4095, 4096 and 4097.

This suggests that the assumption of random data pointer placement is not always
a good one. We now analyse this further. To simplify the analysis, we make the
assumption that a ‘typical’ value for the number of non-empty blocks, v, is simply the
value of v at the start of the permute phase. As argued before, one would expect all
data pointers to move at roughly the same rate, hence maintaining the original pattern
of data pointers. Tables A.2 and A.3 can be used to validate this. We see that, for
most k, the misses per key predicted using actual v at the start of the permute phase
are quite close to the simulated values. From now onwards, the discussion will focus
on the initial value of v.

First, note that it is surprising that predictions made by assuming a uniform and
independent mapping of data blocks are at all accurate, since these assumptions are
manifestly untrue. The expected starting location of the [-th data pointer in the data
array is precisely the expected number of elements in classes 0, ...,[— 1, and so it
very much depends on the locations of the previous pointers. Furthermore, the number
of elements in classes 0,...,] — 1 is a binomial random variable with expected value
[-n/k, and is not uniformly distributed over cache blocks.

We can make some observations regarding the expected starting locations of the
data pointers. If n is a multiple of C'B then one can reason about this particularly
simply. We can view the cache as being ‘continuous’ and place k& marks on the cache
numbered 0, 1,...,k — 1, with the i-th mark being i- (C'B)/k words from the beginning
of the cache. Letting 7 = n/(CB), we get that the expected number of elements in
classes 0,...,l —11isl-n/k = (I7) - (CB)/k. Hence the expected starting location in
cache of the [-th data pointer is seen to be at the mark numbered (I7) mod k.

The number of distinct marks among 0, 7 mod k, 27 mod k, ..., (k — 1)7 mod k de-
pends upon the ged of 7 and k; more precisely, if ged(7, k) = g then there will be k/g
marks, each of which is the expected starting location of g data pointers. If g is large,
one can expect the number of non-empty blocks to be quite small at the start of the

permute phase. For example, in Tables A.2 and A.3, the prediction using Equation 6.16

110

is very inaccurate when k = 512. Since n = 224, giving 7 = 128 = gcd(r, k), and there
are only 512/128 = 4 different marks where the data pointers’ expected locations lie,
and one would expect v to be very small at the outset.

However, it appears that it is difficult to obtain a simple closed-form expression for
the initial value of v for arbitrary k. One way out might be to choose k£ so that the
analysis is made convenient. We now present two heuristics for selecting k& and show
that the first heuristic though plausible is not always effective, whereas the second

appears to be effective.

6.4 Heuristic 1 for selection of k&

If 7 = n/CB is an integer, and we choose k to be relatively prime to 7, then we know
that all the data pointers are expected to start at different marks. As the marks are pre-
cisely evenly spaced in the cache, it would appear that this heuristic is optimal. Unfor-
tunately, the examples of k = 2047 or k = 2049 below, taken from Tables A.2 and A.3,

show that this is not so:

k | Simulate | Predict k | Simulate | Predict k | Simulate | Predict
2047 0.245 0.198 || 2048 0.320 0.198 || 2049 0.241 0.198

In the experiment, 7 = 128 and gcd(2047,128) = ged(2049,128) = 1. Although all the
data pointers are expected to start at different marks, the miss rates for £k = 2047 and
2049 are still quite high. Note that the expected data pointer starting locations for
k = 2047 are as follows:

mark ‘0‘ 1‘ 2‘ 3“ 126‘ 127‘128‘129‘130‘...
0‘16‘32‘48‘...‘2016‘2032‘ 1‘ 17‘ 33‘...

pointer

The standard deviation of the [th data pointer location is \/n - (I/k) - (1 —1/k). Thus,
data pointers with low or high indices have low standard deviation, so the data pointers
which will stay close to their expected positions are all clustered around marks 0, 128,
256 . . ., while the data pointers which are expected to start around mark 64, 192, 320, . ..
all have high standard deviation and can vary considerably from their expected starting
position. Hence there is a concentration of pointers again around marks 0,128,.... We
see other occurrences of this at k& = 2239, 2945, 3841, 4095, 4096 and 5634, where
ged(7, k — 1) or ged(r, k + 1) is large.

111

We do not know how to compensate for this additional requirement in this heuristic,
but there are other serious disadvantages: one is that the heuristic only works when n is
a multiple of C'B, and another, more theoretical, objection is that for sufficiently large
n, it may not be possible to pick k£ within a certain range of values which is relatively
prime to 7. For instance, if we wish to pick a good k from the range [ki,...,ks] for

integers ky and ks, this is clearly impossible if 7 is k1 - (ky + 1) - ... - ko.

6.5 Heuristic 2 for selection of k

Another heuristic for selecting k& comes from the following fact [53, pp. 550, Q8,9]. Let
f be an irrational number which has the form ﬁ where [> 1 is an integer and
¢ = (1 ++/5)/2. If (z) denotes = — |z], then for all ¢ > [the smallest segment of [0, 1]
that is induced by the points (#), (20), ..., (t0) is at most 1 + ¢ times smaller than the
largest segment. By symmetry, if 8 is of the above form, then the intervals formed by
(—0),(=20),...,(—tf) are also roughly evenly sized. We can use the above to get a
‘good’ value k* in the rough vicinity of a given value k. The value k* is chosen such

that n/k* = yCB, where v is chosen from:
{1/0+¢™ Y 1=1,2,3,..yu{i+1/(+¢")|j=1,2,...and [= 1,...,10} (6.23)

(There may be some duplication among these values: for instance 1/(1 + ¢~ ') =1 —
1/(2+ ¢ 1).) Suppose now that we choose k* = n/(yCB), where (y) = £1/(r +¢ 1)
for some integer » > 1. Again, if we consider the cache to be continuous, the ith class
has an expected starting location which is offset (iy)C'B locations from the start of the
cache. By the above fact, we may conclude that the expected starting locations of the
classes are roughly evenly spaced in the cache, provided that k* > r. Furthermore, all
data pointers for classes > r are evenly spaced with respect to the data pointers for
lower-numbered classes.

The limit [< 10 in Equation 6.23 when j > 1 is somewhat arbitrary and is chosen
so that k* can always be chosen to within about 10% of k, provided that n/k >
0.5C'B, as can easily be verified. As an example the ‘good’ values of n/k in the range
[0.5CB,1.5CB] are (roughly) 0.62CB, 0.72CB, 0.79CB, 0.82CB, 1.18CB, 1.21CB,
1.28C B and 1.38C'B, so the nearest larger approximations to n/k = 0.5CB and n/k =

112

CB are respectively 0.62CB and 1.18CB. (When n/k is small we can remove the
restriction on [, as the data pointers 0, ...,/ — 1 anyway do not collide with each other.)

It should be noted that this gives a non-integral value of k£, but the algorithm
remains essentially unchanged. In the analysis, the last pointer now may have a lower
access rate (as the final class may be small), but the effect appears to be negligible.
The main advantages of this approach are: (i) it works even when n is not a multiple
of CB and (ii) the low-numbered and high-numbered data pointers are also equally
spaced. Table A.7 in Appendix A shows that this heuristic appears to place pointers

more or less at random.

6.6 Summary

In this chapter we have given an approximate analysis of the permute phase of dis-
tribution sorting when the keys are independently drawn from a uniformly random
distribution. We have shown that the distribution of data pointers at the start of the
permute phase is a good predictor of the number of cache misses per key. We have
shown why the assumption that pointers are uniformly and randomly distributed in
cache blocks may not be true and have given two heuristics which attempt to satisfy

this assumption. The analysis has been validated using cache simulations.

113

Chapter 7

Sorting random numbers in the

CMM

The cache miss analyses of the last two chapters can be used to tune distribution sorting
algorithms. However, so far we only have an analysis of the permute phase. So, we start
this chapter by doing an analysis of the cache misses during the count phase of a generic
distribution sorting algorithm, when keys are uniformly and randomly distributed to
classes.

We then describe an algorithm that sorts uniformly-randomly distributed floating-
point numbers using one pass of distribution sorting. Using the analysis in Chapter 6
and Section 7.1, we show that this algorithm has very poor cache performance and
hence running times. We then derive a multiple pass version of the algorithm that has
good cache performance and is over twice as fast as the single pass algorithm.

We then discuss the problem of sorting floating-point numbers using their integer
representation. This induces a non-uniform distribution of keys to classes and we use

the analysis in Chapter 5 to tune this algorithm.

7.1 Cache analysis of count phase

In this section we analyse the cache misses during the count phase of distribution
sorting, when the keys are uniformly and randomly distributed to classes. We give
three cases which state the approximate number of cache misses, given the various

parameter choices that may be made during one pass of distribution sorting.

114

These results are obtained by slight modifications to the results in [56]. We first
briefly describe the results in [56] and then discuss how the results have been extended
to deal with the count phase in distribution sorting.

The analysis in [56] assumes that the cache is single-level and direct-mapped, that
count array locations are accessed uniformly and randomly, that n = xC'B for integer
z > 2 and that £k = yB for integer y > 1. The expected number of cache misses per

memory access predicted in that analysis is as follows:
T+R+T+1T.

Where T is the cache misses per memory access due to the traversal of the data array

and is given by:
1
- 2B’

R is the expected number of cache misses per memory access due to memory blocks

from the count array conflicting with each other and is given by:

)

if k <CB
s(1—¢7p) ifk>CB.

R =

I is the expected number of cache misses per memory access caused by the traversal

periodically capturing each block in the cache and is given by:

k/B 1 CB—(B-1)
I'=5c8 [1 - (1 - k/—B>]

when k < C'B, otherwise it is approximately:

C 1\ CB—(B-1)
I~ % ll — (1 — 5) .

I' is the expected number of cache misses per memory access caused by random count
array accesses to a block that is mapped to the same one as being traversed and is

given by:

sl

. T if k<CB
b5 (1+4%) ifk>CB.

There are n memory accesses to the data array and n memory accesses to the count

array, so to remain consistent with the approach in Chapter 6 and express these results

in terms of cache misses per key we have to multiply each of the terms above by a

factor of 2.

115

These results are only for the cache misses during the frequency counting step of the
count phase (Step 2 of the count phase pseudo-code shown in Figure 4.1) and they do
not take into account cache misses to initialise and prefix-sum the count array (Steps
1 and 3).

Assuming the cache is empty at the start of the count phase there will be k/B
cache misses to initialise the count array. If the cache does not contain any count
blocks before the prefix-sum phase, because the first C blocks were removed due to the
traversal of data, then there will be an additional k/B cache misses. So there will be
at most (2k/B)/n cache misses per key to initialise and prefix-sum the count array.

We now give three cases which describe the cache misses per key during the count
phase when distribution sorting uniform keys. In the first two cases we ignore the fact
that n may not be a multiple of CB as the effect of this to the cache miss rate is not
significant - only the values of I and I " would be inaccurate and their contribution is

small. In all three cases we ignore the fact that k¥ may not be a multiple of B.

Case 1: n>CB and k£ > CB

In this case the data and count arrays are larger than the cache. The misses per memory
access are as described by [56] plus at most 2(k/B)/n misses per key for initialisation

and prefix-summation of the count array. Thus re-writing 2(T + R+I1+1)+ (2k/B)/n

we obtain:
l n k—CB n
M count B A
C 1\¢B-B+1l (B-1)(k+CB) 2k/B
—[1-({1—-—= . 1
k (0)] s . (T

Case 2: n>CB and k< CB

In this case the data array is larger than the cache but the count array fits in cache. The
misses per memory access are as described by [56] plus at most 2(k/B)/n misses per
key for initialisation of the count array. Thus re-writing 2(T+ R+ 1+ 1) + (2k/B)/n

we obtain:

1 k/B l B (1 B g)CBBH] N 2(B - 1) N 2k/B. (7.2)

Heont =5 T TR R B

116

Case 3: n<CB and £E<(CB

In this case the data and count arrays fit in cache. Most of the misses here are as in
Cases 1 and 2 above. There are (k/B)/n misses per key for initialisation of the count
array. The misses per key for the traversal acting alone, from T', is 1/B. There are no
conflict misses between count blocks.

For cache block 7 which has a count block and a data block mapped to it, the
misses per key due to random accesses to the count block while the cache block is being
traversed by the data array, from [', is %. After the last data traversal access in
1 the count block is no longer in ¢ so the count block must be re-loaded at most once,
either during the remaining data traversal accesses or during prefix-summadtion.

The probability that cache block 7 has a count block mapped to it is (k/B)/C and
the probability that cache block i has a data block mapped to it is (n/B)/C. Since
these events are independent, the probability that cache block 4 has a count and a data

block mapped to it is k/TBn/TB. So the overall number of cache misses per key is:

L k/B k/Bn/B (2(3 -1, k/B) ‘

Heount =5 T = c C CB n (7.3)

As we will see later, this case is applicable to the count phase in the final pass of

MPFlashsort, where all the keys in a distribution sorting sub-problem fit in cache.

7.1.1 Dissimilar key and count array element sizes

The above analysis assumes that count array elements and keys are of the same size,
but it can be easily modified to handle the situation where the sizes differ. As for the
approximate analysis of the permute phase, we let B be the number of keys in a cache
block and aB be the number of count array elements in a cache block. We first express
T,R,I and I’ in terms of B and aB and we then give the probability of a cache miss
for the above four cases.

Since T is expressed solely in terms of the number of keys in a cache block, it
remains T = 1/(2B).

We can now fit a count array of size aC'B in cache, so we get:

jen

if k <aCB

R =

D=

117

I is the expected number of cache misses per memory access caused by the traversal
periodically capturing each block in the cache and is given by:

_ k/(aB) 1 98B
I'==3cE [l B (1 B k/(aB))]

when k < aCB, otherwise it is approximately:

ol 1\ CB-(B-1)

I' is the expected number of cache misses per memory access caused by random count
array accesses to a block that is mapped to the same one as being traversed and is

given by:

T

it k < aCB
C .
(1+455) ifk>aCB.

3
s

I' =

u:
L

)
Q
S5

Case 4: n > CB and k > aCB

Re-writing 2(T + R+ I +I') + (2k/(aB))/n we obtain:

— L k-oCB
MHcount = B L
C 1\¢B-B+11 (B~ 1)(k+aCB) 2k/(aB)
— [1—=(1-= . (74
ak <) + CBk + n (74)
Case 5: n > CB and k< aCB
Re-writing 2(T + R+ I+ I') 4 (2k/(aB))/n we obtain:
1 k/(aB) aB\¢B-B+ 2B —-1) 2k/(aB)
Meount = E + 073 l]. — (]_ — T) + CB + n . (75)
Case 6: n < (CB and k< aCB
Arguing as in Case 3, we obtain:
1 k/(aB) k/(aB)n/B <2(B— 1) k/(aB))
et =g+ —* ¢ ¢ \"oB "~ a) (7.6)

118

7.2 Flashsort

7.2.1 Flashsortl

Neubert [67] presented Flashsort!, an implementation of a distribution sorting algo-
rithm which used the in-place permutation method described in Chapter 4, to sort n
keys in O(n) time. In Flashsortl, it is assumed that the keys are real numbers indepen-
dently drawn from a uniformly-random distribution. Flashsortl first scans the input
numbers to determine the largest (maz) and smallest (min) values in the input. After

this, we perform one distribution pass into k£ > 2 classes, using the function classify

k

——"—0-|. Finally, the data array is sorted using

which for a value z returns |z —min -
insertion sort. If k& < n the total expected cost of the insertion sort is easily seen to be
O(n?/k), while the rest of the algorithm evidently runs in O(n) time. The algorithm

. After experimentation Neubert chose k = n/10 to

uses 2k extra memory locations
minimise extra memory while maintaining a near-minimum expected running time [67].

Neubert’s experiments showed that his implementation of Flashsortl was twice as
fast as Quicksort when sorting about 10,000 keys. In the RAM model, the lower asymp-
totic growth rate of Flashsortl and the fact that Flashsort1l outperforms Quicksort for
n = 10,000 would indicate that Flashsortl would continue to outperform Quicksort
for larger values of n. Unfortunately, this is not the case. We translated Neubert’s
FORTRAN code for Flashsortl into C++ and performed extensive experiments, see Ta-
ble 7.1, which clearly indicated that although Flashsortl (Flashl) was significantly
faster than Quicksort (MTQuick) for n in the range 2'? to 2'7, Quicksort caught up
with and surpassed Flashsortl at 22 keys. We performed experiments up to n = 226
and we found that the ratio of the running times of Flashsortl to Quicksort continued
to grow with n.

Using Eq. 6.7 in Chapter 6 we see that the cache misses just for the permute phase
of the algorithm are very high. For example, if we sort on a cache with parameters
B = 16 and C' = 8192, as would be the case our Sun UltraSparc-II using single-
precision floating-point numbers, then at n = 218,219 220 921 922 923 924 925 3pd

226 the number of cache misses per key are approximately:

'In fact, Neubert’s code had a more complex procedure for cycle leader finding than that described in
Chapter 4 which used only k extra memory locations. Our experiments showed that an implementation

using this approach was significantly slower.

119

Input size 218 219 220 221 222 223 224 225 226

Predicted | 0.776 | 1.118 | 1.379 | 1.658 | 1.829 | 1.915 | 1.957 | 1.979 | 1.989

So, in the 2 memory accesses per key during an in-place permutation, we see that
for n. > 2'9 over half the memory accesses result in cache misses, and the situation gets
worse as n increases, such that at large values of n almost all memory accesses result
in cache misses.

Using Corollary 5.1 in Chapter 5, a very rough analysis shows us that for the largest
of these values of n and given our values of C' = 8192 and B = 16, if we use k = C/B
classes then in one pass of the permute phase we will have O(1/B) cache misses per
key and will create sub-problems each of about C'B keys. If we solved sub-problems of
size n' &~ CB using n’/10 keys, then using Eq 6.7 in Chapter 6, we see that there will
be O(1/B) cache misses for the permute phase in the second pass.

This clearly indicates that a multi-pass algorithm which used fewer classes could
greatly reduce the number of cache misses and probably give a faster implementation.

In order to derive a multi-pass algorithm we need to have an analysis of all the
misses in Flashsortl and in its multi-pass variant; so far we just have analyses for the
count and permute phases. Before the count phase Flashsortl sequentially accesses n
elements of the data array to determine the minimum and maximum valued keys. Since
n/B data blocks must be loaded into cache, this step requires 1/B cache misses per

key. Hence:
Prange = 1/B. (7.7)

These misses would also be incurred by the multi-pass variant.

After the distribution sort pass, the algorithm sorts the keys within each class using
insertion sort. Since k = n/10, the problems that need to be solved are of expected
size < 10, so in Flashsortl it is extremely unlikely in practice that any problem will
exceed the size of the cache. As we will see, the same holds for the multi-pass variant.

Hence we allocate 1/B misses per key for this phase:

Mins_sort =]-/B (78)

It should be noted that the multi-pass variant may incur no additional misses for the

insertion sort phase for some values of n.

120

7.2.2 Multi-pass algorithm

We have seen that the cache misses during both the count and permute phase are greatly
influenced by the number of classes. As outlined above, an algorithm which, when
appropriate, uses fewer classes in a pass and applies distribution sorting recursively to
keys within each class would outperform Flashsort1. The algorithm, called MPFlashsort
should switch to a higher number of passes only when the reduction in cache misses
can compensate for the increase in the number of operations. We will now perform this
calculation for the Sun UltraSparc-II (2 x 300) MHz machine, with a 512KB L2 cache
with a 64 byte blocksize. Assuming that we are sorting single-precision floating-point
numbers, B = 16 and C' = 8192.

Firstly, we need to estimate the relative cost § of the “pure computation” cost of one
distribution pass versus a cache miss. Inspecting the optimised assembly code produced
by the compiler, gcc 2.8.1 using optimisation level 6, there are approximately 30
operations per key in one distribution pass, and the cost of a L2 cache miss on this
machine is approximately 30 cycles, so d = 1. (It should be noted that this calculation
can only yield a rough guide, since the underlying model is very crude.)

MPFlashsort uses one pass until the number of keys is larger than a threshold value

T,. The value of T} is selected to be the minimum value of n such that:

Here M;(k) is the number of misses per item for sorting 10k keys in one pass by
classifying into k classes, as described in cases 1 and 2 of the count and permute phase
analysis. Similarly, Ms(k) is the number of cache misses incurred in a distribution
sorting pass using k classes as described in case 3 in the count and permute phase
analysis. Recall that the permute analysis of case 3 is applicable only when n/k > B

and the value of k is not “bad”. Hence we fix z = n/(0CB) where 6 = ; since

JERyrY
we want xy = z = n/10, this fixes y = (#CB)/10. Performing the calculation gives
z = 62153, giving n = 621530, which is the value coded into MPFlashsort.

We now consider how to generalise this to multiple passes. We first set the expected
problem size in the final distribution pass to fCB. Again letting z = n/(6CB), we

have to perform distribution passes until the expected class size is reduced by a factor

of z. In the [-pass algorithm for [> 2, this is done in [— 1 distribution passes with

121

/(=1 classes in each pass. The algorithm switches to [+ 1 passes when it is more
efficient to reduce the expected problem size by a factor of z in [passes with 2/t classes

in each pass. Thus, we switch from [> 2 to [+ 1 passes when:
(I — 1) My (=) > 1 My(2'') + 6. (7.10)

Doing the calculations for [= 2, we get that we should switch from two to three passes
when x > 65587, corresponding to n > x - 0C B =~ 5, 313, 000, 000.

It should be borne in mind that Ms(k) does not predict cache misses well if k
is ‘bad’, and selecting k& according to Heuristic 2 is our only suggestion for avoiding
‘bad’ k. Hence, we modify the operation of the [-pass algorithm as follows. Instead
of performing [passes with 21/0=1) classes in each pass, the number of classes used in
the passes are k1, ko, ..., k;_1, which satisfy: (i) the expected problem size for the final
pass is #CB as required; (ii) k; is of the required form for all 4, and (iii) k; varies by no
more than about 10% from z'/(=1) for all 5. With such a small variation in the class
sizes, the calculations will continue to be broadly correct.

We now consider how this may be done for [= 3. First, we should choose k; classes
for the first pass, such that 0.92/2 < ky < 1.1z'/2, and k; is of the appropriate form. As
noted in the text after Equation 6.23, this can always be done. The expected class sizes
after the first pass are n’ = n/k;. In the second pass, we simply choose ky = n’/(0CB)
and note that 0.9k, < £1/2 < 1.1ky. The following element of approximation should be
noted: the expected class sizes after the first pass are n’ = n/ky for all classes but one
(as k1 is not an integer). The misses incurred by the ‘small’ class are ignored in the
calculation.

Also, these threshold values of 62153 and 65587, which are approximately 8C', should
be contrasted with the fact that in the EMM, the number of classes in a pass should be

no more than C' [8], we have also discussed this in Chapter 4. Furthermore, as shown in

N log(N/B))
B logC

Corollary 5.1, in Chapter 5, in order to get the asymptotically optimal © (
number of cache misses in the presence of conflicts using a direct-mapped cache, we
should have no more than O(C/B) classes in all passes but the last one. However, the
above accounting shows that these choices would result in excessive operations, which
would not be paid for by the reduced number of cache misses.

In the next section we compare the performance of the multi-pass algorithm to

Flashsortl and cache-tuned Quicksort.

122

7.2.3 Experimental results

We have implemented Flashsortl, and MPFlashsort, and have used them to sort n
uniform random floating-point numbers, for n = 2¢, i = 10,11, ...,26. Memory-tuned
Quicksort (MTQuicksort) was found to be the fastest algorithm from [59] on our ma-
chine and we also tested this. We have also included some running times from Sanders’
Heapsort (an out-of-place algorithm), but as noted below, it is not easy to compare the
other algorithms with Sanders’ Heapsort.

Most of our experiments were on a Sun UltraSparc-1I with 2 x 300 Mhz processors
and 1GB main memory, a 16KB L1 data cache and a 512KB L2 cache, both of which are
direct-mapped. On this platform the Flashsort algorithms and Sanders’ Heapsort were
coded in C++ and MTQuicksort was coded in C and the algorithms were compiled
using gcc 2.8.1 with optimisation level 6. For each algorithm, we have measured
actual running times as well as simulated numbers of cache misses. The simulator
simulates only the L2 cache on this machine, and only reports cache hit/miss statistics.
Each running time and simulation value reported in this section is the average of 50
runs.

Table 7.1 summarises the running times for Flashsortl, MPFlashsort and MTQuick-

sort on single-precision keys. We observe that:

e For small values of n Flashsort1 gets steadily faster than MTQuicksort until it uses
about 75% of the time of MTQuicksort for n = 216, After that the performance
advantage narrows until at n = 2! MTQuicksort overtakes Flashsortl. From
220 onwards the relative gap between MTQuicksort and Flashsortl (the ratio

of the running times) generally increases steadily until the largest input value

considered. This is interesting given that in the RAM model MTQuicksort has a

higher asymptotic running time than Flashsort1.

e The performance of MPFlashsort matches that of Flashsortl up to n = 2'°, after
which point the algorithm performs two passes on the data and outperforms both
Flashsortl and MTQuicksort. At the largest value of n considered MPFlashsort
is over twice as fast as Flashsortl. Note that the running time of MPFlashsort
at n=2%" is almost exactly twice the running time of MPFlashsort at n=2',

even though the algorithm switches from one to two passes. This suggests that

123

Timings (s) on Sun UltraSparc-II
single-precision keys
n | Flashl | MPFlash | MTQuick
210 10.0004 0.0004 0.0004
2111 0.0007 0.0007 0.0008
212 1 0.0015 0.0015 0.0017
213 1 0.0032 0.0031 0.0037
214 | 0.0065 0.0064 0.0081
215 1 0.0134 0.0132 0.0175
216 1 0.0282 0.0280 0.0376
217 1 0.0634 0.0630 0.0800
218 1 0.1555 0.1547 0.1700
219 1 0.3623 0.3645 0.3591
220 10.9420 0.7102 0.7760
221 | 2.3250 1.4302 1.6630
222 | 5.2690 2.8622 3.5260
223 | 12.047 6.4995 7.4709
224 | 26.088 14.045 15.863
225 | 54.613 29.276 33.372
226 1 124.80 59.852 69.969

Table 7.1: Running times of Flashsortl, MPFlashsort and MTQuicksort on a Sun

UltraSparc-1T using single-precision floating-point keys.

the threshold value for switching from one to two passes has been calculated

accurately.

Table 7.2 summarises the running times for Flashsortl, MPFlashsort and MTQuick-
sort on 8-byte data, using double-precision keys. Here we use the analysis for dissimilar
key and count array element sizes to calculate the threshold values. As we are dealing
with 8-byte data and 4-byte count elements, we have that B = 8 and a = 2. We

calculate that at n > 706270 we should switch from 1 to two passes. Note that:

e MTQuicksort starts to outperform Flashsortl later than for single-precision data,

namely only for n > 22!,
e MPFlashsort is 35% faster than MTQuicksort for the largest values of n, a bigger

124

2 T T T

Flashsortl ——
MPFlashsort -+--
1.8 + MTQuicksort -8-- /3

time per key (microseconds)

0.2

Il Il
"1 2716 2721 2726
number of keys

Figure 7.1: Time per key to sort single-precision floating-point keys using Flashsort1,
MPFlashsort and MTQuicksort on a Sun UltraSparc-II. For n = 2,4 = 10,...,26.

Note that the z-axis is on a log scale.

performance gap than for the single-precision case.

e MPFlashsort and Flashsortl are only slightly slowed down relative to the single-
precision case, but MTQuicksort is significantly slower. Although the distribution
sorting algorithms are slowed down about 10-15% relative to the single-precision

case, with no clear trend, MTQuicksort for doubles is about 35% slower than

for floats at 2'®, with the slowdown gradually increasing to about 50% at 22°.
Possibly this is due to the fact that Quicksort makes ©(nlogn) data moves but

the distribution sorts make only O(n) data moves.

Finally, we attempted comparisons with Sanders’ Heapsort, but it should be noted
that Sanders’ algorithm sorts 8-byte records with a key and a pointer, whereas our
implementations are optimised for simply sorting keys. Indeed, the only commonality
with Sanders’ code is that 8-byte data are being sorted. Nevertheless, we have included
these running times as a very rough guide.

To verify that our predicted performance gains can be attained on other platforms,
we tested Flashsortl, MPFlashsort and MTQuicksort on a system with an Intel Mobile
Pentium III processor. This system has a 16KB 4-way set-associative L1 cache with 32

byte blocks, a 256 KB 8-way set-associative L2 cache with 32 byte blocks and 256MB of

125

Timings (s) on Sun UltraSparc-IT

8-byte keys 8-byte rec’s
n | Flashl | MPFlash | MTQuick Sanders
21010.0004 0.0004 0.0005 0.0007
211 1 0.0008 0.0009 0.0010 0.0016
212 1 0.0017 0.0017 0.0023 0.0036
213 1 0.0034 0.0035 0.0051 0.0079
2141 0.0069 0.0070 0.0109 0.0164
215 1 0.0144 0.0145 0.0238 0.0341
216 1 0.0317 0.0320 0.0510 0.0693
2'7 | 0.0765 0.0774 0.1093 0.1413
218 1 0.1723 0.1733 0.2330 0.3016
219 1 0.4463 0.4502 0.5099 0.6321
220 1 1.0362 0.7922 1.1082 1.3088
221 | 2.4700 1.5906 2.4014 2.7248
222 | 5.5752 3.5402 5.1698 5.6428
223 |1 12.706 7.6008 11.050 11.704
224 | 27.487 15.722 23.533 24.697
225 | 60.917 32.227 50.111 50.472

Table 7.2: Running times of Flashsortl, MPFlashsort, MTQuicksort using 8-byte
(double-precision floating-point) keys and Sanders’ Heapsort using 8-byte records on a

Sun UltraSparc-II.

126

2 T T T

Flashsortl ——
MPFlashsort -+--
1.8 + MTQuicksort -8--
Sanders sort -

time per key (microseconds)

0.2 Il Il Il 1 1 1
2M1 2716 2721
number of keys

Figure 7.2: Time per key to sort 8-byte (double-precision floating-point) keys using
Flashsort1l, MPFlashsort, MTQuicksort and 8-byte records using Sanders’ Heapsort on

a Sun UltraSparc-II. For n = 2¢,i = 10,...,25. Note that the z-axis is on a log scale.

main memory. The L1 hit time is 3 clock cycles, we assume the L2 hit time is 4 cycles
and the L2 miss penalty is 52 clock cycles. Our analysis is not for set-associative caches,
nevertheless we use it to calculate a threshold value for MPFlashsort when optimising
for the L2 cache on this machine. Our experiments were performed on uniformly-
random single-precision floating-point keys. The programs were complied using the
Microsoft Visual C++ 6.0 compiler and inspecting the assembly code tells us that
0 ~ 1.7 and that the algorithm should switch from one to two passes at n = 899230.
Table 7.3 summarises the running times for Flashsort1, MPFlashsort and MT Quicksort

using single-precision floating-point keys. We note that:
e As predicted, MPFlashsort starts to outperform Flashortl at n = 220,

e MTQuicksort is the fastest of the three algorithms for n < 223. Only at n = 2%
does MPFlashsort start to outperform it. We attribute this to the high instruction

count on this platform for each pass of distribution sorting.

7.2.4 Cache simulations

We also ran these algorithms on an L2 cache simulator for the Sun UltraSparc-II.

Figure 7.3 compares MTQuicksort and Flashsort1, while Figure 7.4 compares the three

127

Timings (s) on an Intel Mobile Pentium IIT
single-precision keys

n | Flashl | MPFlash MTQuick

218 1 0.1417 0.1487 0.1272
219 10.3305 0.3445 0.2760
220 1 0.7731 0.7366 0.5955
221 | 1.6764 1.4837 1.2924
222 | 3.4730 2.9967 2.7425
223 | 7.2390 6.0435 5.9045
224 | 14.992 12.167 12.530
225 | 32.566 24.454 26.337

Table 7.3: Running times of Flashsortl, MPFlashsort and MTQuicksort on a machine

with an Intel Mobile Pentium III processor, using single-precision floating-point keys.

faster algorithms. These figures show the number of L2 cache misses per key for the

three algorithms on single-precision floating-point keys. We observe that:

e When the problem is small and fits in L2 cache, for n < 2'6, the number of misses

per key are almost constant for each algorithm, these are the compulsory misses.

e In Flashsort1 for n > 2!7 we see a rapid increase in the number of misses per key
as n grows, appearing to level off at over 3 misses per key (virtually every access

that could be a miss is a miss).

e In MTQuicksort the number of cache misses per key increases linearly with logn
for n > 2'7, reaching about 0.82 misses per key at 225, Note that MTQuicksort

makes O((logn)/B) misses per key on average, so this is not unexpected.

e In MPFlashsort we first see a rapid increase in misses per key going from 0.331
at n = 27 to 1.361 at n = 2'9. At n = 2?0 the misses per key drops to 0.446, as
the algorithm switches to two passes, and we see a very gradual increase reaching

0.504 at n = 226,

Figure 7.5 shows for the first permutation phase of MPFlashsort the cache misses

226

per key predicted using Equation 6.16 for values of n = 220, ..., in increments of

128

35

T T T
Flashsortl ——
MTQuicksort -+-

3|
25

)

X 2

o]

a

0

@«

g 15 |

g .
1k
05

f
2M1

Figure 7.3: L2 cache misses per key

2716 2126

number of keys

on single-precision floating-point keys using Flash-

sortl and MTQuicksort. Note that the z-axis is on a log scale.

MPFlashsort —
MTQuicksort -+~

1.4
12 F
1k
%
B 0.8 |-
[}
o
[}
(]
g 0.6 |-
:)
0.4
02

I
2M1

I
2721 2126

number of keys

Figure 7.4: L2 cache misses per key on single-precision floating-point keys: MPFlashsort

vs MTQuicksort. Note that the z-axis is on a log scale.

129

0.13 T

predicted —
actual -o-—

misses per key

0.06
2720 2723 2726
number of keys

Figure 7.5: L2 cache misses per key during the first ‘in-place’ permutation of MPFlash-

226 217

sort. Predicted for values of n = 220, ..., in increments of and simulated at

n=2i=10,...,26. Note that the z-axis is on a log scale.

2!7 and the simulated cache misses per key for n = 2%,4 = 10,...,26. We see that the

two lines follow each other very closely.

7.3 MSB radix sort

In practice there are often cases when keys are not uniform (e.g., they may be normally
distributed); the analysis in Chapter 5 can be used to tune distribution sort in these
cases. We consider a different application here: sorting independently and uniformly
distributed floating-point numbers in the range [0, 1) using the integer sorting algorithm
MSB radix sort. It is well-known that one can sort floats by sorting the bit-strings
representing the floats, interpreting them as integers [45]. Since (simple) operations on
integers are faster than operations on floats, this can improve performance.

One pass of MSB radix sort using radix size r groups the keys according to their
most significant r bits in O(2" + n) time. For random integers, a reasonable choice
for minimising instruction counts is r = [logn — 3| bits, or classifying into about
n/8 classes. Since each class has about 8 keys on average, they can be sorted using
insertion sort. Using this approach for this problem gives terrible performance even at

small values of n (see Table 7.4). As we now show, the problem lies with the distribution

130

of the integers on which MSB radix sort is applied.

7.3.1 Radix sorting floating-point numbers

A floating-point number is represented as a triple of non-negative integers (7, j,1). Here i
is called the sign bit and is a 0-1 value (0 indicating non-negative numbers, 1 indicating
negative numbers), j is called the ezponent and is represented using e bits and [is
called the mantissa and represented using m bits. Let j* = j — 27! 4+ 1 denote the
unbiased exponent of (i, j,[). Roughly following the IEEE 754 standard, let the triple
(0,0,0) represent the number 0, and let (i,7,l), where j > 0, represent the number
+277(1 +127™), depending on whether 2 = 0 or 1; no other triple is a floating-point
number. Internally each member of the triple is stored in consecutive fields of a word.
The IEEE 754 standard specifies ¢ = 8 and m = 23 for 32-bit floats and e = 11 and
m = 52 for 64-bit floats [45].

We model the generation of a random float in the range [0,1) as follows: generate
an (infinite-precision) random real number, and round it down to the next smaller float.
On average, half the numbers generated will lie in the range [0.5,1) and will have an
unbiased exponent of —1. In general, for all non-zero numbers, the unbiased exponent
has value ¢ with probability 2¢, for i = —1,—2,...,—2°"! +2, whereas the mantissa is a
random m-bit integer. The value 0 has probability 9277142, Clearly, the distribution
is not uniform, and it is easy to see that the average size of the largest class after the
first pass of MSB radix sort with radix r is n (1 — 225_%) ifr<e+1, and n/(277°)
ifr>e+ 1.

This shows, e.g., that the largest sub-problems in the examples of Table 7.4 would
be of size n/ llogn=3]-8 ~ ol4 g4 using insertion sort after one pass is inefficient in

this case?

. To get down to problems of size 8 in one pass requires a radix of about
logn + 8, which is impractical. Also, MSB radix sort applied to random integers has
O(n) expected running time independently of the word size, but this is not true for
floats. A first pass with r < e barely reduces the largest problem size, and the same
holds for subsequent passes until bits from the mantissa are reached. As the radix in

any pass is limited to logn + O(1) bits, we may need Q(e/logn) passes, introducing a

dependence on the word size.

?In fact, the total number of keys in all sub-problems of this size would be n/2 on average.

131

7.3.2 Using Quicksort

To get around the problem of having several passes before we reduce the largest class,
we partition the input keys around a value 1/n < 6 < 1/(logn), and sort the keys
smaller than 0 in O(n) expected time using Quicksort. We then apply MSB radix sort
to the remaining keys. Let ¢’ = min{[loglog(1/6)],e} denote the effective exponent,
since the remaining keys have exponents which vary only in the lower order €' bits.
This means that keys can be grouped according to a radix r = e + 1 +m' with m’ >0
in O(n + 2¢+™") time and O(2¢+™') space. Since ¢/ = O(loglogn), we can take up to
logn— O(loglogn) bits from the mantissa as part of the first radix; as all sub-problems
now only deal with bits from the mantissa they can be solved in linear expected time,

giving a linear running time overall.

7.3.3 Cache analysis

We now use the analysis in Chapter 5 to calculate an upper bound for the cache misses
in the permute phase of the first pass of MSB radix sort using a radix r = e + 1 + m/,
for some m’ > 0, assuming also that all keys are in the range [, 1), for some 6 > 1/n.
There are 2¢+™ pointers in all, which can be divided into g= 2¢' groups of K = o
pointers each. Group ¢ corresponds to keys with unbiased exponent —i, fori =1,...,g.
All pointers in group i have an access probability of 1/(K2'). Using Theorem 5.1 and
a slight extension of the methods of Theorem 5.2 we are able to prove Theorem 7.1

below, which states that the number of misses is essentially independent of g:

Theorem 7.1 Provided gK < CB and K < C the number of misses in the first pass

of the permute phase of MSB radix sort is at most:

1 2K
n (E + 50 (2.3B+2logB+logC—logK+0.7)) +gK(1+1/B).

ProoF. Using Eq. 5.15 we can calculate a lower bound on the probability of event

X(ifl)KJrl as:

Pr[X(i—l)K-i-l]

K2t 1 I KB po-i B-1JZ 9
>]__ - - P - . - -

132

K (& B2 , g 277

K , g 27
> 11— — |logB+1+2 B-1 _— 11
> BC(Og +i+2"+();2]+21> (7.11)

If K2¢/(BC) > 1 then Pr[X(;_1)k+1] would be negative, so we place a bound on
this term such that K2 < BC. The maximum value of i such that K2'/(BC) < 1 is
log BC' —log K — 1.

Since the probabilities of access to pointer D(;_1)g41,- .-, Dik are all 1/(K2%) we
can calculate an upper bound on p; using Eq. 5.6 and 7.11 as:

K2 9 g 9-j log BC—log K—1)
i=1

j=1 i=1
g

+ Z Kp;

i=log BC—log K

g9 q _4

1 K 277
= ——— |logB+i1+ (B —1 _
222B0<0g +7’+()22—]+2—z>

i—1 j=1

log BC—log K—1 9
1 K . 1
R
i=1 2'BC i=log BC—log K 2
K I logB i 1 & 27
= BC(Z 2i +;?+(B_1)2522—J+2—i
i=1 =1 =1 7j=1
K 2K
— (logBC' —log K — 1 —_—
+BC(0g C —log)+CB
K
< — (2logB+3+1logC —logK +2.3(B —1)).

BC

7.3.4 Tuning MSB radix sort

We now optimise parameter choices in our algorithms. The smaller the value of 0, the
fewer keys are sorted by Quicksort, but reducing # may increase ¢’. A larger value of
€/ does not mean more misses, by Theorem 7.1, but it does mean a larger count array.
We choose § = 1/(logn)? as a compromise, ensuring that Quicksort uses o(n) time.
Using the above analysis we are also able to determine an optimal number of classes
to use in each sorting sub-problem. We use two criteria of optimality. In the first, we

require that each pass incur no more than (2 + ¢)n/B misses for some constant € > 0,

133

n=|1x10%|2x10% | 4x10% | 8 x 10% | 16 x 10% | 32 x 105
MTQuick | 0.7400 | 1.5890 | 3.3690 | 7.2430 15.298 32.092
Naivel 7.0620 | 14.192 | 28.436 | 57.082 115.16 233.16

Table 7.4: Running times in seconds of MTQuicksort and Naivel MSBRadix sort (single

pass MSBRadix sort without partitioning, r = [logn — 3])floating-point keys.

n=|1x10%|2x105 | 4x 105 | 8 x 105 | 16 x 10% | 32 x 10° | 64 x 105
MPFlash | 0.6780 | 1.3780 | 2.2756 | 6.1700 | 13.308 | 27.738 | 56.796
MTQuick | 0.7400 | 1.5890 | 3.3690 | 7.2430 | 15.298 | 32.092 | 67.861
MSBRadix | 0.3865 | 0.8470 | 1.9820 | 5.0300 | 9.4800 | 19.436 | 40.663

Table 7.5: Running times in seconds of MPFlashsort, MTQuicksort and MSBRadix

sort on a Sun UltraSparc-1I using single-precision floating-point keys.

thus seeking essentially to minimise cache misses (2n/B misses is the bare minimum for
the count and permute phases). In the second, we tradeoff reductions in cache misses
against extra computation. The latter yields better practical results, and results shown

below are for this approach.

7.3.5 Experimental results

In Table 7.5 we compare tuned MSB radix sort with a memory-tuned Quicksort al-
gorithm (MTQuicksort)[59] and with MPFlashsort. The algorithms were coded in C
and compiled using gcc 2.8.1. The experiments were on our Sun UltraSparc-II with
2 x 300 MHz processors and 1GB main memory, and a 16KB L1 data cache, 512KB
L2 direct-mapped cache. Observe that MSB radix sort easily outperforms the other

algorithms for the range of values considered.

7.4 Summary

In this chapter we have shown that a recently published distribution sorting algorithm,
Flashsort1, which sorts uniformly and randomly distributed data in O(n) time is fast
when sorting small problems, but due to poor cache utilisation it starts to perform

poorly when data is larger than the cache size. Using the analysis in this and the previ-

134

ous chapter we have obtained a variant of Flashsortl, MPFlashsort, which switches to
multiple passes when appropriate and matches or outperforms Flashsortl and memory-
tuned Quicksort at all values of n. The performance of MPFlashort is attributable to
good cache utilisation.

We have shown that if the integer sorting algorithm MSB radix sort is used to
sort uniformly and randomly distributed floating-point numbers then a non-uniform
distribution of keys to classes is induced. We have shown that a naive implementation of
this algorithm would have very poor performance due to this non-uniform distribution.
We have shown that by partitioning the keys, to remove keys which are expected to go
into small classes, and by using the analysis of Chapter 5, the algorithm can be tuned
for good cache performance. Due to fast integer operations and good cache utilisation

the tuned algorithm outperforms MPFlashsort and memory-tuned Quicksort.

135

Chapter 8

Sorting integers in the IMM

Radix sorting, applied to integers, consists in viewing w-bit integer keys as [w/r]
consecutive 7-bit digits. The records are sorted in [w/r| passes: in the i-th pass,
for i = 1,...,[w/r] we sort the records according to the i-th least significant digit,
more precisely this is referred to as LSB radiz sorting. There are a number of ways of
implementing a single pass in O(n + 2") time, the best one in practice being counting
sort [32], which is equivalent to a generic distribution sorting pass using out-of-place
permutation, as described in Chapter 4.

LSB radix sort has an overall running time of O([w/r](n + 2")) for w-bit keys. For
medium-to-large input sizes, LSB radix sort may be considered to be a linear-time al-
gorithm for practical purposes. However, experimental work has shown that LSB radix
sort, even when tuned for cache performance, fails to outperform good implementations
of O(nlogn) comparison-based algorithms on modern architectures [59]. We show that
cache-tuned LSB radix sort still has poor TLB performance. On the other hand, many
comparison-based algorithms intrinsically have good TLB performance. Hence it is nec-
essary to use models which incorporate the TLB if one is to get good implementations
of LSB radix sort. So we use the IMM, introduced in Chapter 3, for analysing TLB
performance. We introduce three techniques for reducing TLB misses, using which we

obtain three new sorting algorithms which have very good performance.

8.1 Techniques to reduce TLB misses

The following three techniques are used to reduce TLB misses in radix sort:

136

o reducing working set size,
o explicit block transfer and
e pre-sorting.

We now outline these techniques.

The working set of a program is the set of pages it accesses at a particular time.
If the program makes random accesses to these pages, and the working set size is
much larger than the size of the TLB, then the number of TLB misses will be large
(in this chapter we will use the term random access to denote accesses which do not
exhibit locality). Hence, reducing the working set size to about the capacity of the
TLB can greatly reduce the number of TLB misses. In the case of LSB radix sort, this
is accomplished by reducing the radix far below the values suggested in textbooks [32,
p. 179] or those obtained from cache analyses [59].

The second technique, explicit block transfer, enforces locality by ensuring that all
random accesses are made only for the purpose of copying blocks of memory locations.
This technique uses the emulation theorem for emulating external memory algorithms
on the IMM. In the external memory model, good algorithms perform as few I/O opera-
tions as possible—this translates into few cache and TLB misses for the emulation. The
new algorithm exzplicit block transfer radiz sort (EBT radiz sort) essentially emulates
a natural external memory analogue of counting sort in each pass.

In the final technique, pre-sorting, prior to each pass, the array containing the keys
is ‘conditioned’ by sorting the records within relatively small segments. The pre-sorting
is then used in two different ways, giving two algorithms. In the first algorithm, pre-
sorting LSB radiz sort (PLSB radiz sort), the pre-sorting brings together keys with
equal values which can then be moved in a group, imparting locality to the ‘global’
sort. In the second, extended-radiz PLSB radiz sort (EPLSB radiz sort), we use the
increased locality afforded by pre-sorting to increase the radix size—hence reducing the
number of passes—whilst continuing to incur an acceptable number of cache and TLB
misses.

From the theoretical viewpoint, these approaches have different characteristics. As
noted here, LLSB radix sort has very poor cache performance on worst-case problem

instances, and reducing the radix size does not alleviate this problem. However, LSB

137

radix sort can make few TLB misses in the worst case. These characteristics are shared
by EPLSB radix sort. On the other hand, both EBT radix sort and PLSB radix sort
make an asymptotically optimal number of cache misses, and few TLB misses, in the
worst case. None of the algorithms simultaneously achieves asymptotic optimality for
cache and TLB misses in general.

We have tested implementations of these four approaches on the Sun UltraSparc-I1
architecture. These implementations generally vary slightly from the algorithm de-
scriptions which means they may sacrifice worst-case performance (excepting PLSB
radix sort). All implementations show good speedups over highly optimised implemen-
tations of cache-tuned LSB radix sort and cache-tuned comparison-based algorithms.
In our experiments EPLSB radix sort performed the best, running over twice as fast

as cache-tuned LSB radix sort or cache-tuned Quicksort.

8.2 LSB radix sort

In this and the following sections, we use the following default terminology. The term
key will refer to a single digit, and the term record will denote the integer which was
input to the sorting algorithm plus any associated information.

Recall from Chapter 4 that in the i-th pass of LSB radix sort with radix size i, we
stably sort the records according to the i-th least significant digit.

The algorithm can be implemented using the generic distribution sorting algorithm,
with out-of-place permutations, described in Chapter 4. By letting the classify func-
tion mask off the appropriate digit in the key. Without loss of generality, we focus on
one pass of radix sorting. We now give a worst-case cache and TLB miss analysis for

the algorithm.

8.2.1 Worst-case cache miss analysis

Proposition 8.1 For any fized cache associativity a > 1, one pass of LSB radiz sort

with radiz v makes Q(n) cache misses in the worst case whenever 2" > a.

PrOOF. For convenience let n be a power of two. Consider just the random write
accesses in the permute phase of LSB radix sort and let the input consist of the sequence

0,1,...,2"—1repeated n/2" times. With this input, the 2" active blocks will be mapped

138

into a total of max{1, BS/(n/2")} sets, giving min{2",n/(BS)} active locations mapped
to each set. Provided that n > aBS = BC, the number of active blocks mapped to
each set will exceed a. Owing to the round-robin nature of accesses to the active data
blocks mapped to a set, all accesses to active locations will be misses, even ignoring
other conflicts. This gives a minimum of n misses for a single permute phase in the
worst case.

Note that the count phase incurs O(n/B) misses in the worst case whenever a > 2
and 2" < BC/2 (we require that 2" < B(C/4 if Friend’s improvement [37], which

coalesces two count phases into one, is used). O

The construction of Proposition 8.1 can easily be generalised to get inputs which

have bad performance on several successive passes:

Proposition 8.2 For any fized cache associativity a > 1, in the worst case, LSB radix
sort with radiz r makes Q(n) cache misses in each of |w/r]| passes, provided 2" > a,

when sorting w-bit keys.

Proposition 8.3 For any fized cache associativity a > 1 and n a power of 2, LSB
radiz sort with radiz v makes Q(n) cache misses in each of |(logn)/r| passes on the

mput 0,1,...,n— 1, provided 2" > a.

From the asymptotic viewpoint, the results from Chapter 5 and [65] suggest that
‘on average’ if we have 2" = O(C/B), then each pass of radix sort makes an optimal
O(n/B) expected misses even on a direct-mapped cache. For a cache with associativity
a [65] suggests that the expected number of misses is O(n/B) for 2" = O(C/B'Y%).
The worst-case input increases this to ©(n) misses per pass even when r is very small,
i.e. when 2" > a.

This difference is evident in practice too: Table 8.1 compares the running times for
one pass of LSB radix sort using a 11-bit radix when the input data is the worst-case
described above and random data. It shows that the algorithm is up to 45% slower on

worst-case data than on random input for radix 11.

8.2.2 Worst-case TLB miss analysis

We now calculate the number of TLB misses in the count phase and permute phase of

LSB radix sort in the worst case.

139

Timings(sec)

n 220 221 222 223 224 225
pathological (r=11) | 0.44 | 0.94 | 1.92 | 4.37 | 7.70 | 15.40

random (r=11) | 0.31 | 0.65 | 1.33 | 3.01 | 5.47 | 10.89

Table 8.1: Running times for one pass of LSB radix sort using 11-bit radix for random

32-bit unsigned integers and the pathological input.

Proposition 8.4 The number of TLB misses in the count phase of one pass of LSB

radiz sort with radiz r when sorting n keys is:

g(mﬂﬂ+wafW>, W< T 1, (8.1)
> [n/P] +n, W >T -1, (8.2)

in the worst case, where W = [27 [P].

PROOF. During the count phase, the algorithm accesses the following working set of
pages: (i) one active page in the source array and (ii) W = [2"/P] count array pages.
Thus, if W+ 1 < T, an optimal algorithm with a TLB of size W + 1 will make no more
than [n/P] + W misses (to bring in the count array pages as well as to bring in the
successive active source array pages.). Applying Theorem 3.1 from Chapter 3 proves
Eq. 8.1.

fW+1>Tand T =1 then clearly all 2n memory accesses cause misses whatever
replacement policy is used. If T' > 1 then the active source array page is always in the
TLB, but at least one count array page is always not in the TLB, and in the worst case,
the count array page which is not in the TLB will always be accessed (a round-robin
access pattern suffices for this). Thus all n accesses to count array pages are misses,

and we add the compulsory misses for source array pages to get Eq. 8.2. O

The following proposition is proved analogously:

Proposition 8.5 The number of TLB misses in the permute phase of one pass of LSB

radiz sort with radiz r when sorting n keys is:

g(mﬂﬂ+wafW>, W< T - 1, (8.3)
> [n/P] +n, W >T-1, (8.4)

in the worst case, where W = [2" /P| + min{2", [n/P]}.

140

This shows that provided T" <« P (which is usually the case) there is a sharp
threshold for TLB misses, going from O(nT/P) when the working set fits into the TLB
to Q(n) when it does not. Hence the radix should be chosen small enough that the

former case holds.

8.3 Implementing LSB radix sort

8.3.1 Reducing working set size

From the discussion in Section 8.2.2, we can reduce TLB misses by reducing r to the
point where the working set is sufficiently small. Clearly, the permute phase is the
bottleneck in this respect, and we should choose r such that [2"/P] + min{2",n/P} <
T — 1. Plugging in the Sun UltraSparc-II values of P = 2048 and T = 64, we get that
for n > PT > BC we should choose r = 5.

Of course, one may prefer that an average-case argument determines the radix
size, especially since LSB radix sort anyway has poor worst-case cache behaviour. We
now heuristically analyse the permute phase, as it is the major contributor to the
TLB misses, to calculate the number of TLB misses for » = 6,...,11. For all these
values, the count array fits into one page and we may assume that the count page
and the current source page, once loaded, will never be evicted. We further simplify
the process of accesses to the TLB and ignore disturbances caused when the source
or one of the destination pointers crosses a page boundary (as these are transient).
With these simplifications, TLB misses on accesses to the destination array may be
modelled as uniform random access to a set of 2" pages, using an LRU TLB of size
T — 2. The probability of a TLB miss is then easily calculated to be (2" — (T —2))/2".
This suggests that choosing r = 6 on the Sun UltraSparc-II still gives a relatively low
miss rate on average (miss probability 1/32), but choosing r = 7 is significantly worse
(miss probability 1/2).

Figure 8.1 shows the time per key for one permute pass of the algorithm using radix
4,5,6,7,8, 11 and 16. Our experiments suggest that on random data, for r =1,...,5
a single permute phase with radix r takes about the same time, as expected. Also,
for r = 7 the permute time is—as expected—considerably (about 150%) slower than

r < 5. However even r = 6 is about 25% slower than » < 5. This is probably because

141

in practice T is effectively 61 or 62—it seems that the operating system reserves a few
TLB entries for itself and locks them to prevent them from being evicted. Even using
the simplistic estimate above, we should get a miss probability in the 1/13 to 1/16
range.

The choice r = 5 which guarantees good TLB performance turns out not to give
the best performance on random data: it requires seven passes for sorting 32-bit data,
at the end of which the keys are in a temporary array and have to be copied back into
the original input array. The following sequence of radices saves one pass, avoids the

extra copy at the end and also has other advantages noted below: 5,5,6,5,5, 6.

8.3.2 Speeding up the count phase

The very small radix sizes suggested in the previous section mean that the number
of passes over the data can be very large. In this situation the count phase (which
normally contributes little to cache or TLB misses) can be a significant part of the
computation. We now discuss ways of speeding up the count phase.

The first is Friend’s improvement [37], which coalesces two count phases into one.
More precisely, the frequencies of two successive digits (say the ith and 7 + 1st digits)
are counted in one pass by updating two count arrays for each record in the input.
An immediate extension is to count frequencies for & > 2 passes in one phase, k-
tuple counting. The main disadvantage is that accessing multiple count arrays may
cause conflict misses, but for the small radix values considered, the count arrays are
minuscule and do not interfere significantly with each other. For r = 6 and 32-bit data,
it was found that counting all six digits in one pass was considerably faster than three
passes each counting two digits.

We found the following method to be still faster, as it greatly reduced the instruction
count. To count the i-th and ¢ 4 1-st digit simultaneously, we concatenate the i-th and
i + 1-st digits (giving a 2r-bit number) and increment a single count array of size
227 In practice of course, we would simply mask out the relevant 2r bits in one
step. From the 2r-bit counts, frequencies for the i-th and i + 1-st passes are easily
extracted. This approach can extend to coalescing three or more count phases into
one. For example, for the radix sequence mentioned at the end of Section 8.3.1, we

can obtain all six counts in one pass, by incrementing two 16-bit arrays for each key.

142

The first array would implicitly contain frequencies for the three least significant digits
(totalling 6 + 5 + 5 = 16 bits), and the second likewise for the three most significant
digits. Note that this approach may increase conflict misses, and so may not work for

all architectures.

8.4 Explicit Block Transfers

8.4.1 EBT radix sort

The external memory algorithm for LSB radix sort is the obvious one. The radix r is
chosen so that 2" < M/(2B) = C/2; this enables buffers of B keys to be maintained in
main memory for each of the 2" classes during the permute phase, while leaving space
for auxiliary data structures such as the count array and the current source array block.
We describe only the permute phase, and assume that the count array is already stored
in main memory. The algorithm reads successive blocks from the source array (which
is stored in secondary memory), and moves each key in the current source array block
to its main memory buffer. When the buffer is full, it is copied out into the appropriate
block of the destination array (which is also stored in secondary memory). With a
radix chosen as above and provided n > M, the algorithm performs O(n/B) I/Os per
pass. Using Theorem 3.2 in Chapter 3 we get:

Corollary 8.1 For any associativity a > 1, the emulation of external memory radix
sort with radiz r < log(C/4) incurs O(n/B) cache and TLB misses per pass in the

worst case.

In the future we refer to this as EBT (explicit block transfer) radix sort.

8.4.2 Implementing EBT Radix Sort

When implementing EBT radix sort, one may dispense with some of the steps in the
emulation. The probability of conflicts between Main and D in a block copy on random
input seems (subjectively) so low that one should copy blocks directly, rather than
through intermediate buffers. If pathological inputs are a concern then one should

randomise the starting location of Main as noted in [80].

143

We also limit the use of the emulation to critical parts of the algorithm. In effect, the
algorithm implemented is normal LSB radix sort, but with the permute phase modified
as follows. We maintain an array of 2" buffers, all of which can hold Q(B) keys. When
moving keys in the permute phase, we do not do so directly, but instead move the key
from the source array to the buffer corresponding to its class. When the buffer is full,
all keys in it are copied as a block to their final locations in the destination array.

In practice one could probably use larger radix values such as r = log(C'/2). In our
case, this would correspond to using r = 12 instead of r = 11. Since the number of

passes is not reduced for 32-bit data, we stayed with the smaller radix.

8.5 Pre-sorting

In this section we discuss two algorithms both of which pre-sort the keys in small groups
to increase locality. Unless stated explicitly otherwise, we take the word ‘key’ in this

section to mean the r-bit digit being sorted in one pass of PLSB or EPLSB radix sort.

8.5.1 PLSB Radix Sort

One pass of PLSB radix sort with radix r works in two stages. First we divide the input
array of n keys into contiguous segments of s < n keys each. Each segment is sorted
using counting sort (a local sort) after which we sort the entire array using counting
sort (a global sort). In each pass the time for sorting each of the [n/s] local sorts is
O(s 4 2") time and the time for the global sort is O(n + 2"), so the running time for
one pass of PSLB radix sort is O(n + n(2")/s).

An obvious optimisation is to accumulate counts for the global sort at the end of the
count phase of each local sort. So the structure for the algorithm is as follows, where

Input and Temp are arrays of size n and GlobalCount and LocalCount are arrays of

size 2" and the segments are numbered from 0,...,[n/s| — 1:

1 initialise GlobalCount

2 for i=0,...,[n/s]—1 do

2.1 initialise LocalCount

2.2 count frequencies of key values in segment ¢ of Input

144

2.3 accumulate values in GlobalCount

2.4 prefix-sum LocalCount

2.5 permute from segment i of Input to segment ¢ of Temp
3 prefix-sum GlobalCount

4 permute globally from Temp to Input

The intuition for the algorithm is that each local sort groups keys of the same class
together and during the global sort we move sequences of keys to successive locations
in the sorted array, thus reducing TLB and conflict misses between accesses to the
destination array. We now give some more detailed intuition. We denote by ~ the
quantity s/2", and require that v > 2. An immediate consequence is that one pass of
PLSB radix sort runs in O(n) time. To minimise the operation count, we would like to
choose r as large as possible, but this pushes up s. To keep cache and TLB misses to a
minimum in the local sorts, we would like the segments of the source and destination
arrays in each local sort to fit into cache and TLB-addressable pages. This suggests
that we must set s < BC (the analysis below assumes that s < BC/2).

We move straightaway to the global permute phase now, since this was previously
the source of most cache and TLB misses. An elementary observation is that an array
of k consecutive items will span at most [k/P] + 1 pages or [k/B] + 1 blocks, and
hence (if there are no pathological conflict misses) copying k consecutive items from
the source array to consecutive locations in the destination array will incur at most
this many cache and TLB misses in destination array accesses. If k;; is the number
of keys in class ¢ in segment j, then the total number of destination array TLB misses
would be roughly Y251 S8 ki i/P] + 1 < O(n/P + (n/s) - 27) = O(n/P + n/y).
Similarly, the number of cache misses would be about O(n/B + n/v). This suggests
that we need v = Q(B) for an optimal number O(n/B) of cache misses, and the number
of TLB misses would then also be O(n/B). This says that the radix r should satisfy

2" = O(C), which is similar to the radix limitations of explicit block transfer.

Worst-case cache and TLB analysis for PLSB

We now give a worst-case cache and TLB miss analysis for PLSB. To determine the
number of cache and TLB misses during the local sorts we describe our own cache

and TLB replacement policies and determine the worst-case number of cache and TLB

145

misses using these policies. Given that using an optimal replacement policy would make
no more misses we calculate an upper bound on the cache and TLB misses given an
LRU replacement policy.

Without loss of generality we assume the cache and TLB are empty at the start of
the local sorts, at the start of the prefix-sum of GlobalCount and at start of the global

permute.

Theorem 8.1 For s = CB/2 and y > 2, the worst-case number of cache misses in

one pass of PLSB when sorting n keys with an a > 4 ways associative cache is at most:

Oy ¢ <g+3—n+i+2—n+5>
2y B v a—[a/2] =[a/(2y)] \v B By CB

where s is the number of keys in a local sort, v = s/2" and r is the radiz.

PROOF.

During each local sort our replacement algorithm reserves sufficient ways to keep
LocalCount in cache once it has been loaded. This replacement algorithm also reserves
sufficient ways to keep a segment of Temp, once loaded, in cache during step 2.5. It
also reserves 1 further way for loading a segment of Input in cache during steps 2.2
and 2.5, it uses the same way to load GlobalCount during step 2.3. Since C' = Sa
and s = BSa/2, LocalCount is 2"/B = Sa/(2y) blocks in size and this replacement
algorithm requires [a/(27)] ways for LocalCount. Each segment of Temp is Sa/2 blocks
in size and this replacement algorithm requires [a/2] ways for a segment of Temp.

With this replacement algorithm, once LocalCount has been loaded into cache for
the first local sort it will remain in cache for all further local sorts. An upper bound
on the cache misses for the local sorts in one pass of PLSB using this replacement

algorithm is derived as follows:
e [Sa/(2v)] < C/(2y) + 1 misses for loading LocalCount once.
e [n/B] misses for loading Input into cache over all local sorts in step 2.2

e [2n/(BSa)]-[Sa/(2y)] < 7+ 2+ % + 1 misses over all local sorts for loading

GlobalCount into cache in step 2.3.

e 2[n/B] cache misses for loading Input and Temp into cache over all local sorts in

step 2.5.

146

Over all local sorts this replacement algorithm uses a* = [a/2] + [a/(27)] + 1 ways
and there are at most:

—+ =+ 5+55+5 (8.5)
cache misses. Using Theorem 3.1 we get that the number of cache misses in an a-way
associative LRU cache is at most:

a

C 3n 2n,
o= Ta/2] = [a/ @] (t Bt ot 5) (8.6)

For the prefix-sum of GlobalCount in step 3 and the global permute in step 4 we

do not utilise the optimal cache. During the prefix-sum of GlobalCount there are
e

cache misses. For the global permute, we divide the memory accesses into (n/s) - 2" =

n/vy epochs. In epoch (i, j), for 0 <i < 2" —1and 0 < j < n/s, we move the k; ; keys

with value ¢ from local sort j to their final destination. In this epoch we access at most

2([k;;/B] + 1) blocks from the Input and Temp arrays in all, and one block from the

count array. The number of misses is at most 2[k; j/B]| + 3 < 2k; j/B + 5. Summing

over all epochs we get that the number of cache misses for the global permute is at

most: /
2r—1n/s
L on
S S (2kij/B +5) - (8.7)
=0 7=0 7

Summing the cache misses for the local sorts, global prefix-sum and global permute

gives the worst-case number of cache misses for one pass of PLSB. O

Corollary 8.2 If v = Q(B) then there are O(n/B) cache misses in one pass of PLSB

in an a-way associative cache with LRU replacement policy.

Theorem 8.2 For s = BC/2 < PT/2 and ~y > 2 the worst-case number of TLB misses

in one pass of PLSB when sorting n keys using a TLB of size T > 4 is at most:

T 2n 5n T 3n n 2n
+—+—=—=+5

T
Py T—(T/21—(T/(27)1< TP TPy TP

where s is the number of keys in a local sort, v = s/2" and r is the radiz.

PrROOF. During each local sort our replacement algorithm reserves sufficient TLB

entries to keep page translations for LocalCount, once loaded, in the TLB during steps

147

2.1, 2.2, 2.4 and 2.5. This replacement algorithm also reserves sufficient TLB entries to
keep page translations for a segment of Temp, once loaded, in the TLB entries during
2.5. It also uses 1 further TLB entry for the page translations for a segment of Input
during steps 2.2 and 2.5, it uses the same TLB entry to load GlobalCount during step
2.3. Since s = BC'/2 < PT/2, LocalCount requires at most 2" /P = T'/(27y) pages and
this replacement algorithm requires at most [T'/(2y)] TLB entries for LocalCount.
Each segment of Temp is at most 7/2 pages in size and this replacement algorithm
requires at most [7'/2] TLB entries for a segment of Temp.

With this replacement algorithm, once translations for LocalCount have been loaded
into the TLB for the first local sort they will remain there for all further local sorts.
An upper bound on the TLB misses for the local sorts in one pass of PLSB using this

replacement algorithm, is as follows:

e [T/(2v)] misses for LocalCount in step 2.1 for the first local sort.
e [n/P] misses for Input over all local sorts in step 2.2

e 2n/(PT)]-[T/(2v)] < %—i—%—i—%ﬂ misses over all local sorts for GlobalCount

in step 2.3.
e 2[n/P] misses for Input and Temp over all local sorts in step 2.5.

Over all local sorts this replacement algorithm uses T* = [T'/2] + [T/(2v)] + 1 TLB

entries and there are at most:
— 4+ =+ —=—+==+5 (8.8)

TLB misses. Using Theorem 3.1 we get that the number of TLB misses using a LRU
TLB of size T is at most:

n 2n
—+—=—+—+—=—+4+5 8.9
'y+P+P'y+PT+> (8.9)

T (T 3n
T—[T/2] = [T/(27)]
For the prefix-sum of GlobalCount in step 3 and the global permute in step 4 we
do not utilise results for optimal TLB. There are:
[T} <X
271~ 2y
TLB misses for the prefix-sum of GlobalCount. For the global permute, we divide the

memory accesses into (n/s) - 2" = n/v epochs. In epoch (i,7), for 0 <7 < 2" — 1

148

and 0 < j < n/s, we move the k; ; keys with value ¢ from local sort j to their final
destination. In this epoch we access at most 2([k; ;/P] + 1) pages from the Input and
Temp arrays in all, and one page from the count array. The number of misses is at most

2[k; /Pl +3 < 2k; j/P + 5. Summing over all epochs we get:

or—1n/s
/ 5n

> > (2ki;/P +5) = %n + - (8.10)
i=0 j=0

Summing the TLB misses for the local sorts, global prefix-sum and global permute

gives the worst-case number of TLB misses for one pass of PLSB. O

Corollary 8.3 If v = Q(B) then there are O(n/B) TLB misses in one pass of PLSB.

Implementing PLSB Radix Sort

Clearly, from the analyses above, we would like generally to get a large value of vy = s/27,
as this tends to reduce cache and TLB misses in the global permute. The analysis above
used s = (BC)/2, and we now review the local sort phase in order to find the largest
‘practical’ value of s.

To keep TLB misses low we want to ensure that the working set of a local sort can
comfortably be held in TLB. On the Sun UltraSparc-IT the TLB has size 64, so we
should limit s to be at most kP for some integer £ in the high 50s; this allows a couple
of system TLB entries, a source page entry and a handful of count page entries all to
fit in TLB. On pathological data, choosing s > (BC)/2 can give many conflict misses
in the local sorts, even on a 4-way associative cache. However, by using randomisation,
we ensure that no single input gives a bad running time, and so the algorithm has
few expected conflict misses on any input. More precisely, by ensuring that each of
the source and destination arrays start independently at locations which are uniformly
distributed over the range {0,..., BC — 1}, we get very few conflict misses in the local
sorts even on direct-mapped caches, regardless of the input (this is easily shown using
arguments similar to those of [65]). A side effect of the randomisation is that there are
no pathological inputs for the global permute on a direct-mapped cache.

We use a value s &~ 117,400, corresponding to k£ between 57 and 58. This particular
number is ‘good’ in some way for EPLSB radix sort, see Section 8.5.2, and we choose

it again in PLSB radix sort for convenience, although it has no significance for PLSB

149

radix beyond that already discussed. Also, experimentally we determined that r = 11
is the best radix to use for sorting 32-bit data. This gives v =~ 57 ~ 3.5B.

One effective low-level optimisation for PLSB is that during the global permute,
we do not use the standard out-of-place permute algorithm. Instead, before moving a
record from Temp back to Input in the global permute, we first scan ahead in Temp to
find a maximal set of k& consecutive records which have the same key value as the next
record to be moved. After moving these k records as a block we increase the relevant
count array location by k. This saves significantly on instructions and also on writes
to the count array (even though this is not part of the model used, writes in general
are a little expensive as, on our Sun UltraSparc-11, they are handled by the L2 cache
rather than the L1 cache). After this optimisation, the global permute is less than 30%

slower than a straight copy from Temp to Input.

8.5.2 EPLSB Radix Sort

In EPLSB radix sort with radix r, each pass is again done in two stages. We use the
term ‘global key’ to refer to the r-bit sort key for a particular pass, and we will use the
term ‘local key’ to refer to the r’ most significant bits of the global key, where r’ < r
is a parameter whose value will be chosen later. If we choose ' = » EPLSB radix sort
essentially reduces to PLSB radix sort.

We assume again that n > BC'. First, as in PLSB radix sort, we divide the input
array of n records into contiguous segments of s < n records each, and sort each
segment. The local sorts now only sort according to the local key, but the global
permute moves records to their final location according to the global key. During the
global permute, we again process blocks of records from each segment, where a block
consists of successive records with the same local key value. Although it is no longer the
case that all records in a block are moved together, they belong to at most A = 27"
different (global) classes, which limits the number of active locations in the destination
array. Intuitively, we can let A = ©(T') and still keep TLB misses low, thus extending
the radix size of PLSB by a factor of roughly logT'.

A more precise description of the algorithm follows. Input and Temp are arrays of
size n. Input contains the input records, and at the end of the pass, Input will once

again contain the records in sorted order with respect to the global key. GlobalCount

150

and LocalCount are arrays of size 2" and 2’ respectively, and the segments are num-

bered from 0,...,[n/s] — 1.

1 /* perform all local sorts */

1.0 for i=0,...,[n/s]—1 do

1.1 initialise LocalCount

1.2 count frequencies of local key values in segment i of Input

1.3 prefix-sum LocalCount

1.4 permute records from segment i of Input to segment i of Temp
/* Step 1.4 moves records according to local key value */

2 Initialise GlobalCount

3 Count frequencies of global key values.

4 /* global permute */

4.0 for j=0,...,2" —1

4.1 for i =0,...,[n/s] -1

4.2 move all records with local key value j in segment ¢

of Temp to their final location in Input.

/* Step 4.2 moves records according to global key value */

We now fix some parameter choices. We choose s = (BC)/2, ' < logC and
r < min{log(BC/2),r' + log(T/2)}. This ensures that y = s/2" > B/2 and A < T/2.

We now estimate the number of instructions, cache and TLB misses in one pass of
EPLSB radix sort. We begin with instruction counts. Step 1 takes O(n + n(2"')/s) =
O(n+n/v) = O(n) time. Steps 2 and 3 take O(n+2") = O(n) time, since 2" < BC' < n.
Letting k; ; denote the number of keys with local sort key value j in segment % of the
input, Step 4 takes Z?ifl ZZ[Z{)S] (kij+1) = O(n+n/vy) = O(n) time, giving an overall
bound of O(n) time for one pass of EPLSB radix sort.

We now move to TLB misses. The analysis of the TLB misses for Step 1 is analogous
to the analysis of Step 2 of PLSB, and we can conclude that there are O(n/B) misses in
this step. Steps 2 and 3 have negligible TLB misses (note that 2" < B(C'/2, so the count
array requires at most 7'/2 pages). In Substep 4.2, note that we are moving elements
belonging to A different global key classes in each iteration of the loop of Step 4.0. The
count information for these classes is spread across at most two GlobalCount pages, as

A <T < P. We now calculate the number of misses made by an optimal TLB of size

151

A + 3. The optimal TLB would make no more than the following misses:

e By always evicting a page from Input when an access to Input causes a miss, at
most Z?;O_l Zi@oﬂ [kij/P1+1<n/P+2n/y=0(n/B) misses due to accesses

to Input, where k; ; is as above.

e Similarly, accesses to Temp cause at most O(n/P + A-n/s) misses. Since An/s <
2An/(BC) <2nT/(BC) = O(n/B), the total number of misses is again O(n/B)
(and should usually be considerably smaller, as T' < C').

e At most [2"/P] = O(n/P) misses for accesses to GlobalCount.

Hence the minimum size of the optimal TLB required to achieve O(n/B) misses is no
more than A + 3. This is at most 27°/3 if P and T are sufficiently large, so an LRU
TLB of size T will also make O(n/B) misses in the worst case.

We now turn to cache misses. As s = (BC)/2 and 2" < C, the number of misses
in Step 1 is O(n/B) in the worst case. For a direct-mapped cache this requires Input
and Temp to be aligned so that corresponding segments of these arrays are mapped
to distinct parts of the cache; we can dispense with this assumption for an a-way
associative cache with a > 4.

In Step 3 the number of cache misses is O(n/B) in the worst case if the cache is at
least two-way associative (recall that 2" < (BC)/2 so the count array can occupy at
most one way of each set).

In Step 4, again randomising the start of Temp and Input reduces the number
of conflict misses between (i) GlobalCount and Temp; (ii) Input and Temp and (iii)
GlobalCount and Input to negligible levels. However, this does not solve the problem
of conflicts between the T'/2 active locations in Input, which can conflict with each
other. One solution to this problem is to randomise the start of each (global key) class,
as suggested in [65]. If this is done, then it follows from the analysis there that the

number of conflict misses should be small as T'/2 < C so there are O(n/B) misses.

Implementing EPLSB radix sort

For the Sun UltraSparc-II parameters, the maximum permissible value of r is 16 (since

BC/2 = 2'6). As is the case for PLSB, it is beneficial to EPLSB to have a value of 7 as

152

large as possible. This means making s as large as possible and ' as small as possible.
The smallest value for r' which gives few worst-case TLB misses is 16 —log(7'/2) = 11.
As in PLSB radix sort we randomise the start locations of the source and destination
arrays; this reduces the number of cache conflict misses in Steps 1-3 to negligible levels
(according to the model).

We again choose s to be about 58 P to keep TLB misses in local sorts at a minimum.
Here, however, the value of s also slightly affects the global permute, so s is fixed later.

We optimise the global counts by scanning the array Temp for the purpose of global
counting, rather than Input. This improves performance by improving the locality of
the global counts in a way that the model appears not to capture. A further improve-
ment is to perform global counts on segment ¢ of Temp right after the local sort for
segment 7, as most of Temp will be in cache.

We make no special optimisations to remove the main problem with the global
permute, namely that EPLSB radix sort is susceptible to pathological data. The only
possibility, as noted above, is to randomise the start of each class as in [65]. Using
their approach directly would have a prohibitive space cost, but since there are only
T'/2 active destination pointers in EPLSB radix sort, it is possible that one may not
need to randomise by as much as suggested in [65]. It would be interesting to explore
this aspect further.

As we will see in the section on experimental results, in EPLSB radix sort worst-
case inputs cause many TLB misses during the global permute when the number of
active destination pointers A = T. We also see that since A <« C' and the cache is
physically mapped the theoretical worst-case input does not actually cause many more
cache misses than random inputs. This justifies the design decision to make EPLSB
radix sort robust against worst-case inputs for TLB misses but not for cache misses.

We do incorporate a second-tier optimisation for the global permute. The global
permute for EPLSB radix sort makes several ‘passes’ over the Temp array (each pass
corresponds to an iteration of the loop of Step 4.0). Each ‘pass’ moves a relatively
small group of keys from a segment to their final destinations, before moving on to the
next segment. As the end of a group may not lie on a cache boundary in general, it
would be helpful if the block which contains the end of the group stays in cache for

the next ‘pass’: this saves an extra miss for each block. For random data this can be

153

significant: each group is typically only 3.5 cache blocks long, so the number of Temp
array misses would be reduced by about 20%.

In practice the number of segments is small (less than 300 for n = 32000000)
compared to C, so active Temp blocks could easily stay in cache between ‘passes’.
Intuitively the chances of this happening are improved if the starts of the segments
were mapped to blocks which are roughly equally spaced in cache. Some values of s
are better than others at achieving this: in Chapter 6 we noted that values such as
s=(1-1/(94+¢1))BC ~ 117,400 ~ 57.3P, where ¢ = (1++/5)/2, are provably good
for this. This is the value used in the code. This optimisation does not always help,

but it never hurts either.

8.6 Asymptotic number of cache and TLB misses

As discussed in Chapter 4, by a direct reduction from the argument in [8], we have
that any algorithm for sorting n keys must make Q((n/B)logs(n/B)) cache misses
and Q((n/P)logr(n/P)) TLB misses.

These lower bounds, however, apply only when all n! permutations of the input
keys are possible. When (stably) sorting w-bit keys, the number of possible permuta-

2v" " which could be smaller or greater than n!. In particular, if the

tions is at most
radix r is chosen appropriately, then one pass of r-bit LSB radix sort can be accom-
plished in O(n/B) cache misses, or O(n/P) TLB misses. This has also been observed
by [62] for bundle sorting. By a direct reduction from their argument we have that
Q((n/B)logs min{(n/B),2"}) cache misses and Q((n/P)logy min{(n/P),2"}) TLB
misses are necessary to sort w-bit integers.

We now compare the asymptotic performance of the algorithms. Recall that we
assume that T < C, B < P, BC < PT and B < C. First, we consider the case when
T is not too small, i.e., logT = O(logC). In this case it suffices for optimality that
the algorithm makes O(n/B) cache and O(n/P) TLB misses per pass, where each pass

sorts according to a radix which is at least Q(logT"). First note:

Proposition 8.6 Assuming an a-way associative cache for some a > 2, LSB radiz
sort makes an optimal expected number of cache and TLB misses on any input, if

logT = O(log C).

154

PROOF. We choose the radix of LSB radix sort as r = (1 — 1/a)logT — 1. Since
r < log(T/2), standard LSB radix sort makes O(n/P) TLB misses per pass in the
worst case. Also, 2" < Ti=1/a < cl-1/a < C/Bl/“. If we assume that the algorithm
uses randomised memory allocation as described in [65], it follows from the results there
that if 2" < C'/B'Y®, LSB radix sort makes O(n/B) expected cache misses per pass on
an a-way associative cache on any input. Observing that r = Q(log C') completes the

proof. O

An analogue for worst-case behaviour follows:

Proposition 8.7 Assuming an a-way associative cache for some a > 2, one can sort

incurring an optimal expected number of cache and TLB misses on any input, if logT =

O©(log C).

PRrROOF. The algorithm is essentially PLSB radix sort modified to use EBT radix sort
for the local sorts. Firstly, the input is divided into segments of size PT/4 and each
segment is locally sorted with respect to the current r-bit digit using EBT radix sort,
where 7 = logT — ¢ < logC — O(1) for some constant ¢ > 0. By choosing ¢ large
enough we can ensure that all pages for each local sort fit into the TLB. In this case,
EBT radix sort incurs O(n/B) cache and O(n/P) TLB misses, summed over all local
sorts. The global permute then moves keys to their final destination as before. Since
v = Q(P) here, the global permute also makes O(n/B) cache and O(n/P) TLB misses
per pass, provided a > 2 by Theorems 8.1 and 8.2. As there are O(w/log C') passes,
the proposition follows. O

If logT = o(log C') we do not know how to simultaneously get asymptotically op-
timal TLB and cache misses. EBT radix sort or PLSB radix sort with radix elogC
for some constant 1 > € > 0 makes O(n/(BC' ¢)) page misses per pass, while keeping
the number of cache misses asymptotically optimal. However, the model does not rule
out P > BC, so this can be non-optimal. Approaches based on choosing a radix of

©(log T) yield TLB-optimality but make too many cache misses.

8.7 Experimental results

The following table describes the algorithms that we tested and gives the names we will

use for them. All algorithms were coded in C and all code compiled using gcc 2.8.1.

155

time per key (microseconds)

e W e
e 5-bit radix —+-
045 7 6-bit radix -8--
< 7-bit radix -x
8-bit radix -4--
11-bit radix -*--
o4 r 16-bit radix -o--
0.35 | g
03 F g
kN - I B e b R AR T *
0.25 ¥ E
Bobmm A e T T T
0.2 | B
RS K
0.15 E
01 | B
OB [2 R R P R TP a
0.05 M M Il M Il Il - Il Il Il M
0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

number of keys

Figure 8.1: Time per key for one permute pass of LSB radix sort using radix

4,5,6,7,8,11 and 16, at n =1 x 10%, 2 x 105, 4 x 106, 8 x 10°%, 16 x 105 and 32 x 106.

Keys are random 32-bit unsigned integers.

The experiments were run on our Sun UltraSparc-IT with 2 x 300 MHz processors and

1 GB of memory.

Name Description

LSBr LSB radix sort using r-bit radix with [32/r]-tuple counting

FLSBr LSB radix sort using r-bit radix with Friend’s improvement

LSB556 LSB radix sort where a 16-bit count phase gathers count information
for three permute phases. The first two of these permute phases use
5-bit radix and the third uses a 6-bit radix.

PLSBr PLSB radix sort using r-bit radix

EPLSBr | EPLSB radix sort using r-bit local radix and 16-bit global radix

EBTr EBT radix sort using r-bit radix

MTQuick | cache-tuned (memory-tuned) Quicksort[59]

TMerge cache-tuned (tiled) Mergesort [59]

8.7.1 Random inputs

We first tested the algorithms on uniformly distributed random integers for n = 4 x 10°,

1 =1,2,4,8,16,32. We avoided using values of n near powers of 2, as the analysis in

Chapter 6 suggests that LSB radix sort may perform slightly poorly at these values of

n.

156

Timings(sec)

n LSB556 | LSB6 | FLSB6

1 x 108 0.57 | 0.64 0.67
2 x 10° 1.12 1.28 1.36
4 x 106 2.20 2.56 2.72
8 x 10° 4.35 | 5.09 5.44
16 x 108 8.57 | 10.22 10.84
32 x 10° 17.52 | 20.45 21.85

Table 8.2: Overall running times for LSB556, LSB6 and FLSB6 on random 32-bit

unsigned integers.

Figure 8.1 shows the time per key for one permutation pass of LSB radix sort. We
see that using an r-bit radix, when 2" < T the running times remain constant and when
2" > T the running times increase as TLB misses increase (at r = 4,5,6,7,8 there are
very few cache conflict misses). At » = 11 almost all accesses to the destination array
will cause TLB misses and the increase in running time at » = 16 is due to increasing
cache conflict misses.

Table 8.2 shows the overall running times for LSB6, FLSB6 and LSB556. We see
that since the radix is small 6-tuple counting gives a faster running time than using
Friend’s improvement. Since a permutation phase using a 5-bit radix has the same
running time as using a 4-bit radix and is faster than using a 6-bit radix, we see that
LSB556, which has in total four 5-bit and two 6-bit permute phases is faster than LSB6
which has effectively five 6-bit and one 4-bit permute phases.

Table 8.3 shows the overall running times for LSB radix sort. We found that [32/r]-
tuple counting was faster than using Friend’s improvement for radix sizes r < 8 bits, so
we give results using [32/r]-tuple counting for » = 4,5,6,7,8 bits and using Friend’s
improvement for r = 11,16 bits. We see that LSB6 is the fastest on random inputs
as it has very few cache and TLB misses. LSB7 has one less pass and about the same
number of cache misses but almost half the accesses to the destination array cause
TLB misses, so we see that it is almost 45% slower. LSB5 has very few cache and TLB
misses but has one more pass than LSB6 and is slightly slower, however we will see

later it is robust against worst-case inputs whereas LSB6 is not.

157

Timings(sec)

n LSB4 | LSB5 | LSB6 | LSB7 | LSB 8 | FLSB 11 | FLSB 16

1 x 108 0.74 0.68 0.64 0.93 0.95 0.90 0.92
2 x 106 1.49 1.36 1.28 1.85 1.98 1.86 1.94
4 x 10° 2.99 2.73 2.56 3.70 3.86 3.86 4.08
8 x 10° 6.26 5.57 5.09 7.38 7.67 7.68 7.90
16 x 10° 1194 | 1094 | 10.22 | 14.75| 15.79 15.23 15.99
32x 105 | 24.06 | 21.96 | 20.45 | 29.62 | 30.50 31.71 33.49

Table 8.3: Overall running times for LSB radix sort with varying radix on random

32-bit unsigned integers.

Timings(sec)

n EPLSBI11 | PLSB11 | EBT11 | LSB556 | LSB6 || FLSB11 | MTQuick | TMerge

1 x 10° 0.46 0.47 0.54 0.57 | 0.64 0.90 0.70 1.02
2 x 106 0.89 0.92 1.09 1.12 1.28 1.86 1.50 2.22
4 x 108 1.74 1.82 2.20 2.20 2.56 3.86 3.24 4.47
8 x 10° 3.53 3.6/ 4.49 4.35 | 5.09 7.68 6.89 9.71
16 x 108 7.48 7.85 8.81 8.57 | 10.22 15.23 14.65 19.47
32 x 10° 14.96 15.66 17.55 17.52 | 20.45 31.71 31.69 41.89

Table 8.4: Comparison of TLB-tuned radix sorts: EPLSB11, PLSB11, EBT11, LSB556
and LSB6 versus cache-tuned LSB11, MTQuick and TMerge on random 32-bit unsigned

integers.

Table 8.4 shows the overall running times for the TLB optimised radix sorting
algorithms, EPLSB11, PLSB11, EBT11, LSB556 and LSB6 and the cache-optimised
algorithms LSB11, MTQuick and TMerge. We see that EPLSB and PLSB radix sort

outperform all the radix sort variants, getting speedups of 144+% and 10+% over the

other TLB-optimised algorithms. These two algorithms obtain speedups of 52+% and

504+% over the cache optimised MTQuick, TMerge and LSB11, for large n.

8.7.2 Testing robustness

We also tested the algorithms on the following input sequences:

e (0,....,n—

1

158

0.35

0,..,n-1 -+--
0,..,T-1 repeated -8--

03 i

02 | 1

time per key (microseconds)

0.15 | 1

’ 2720 2721 2722 2723 2724 2725
number of keys

Figure 8.2: Time per key for one pass of normal LSB with 5-bit radix, on random keys
(random), on keys 0,...,2" —1 (0,..n-1) and on repeated key sequence 0,...,T — 1
(0,..,T-1 repeated) at n = 220,221 222 223 224 and 225,

e 0,...,7 — 1 repeated n/T times

with n = 220,221 222 923 924 925 and where appropriate s = BC/2 = PT/2. We
compared the running times for one pass of the algorithms LSB5, LSB6, EPLSB10,
EPLSB11, PLSB11 and EBT11 with uniformly distributed random keys against the
input sequences above. Since these experiments were for just one pass, the algorithms
were modified to gather counts for the first pass only, so one should not use these results
to extrapolate the overall running times.

As stated in Proposition 8.3 the sequence 0,...,n — 1 should cause worst-case cache
misses at these values of n in LSB radix sort and one can easily show that it should
also causes worst-case TLB when the radix r > logT.

With these values of n and where appropriate s, the repeated sequence 0,...,7 —1
should cause worst-case cache misses in LSB radix sort and EPLSB radix sort. This
sequence should also cause worst-case TLB miss in LSB radix sort if radix r > logT
and in EPLSB radix sort if the difference between the global and local radix lengths is
at least logT'.

Figures 8.2, 8.3, 8.4, 8.5, 8.6 and 8.7 summarise the results obtained. We see in

Figures 8.2 that in LSB5, where worst-case TLB misses are not in effect, there is only

159

0.35

random ——
0,..,n-1 —+--
0,..,T-1 repeated -8--
B - o
szae—mTTII 8- T SRS r: Pt 8-
03| ‘ k
)
°
[=4
3
g 025} E
(%2}
o
S
E
>
£
g 02r R
[}
£
0.15 | 1
0.1 L L L L
2720 2721 2122 2723 2724 2725

number of keys

Figure 8.3: Time per key for one pass of normal LSB with 6-bit radix, on random keys
(random), on keys 0,...,2" —1 (0,..n-1) and on repeated key sequence 0,...,T — 1
(0,..,T-1 repeated) at n = 220,221 222 223 224 apd 22,

0.19

random ——
0,..,n-1 -+~
0.185 0,..,T-1repeated -8--

0.18 i

0.175

017 | |

0.165 |- I g

0.16 1

time per key (microseconds)
*
+

0.155 1

015 f e B

0.145 L L
2720 2721 2722 2723 2724 2725
number of keys

Figure 8.4: Time per key for one pass of explicit block transfer (EBT) with 11-bit
radix, on random keys (random), on keys 0,...,2" — 1 (0,...n-1) and on repeated key

sequence 0,...,T — 1 (0,..,T-1 repeated) at n = 220,221 222 223 924 5nd 225,

160

0.19

random ——
0,..,n-1 -+-
0.185 0,..,T-1 repeated -8-- -

0.175
0.17 -
0.165

0.16

time per key (microseconds)

0.155
015¢g... =

0.145 - 1

0.14 L
2/20 2n21 2n22 223 2n24 2725
number of keys

Figure 8.5: Time per key for one pass of PLSB with 11-bit radix, on random keys
(random), on keys 0,...,2" —1 (0,..n-1) and on repeated key sequence 0,...,T — 1
(0,..,T-1 repeated) at n = 220,221 222 223 224 apd 22,

0.5

random ——
0,..,n-1 -+--
0,..,T-1 repeated -8--

0.45 1
04 1

0.35 | 1

time per key (microseconds)

03 1

0.2 Il Il
2720 2721 2722 2723 2724 2725
number of keys

Figure 8.6: Time per key for one pass of EPLSB with a 16-bit global key and 10-bit
local key on random keys (random), on keys 0,...,2" — 1 (0,...n-1) and on repeated

key sequence 0,...,T — 1 (0,..,T-1 repeated) at n = 220,221 222 223 924 5nd 225,

161

0.5

0,..,n-1 -+--
0,..,T-1 repeated -8--

0.45 1

2 oap E
c
[=]
(53
(7]
123
o
g
E 0.35 | B
>
()
X
:
o
[
E

03 1

1
2720 2721 2722 2723 2724 2725
number of keys

Figure 8.7: Time per key for one pass of EPLSB with a 16-bit global key and 11-bit
local key on random keys (random), on keys 0,...,2" — 1 (0,...n-1) and on repeated

key sequence 0,...,T — 1 (0,..,T-1 repeated) at n = 220,221 222 223 924 5nd 225,

a slight, 3%, increase in running time with the above inputs versus the random keys.
Similarly we see in Figure 8.7 with the repeated sequence 0,...,T — 1 there is only
a slight, 7%, increase in the running time of EPLSB11, where again worst-case TLB
misses are not in effect. This is almost certainly due to the fact that the cache is
physically mapped so we can not ensure that physical pages allocated to classes map
to particular cache blocks. So we note that when 2" is small we do not observe any
significant increase in running time due to cache conflict misses even with worst-case
inputs. This is in contrast to the results in Figure 8.1, when 2" is large the increase in
running times between radix 11 and radix 16 is almost entirely due to an increase in
cache conflict misses.

We see in Figure 8.3 that in LSB6, where worst-case TLB misses are in effect, one
pass with the above inputs takes almost 2.5 times as long as on the random keys.
Similarly we see in Figure 8.6 that in EPLSB10 one pass with the repeated sequence
0,...,7 —1 takes almost twice as long as with the random keys, again worst-case TLB
misses are in effect.

These results validate the design decision to tune EPLSB to prevent worst-case

TLB behaviour but allow theoretically worst-case cache behaviour.

162

In theory PLSB should not have a worst-case behaviour, and we see in Figure 8.5

that the running time hardly changes with the above inputs versus random keys.

8.7.3 Sorted keys

We also tested the algorithms on sorted uniformly distributed random keys. We found
that all the algorithms are faster or no slower with this input than with random keys
and this is because they all gain from accessing successive locations in the count and

destination arrays.

8.8 Permuting an array

We consider the problem of permuting n integers from a source array to a destination
array as specified in an additional permutation array. The naive implementation se-
quentially visits each element of the source and permutation array and places the value
from the source array to some random location in the destination array as specified
by the permutation array. If the permutation is random and if n/P > T virtually
every access to the destination array will cause a TLB miss and similarly if n/B > C
virtually every access to the destination array will cause a cache miss.

We have tested two approaches to permuting, both of which work in a ‘most-
significant-bit first’ fashion. Let k& divide n for convenience, and define k equal-sized
areas D1,..., Dy in the destination array. All keys whose final destinations are in D;
are moved to some location in D; in the first instance. We then recursively permute
keys within D; for + = 1,...,k. The differences are in how the keys are moved to
locations in D;. One major disadvantage of both these approaches is that when we
move an item to an intermediate location, we must move then the final destination of
the item along with the item. This doubles the data to be moved. The improvements
therefore are not as pronounced.

In each case we choose k to be min{C/4,4n/(CB)}, and distribute the keys into k
areas. If the input size is small enough, then each D; fits comfortably into cache and
we finish the problem off with the naive algorithm, otherwise we recurse.

In each case, the distribution is similar to sorting the items according to the most

significant log k bits of the destination address. In one case, we do this by moving items

163

Timings(sec)

220 221 222 222 224

Naive | 0.30 | 0.66 | 1.40 | 2.89 | 6.03
PS | 0.35 | 0.70 | 1.40 | 2.85 | 5.77
EBT | 0.25 | 0.53 | 1.13 | 2.32 | 4.74

Table 8.5: Running times for naive, pre-sorting (PS) and explicit block copy (EBT)
permutation algorithms for permuting 32-bit integer items. The permutations were

random.

to an intermediate buffer as in the explicit block copy algorithm, and in the other, we
do it by locally pre-sorting the items in segments according to which area they need
to be moved to, and then moving them all in one global permute step. We omit the
TLB and cache analyses of these algorithms, which are essentially the same as those of
LSB radix sort variants, and merely give the experimental results, which show that the

explicit block copying algorithm performs quite well in this context (see Table 8.5).

8.9 Summary

We have shown the importance of minimising TLB misses in algorithms, even though
it may require significantly more operations. We have used the general technique of
explicit block transfer [80], which is the application for our emulation theorem for EMM
algorithms, to minimises TLB and cache misses in radix sorting. We have also given
two other techniques for reducing TLB misses in radix sorting, reducing working set
size and pre-sorting.

We have given three radix sorting algorithms, pre-sorting LSB radix sort (PLSB
radix sort), explicit block transfer LSB radix sort (EBT radix sort) and extended-radix
PLSB radix sort (EPLSB radix sort), of which the first two have provably few cache
and TLB misses, the last has provably few TLB misses.

The EBT technique is general, however, it does not always give the best practical
performance. PLSB gives a fast running time and is robust. EPLSB has the advantage
that it has fewer data moves than PLSB and EBT. The current implementation of

EPLSB can in theory suffer worst-case cache misses, even though this is not observed

164

in experimental results, since it does not randomise the start of destination pointers
during the global permute as this would add too much of an overhead. However since
the number of random locations accessed is T < C' it would be interesting to determine
if the algorithm can be made robust by using less randomisation than suggested by [65].

We have shown the pre-sorting and explicit block transfer techniques applied fruit-
fully to related problems such as permutations, but here more work could be done,
including for instance work on specialised classes of permutations. Also the effect of
applying pre-sorting and explicit block transfer to other algorithms such as MSB radix
sort should be studied.

On a more speculative note, since pre-sorting and explicit block transfer allow data
to be moved in blocks we could further exploit the features available on most modern
machine architectures, such as blocked copy operations between main memory addresses
which by-pass the cache. Also since the local sorts in PLSB radix sort can be performed
independently, on a machine with large instruction-level parallelism we could hope to
speed that phase up by performing two or more local sorts simultaneously (by fusing

the loops, for example).

165

Chapter 9

Optimising predecessor searches

in the IMM

In this chapter we demonstrate the importance of reducing both cache and TLB misses
for obtaining good performance in search trees. We use the two general techniques
for simultaneously reducing cache and TLB misses that we introduced in Chapter 3:
simulating 3-EMM algorithms and cache-oblivious algorithms. We give experimental
results which demonstrate that data structures based on these ideas outperform data
structures which are based on minimising cache misses alone, namely B-tree variants.

More precisely the problem we consider is the dynamic predecessor problem, which
involves maintaining a set S of pairs (x,) where z is a key drawn from a totally ordered
universe and ¢ is some satellite data. Without loss of generality we assume that 7 is
just a pointer. We assume that keys are fixed-size, and for now we assume that each
pair in S has a unique key. The operations permitted on the set include insertion and
deletion of (key, satellite data) pairs, and predecessor searching, which takes a key ¢
and returns a pair (z,7) € S such that z is the largest key in S satisfying z < ¢. For
this problem the B-tree data structure makes an optimal O(logp n) cache misses and
executes O(logn) instructions for all operations, where |S| = n [31, 53]. However, a
B-tree also makes Q(logz n) TLB misses, which is not optimal.

Assuming the maximum branching factor of a node is selected such that a node
fits inside a cache block, a heuristic argument suggests that for sufficiently large n, the

number of cache and TLB misses for the B-tree or B*-tree on random data should be

166

about loggn —logp C'+ O(1) and loggn —logg T + O(1) respectively. This is because
one may expect roughly the top logp C' levels of the B-tree to be in cache, and address
translations for all nodes in the top logg T levels to be in the TLB. A reasonable
assumption for internal memory is that C' > y/n and that logz T term may be ignored.
This gives us a rough total of logz n TLB misses and at most 0.5logyz n cache misses.
In other words, one would expect TLB misses to dominate cache misses.

In this chapter we consider the practical performance of three implementations.
Firstly, we consider the B*-tree [31], a B-tree variant that gives a shallower tree than
the original. We observe that by paginating a B*-tree we get much better performance.
Pagination consists of placing as much of the top of the tree into a single page of
memory as possible, and then recursing on the roots of the sub-trees that remain when
the top is removed. As the only significant difference between the paged and original
B*-trees is the TLB behaviour, we conclude that TLB misses do significantly change the
running time performance of B*-trees. Unfortunately, we do not yet have a satisfactory
practical approach for maintaining paged B-trees under insertions and deletions.

The second is an implementation of a data structure which uses the standard idea
for 3-EMM. At the top level the data structure is a B-tree where each node fits in a
page. Inside a node, the ‘splitter’ keys are stored in a B-tree as well, each of whose
nodes fits in a cache block. This data structure makes O(loggn) cache misses and
O(logp n) TLB misses for all operations (the update cost is amortised).

Our last implementation is of a cache-oblivious search tree data structure which
makes an optimal number of misses between any two memory levels. So this data
structure makes O(logz n) cache misses and O(logpn) TLB misses for all operations.

Our experimental results suggest that the relative performance is generally as fol-
lows:

B* < Cache-oblivious < 3-EMM < Paged B*.

It is noteworthy that a non-trivial data structure such as the cache-oblivious tree can

outperform a simple, proven and cache-optimised data structure such as the B* tree.

167

9.1 Data structures

We now describe the three data structures in more detail, starting with the cache-
oblivious search tree, then the paged B*-tree and then the 3-EMM search tree. Below,
the term ‘I/O’ refers to both TLB and cache misses.

Cache-oblivious search tree

Prokop [69] showed how to cache-obliviously lay out a complete binary search tree T'
with n keys so that on a fast memory with an unknown block size of B, searches take
O(loggn) I/0s. If h is the height of T, Prokop divides T' at |h/2], which separates T
into the top sub-tree Ty of height |h/2| and k < 2l7/2] sub-trees T, ..., T}, of height
[h/2]. T is laid out recursively in memory as Ty followed by Ti,...,T), as shown
in Figure 9.1. This tree layout is very similar to the recursive data structure first
introduced by van Emde Boas [87]. The data structure is static and requires O(n)
time and O(n/B) I/Os to construct. Bender et al. [20] note that Prokop’s tree can be
simply and efficiently dynamised by using exponential search trees [13]. Our algorithm
is closely related to that of Bender et al. [20], which we briefly review now.

We first set out some terms we will use in the discussion below. An exponential
search tree has non-leaf nodes of varying and sometimes quite large (non-constant)
degree. A non-leaf node with k children stores k — 1 sorted keys that guide a search
into the correct child: we will organise these £ — 1 keys as a Prokop tree. In what
follows, we refer to the exponential search tree as the external tree, and its nodes as
external nodes. We refer to any of the Prokop trees in an external node as internal
trees and to their nodes as internal nodes.

Roughly speaking, the root of an external tree with n leaves contains ©(y/n) keys
which partition the keys into sets of size ©(y/n). ! After this, we recurse on each set.
In contrast to [20], we end the recursion when we reach sets of size ©(logn). These are
then placed in external leaf nodes, which are represented as arrays. Although the keys
inside external non-leaf nodes are organised as Prokop trees, we do not require external

nodes to have any particular memory layout with respect to each other (see Figure 9.2).

'In reality a “bottom-up” definition is used, whereby all leaves of the external tree are at the
same depth and an external node with height ¢ has an ideal number of children that grows doubly

exponentially with ¢. The root of the external tree may have much fewer children than its ideal.

168

The number of I/Os during searches, excluding searching in the external leaves, is at
most O(logg n+loglogn). Searching in the external leaves requires O((logn)/B) I/Os,
which is negligible. The data structure (excluding the external leaves) can be updated
within the same I/O bounds as a search. Insertions of new keys take place at external
leaves and if the size of an external leaf exceeds twice its ideal size of ©(logn) then it
is split, inserting a new key into its parent external node. To maintain invariants as n

changes, the data structure is rebuilt when the number of keys reaches n?.

Implementation details. We have implemented two versions of our cache-oblivious data
structure. In both versions the keys in an external leaf node are stored in a sorted
array, and the description below is about the different structures of non-leaf external
and internal nodes.

In the first version of the data structure internal nodes are simply the keys of the
external node or they are pointers to external children node. In order to reach the left
or right child of an internal non-leaf node we calculate its address in the known memory
layout. An external node with n' keys has an internal tree of height [log n']+1, the first
[logn'] levels hold the keys and the last level holds pointers to external child nodes.
Each internal tree is a complete binary search tree and if n’ + 1 is not a power of two
then infinite valued keys are added to the first [logn'] levels of the internal tree, and
NULL pointers are added to the last level. All [logn'] +1 levels of the internal tree are
laid out recursively in a manner similar to Prokop’s scheme, thus reducing the number
of I/Os in moving from the last level of keys in the internal tree to the pointers to the
external children nodes.

In the second version of the data structure each internal node consists of a key
and left and right pointers. An external node with n’ keys has an internal tree of
height [logn']. At height h < [logn’] the internal node pointers point to internal child
nodes. At the last level of the tree internal node pointers point to external children
nodes. As above, each internal node is a complete binary tree. This implementation
has the disadvantage of requiring extra memory but has the advantage that it avoids
the somewhat computationally expensive task of finding a child in the internal tree.

Since the insertion time in an external leaf is anyway ©(logn) (we insert a new key
into an array), we reduce memory usage by ensuring that an external leaf with & keys

is stored in a block of memory sufficient for k£ + O(1) keys. Increasing this to O(k)

169

A SN

Figure 9.1: The recursive memory layout of a complete binary search tree according to

Prokop’s scheme

AN

Bi B1 Bj A Bk B2
) g - memory

Figure 9.2: Memory layout of the cache-oblivious search tree with an external root
node A of degree y/n. The sub-trees of size ©(y/n) rooted at A are shown in outline,
and their roots are Bi,...,Br. The memory locations used by the sub-trees under

Bi,..., B are not shown.

would improve insertion times, at the cost of increased memory. A final note is that
the emulation of Theorem 3.3 of Section 3.3.2 in Chapter 3 is not required in this case

to achieve optimal cache and TLB performance.

Paged B*-trees.

B*-trees are a variant of B-trees where the nodes remain at least 66% full by sharing
with a sibling node the keys in a node which has exceeded its maximum size [31]. By
packing more keys in a node, B*-trees are shallower than B-trees.

A paged B- or B*-tree uses the following memory layout of the nodes in the tree.
Starting from the root and in a breadth-first manner as many nodes as possible are
allocated from the same memory page. The sub-trees that remain outside the page are
recursively organised in a similar manner (see Figure 9.3). The process of laying out a
B-tree in this way is called pagination. The number of cache misses in a paged B-tree
are roughly the same as an ordinary B-tree, but the number of TLB misses is sharply

reduced from logg n to about logp n. With our values of B and P the TLB misses are

170

Figure 9.3: The nodes in the top part of the tree are in a memory page. The top parts

of sub-trees that remain outside the page with the root are recursively placed on a

memory page.

reduced by about two-thirds, and the overall number of misses is reduced by about a
half. Unfortunately, we can only support update operations on a paged B-tree if the
B-tree is weight-balanced [15, 93], but such trees seem to have poorer constant factors

than ordinary B-trees.

Optimal 3-EMM Trees.

We now describe the implementation of a data structure that is optimised for 3-EMM.
In principle, the idea is quite simple: we make a B-tree with branching factor ©(P) and
store the splitter keys inside a node in a B-tree with branching factor ©(B). However,
the need to make these nodes dynamic causes some problems. A B-tree with branching
factor in the range [d + 1,2d] and which has a total of m nodes can store (roughly)
between md and m - (2d — 1) keys. These correspond to trees with branching factor
d 4+ 1 and 2d at all nodes, respectively. If we let m be the number of inner B-tree
nodes which fit in a page, the mazimum branching factor of the outer B-tree cannot
exceed md, otherwise the number of nodes needed to store this tree may not fit in a
page. Since each inner B-tree node takes at least 4d words (2d keys and 2d pointers),
we have that m < P/(4d) and thus the maximum branching factor of the outer B-tree
is at most P/4.

To make the tree more bushy, we simply rebuild the entire inner B-tree whenever we
want to add an (outer) child to a node, at a cost of ©(P) operations. When rebuilding,
we make the inner B-trees have the maximum possible branching factor, thus increasing
the maximum branching factor of the outer B-tree to about P/2. To compensate for

the increased update time, we apply this algorithm only to the non-leaf nodes in the

171

outer B-tree, and use standard B-tree update algorithms at the leaves. This again
reduces the maximum branching factor at the leaves to P/4. At the leaves, however,
the problem has a more serious aspect: the fullness of the leaves is roughly half of
what it would be compared to a comparable standard B-tree. This roughly doubles the
memory usage relative to a comparable standard B-tree.

Some of these constants may be reduced by using B*-trees in place of B-trees, but
the problem remains significant. A number of techniques may be used to overcome
this, including using an additional layer of buckets, overflow pages for the leaves etc,
but these all have some associated disadvantages. In this thesis we have not fully

investigated all possible approaches to this problem.

9.2 Experimental results

We have implemented B*-trees, paged B*-trees, optimal 3-EMM trees and our cache-
oblivious search trees with and without internal pointers. Our data structures were
coded in C++ and all code was compiled using gcc 2.8.1 with optimisation level 6.
Our experiments were performed on our Sun UltraSparc-1I with 2 x 300 Mhz processors
and 1GB main memory. This machine has 64 TLBs, 8KB pages, a 16KB L1 data cache,
and a 512KB L2 cache; both caches are direct-mapped. The L1 cache miss penalty is
about 2-3 cycles on this machine, and the L2 cache miss penalty is about 30 cycles.
The TLB miss penalty is usually about 30-100 cycles.

In each experiment, a data structure was built on pairs of random 4-byte keys and
4-byte satellite data presented in random order. It should be noted that random data
tends to degrade cache performance, so these tests are hard rather than easy. The
B*-tree and cache-oblivious trees were built by repeated insertions, as essentially were
the 3-EMM trees.

B*-trees and paged B*-trees were tested with branching factors of 7 and 8 keys per
node (allowing 8 keys and 8 pointers to fit in one cache block of 64 bytes). Paged B*-
trees were paginated for 8KB pages. For each data structure on n keys, we performed
searches for 2n fresh keys drawn from the same distribution (thus “successful” searches
are rare). These were either 2n independently generated keys, or n/512 independent

keys, each of which was searched for 1024 times in succession. The latter minimises

172

the effect on cache misses and thus estimates the average computation cost. For each
algorithm, we have measured the average search time per query. Insertion costs are
not reported. At each data point we report the average search time per query for 50
experiments.

Each data structure was tested with n = 28,229 222 and 22% uniform integer keys
in the range [0,23!). At each data point we report the average search time (“abs”)
and below it the average search time relative to the fastest average search time at that
data point (“rel”). Table 9.1 shows results for the random queries and Table 9.2 shows
results for the repeated random queries.

In Table 9.1 we see that paged B*-trees are by far the fastest for random queries.
Random queries on B*-trees, tuned just for the cache, take between 44% and 68%
more time than on paged B*-trees with a branching factor of 7. Optimal 3-EMM
trees perform quite well, being at-most 14% slower than paged B*-trees. Of the data
structure suited for both the cache and TLB, the cache-oblivious search trees are the
slowest. On the other hand, the 3-EMM trees are carefully tuned to our machine,
whereas the cache-oblivious trees have no machine-specific parameters.

As can be seen from Table 9.2, the better-performing data structures do not benefit
from code tweaks to minimise operation costs. In fact, as they are a bit more complex,
they actually have generally higher operation costs than B-trees, especially the cache-
oblivious data structure with implicit pointers. Thus one would expect even better
relative performance for the search trees suited to both the cache and TLB versus B*-
trees on machines with higher miss penalties—the cache and TLB miss penalties are
quite low on our machines.

It is also instructive to compare these times with classical search trees such as Red-
Black trees. E.g., in an earlier study with the same machine/OS/compiler combination,
Korda and Raman reported a time of 9.01 pus/search for n = 222 using LEDA 3.7 Red-
Black trees [54, Fig 1(a)]. This is over twice as slow as B*-trees and over thrice as slow

as paged B*-trees. LEDA (a,b) trees are a shade slower than our B*-trees.

173

Time per-search (us) on Sun UltraSparc-1T 2 x 300 Mhz

n B* B* Paged B* | Paged B* | Optimal | Cache Obl. | Cache Obl.

(BF=7) | (BF=8) | (BF=7) | (BF=8) | 3-EMM | (int. ptrs) | (no int. ptrs)
2'8 abs 2.413 2.208 1.530 1.567 1.655 1.873 2.123
218 rel 1.577 1.443 1.000 1.024 1.082 1.224 1.388
220 abs 3.311 3.035 1.990 2.365 2.214 2.571 2.752
220 rel 1.664 1.525 1.000 1.188 1.113 1.292 1.383
222 abs 4.113 3.794 2.494 2.912 2.845 3.317 3.368
222 rel | 1.649 | 1.521 1.000 1.168 1.141 1.330 1.350
223 abs 4.527 4.160 2.690 3.129 3.061 3.700 3.644
223 rel | 1.683 1.546 1.000 1.163 1.138 1.375 1.355

Table 9.1: Query times for 2n independent random queries on n keys in data structure.

Computation time per-search (us) on Sun UltraSparc-II 2 x 300 Mhz machine

n B* B* Paged B* | Paged B* | Optimal | Cache Obl. | Cache Obl.

(BF=7) | (BF=8) | (BF=7) | (BF=8) | 3-EMM | (int. ptrs) | (no int. ptrs)
2'8 abs 0.796 0.765 0.747 0.757 0.895 0.892 1.206
28 rel | 1.066 1.024 1.000 1.013 1.198 1.194 1.614
220 abs 0.890 0.864 0.867 0.860 1.038 0.948 1.305
220 rel | 1.035 1.005 1.008 1.000 1.207 1.102 1.517
222 abs 0.971 0.956 0.965 0.948 1.140 1.012 1.368
222 rel | 1.024 1.008 1.018 1.000 1.203 1.068 1.443
223 abs 0.992 0.972 0.981 0.965 1.158 1.044 1.396
223 rel | 1.028 1.007 1.017 1.000 1.200 1.082 1.447

Table 9.2: Query times for n/512 independent random queries repeated 1024 times

each, on n keys in data structure.

174

9.3 Summary

Our experimental results show that optimising for three-level memories gives large
performance gains in internal memory computations. In particular we have shown that
cache-oblivious data structures may have significant practical importance. It would be
useful to validate predictions of cache and TLB performance using simulations and to
test the performance of these data structures on secondary memory.

The data structures in this chapter have mainly been tuned for searches. Update
operations in our current implementation of the cache-oblivious data structures are

quite slow, it would be interesting to improve upon this.

175

Chapter 10

Limitations of the CMM and
IMM

In the previous chapters we have shown that the analyses in the models we have used
reflect the actual running times for some sorting and searching algorithms. In this

chapter we discuss reasons why the models we use may at times be imprecise.

10.1 Simple abstraction of reality

In Appendix B we discuss the designs of real caches on modern computer systems
and we see that our model is a very simple abstraction of reality. In addition, other
features related to the internal memory, such as registers, memory bandwidth and
virtual memory may affect the cost of accessing data and the overall running time of a
program. We will now discuss just some of the features in the memory systems of real

computers that the models fail to capture.

10.1.1 Multi-level caches

We assume a single cache level whereas at least two levels of cache are fairly common
place. Our analyses and designs are essentially for the last level of cache before the
main memory, but as we see in Eq. B.2 and B.3 in Appendix B, the performance
of an algorithm may be improved by caching at higher levels. This does not cause
inaccuracies in most of our experiments as the sorting algorithms that we use write to

a memory address almost immediately after any read to that address, and since the

176

first-level cache on our Sun UltraSprac-1I is write-through, every memory access results

in an access for the same address in the second-level cache.

10.1.2 Replacement policies

Our models assume that the TLB or set-associative caches use an LRU replacement
policy. In practice LRU is usually too expensive to use and most caches and TLB use
a pseudo-LRU or random replacement policy. As far as the cache is concerned, since
those on our machine are direct-mapped, this issue has not been a problem in our

implementations.

10.1.3 Pre-fetching data

Hardware or compiler pre-fetching of data before it is needed is often used to reduce
cache misses, and again this is not captured by our model. Both these features are
supported on our system, but with most of our algorithms it is not possible to determine
which data will be needed more than a few instructions before the data is accessed, so

again this will not be apparent in the execution time of our algorithms.

10.1.4 Faster miss processing

Caches frequently use write-buffers, where the CPU is allowed to continue executing
instructions while a write to main memory is completing under the control of the cache.
Similarly some caches allow a CPU to continue executing instructions while the cache
processes a read miss. With both these features if a program can continue executing
instructions while cache misses are processed then the misses may not increase the
overall running time. The L2 cache on our machine allows 3 outstanding read misses
and 2 outstanding write misses, but in most of our algorithms the operands for most
of the instructions following a cache miss are dependent on the missed data so we do
observe the delays.

Since the CPU only needs one word at a time, some caches work on the principle of
supplying to the CPU the requested word as soon as it is available from main memory,
while continuing to load the whole memory block. Another type of cache asks the main
memory for the word required by the CPU, and passes it to the CPU, before asking the

memory for the rest of the block. Again this is not captured by our model. However

177

since main memory has a high latency for delivering the first word, the effect of this

optimisation may not be that significant unless the cache block size is quite large.

10.1.5 Cache-coherency

Cache-coherency is the problem of ensuring that the contents of all caches and the main
memory are identical or under tight enough control such that no device which accesses
data stored there confuses stale data for current data.

As an example of why this is required, suppose a device writes data to some main
memory locations, say from the disk, and the CPU has cached the data at those loca-
tions then the CPU will not see the new value. Direct memory access (DMA) devices
such as disk controllers or video controllers often write data directly to memory without
the CPU’s intervention.

Cache-coherency protocols are used to ensure that the CPU, cache, main memory
and other devices communicate with each other and maintain coherent data. These
protocols can often cause delays not addressed by our model.

For example, if a DMA device writes to main memory then a very simple method
for maintaining coherency would be to flush the entire cache after the write. This
can be done by setting some bit in the cache to indicate the data is invalid. This
would require a cache refill after each DMA write. Clearly this is not modelled by the
CMM and IMM. Appendix B discusses in some detail the cache-coherence problem and

various solutions.

10.1.6 Memory bandwidth

The cache miss and TLB miss penalties tells us how long it takes to access the main
memory, using this and the system clock speed, it seems, we should be able to determine
the cache and/or TLB miss rates the system can support. However this is not true in
practice. Often the bus connecting the main memory to the CPU has a lower bandwidth
which can not sustain the required level of data throughput, and this is not captured
by our model.

As an example, on our system the cache miss penalty is about 30 cycles and
we assume the TLB miss penalty is usually about 30 cycles. The system speed is

300MHz. This suggests that the system can support 10M cache or TLB misses/sec.

178

Each cache miss transfers 64 bytes of data via the system bus so we would need to trans-
fer 640MB/sec to support 10M cache misses/sec. However the memory bandwidth on
our machine is only 200MB/sec.

We now do some very rough calculations to demonstrate the effect of the limited
memory bandwidth on the performance of an algorithm. We can see this effect most
clearly in algorithms which have a high number of cache misses, such as Flashsortl,
discussed in Chapter 7. We will estimate the time for instructions and for memory
access to estimate the running time for an algorithm.

As discussed in Chapter 7 one distribution pass of Flashsortl and its variants has
roughly 30 instructions per key. There are roughly n/10 insertion sort problems, each
with roughly 10 random keys, since insertion sorting a random keys requires approxi-
mately a®/4 swaps, we assume there are roughly 25 moves per insertion sort problem.
By inspecting the assembler code generated on our machine we determine that each
swap requires 7 instructions, so there are an average of 17.5 instruction per key for inser-
tion sorting. When sorting n = 226 keys the instruction processing time for Flashsort1

is approximately:
n x Ops per key/CPU clock speed = 226 x (30 + 17.5)/(300 x 10°) = 10.62 sec.

We now estimate the time for memory accesses by considering the number of cache
and TLB misses and their miss penalties. Figure 7.4 tells us that when sorting n = 226
keys there are about 3.2 cache misses per key (in the count phase each access to the
count array causes a cache miss and in the permute phase each access to the count and
data arrays cause cache misses). It is reasonable to assume that there will be about 3.0
TLB misses per key (there are fewer compulsory and capacity misses). When sorting
n = 226 keys the memory access time, derived using the cache and TLB miss penalties

is approximately:

n X ((Cache misses per key x Cache miss penalty) +
(TLB misses per key x TLB miss penalty))/CPU clock speed

=220 % ((3.2 x 30) + (3.0 x 30))/(300 x 10°) = 41.6 sec.

So the estimated running time is approximately 52.22 seconds, but the actual run-

ning time is about 124 seconds, see Table 7.1.

179

If we consider the memory bandwidth then we get a clearer picture. We know that
on a cache miss 64 bytes are transferred between the cache and main memory. Each
TLB entry has 16 bytes of data, so we assume on a TLB miss 16 bytes are transferred
between the TLB and main memory. When sorting n = 226 keys the memory access

time, derived using the memory bandwidth is approximately:

n x ((Cache misses per key x Cache block size) +
(TLB misses per key x TLB entry size))/Memory bandwidth

=226 % ((3.2 x 64) + (3.0 x 16))/(200 x 10°) = 84.8 sec.

Using the time for instructions and memory bandwidth limitations the estimated
running time is approximately 95.42 seconds, much closer to the observed running time.
Since the model used, even when taking memory bandwidth into account, is quite crude,
it is difficult to get a more accurate estimate for the running time. For example, an

obvious problem is that we do not consider any other traffic on the bus.

10.1.7 Physically mapped caches

Both the CMM and IMM fail to address the fact that, due to paging, consecutive
(virtual) memory addresses are not consecutive in physical (main) memory. A system
that implements paging usually allocates pages of physical memory using a free list of
pages. On a heavily loaded system the pages in a free list are ordered by when they
became free, and not by their physical memory addresses. This can lead to algorithm
behaviour not predicted by the CMM or IMM. The following are some examples of
unexpected behaviour we observed with the integer sorting algorithms discussed in

Chapter 8:

(a) There is no real difference in the running times of LSB radix sort with a 5-bit radix
when sorting the sequence 0,...,n— 1, where n is a power of 2, and when sorting
random integers, see Figure 8.2. Sorting 0,...,n — 1 should have a significant
impact on the running time, due to main memory blocks which map to conflicting

cache blocks being accessed in a round-robin manner, see Proposition 8.3.

(b) PLSB radix sort is slightly slower when sorting the sequence 0,...,n — 1, where

n is a power of 2, than when sorting random integers, see Figure 8.5. Our model

180

predicts that there should be no observable difference in the running times, see
the discussion in Section 8.5.1. Closer observation reveals that the running time
for local sorts is affected by the input sequences. For example, one local sort pass
over n = 2% random 32-bit unsigned integers takes 4.152 seconds and over the

sequence 0,...,n — 1 of 32-bit integers it takes 4.396 seconds.

When dealing with random keys, the local sorts in PLSB radix sort using a 12-bit
radix are about 13% slower than when using an 11-bit radix. The slowdown can
not be explained by the cache misses required to reload a larger count array after
each local sort. For example, one local sort pass over n = 22° random 32-bit
unsigned integers using an 11-bit radix takes 4.152 seconds and using a 12-bit

radix it takes 4.7 seconds.

We now offer some explanations for these observations.

(a)

For LSB radix sort the input sequence 0,...,n — 1 is designed to cause round-
robin accesses to 2" locations in the destination array that all map to a few
conflicting cache blocks. On a system with paging, destination array locations
which we intended to conflict in the cache may no longer do so, this might explain
why LSB with a 5-bit radix is no slower given these inputs than given random
keys. Note that the longer running times with this input sequence when using
a larger radix may be explained by the fact that we can reasonably assume that
the start of a page maps to one of only CB/P cache blocks and with a larger
radix we increase the probability that active destination array locations do map

to conflicting cache blocks.

In PLSB radix sort, we have assumed that during the local sorts blocks of data
in one segment of the destination data array do not conflict with each other in
cache, however this assumption can be false on a system with paging. If the pages
for a segment of the destination array map to conflicting locations in the cache,
then with the input sequence 0,...,n — 1 during the local permute the algorithm
will make round-robin accesses to main memory blocks which map to conflicting

cache blocks.

The local sorts on random data in PLSB radix sort being slower than expected

when using a 12-bit radix can also be explained if pages allocated to a segment

181

of the destination array map to conflicting cache locations. With a larger radix
there are a higher number of active locations in conflicting cache blocks, and we
know from the analysis in Chapters 5 and 6 that an increase in the number of

active locations during the permute phase increases the number of cache misses.

We were also able to demonstrate the affect of physically mapped caches on EPLSB
radix sort. Our experiments showed that if at the start of the algorithms we accessed
(touched) every P! element of the data arrays then the algorithms ran a few % faster.

Note that the running times reported in Chapter 8 do not use this touching trick.

10.2 Summary

In this chapter we have shown that the models used in this thesis do not address many
of the features of the memory in modern computer systems. We have discussed in some
detail the effects of the limited bandwidth of the bus connecting the main memory
to the CPU and also of paging. We hope this will lead to the development of more

powerful models which address some of the issues raised here.

182

Chapter 11

Conclusions and future work

Since the 1990’s the algorithm design community has been aware of the need to improve
cache performance in order to obtain fast algorithms. However the community has on
the whole ignored the TLB, which stores translations for recently accessed memory
pages. In this thesis, we have shown that TLB misses can have as much or more of an
impact on the running time of an algorithm as cache misses.

Until now most internal memory algorithms have been analysed on a model which
considers just the cache and main memory. We have given a model which considers
the TLB as well as cache and main memory. In order to leverage the large amount of
existing research on the design of memory hierarchy efficient algorithms, we have given
two emulation theorems which allow algorithms and analyses from other memory mod-
els to be converted to equivalent algorithms and analyses on our model for the internal
memory hierarchy. We have also given two general techniques to obtain algorithms and
data structures which are simultaneously optimal for the cache and TLB. One of our
techniques is to use optimal cache-oblivious algorithms.

In this thesis we note that distribution sorting algorithms analysed and designed
on the RAM model make poor utilisation of the cache. We have extensively studied
the cache misses during the permute phase of distribution sorting algorithms. We have
shown that the number of cache conflict misses is dependent on the number of classes
that the algorithm uses. We have given upper and lower bounds on the number of
cache misses during the permute phase when the keys are drawn independently and
randomly from a uniform distribution and when they are drawn independently and

randomly from non-uniform distributions. Our analyses are for both an in-place and

183

an out-of-place permute. We have given upper and lower bounds on the number of
cache misses when accessing multiple sequences of data ‘concurrently’, and our bounds
improve upon previous results. We have also given a simple approximate analysis for
the permute phase of distribution sorting when the keys are drawn independently and
randomly from a uniform distribution. Using our analyses we have developed fast
new distribution sorting algorithms for sorting both random floating-point numbers
independently drawn from uniform distributions and for sorting random floating-point
numbers independently drawn from non-uniform distributions. Our new algorithms
comfortably outperform cache-tuned Quicksort and Mergesort. We have shown the
importance of considering the cost of instruction processing as well as cache misses
when designing an internal memory algorithm which is fast in practice.

We have demonstrated the importance of reducing TLB misses as well as cache
misses in the context of integer sorting. We have given three techniques to simultane-
ously reduce cache and TLB misses in integer sorting. Using these techniques we have
obtained several new integer sorting algorithms which all outperform highly optimised
Quicksort and Mergesort when tested on random integers independently drawn from
a uniform distribution. The fastest of these algorithms is over twice as fast as highly
optimised Quicksort and 2.8 times as fast as highly optimised Mergesort. We have
shown that in order to reduce TLB misses and obtain a fast algorithm we may have
to allow cache misses and instruction counts to grow beyond their optimal values. We
have shown that the standard integer sorting algorithm designed on the RAM model
can have a very large number of cache and TLB misses in the worst-case. We have
given examples of input key sequences which cause this worst-case and we have shown
that one of our fastest new integer sorting algorithms does not suffer this worst-case.

We have also demonstrated the importance of reducing TLB misses and cache misses
in the context of searching. We have considered the dynamic predecessor problem and
we note that the B-tree data structure is not simultaneously optimal for both the cache
and TLB. We have designed and implemented new search trees data structures which
are simultaneously optimal for the cache and TLB. One of our data structures is derived
from a 3-EMM search tree and the other from a cache-oblivious search tree. We have
shown that the cache-tuned B-tree search tree is outperformed by our cache and TLB

tuned search trees, even when the latter are quite complex.

184

In the summary of appropriate chapters in the thesis we have suggested directions
for future research. In Chapter 10 we have considered in some detail the limitations of
the memory models used in this thesis and we hope this will lead to the design of more
accurate but still practical memory models. We now consider a few broader issues for
memory-efficient algorithms.

In this thesis we showed that, cache-oblivious search trees algorithms were outper-
formed by cache and TLB tuned search trees. This was due to higher computation and
memory access costs. It would be interesting to see if this is true for other algorithms
and data structures in general.

It is obvious that optimal cache-oblivious algorithms are optimal on the EMM.
We note some further possible advantages of cache-oblivious algorithms for external
memory algorithms. Data is stored on disks in concentric tracks. To read or write
data, the read/write head must mechanically seek to the correct track and then wait
for the required address to pass by. This can take the equivalent of a million CPU cycles.
Clearly an EMM algorithm that makes accesses to data stored at sequential blocks on a
track or on sequential tracks on disk will perform better than an algorithm that accesses
random blocks on the disk. However, the EMM does not differentiate between accesses
to sequential and random blocks. Since cache-oblivious algorithms exploit locality at
all levels of memory, they will have the desired sequential data accesses and so give
good performance. We believe this should be investigated further.

Our experimental results for Flashsortl, MPFlashsort and Quicksort on the Intel
Mobile Pentium IIT system show that performance gains seen on the Ultra Sparc-11
system may not so easily be seen on other systems. It would be interesting to test the
algorithms presented in this thesis on a wider range of computer systems.

We finally suggest investigating the affect on power consumption of memory-efficient
algorithms and data structures. This is becoming an increasingly important issues as

handheld computing devices become more pervasive

185

Bibliography

1]

2]

[4]

7]

A. Acharya, H. Zhu and K. Shen. Adaptive algorithms for cache-efficient trie
search. In Proc. 1st Workshop on Algorithm Engineering and Experimentation,

LNCS 1619, pp. 296-311, 1999.

A. Agarwal. Analysis of cache performance for operating systems and multipro-
gramming. Ph.D. Thesis. Stanford University, 1987. Also available as Tech. Rep.
CSL-TR-87-332.

A. Agarwal, R. L. Sites and M. Horowitz. ATUM: A new technique for capturing
address traces using microcode. In Proc. 13th Annual Symposium on Computer

Architecture, pp. 119-127, 1986.

A. Agarwal, M. Horowitz and J. Hennessy. An analytical cache model. ACM
Transactions on Computer Systems 7, pp. 184-215, 1989.

R. Agarwal. A super scalar sort algorithm for RISC processors. In Proc. ACM
SIGMOD International Conference on Management of Data, pp. 240-246, 1996.

A. Aggarwal, B. Alpern, A. K. Chandra and M. Snir. A model for hierarchical
memory. In Proc. 19th Annual ACM Symposium on Theory of Computing, pp. 305—
314, 1987.

A. Aggarwal, A. K. Chandra and M. Snir. Hierarchical memory with block trans-
fers. In Proc. 28th Annual Symposium on Foundations of Computer Science,

pp. 204-215, 1987.

A. Aggarwal and J. S. Vitter. The I/O complexity of sorting and related problems.
Communications of the ACM 31, pp. 1116-1127, 1998.

186

[9]

[10]

[11]

[12]

[15]

[16]

A. V. Aho, J. E. Hopcroft and J. D. Ullman. The design and analysis of computer
algorithms. Addison-Wesley, 1974.

A. Ailamaki, D. J. DeWitt, M. D. Hill and D. A. Wood. DBMSs on a modern
processor: where does time go? In Proc. 25th International Conference on Very

Large Databases, pp. 266277, 1999.

B. Alpern, L. Carter, E. Feig and T. Selker. The uniform memory hierarchy model
of computation. Algorithmica 12, pp. 72-109, 1994.

D. Alpert. Performance tradeoffs for microprocessor cache memories. Computer

Systems Lab. Rep. CSL-TR 83-239, Stanford University, Dec. 1983.

A. Andersson. Faster deterministic sorting and searching in linear space. In Proc.

37th Annual Symposium on Foundations of Computer Science, pp. 135-141, 1996.

L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley and J. I. Munro.
Cache-oblivious priority queue and graph algorithm applications. In Proc. 34th
Annual ACM Symposium on Theory of Computing, pp. 268-276, 2002.

L. Arge and J. S. Vitter. Optimal dynamic interval management in external mem-
ory (extended abstract). In Proc. 37th Annual Symposium on Foundations of
Computer Science, pp. 560-569, 1996.

L. Arge, J. Chase, J. S. Vitter and R. Wickremesinghe. Efficient sorting using
registers and caches. In Proc. 4th Workshop on Algorithm Engineering, LNCS
1982, pp. 51-62, 2000.

L. Arge. External memory data structures (invited paper). In Proc. 9th Annual

European Symposium on Algorithms, LNCS 2161, pp. 1-29, 2001.

C. Armen. Bounds on the separation of two parallel disk models. In Proc. jth

Workshop on Input/Output in Parallel and Distributed Systems, pp 122-127, 1996.

D. H. Bailey. FFT’s in external or hierarchical memory. Journal of Supercomput-

ing 4, pp. 23-35, 1990.

187

[20]

[22]

[23]

[26]

[27]

28]

[29]

M. Bender, R. Cole, and R.Raman. Exponential structures for cache-oblivious
algorithms. In Proc. 29th International Colloquium on Automata, Languages and

Programming, pp. 195-207, 2002.

M. A. Bender, E. Demaine, and M. Farach-Colton. Cache-oblivious B-trees. In
Proc. 41st Annual Symposium on Foundations of Computer Science, pp. 399-409,
2000.

M. A. Bender, Z. Duan, J. Tacono, and J. Wu. A locality-preserving cache-oblivious
dynamic dictionary. In Proc. 13th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 29-38, 2002.

G. Bilardi, P. D’Alberto and A. Nicolau. Fractal matrix multiplication: a case
study on portability of cache performance. In Proc. 5th International Workshop

on Algorithm Engineering, pp. 26-38, 2001.

J. Bojesen, J. Katajainen and M. Spork. Performance engineering case study: heap

construction. ACM Journal of Experimental Algorithmics 5, Article 15, 2000.

G. S. Brodal, R. Fagerberg and R. Jacob. Cache-oblivious search trees via binary
trees of small height. In Proc. 13th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 39-48, 2002.

B. Calder, C. Krintz, S. John and T. Austin. Cache-conscious data placement.
In Proc. 8th International Conference on Architectural Support for Programming

Languages and Operating Systems, pp. 139-149, 1998.

L. Carter and K. S. Gatlin. Towards an optimal bit-reversal permutation program.
In Proc. 39th Annual Symposium on Foundations of Computer Science, pp. 544—
555, 1998.

S.Chatterjee and S. Sen. Cache-efficient matrix transposition. In Proc. 6th Inter-
national Symposium on High-Performance Computer Architecture, pp. 195-205,
2000.

T. M. Chilimbi, B. Davidson, and J. R. Larus. Cache-conscious structure defini-
tion. In Proc. ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 13-24, 1999.

188

[30]

[31]

[32]

[33]

T. M. Chilimbi, M. Hill and J. R. Larus. Cache-conscious structure layout. In
Proc. ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pp. 1-12, 1999.

D. Comer. The ubiquitous B-Tree. ACM Computing Survey 11, pp. 121-137,
1979.

T. H. Cormen, C. E. Leiserson and R. L. Rivest. Introduction to algorithms. MIT
Press, 1990.

D. Dubhashi and D. Ranjan. Balls and bins: a study in negative dependence.
Random Structures and Algorithms 13, pp. 99-124, 1998.

N. Eiron, M. Rodeh and I. Steinwarts. Matrix multiplication: a case study of
enhanced data cache utilization. ACM Journal of Experimental Algorithmics 4,

Article 3, 1999.

R. Fadel, K. V. Jakobsen, J. Katajainen and J. Teuhola. Heaps and heapsort on

secondary storage. Theoretical Computer Science 220, pp. 345-362, 1999.
R. W. Floyd. Algorithm 245: Treesort 3. Communications of the ACM 7, 1964.

E. H. Friend. Sorting on electronic computer systems. Journal of the ACM 3,
pp- 134-168, 1956.

M. Frigo, C. E. Leiserson, H. Prokop, S. Ramachandran. Cache-oblivious algo-
rithms. In Proc. 40th Annual Symposium on Foundations of Computer Science,

pp. 285-298, 1999.

S. B. Furber. ARM system-on-chip architecture, 2nd ed.. Addison-Wesley Profes-
sional, 2000.

D. Gannon and W. Jalby. The influence of memory hierarchy on algorithm organi-
zation: programming FFTs on a vector multiprocessor. In L. H. Jamieson, D. B.
Gannon and R. J. Douglass Eds., The Characteristics of Parallel Algorithms. MIT
Press, 1987.

189

[41]

[47]

[48]

[52]

S. Ghosh, M. Martonosi and S. Malik. Precise miss analysis for program transfor-
mations with caches of arbitrary associativity. In Proc. Architectural Support for

Programming Languages and Operating Systems, pp. 228-239, 1998.

J. R. Goodman. Using cache misses to reduce processor-memory traffic. In Proc.

10th Annual Symposium on Computer Architecture, pp. 124-131, 1983.
J. Handy. The cache memory handbook, Academic Press, 1998.

P. J. Hanlon, D. Chung, S. Chatterjee, D. Genius, A. R. Lebeck and E. Parker. The
combinatorics of cache misses during matrix multiplication. Journal of Computer

and Systems Sciences 63, pp. 80-126, 2001.

J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative ap-

proach, 2nd ed.. Morgan Kaufmann, 1996.

M. Hill. Aspects of cache memory and instruction buffer performance. Ph.D.
Thesis, 1987. University of California at Berkeley. Also available as Tech. Rep.
UCB/CSD 87/381.

M. Hill. A case for direct-mapped caches. Computer 21, pp. 25-40, 1988.

M. Hill and A. J. Smith. Experimental evaluation of on-chip microprocessor cache
memories. In Proc. 11th Annual Symposium on Computer Architectures, pp. 158—

166, 1984.

M. Hill and A. J. Smith. Evaluating associativity in CPU caches. In IEEE Trans-
actions on Computers 38, pp. 1612-1630, 1989.

K. Joag-Dev and F. Proschan. Negative association of random variables, with

applications. Annals of Statistics 11, pp. 286295, 1983.

R. Joseph, D. Brooks and M. Martonosi. Live, runtime power measurements as
a foundation for evaluating power/performance tradeoffs. In Proc. Workshop on

Complezity Effective Design, held in conjunction with ISCA-28, 2001.

S. Kaxiras, Z. Hu and M. Martonosi. Cache decay: exploiting generational be-
haviour to reduce cache leakage power. In Proc 28th International Symposium on

Computer Architecture, pp. 240-251, 2001.

190

[53]

[54]

[55]

[56]

[62]

D. E. Knuth. The art of computer programming. Volume 3: sorting and searching,

3rd ed.. Addison-Wesley, 1997.

M. Korda and R. Raman. An experimental evaluation of hybrid data structures
for searching. In Proc. 3rd Workshop on Algorithm Engineering, LNCS 1668,
pp- 213-227, 1999.

P. Kumar. Personal communication.

R. E. Ladner, J. D. Fix and A. LaMarca. Cache performance analysis of traversals
and random accesses. In Proc. 10th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 613-622, 1999.

M. S. Lam, E. E. Rothberg and M. E. Wolf. The cache performance and optimiza-
tions of blocked algorithms. In Proc. 4th International Conference on Architectural

Support for Programming Languages and Operating Systems, pp. 63-74, 1991.

A. LaMarca and R. E. Ladner. Influence of caches on the performance of heaps.

ACM Journal of Experimental Algorithmics 1, Article 4, 1996.

A. LaMarca and R. E. Ladner. The influence of caches on the performance of

sorting. Journal of Algorithms 31, pp. 66-104, 1999.

A. Lebeck and D. Wood. Cache profiling and the SPEC benchmarks: a case study.
Computer 27, pp. 15-26, 1994.

M. Martonosi, A. Gupta and T. Anderson. Tuning memory performance of se-

quential and parallel programs. Computer 28, pp.32—40, 1995.

Y. Matias, E. Segal and J. S. Vitter. Efficient bundle sorting. In Proc. 11th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 839848, 2000.

R. L. Mattson, J. Gecsei, D. R. Slutz and I. L. Traiger. Evaluation techniques for
storage hierarchies. IBM Systems Journal 7, pp. 78-117, 1970.

C. Mead and L. Conway. Introduction to VLSI systems. Addison-Wesley, 1980.

K. Mehlhorn and P. Sanders. Accessing multiple sequences through set-associative

cache. Unpublished manuscript, 2000. Preliminary version in Proc. 26th Annual

191

[67]

[68]

[69]

[70]

[71]

[72]

[74]

International Colloquium on Automata, Languages and Programming, LNCS 1555,

pp. 655-664, 1999.

B. Moret and H. Shapiro. An empirical assessment of algorithms for constructing
a minimum spanning tree. In Computational Support for Discrete Mathemat-
ics, Volume 15 of DIMACS Monographs in Discrete Mathematics and Theoretical

Computer Science, 1994, pp. 99-117. American Mathematical Society.

K. D. Neubert. The Flashsortl algorithm. Dr Dobb’s Journal, pp. 123125, Febru-

ary 1998. FORTRAN code listing, p. 131, ibid.

C. Nyberg, T. Barclay, Z. Cventanovic, J. Gray and D. Lomet. AlphaSort: a RISC
machine sort. In Proc. ACM SIGMOD International Conference on Management
of Data, 1994.

H. Prokop. Cache-oblivious algorithms. MS Thesis. MIT Department of Electrical

Engineering and Computer Science. 1999.

N. Rahman, R. Cole and R. Raman. Optimising predecessor data structures for
internal memory. In Proc. 5th International Workshop on Algorithm Engineering,

LNCS 2141, pp. 67-78, 2001.

N. Rahman and R. Raman. Analysing cache effects in distribution sorting. ACM
Journal of Experimental Algorithmics 5, Article 14, 2001. Preliminary version in

Proc. 8rd Workshop on Algorithm Engineering, LNCS 1668, pp. 184-198, 1999.

N. Rahman and R. Raman. Adapting radix sort to the memory hierarchy. ACM
Journal of Ezxperimental Algorithmics, (to appear). Preliminary version in Proc.

2nd Workshop on Algorithm Engineering and FExperiments, 2000.

N. Rahman and R. Raman. Analysing the cache behaviour of non-uniform distribu-
tion sorting algorithms. In Proc. 8th Annual European Symposium on Algorithms,

LNCS 1879, pp. 380-391, 2000.

T. H. Romer, W. H. Ohlrich, A. R. Karlin and B. N. Bershad. Reducing TLB
and memory overhead using online superpage promotion. In Proc. 22nd Annual

International Symposium on Computer Architecture, pp. 176-187, 1995.

192

[75]

[76]

[77]

78]

[81]

[82]

[83]

[36]

[87]

W. Rudin. Real & complex analysis. McGraw-Hill, New York, 1974.

P. Sanders. Random permutations on distributed, external and hierarchical mem-

ory. Information Processing Letters 67, pp. 305-309, 1998.

P. Sanders. Fast priority queues for cached memory. ACM Journal of Experimental

Algorithmics 5, Article 7, 2000.

P. Sanders, S. Egner and J. Korst. Fast concurrent access to parallel disks. In
Proc. 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 849-858,
2000.

R. Sedgewick. Implementing quicksort programs. Communications of the ACM 21,
1978.

S. Sen and S. Chatterjee. Towards a theory of cache-efficient algorithms (extended
abstract). In Proc. 11th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 829-838, 2000.

D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging
rules. Communications of the ACM 28, pp. 202-208, 1985.

A. J. Smith. Cache evaluation and the impact of workload choice. In Proc. 12th

Annual Symposium on Computer Architectures, pp. 6373, 1985.

A. J. Smith and J. R. Goodman. A study of instruction cache organization and
replacement policies. In Proc. 10th Annual Symposium on Computer Architectures,

pp- 132-137, 1983.

O. Temam, C. Fricker and W. Jalby. Cache awareness in blocking techniques.

Journal of Programming Languages, 1997.

S. Thite. Optimum binary search trees on the hierarchical memory model. M.S.
Thesis. University of Illinois at Urbana-Champaign, 2000. Also available as CSL
Tech. Rep. UILU-ENG-00-2215 ACT-142.

UltraSPARC user’s manual. Sun Microsystems, 1997.

P. van Emde Boas. Preserving order in a forest in less than logarithmic time and

linear space. Information Processing Letters 6, pp. 80-82, 1977.

193

[88]

[92]

[93]

[97]

[98]

G. Venkataraman, S. Sahni and S. Mukhopadhyaya. A blocked all-pairs shortest-
paths algorithm. In Proc. Scandinavian Workshop on Algorithm Theory, LNCS
1851, pp- 419-432, 2000.

J. S. Vitter. External memory algorithms and data structures: dealing with mas-

sive data. ACM Computing Surveys 33, pp. 209-271, 2001.

J. S. Vitter and M. H. Nodine. Large scale sorting in uniform memory hierarchies.

Journal of Parallel and Distributed Computing 17, pp. 107-114, 1993.

J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory I: two-level
memories. Algorithmica 12, pp. 110-147, 1994, double special issue on Large-

Scale Memories, J. S. Vitter, guest editor.

J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory II: hierarchical
multilevel memories. Algorithmica 12, pp. 148-169, 1994, double special issue on
Large-Scale Memories, J. S. Vitter, guest editor.

D. E. Willard. Reduced memory space for multi-dimensional search trees. In Proc.
2nd Annual Symposium of Theoretical Aspects of Computer Science, pp. 363-374,
1985.

W. J. Williams. Algorithm 232: Heapsort. Communications of the ACM 7,
pp- 347-348, 1964.

M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In Proc. ACM
SIGPLAN ’91 Conference on Programming Language Design and Implementation,
pp. 3044, 1991.

L. Xiao, X. Zhang and S. A. Kubricht. Improving memory performance of sorting
algorithms. ACM Journal on Ezxperimental Algorithmics 5, Article 3, pp. 1-22,
2000.

H. Zhang and M. Martonosi. A mathematical cache miss analysis for pointer data
structures. In Proc. 10th SIAM Conference on Parallel Processing for Scientific
Computing, 2001.

Z. Zhang and X. Zhang. Cache-optimal methods for bit-reversals. In Proc. Super-
computing’99, Article 26, 1999.

194

Appendix A

Simulation results

In this appendix we give simulation results for the cache misses per key during the
permute phase of distribution sorting. We compare our simulations results to values
predicted using the approximate analyses in Chapter 6.

Table A.1 shows cache misses per key during the permute phase for n = 28 219,
220 221 922 923 924 925 and n = 226 at expected class sizes of B/4,B/2 and B, where

B = 16. The misses per key were obtained:
e from 50 cache simulations, labelled Sim,
e predicted using Equations 6.7 and 6.11, labelled Predict.

We see that the predicted and simulated miss rates are quite close, only withn/k = B/4
and values of n > 222 is there a greater than 5% variation, even then the variation is
less than 7%.

Tables A.2 and A.3 shows cache misses per key during the ‘in-place’ permutation
phase for n = 224 and 100 random values of k between 25 and 8192 and for selected
values of k = 128, 256, 384, 512, 640, 768, 896, 1024, 1152, 1280, 1408, 1536, 1664,
1792, 1920, 2047, 2048, 2049, 4095, 4096 and 4097. The misses per key were obtained:

e from 20 cache simulations, labelled Sim,

e predicted from the actual values of v taken at the start of permutation in the full

simulations above, labelled Act,

e predicted using Equation 6.16, labelled Pred.

195

n/k = B/4 n/k = B/2 n/k =B
n Sim | Predict || Sim | Predict || Sim | Predict
218 |1 1.052 | 1.080 || 0.832 | 0.837 || 0.669 | 0.694
21911 1.415 1.471 || 1.188 1.197 || 0.998 1.012
220 |1 1.722 1.745 || 1.455 1.471 || 1.252 1.255
22111 1.877 | 1.929 || 1.735 1.686 || 1.474 | 1.471
222 11 1.954 2.042 || 1.875 1.841 || 1.741 1.657
223 (111,993 | 2.106 || 1.945 1.939 || 1.874 | 1.797
224 112,012 | 2132 | 1.981 | 1.996 || 1.941 | 1.888
225 |1 2.022 2.158 || 1.998 2.026 || 1.974 1.941
226 112,026 | 2.167 || 2.007 | 2.042 || 1.991 1.970

Table A.1: Simulated miss rates and miss rates predicted using Equation 6.7 and 6.11,

at n = 218 219 920 921 922 923 924 925 and n = 2?0 with expected class sizes of

B/4,B/2 and B, where B = 16.

For a value of k where there is greater than 5% variation between these three values, k

is prefixed with a superscript of a,b or c. The superscripts denote variations:

a) between simulated and predicted values alone,

b) between simulated and predicted and between actual and predicted values,

¢) between all three values.

Some observations on the results are:

e For most random values of k the variation between the simulated and predicted

misses per key is at-most 5%.

e For most values of k£ where there is greater than 5% variation, the superscript

is b. This indicates that simulated misses per key and misses per key predicted

from actual v vary together.

e For most random values of k£ where there is greater than 5% variation we note that

ged(7, k) is small but ged(7,k — 1) or ged(7, k + 1) is large. These are examples

of heuristic 1 not being effective, as discussed in Section 4.4.2.

196

Note that greater than 5% variation between other combinations are not observed, for
instance there was never a more than 5% variation between the actual and predicted
values alone.

Tables A.4 and A.5 show for n = 229 and 222 all values of k between 32 and 8192
where there was greater than 5% variation between the actual value of v at the start
of permutation, averaged over 20 experiments, and v predicted using Equation 6.14.
Table A.6 shows these results at n = 22* where the actual value of v was averaged
over 195 experiments. Values of k where ged(7, k) is not equal to 7, 7/2, 7/4, or k are

prefixed with a *. Some observations on the results are:

e Values which are prefixed with * have ged(r,k — 1) = 7 or ged(r,k + 1) = 7.

These are further examples of heuristic 1 not being effective.

e As k increases fewer and fewer values are listed in the table, this shows that the

equations will be accurate for most values of k£ > 32 while n/k > B.

We can report that at n = 224 for 6676 values of k between 32 and 8192, the actual
value of v averaged over 195 experiments was higher than the value predicted using
Equation 6.14.

Table A.7 shows for n = 224 at values of k selected using heuristic 2, actual v at
the start of permutation, averaged over 20 experiments, and v predicted using Equa-
tion 6.14. We note that at all these values of k the actual value of v was higher than

the predicted value.

197

k| Sim| Act| Pred k| Sim| Act| Pred k| Sim| Act| Pred

49 | 0.065 | 0.065 | 0.066 || °128 | 0.301 | 0.290 | 0.072 | 129 | 0.065 | 0.065 | 0.072
210 | 0.076 | 0.077 | 0.077 || 240 | 0.094 | 0.093 | 0.080 || ®253 | 0.076 | 0.076 | 0.080
5256 | 0.297 | 0.291 | 0.081 || ©384 | 0.287 | 0.293 | 0.090 || 2472 | 0.094 | 0.090 | 0.096
5512 | 0.300 | 0.292 | 0.098 554 1 0.103 | 0.102 | 0.101 615 | 0.106 | 0.104 | 0.105
5640 | 0.290 | 0.294 | 0.107 662 | 0.109 [0.109 | 0.109 || 768 | 0.292 | 0.297 | 0.116
7811 0.116 | 0.113 | 0.117 789 | 0.121 | 0.118 | 0.117 | 896 | 0.293 | 0.298 | 0.124
930 | 0.125 | 0.124 | 0.127 || 1024 | 0.295 | 0.298 | 0.133 || 1038 | 0.133 | 0.130 | 0.134
1105 | 0.137 | 0.136 | 0.138 || ®1120 | 0.147 | 0.145 | 0.139 || 1123 | 0.140 | 0.135 | 0.139
1137 [0.140 | 0.140 | 0.140 || ®1152 | 0.296 | 0.302 | 0.141 || 1178 | 0.147 | 0.142 | 0.143
1267 | 0.148 | 0.145 | 0.149 || 1280 | 0.298 | 0.301 | 0.150 || 1318 | 0.151 | 0.150 | 0.152
51408 | 0.299 | 0.306 | 0.158 || ®1536 | 0.301 | 0.306 | 0.166 || ®1664 | 0.302 | 0.309 | 0.174
51792 | 0.304 | 0.311 | 0.182 || 1888 | 0.192 | 0.189 | 0.188 | 1910 | 0.188 | 0.185 | 0.189
51920 | 0.306 | 0.312 | 0.190 || 2042 | 0.201 | 0.195 | 0.198 || 2047 | 0.245 | 0.239 | 0.198
52048 | 0.320 | 0.313 | 0.198 || ®2049 | 0.241 | 0.240 | 0.198 || 2060 | 0.198 | 0.192 | 0.199
2164 | 0.204 | 0.198 | 0.205 || ©2239 | 0.228 | 0.221 | 0.210 || 2293 | 0.212 | 0.206 | 0.213
2364 | 0.221 | 0.216 | 0.217 || 2420 | 0.220 | 0.215 | 0.220 || 2456 | 0.223 | 0.218 | 0.222
2500 | 0.230 | 0.222 | 0.225 || 2545 | 0.227 | 0.222 | 0.228 || 2582 | 0.231 | 0.225 | 0.230
2596 | 0.233 | 0.227 | 0.231 || 2618 | 0.234 | 0.227 | 0.232 || 2629 | 0.236 | 0.230 | 0.233
2693 | 0.246 | 0.241 | 0.236 || 2842 | 0.246 | 0.242 | 0.245 || 2885 | 0.251 | 0.245 | 0.247
2937 | 0.256 | 0.250 | 0.250 || “2945 | 0.304 | 0.286 | 0.251 || 3266 | 0.280 | 0.269 | 0.269
3368 | 0.279 | 0.273 | 0.275 || 3658 | 0.295 | 0.287 | 0.291 || 3662 | 0.295 | 0.286 | 0.291

Table A.2: Misses/n during in-place-permutation for n = 22* using random and se-

lected values of k, the misses/n values are: simulated; predicted using actual v at start

of permutation; predicted using Equation 6.16. Part 1.

198

k| Sim| Act| Pred k| Sim| Act| Pred k| Sim| Act| Pred

37421 0.298 | 0.289 | 0.295 || 3768 | 0.301 | 0.292 | 0.296 || ©3841 | 0.345 | 0.328 | 0.300
4040 | 0.315 | 0.307 | 0.311 | 4095 | 0.355 | 0.352 | 0.314 | 4096 | 0.354 | 0.355 | 0.314
54097 | 0.353 | 0.338 | 0.314 || 4143 | 0.320 | 0.310 | 0.316 | 4148 | 0.321 | 0.312 | 0.317
4170 | 0.322 | 0.312 | 0.318 || 4200 | 0.322 | 0.313 | 0.319 || 4312 | 0.329 | 0.322 | 0.325
43871 0.333 | 0.324 | 0.329 || 4677 | 0.350 | 0.340 | 0.344 || 4845 | 0.357 | 0.346 | 0.352
4896 | 0.359 | 0.350 | 0.355 || 4977 | 0.364 | 0.358 | 0.359 || 5015 | 0.365 | 0.357 | 0.360
5115 | 0.383 | 0.374 | 0.365 || 5344 | 0.380 | 0.372 | 0.376 || 5447 | 0.387 | 0.379 | 0.381
5470 | 0.387 | 0.378 | 0.382 || 5499 | 0.401 | 0.394 | 0.384 || 5562 | 0.393 | 0.385 | 0.387
%5634 | 0.415 | 0.405 | 0.390 || 5691 | 0.401 | 0.392 | 0.393 || 5700 | 0.399 | 0.389 | 0.393
5778 1 0.403 |1 0.394 | 0.397 || 5809 | 0.403 | 0.396 | 0.398 || 5811 | 0.404 | 0.395 | 0.398
5812 | 0.404 | 0.396 | 0.398 || 5929 | 0.409 | 0.398 | 0.404 || 5935 | 0.410 | 0.401 | 0.404
6119 | 0.418 | 0.408 | 0.412 || 6243 | 0.423 | 0.415 | 0.418 || 6249 | 0.424 | 0.414 | 0.418
6260 | 0.427 | 0.420 | 0.419 || 6503 | 0.435 | 0.426 | 0.430 || 6515 | 0.439 | 0.431 | 0.430
6855 | 0.451 | 0.441 | 0.445 || 6911 | 0.464 | 0.454 | 0.447 || 6990 | 0.457 | 0.449 | 0.451
7013 | 0.457 | 0.449 | 0.452 || 7039 | 0.469 | 0.458 | 0.453 || 7106 | 0.463 | 0.453 | 0.456
7120 | 0.462 | 0.453 | 0.456 || 7262 | 0.468 | 0.459 | 0.462 || 7273 | 0.470 | 0.461 | 0.463
7274 1 0.469 | 0.459 | 0.463 || 7278 | 0.470 | 0.462 | 0.463 || 7279 | 0.472 | 0.462 | 0.463
7324 1 0.471 | 0.461 | 0.465 || 7356 | 0.473 | 0.463 | 0.466 || 7436 | 0.479 | 0.471 | 0.469
7584 | 0.482 | 0.473 | 0.475 || 7593 | 0.482 | 0.472 | 0.476 || 7839 | 0.492 | 0.481 | 0.486
8073 | 0.506 | 0.499 | 0.495

Table A.3: Misses/n during in-place-permutation for n = 224 ysing random and se-
lected values of k, the misses/n values are: simulated; predicted using actual v at start

of permutation; predicted using Equation 6.16. Part 2.

k | Actual | Predict k | Actual | Predict k | Actual | Predict

40 | 37.900 | 39.903 | 56 | 53.150 | 55.809 || 96 | 90.850 | 95.440

Table A.4: For n = 22° all values of k between 32 and 8192 where there was greater
than 5% variation between actual v and v predicted using Equation 6.14 at start of

permutation.

199

k Actual | Predict k Actual | Predict k Actual | Predict
32 27.600 31.938 48 44.750 47.860 64 55.650 63.751
80 74.800 79.611 96 83.300 95.440 || 112 | 104.650 | 111.238
128 | 111.550 | 127.005 || 144 | 134.950 | 142.742 || 160 | 138.650 | 158.448
176 | 164.350 | 174.123 || 192 | 166.700 | 189.767 || 208 | 194.900 | 205.382
224 196.250 | 220.965 240 | 225.000 | 236.518 256 | 223.300 | 252.041
288 | 251.800 | 282.996 || 320 | 277.950 | 313.831 || 352 | 307.800 | 344.545
384 | 335.100 | 375.139 || 416 | 363.800 | 405.614 | 448 | 392.750 | 435.970
480 | 417.450 | 466.208 || 512 | 447.850 | 496.328 || 544 | 476.750 | 526.331
576 | 502.200 | 556.216 || 608 | 532.750 | 585.985 || 640 | 558.200 | 615.639
672 | 587.300 | 645.176 || 704 | 615.850 | 674.598 | 736 | 644.000 | 703.906
768 | 670.650 | 733.099 | 800 [700.000 | 762.179 | 832 | 729.100 | 791.145
864 | 756.900 | 819.998 || 896 | 782.900 | 848.739 || 928 | 809.200 | 877.367
960 | 835.650 | 905.884 || 992 | 863.650 | 934.290 || 1024 | 895.600 | 962.585
1056 | 922.550 | 990.770 || 1088 | 953.850 | 1018.845 || 1120 | 982.150 | 1046.811
1152 | 1006.550 | 1074.667 || 1184 | 1035.450 | 1102.415 || 1216 | 1061.700 | 1130.055
1248 | 1092.900 | 1157.587 | 1280 | 1114.600 | 1185.011 || 1312 | 1143.950 | 1212.329
1344 | 1175.800 | 1239.540 || 1376 | 1203.050 | 1266.645 | 1408 | 1228.550 | 1293.644
1440 | 1255.200 | 1320.538

Table A.5: For n = 222, all values of k between 32 and 8192 where there was greater

than 5% variation between actual v and v predicted using Equation 6.14 at start of

permutation.

200

k| Actual | Predict k| Actual | Predict k| Actual | Predict
32| 30.103 31.940 64 | 56.256 63.755 96 90.200 95.445
128 98.764 | 127.013 160 | 150.062 | 158.457 192 | 168.503 | 189.779
224 | 210.359 | 220.979 256 | 197.487 | 252.056 320 | 280.862 | 313.849
384 | 295.564 | 375.161 448 | 392.764 | 435.996 512 | 395.077 | 496.358
576 | 504.195 | 556.249 640 | 493.672 | 615.675 704 | 616.995| 674.638
768 | 590.964 | 733.142 832 | 729.518 | 791.191 896 | 689.979 | 848.788
960 | 841.841 | 905.936 | 1024 | 789.215 | 962.641 || 1088 | 953.882 | 1018.903
1152 | 885.713 | 1074.728 || 1216 | 1066.462 | 1130.119 || 1280 | 986.990 | 1185.078
1344 | 1177.482 | 1239.610 || 1408 | 1082.513 | 1293.717 || 1536 | 1183.000 | 1400.671
1664 | 1281.949 | 1505.967 || 1792 | 1378.677 | 1609.631 || *1793 | 1529.574 | 1610.434
1920 | 1477.467 | 1711.687 || *1921 | 1622.308 | 1712.478 || *2047 | 1724.036 | 1811.382
2048 | 1577.923 | 1812.161 || *2049 | 1713.836 | 1812.940 || *2175 | 1816.959 | 1910.311
2176 | 1675.385 | 1911.078 || *2177 | 1805.559 | 1911.844 | *2303 | 1907.713 | 2007.705
2304 | 1772.359 | 2008.460 || *2305 | 1894.251 | 2009.215 || *2431 | 1997.749 | 2103.590
2432 | 1872.549 | 2104.333 || *2433 | 1982.041 | 2105.076 || *2559 | 2088.015 | 2197.987
2560 | 1972.785 | 2198.719 || *2561 | 2067.682 | 2199.451 || *2687 | 2175.426 | 2290.922
2688 | 2066.862 | 2291.642 || *2689 | 2157.744 | 2292.362 || *2815 | 2263.800 | 2382.415
2816 | 2163.441 | 2383.124 || *2817 | 2243.610 | 2383.833 || *2943 | 2354.072 | 2472.490
2944 | 2259.780 | 2473.188 || *2945 | 2330.426 | 2473.886 || 3072 | 2356.205 | 2561.855
*3073 | 2419.210 | 2562.542 || 3200 | 2449.185 | 2649.148 || *3201 | 2503.903 | 2649.824
3328 | 2544.5564 | 2735.087 || *3329 | 2587.631 | 2735.753 || 3456 | 2633.533 | 2819.694
*3457 | 2672.313 | 2820.349 || 3584 | 2726.615 | 2902.989 || *3585 | 2754.549 | 2903.634
3712 | 2814.467 | 2984.992 || *3713 | 2838.764 | 2985.628 || 3840 | 2901.872 | 3065.724
*3841 | 2919.005 | 3066.350 || 3968 | 2988.113 | 3145.204

Table A.6: For n = 224, all values of k between 32 and 8192 where there was greater

than 5% variation between actual v and v predicted using Equation 6.14 at start of

permutation.

201

k| Actual | Predict k| Actual | Predict k| Actual | Predict

46.997 46.94 46.87 || 136.20 | 136.21 | 135.08 | 144.80 | 144.06 | 143.54
163.378 | 162.76 | 161.77 | 176.89 | 175.49 | 175.01 || 207.11 | 205.86 | 204.52
335.108 | 330.13 | 328.37 || 591.11 | 573.35| 570.32 | 1103.11 | 1037.32 | 1032.12

2127.108 | 1882.65 | 1873.48 || 4175.11 | 3290.24 | 3271.20 || 8271.11 | 5232.55 | 5207.48

Table A.7: For n = 22 at values of k selected using the ¢ heuristic. Actual v and v

predicted using Equation 6.14 at start of permutation.

202

Appendix B

Cache Architecture

This appendix gives a brief overview of the typical architecture of a cache. It then
explains how specific cache designs are tuned in order to increase the performance of
the memory sub-system.

The contents of this appendix are based on the books by Handy [43] and by Hen-

nessy and Patterson [45].

B.1 CPU and memory sub-system

The memory sub-system consists of the main memory, the cache and a memory man-
agement unit (MMU). The MMU supports virtual memory by providing virtual to
physical address translations using the TLB and page table. To get an understanding
of how caches work in this sub-system, we now very briefly describe how the CPU and
components of the memory sub-system might interface to each other in a typical com-
puter system with one level of cache. The CPU and the memory sub-system interact
via buses and pins which carry signal and data between the various components. The
CPU and main memory address and data pins connect to a system bus. The cache is
connected to the CPU’s address and data pins. The MMU is connected to the CPU’s
address pins. This is shown schematically in Figure B.1. The following describes how

the components interact when the CPU needs to read a memory location:
e The CPU sends the virtual address (VA) down its address pins.

e The MMU intercepts the VA and translates it to a physical address (PA). The

203

TLB

VA MMU PA s
Y
¢ s
- T
c Address pins l E
P M
U
CACHE B
U
S MAIN
MEMORY
Data pins

Address pins

Data pins

Figure B.1: CPU, cache, memory management unit(MMU), which contains the TLB,

and main memory communicate via buses.

MMU places the PA on the CPU’s address pins. If the cache is physically-indexed
then the MMU places the PA on the address pins before the cache sees it. If the
cache is logically indexed then the MMU places the PA on the address pins after
the cache has seen the VA. In Figure B.1 it is assumed that the cache is physically-

indexed.
e The cache intercepts the address and checks if it holds the required data.

e If the data is held in cache, then the cache places the data on the CPUs data

pins.

e If the data is not in cache, then eventually the PA reaches the main memory,
which fetches the data and places it on its data pins. The data is sent along the
system bus to the CPUs data pins. Again the cache intercepts data travelling
along the CPU’s data pins and stores it locally.

So basically the cache works by intercepting the addresses and data communicated

between the CPU, if necessary the MMU, and the main memory.

204

tag-RAM
Cache

Controller —

data-RAM

Figure B.2: A cache consists of a controller and one or more tag-RAMs, which store
the tag portion of cached memory blocks, and one or more data-RAMs, which store

the contents of cached memory blocks.

B.2 Cache organisation

A cache consists of a cache controller, which contains the logic for controlling the cache,
comparators for checking the presence of main memory data in the cache and two types
of memory. The first type of memory, tag-RAM, is a directory of the addresses of main
memory data held in the cache. The tag-RAM may also hold other control information
associated with the cached data, such as a bit to indicate if the cached data is valid. The
second type of memory, data-RAM, holds the actual cached data. As discussed later,
in Section B.3.1, the cache may have multiple tag-RAMs and data-RAMs. Figure B.2

shows the organisation of a cache.

B.3 Blocked memory

Data is typically transferred between main memory and cache as a group of consecutive
words, referred to as blocks. Transferring data as a block rather than individual words
requires less signalling information to be communicated on the system bus and is one
of the reasons for reducing the average transfer time for each word. Another reason for
using block transfers is that the computer system has to do fewer waits for the main
memory to stablise before a read or write access. B is the number of words in a block

and C' is the total number of main memory blocks the cache can hold.

205

log S logB —=

memory tag index block offset
address

Figure B.3: The tag, index and block offset fields of a main memory address.

This section gives an overview of where memory blocks are placed in cache, how

they are found and how they are removed from the cache.

B.3.1 Block placement

The first question we have to consider is where in the cache to place a block of data.
There are three main ways of determining where to place the block.

In a direct-mapped cache the data at memory location x can only be placed in cache
block (z div B) mod C. The data at memory address x is said to be in memory block
y = x div B.

A set is a group of blocks in the cache and in a set-associative cache the value of
memory location z can be placed in any block in cache set (z div B) mod S, where S is
the number of sets in the cache. We first determine the set in which to place the value
of the memory location and then determine the actual block within the set to use. If
there are a blocks in each set in the cache, where a = C'/S, then the cache is said to be
a-way set-associative. In a fully-associative cache the value of memory location z can
be placed in any block in the cache.

Direct-mapped caches are 1-way set-associative and fully-associative caches are
C-way set-associative. Most caches are direct-mapped, 2-way, 4-way or 8-way set-
associative.

Each way is usually implemented to have its own tag-RAM, data-RAM and com-

parators.

B.3.2 Block identification

A memory address can be viewed a consisting of a block address and a block offset. A
block address can be further divided into a tag and an indexz.
If the block size is B bytes and the number of sets is S, then the lowest log B bits of

the address are the block offset and the next log S bits are the index and the remaining

206

bits of the address are the tag.

The index of a memory address is used to select the set that the memory block can
be placed in. The memory address’s tag is used to identify the memory block in the
set. For a cache block in the selected set, we store the memory block in the data-RAM
and the tag in the tag-RAM.

Each cache block usually has an associated valid bit which indicates if its contents
are valid, at system start-up this will be false. The valid bit is usually held in the tag-
RAM. In some systems there is just a valid bit for the whole cache, though we generally
assume that there is a valid bit for each cache block. In multi-processor systems the
valid bit associated with each cache block is also used to overcome the cache-coherency
problem, discussed in Section B.10.

If the CPU accesses a memory location x, then the address’s index is used to select
the set and the address’s tag is used to compare the tag-RAM entries for the blocks in
that set for a match. To maintain good performance all tag-RAM entries for the set
are usually checked in parallel. This is one of the reasons for limiting the associativity

of caches.

B.3.3 Block replacement

If the CPU accesses memory location which maps to set s and all blocks in the set
contain valid data then a decision needs to be made about which block to evict in order
to accommodate the block at memory location z.

If the cache is direct-mapped then the decision is simple, as we just evict the contents
of the single block in the set. If the cache is set-associative or fully-associative then it
usually uses either a random replacement policy, where a randomly selected block is
evicted, or a least-recently used (LRU) replacement policy.

The advantage of a random replacement policy is that it is simple to implement in
hardware. As the associativity increases so does the complexity of the hardware for
LRU replacement, since for each set in the cache sufficient bits would have to be made
available to represent the order in which the blocks in the set had been accessed. If the
cache is a-way associative then there are a! possible permutations in which the blocks
in the set could have been accessed and this would require Q(aloga) bits to represent.

For this reason LRU replacement policies are usually only approximated, this is often

207

referred to as pseudo-LRU.

B.4 Read and write accesses to memory

The details of the processing the cache does on a read access as opposed to a write
access by the CPU are substantially different. We will discuss these differences in this

section.

B.4.1 Read access to a memory location

If the CPU reads a memory location then the processing involved is essentially as
described above. The tag and index of the memory address are used to search for a
cached copy of the data at that address, if a match is found then the data is read
from cache, otherwise the data is read from main memory and copied into cache. In a
direct-mapped cache the data in the data-RAM is read at the same time as the memory
address’s tag is compared for a cache hit, this has the advantage of speeding up the

read if there is a hit.

B.4.2 Write access to a memory location

The processing involved when the CPU writes to a memory location can be considerably
more complicated than for read accesses. Caches use one of two fundamentally different
ways of handling writes, write strategies. The first strategy is write-through and the
other is write-back. When a write strategy is implemented in hardware it is referred to

as a write-policy.

Write-through caches

In write-through caches the main memory is always updated when the CPU writes to
a memory location and either of two courses of action can take place with regards to
the cache. With the first approach, referred to as write-allocate, the cache is always
updated. If the required memory block is not in cache then it is first brought into
cache. With the second approach the cache is updated if a copy of the memory block

is in cache, if it is not in cache then it is not brought into cache, this is referred to as

208

no-write-allocate. Write-through caches often use a no-write-allocate strategy, with the
assumption that a subsequent write will anyway require an access to main memory.

In order to avoid having the CPU wait for a write to main memory to complete,
write-through caches often use write-buffers. As soon as data has been transferred to a
write-buffer, the write is finished as far as the CPU is concerned and the cache controller
is responsible for downloading the contents of the write-buffer to main memory.

A cache may have several write-buffers, allowing it to hold several blocks that are
being transferred to main memory. Whenever the CPU writes to a memory block and
the contents of that block are in a write-buffer, then most caches use a policy, referred
to as write merging, where they merge the new data with the contents of the write-
buffer. Write merging avoids the write-buffers filling up with multiple entries for the
same memory block and avoids multiple accesses to the same memory location.

If the CPU requests to read a memory location while data is still in the write-buffer
then the cache could choose either to let the write-buffer be emptied before allowing
the read to proceed, or it could check the contents of the write-buffer as part of the
read. Using the second approach speeds up the read.

In systems where reads are much more frequent than writes, write-buffers can make
write-through caches competitive with the write-back caches described below.

Write-through caches are also referred to as store-through caches.

Write-back caches

In write-back caches if there is a cache hit then the cache is updated but not the main
memory. An extra booking keeping bit, dirty bit, is added to the cache block to indicate
if the block has been modified since it was loaded into cache. When the block is evicted,
the dirty bit is checked and if necessary the modified block is written back to memory.
Most write-back caches use a write-allocate on write miss policy, meaning that when
data is fetched from main memory it is also updated in the cache.

Write-back caches have several advantages over write-through caches. Firstly cer-
tain types of data such as loop counters, array indices or stack entries will be written to
much more frequently in cache than written back to main memory. Another advantage
is that since there are fewer writes to main memory, the main memory bus, the speed

of which can sometimes be a bottleneck, is used less frequently. This is particularly

209

important in multi-processor systems. However, as we will see later, write-back caches
introduce problems with maintaining coherency of the data and this complicates the
write-policy of the system. Cache-coherency is discussed in Section B.10.

Write-back caches can also make use of buffers, and this can be used to speed up a
read miss. A read miss may cause a dirty block to be written to main memory, rather
than waiting for the dirty block to be written before fetching data for the read, either

of the following strategies could be used:

e Read the required data from main memory into a buffer and pass this to the
CPU. Write the dirty data to main memory and then write the read data, held

in the buffer, into cache.

e The cache requests the data for the read miss from main memory. While this
data is being sent, the cache writes the dirty block to a write-buffer. The data
arrives from the main memory and is updated in cache and passed to the CPU,

while the write-buffer continues to write data back to main memory.

Write-back caches are also referred to as copy-back, deferred write, nonwrite-through

or store-in caches.

B.5 Instruction and data caches

During a load or a store operation the CPU requires instruction and data at the same
time. If the instructions and data are kept in the same cache then this could cause
conflict misses in a direct-mapped cache. One of two approaches could be used to avoid
this structural hazard. The system could use a set-associative cache, but, as discussed
later, increasing associativity increases the time to access the cache. Most computer
systems instead have separate instruction and data caches. The instruction and data
caches can have dissimilar sizes and associativity.

If the cache stores both instructions and data then it is said to be unified, otherwise

it is said to be split.

210

B.6 Non-cacheable memory

The contents of certain memory addresses should not be cached and are marked as non-
cacheable space. The reason for not caching the data at these addresses is that some
device other than the CPU may write to these memory addresses and if their content
was cached the CPU may not see updates made by these other devices. Examples
of memory which should not be cached are the address ranges used by device inputs,
memory which the CPU may use to communicate with a co-processor or some shared
memory used for signaling between processors on a multi-processor system. An address

decoder is used to signal to the cache that an address should not be cache.

B.7 Read only memory

Some I/O devices require that certain memory addresses are updated in the cache
only on a read miss but not on a write miss. This is handled in the cache by setting

write-protect bits in the cache entries that hold these read only addresses.

B.8 Performance measurement

The reason why caches exist is to reduce the time that CPUs spend waiting for memory
accesses. The following equation quantifies the average time to access main memory

on a system using a cache.

Average memory access time = Hit time + Miss rate x Miss penalty. (B.1)

In the next section we will see how real cache are designed in order to reduce the

values of the parameters in this equation.

B.9 Improving performance

Equation B.1 tells us that the average memory access time is dependent on the time
for a cache hit, the additional time for a cache miss, miss penalty, and the miss rate. In
this section we will highlight some of the techniques that are used to reduce all these

parameters and hence improve the performance and utilisation of caches.

211

The reason why there are so many different approaches to improving performance
and why not all are used by any one system is because these techniques are based
on the statistical behaviour of hardware and software. The cache designers use the
technique which they believe will give the best performance for their hardware and

software systems.

B.9.1 Reducing cache misses

As mentioned in Chapter 2, cache misses are characterised as compulsory, capacity and

conflict misses. We now discuss some techniques for reducing these types of misses.

Larger block sizes

Using larger blocks clearly reduces the number of compulsory misses as each miss
causes more of the data to be loaded into cache. This has the disadvantage that the
miss penalty is increased, because more data is transferred to cache. It can also increase
conflict and capacity misses, as for a given cache size this technique reduces the number

of cache blocks.

Increasing associativity

A common technique to reduce cache misses is to increase the associativity of the cache.
Various studies have shown that, for small caches, a direct-mapped cache of C' blocks
has roughly the same miss rate as a two-way associative cache with a total of C'/2 blocks.
However after a certain cache size increasing the cache sizes is better for reducing the
miss rates than increasing the associativity, this is backed by the the following two
studies. The first, due to Hill [46], concludes that doubling associativity decreased the
miss rate by 20%. The second, due to Agarwal [2] concludes that doubling the size of
the cache decreases the miss rate by about 69%. One of the disadvantages of increasing

associativity is that the hit time increases, Hill [47].

Victim caches

These are very small fully-associative caches which store blocks that have recently been
evicted from the cache. Before an access to the next lower level of memory, the victim

cache is checked for the data.

212

Pseudo-associative caches

Pseudo-associative or column-associative caches aim to have the hit speed of direct-
mapped caches and the miss rate of set-associative caches. There are two blocks for
each entry in a direct-mapped cache. If the CPU accesses a memory location then the
cache compares the tag address and at the same time reads the data in the first block
at the appropriate cache entry. Only if there is a miss for the first block, is the second
block checked for a hit. These caches have a fast and a slow hit time. With these caches
it is important to be able to indicate which block should have the fast and which the

slow hit time.

Hardware Pre-fetching

A common technique for reducing cache miss rates is by hardware controlled pre-
fetching of instruction or data before they are needed.

Compiler controlled techniques

There are several techniques that can be used by compilers to reduce the cache miss
rate, these are discussed in some detail in Chapter 2.

B.9.2 Reducing miss penalties

Another component in the average time to access memory is the cache miss penalty.
In this section we will highlight some common techniques for reducing the cache miss

penalty.

Giving read misses higher priorities than write misses

Since most memory accesses are reads rather than writes, giving priority to read misses
over write misses is a common technique to reduce miss penalties. An example of this
is the use of buffers in write-back caches. Another example is allowing the contents of
the write-buffer in a write-through cache to satisfy a read miss, rather than waiting for

the write-buffer to empty before reading the data from main memory.

213

Sub-block placement

The number of bits in the address tag is dependent on the size of the cache and the
number of tags held in the tag-RAM is dependent on the number of cache entries.
By increasing the block size while maintaining the cache size, effectively reducing the
number of cache blocks, we can reduce the amount of memory required for the tag-
RAM. Reducing the size of the tag-RAM is useful if the cache must be on the same
chip as the CPU.

As mentioned earlier, a disadvantage of large blocks is that the time for servicing
cache misses increases. Some caches allow for the replacement of sub-blocks in the
cache. Each sub-block of a large block has a valid bit added to it. On a cache miss
only the required sub-block is brought into cache and its valid bit is set. For a cache
hit the valid bit must be set for the sub-block required by the CPU. On a write, only

the sub-blocks with the valid bit set are written to memory.

Early restart and critical word first

The CPU only needs one word at a time from an entire cache block, so on a cache miss
why make the CPU wait for the whole block to be fetched from memory? Some caches
work on the principle of supplying the requested word as soon as it is available from
memory, while continuing to load the whole block, this strategy is referred to as early
restart. Another type of cache asks the memory for the word required by the CPU, and
pass it to the CPU, before asking the memory for the rest of the block. This strategy is
called critical word first. Unlike sub-block placement, neither of these strategies require

extra valid bits to be added to the block.

Look-aside caches

When the CPU reads data at a memory location, most caches check their content first
for a hit and only on a miss do they access main memory. These are sometimes referred
to as look-through caches.

Look-aside caches check their contents for a hit at the same time as requesting the
data from main memory. If there is a cache hit then the CPU request is satisfied from
cache and the main memory read is aborted or the data it supplied is ignored. This

approach reduces the time for cache miss, however it has the disadvantage of increasing

214

traffic on the main memory bus, which may cause problems on multi-processor systems

where the bus is shared.

Non-blocking caches

A non-blocking cache can improve performance on a pipelined machine which allows
out-of-order execution. On a cache miss, rather than blocking the CPU, waiting for
data from memory, these caches continue to supply data to the CPU for hits while
fetching the missed data from memory. This is termed a “hit under miss” optimisation
and effectively lowers the miss penalty. Some non-blocking caches supply data to the
CPU while servicing multiple misses, called “hit under multiple miss”, however these
caches substantially increase the complexity of the cache controller.

Simple split instruction and data caches can similarly improve the performance on
these pipelined machines, for example by having the instruction cache supply instruc-

tions while the data cache is servicing a miss.

Second-level caches

Cache designers are faced with two basic options, increasing the size of the cache will
reduce the number of cache misses, but by keeping the cache small and simple allows it
to be fast and keep pace with the CPU. Adding a second-level cache between the first
cache and main memory allows for a small and fast first-level cache, near the CPU,
while many of the misses in this first-level cache are hits in the second-level cache,
rather than going all the way to main memory.

The parameters for the average memory access time in Eq B.1 are now more complex

and the equation is modified as follows:
Average memory access time = Hit timey; + Miss rater; x Miss penalty;;, (B.2)
and
Miss penaltyr; = Hit timers + Miss ratero X Miss penaltyrs, (B.3)

where the subscripts L1 and L2 refer to the first and second-level cache respectively.
These equations are for combined reads and writes assuming a write-back first-level
cache. In a write-through first-level cache all writes would go to the second-level, and

their cost could be reduced by using write-buffers.

215

The first-level cache is usually small enough to fit on the same chip as the CPU.
The slower second-level cache will usually be much larger and may employ many of
the optimisations discussed earlier. Most second-level caches usually have the multi-
level inclusion property, where all data that is in the first-level cache is also in the
second-level cache. The inclusion property may be used to maintain cache-coherency.
Section B.10 discusses the cache-coherency problem and its solutions. The first-level
cache is often referred to as primary cache and the second-level cache is often referred

to as the secondary cache.

B.9.3 Reducing hit time

The last component in the average time to access memory is the time for cache hits.

In this section we will highlight some common techniques for reducing the hit time.

Small and simple caches

Keeping the cache small, such that it fits on the same chip as the CPU, reduces the
cache hit time. Simple direct-mapped caches allow the data to be read while the tag
is being compared, this also reduces the hit time. Most systems have small and simple

first-level caches.

Virtual caches

Most computer system use virtual memory and on most systems the memory manage-
ment unit, which is responsible for translating a virtual address to a physical address, is
between the CPU and cache. This means an address that the cache sees has been trans-
lated from a virtual address to a physical memory address. Caches on such systems are
termed physical caches.

Translation from a virtual to a physical address requires a look-up either in the
TLB or a page table which adds to the overall time to access memory. Virtual caches,
where the cache is between the CPU and the memory management unit, allow the
virtual address to be used for cache accesses, so eliminating the need for an address
translation and reducing the hit time. Note that on a cache miss, in order to access

main memory, an address translation would still be required.

216

Virtual caches have several disadvantages. The first problem is that whenever a
process is switched, the mapping of virtual to physical addresses changes. To avoid
inconsistent data in a virtual cache either the cache would have to be flushed after each
process switch or a process identifier has to be maintained in the tag-RAM for each
cache entry.

The second disadvantage of virtual caches is that of aliases or synonyms, where
multiple virtual addresses exist for the same physical address, which can lead to multiple
entries in the cache for the same physical address. If this situation arises then it
becomes difficult to keep the cache entries and the memory consistent. There are
several approaches to avoid caches having two or more copies of the data at the same

physical address, they are as follows:

e The system uses anti-aliasing hardware to ensure that every cache block holds a

unique physical memory block.

e The operating system can ensure that aliases share a certain number of least-
significant bits in their address. This is referred to as page colouring. If the
aliases have common last w address bits, then a cache way of size 2% or less bytes

can not have duplicate physical addresses.

Physical caches are said to be physically-indezxed, physically-tagged, meaning that
the physical address is used to index the cache and for the tag stored in the tag-RAM.
A wvirtually-indexed, physically-tagged cache tries to take advantage of both virtual and
physical caches. Virtual addresses are used to index the cache and the entries in the
tag-RAM are physical address tags. If the CPU accesses a virtual memory address then

the following occurs:

1. The page offset of the virtual address is used to index the cache and read the
physical tag stored in the cache. At the same time, using the memory management

unit, the virtual address is translated into a physical address.
2. The tag from the translated address is compared against the tag from the cache.

The number of sets in a virtually-indexed, physically-tagged cache is clearly limited

by page size.

217

Pipelining writes for fast write hits

On a direct-mapped cache, it is possible to read data from the cache while comparing
the tag for a hit. However, a write requires the address tag to be compared before the
data can be written to cache. Some caches allow the data to be written for the previous

write while the tag comparison is taking place for the current write.

B.10 Cache-coherency problem

Cache-coherency is the problem of ensuring that the contents of all caches and the main
memory are identical or under tight enough control such that no device which accesses
this data confuses stale data for current data.

The problem can most easily be seen to exist in multi-processor systems where each
processor has a local cache which holds data from main memory that is shared with
other processors. An update to the cached data by one processor will not be seen by
the other processor.

However the problem also exists on single processor systems. For example if a device
writes data to some main memory locations, say from the disk, and the CPU has cached
the data at those locations then the CPU will not see the new value. Similarly with
a write-back cache, if the CPU updates data in cache while some other device reads
main memory, then the other device will not see the updated data. For I/O devices
that read or write at small fixed ranges of addresses, the problem can be addressed by
marking these memory addresses as non-cacheable. Devices where marking addresses
as non-cacheable space is not feasible are direct memory access (DMA) devices such as
disk controllers or video controllers.

Computer systems use various protocols to ensure that the CPU, cache, main mem-
ory and other devices communicate with each other and maintain coherent data. We

will now describe some of these protocols.

B.10.1 Coherency in single processor systems

If a DMA device writes to main memory then a simple method for maintaining co-
herency would be to flush the entire cache after the write. This can be done by inval-

idating the valid bits in the cache. This approach has the disadvantage of requiring a

218

cache refill after each DMA write.

Another approach is for the cache to snoop the main memory bus, which the DMA
devices use to access the main memory. Whenever the cache sees a DMA update to
a memory address that is cached, or has a high probability of being cached, it either
overwrites or invalidates the cache entry.

In write-back caches the snooping mechanism must also watch for DMA activity
that reads from main memory. If there is a DMA read at some cached memory address,
then the read request is satisfied from the cache rather than the stale data in main
memory.

The snooping is done by a cache-tag RAM continuously monitoring the main mem-
ory bus. The tag-RAM may be the cache’s actual directory or another cache-tag RAM
which holds at least all the entries in the cache’s actual directory.

Systems which use a second tag-RAM to do the snooping are faster than systems
using just one tag-RAM and they allow asynchronous operation. The first tag-RAM,
referred to simply as the cache-tag RAM, monitors the CPU address bus and deals with
CPU requests. The second tag-RAM, referred to as the snoop-tag RAM, monitors the
main memory bus. The idea behind these systems is that the snoop-tag RAM hides
DMA activity from the cache-tag RAM, which is handling CPU requests, if the DMA

address is not cached.

B.10.2 Snooping using the cache’s actual directory

In a dual-ported tag the tag-RAM for the cache’s actual directory is multiplexed between
the CPU and main memory bus. Several different approaches can be taken and we will

describe two approaches for snooping.

e With the first approach, when a snoop cycle starts the CPU is stopped, thus

preventing it from accessing the cache.

e Another approach involves multiplexing the tag-RAM so that the snoop cycles
are invisible to the CPU. However this approach requires the CPU to give up the

main memory bus for a significant fraction of the overall operating time.

In both the above approaches, if a DMA is taking place, then the DMA address is

routed to the cache-tag RAM and to main memory. Some protocols choose to invalidate

219

cache-tag RAM entries if there is a hit, other protocols allow the cache data-RAM to
be updated on a hit and some protocols just invalidate the cache-tag RAM entries,

regardless of hit or miss.

B.10.3 Snooping using a dual directory

Dual directory or dual cache-tag RAM systems use a second tag-RAM to do the snoop-
ing. The snoop-tag RAM contains an identical copy of the entries in the cache-tag
RAM.

If the snoop-tag RAM detects a DMA write cycle it compares the address being
written to against its own tag entries. If there is a hit, then the snoop-tag RAM
requests the cache controller to stop the CPU activity with the cache. The matched
entries are either invalidated in both the cache-tag RAM and the snoop-tag RAM, or
they are updated in the cache data-RAM. Some snoop-tag RAMs may even take the
drastic approach of invalidating all the entries in both the tag-RAMs if there is a hit.

Both tag-RAMs see the same main memory address on an update to the cache,
so as long as the cache-tag RAM uses a deterministic block replacement strategy, the

snoop-tag RAM can be kept synchronised.

B.10.4 Snooping using inclusion

Snooping using the principle of inclusion also relies on two tag-RAMs, the cache-tag
RAM and the snoop-tag RAM. The snoop-tag RAM contains a superset of the entries
in the cache tag-RAM. This approach is used when the snoop-tag RAM is larger and
not necessarily of the same associativity as the cache-tag RAM.

In order to ensure that the snoop-tag RAM contains all the entries in the cache-tag

RAM, the system uses the following rules:

1. Any tag entry written to the cache-tag RAM is written simultaneously to the
snoop-tag RAM.

2. Any entry that is removed from the snoop-tag RAM is simultaneously removed

from the cache.

The entries in the snoop-tag RAM can become a superset of the entries in the

cache-tag RAM for the following reasons:

220

e the rules above allow entries to be removed from the cache without updating the

snoop-tag RAM,
e if the block size in the snoop-tag RAM is larger than the block size in the cache.

One of the problems with using inclusion is that if the snoop-tag RAM is less
associative than the cache, then some tags which could have remained in the cache-tag
RAM will have to be removed because their corresponding entry had to be removed
from the snoop-tag RAM. In this case the cache can never stay full and the system
has a slightly higher miss rate. To limit this problem, the usual approach is to use a
snoop-tag RAM that is much larger than the cache-tag RAM.

On systems which have two levels of cache, if the secondary cache maintains the
inclusion property then it is often used to snoop the main memory bus and control the

coherency of the primary cache.

B.10.5 Snooping using dirty inclusion

Dirty inclusion is similarly to inclusion and is used when the primary and secondary
caches in a system both use a write-back strategy.

Whenever an entry in the primary cache is marked as dirty, the corresponding
entry in the secondary cache is marked as dirty. Since the secondary cache is larger,
the reverse would not be true.

The secondary cache monitors the main memory bus. If it sees a DMA read request
and if there is a hit in the secondary cache, and the entry is dirty then the read request
is routed to the primary cache, rather than being satisfied from main memory or the

non-coherent secondary cache.

B.10.6 Coherency in virtual caches

The simplest way of dealing with coherency problems in virtual caches is to flush the
cache after each DMA write cycle. This causes a lot of cache entries to be invalidated
unnecessarily, so, as with physical caches, most virtual caches snoop the main memory
address bus.

There are two basic problems in handling DMA activity in virtual caches. The first

problem is that of aliases. The second problem is that the virtual cache deals in virtual

221

addresses while DMA activity deals with physical addresses.

The problem of aliases is addressed by disallowing two or more aliases to be held
in the same way of a cache. This is done by taking the address index from the offset
part of a page address. This approach has the disadvantage that one way of the cache
can not hold any more data than a page.

Assuming the address index is from the offset part of a page address, if the snooping

mechanism detects DMA activity, then the actions are as follows:
1. The DMA physical address is used to determine the set index.

2. The set index is used to obtain the virtual address of the cached main memory

location.

3. The cached virtual address is passed to the MMU to be translated into a physical

address.

4. The physical address returned from the MMU is compared against the physical
address involved in the DMA activity.

5. If there is a hit, the cached block is updated or invalidated, or supplied to the
DMA device as appropriate.

The above process has several steps, so it is quite slow. It works best if the cache is
direct-mapped and unified. For example, if the cache was 2-way associative, then steps
2-4 above would have to be repeated for each way in the cache.

If the cache was virtually index and physically-tagged then the snooping mechanism
could use the DMA physical address to index the cache and read the physical tag stored
in the cache. The tag in the cache can then be compared against the DMA address
tag. This works because in a virtually-indexed, physically-tagged cache the index is

obtained from the page offset part of the address.

B.10.7 Coherency in multi-processor systems

Since the algorithms and models in this thesis are for sequential computation we won’t
describe the details of the protocols used in multi-processor systems, other than to
mention that coherency is maintained by monitoring the sharing status of memory

blocks and the protocols fall into two broad classes.

222

In the first type of protocol the sharing status of each block of physical memory is
kept in a centralised directory.

In the second type of protocol each cache maintains a separate copy of the sharing
statuses of the physical memory blocks held at that cache. Each cache snoops a shared

address bus to determine if a memory location it holds is requested on the bus.

223

Glossary

Associativity. The number of possible blocks in the cache where a given main memory
block may be placed or the number of possible entries in the TLB where a given
page address translation may be placed. See also direct-mapped, fully-associative

and set-associative.

Block size. The number of contiguous data elements transferred into cache on a cache

miss or out of cache upon eviction.

Cache capacity. The total number of data elements or data blocks that can be held

in cache.

Cache/TLB hit. When the CPU accesses memory address i and the main memory
block containing 7 is in the cache, or the translation for the page containing ¢ is

in the TLB.

Cache/TLB hit time. The time in CPU cycles to supply data to the CPU on a cache
hit or to supply an address translation to the CPU on a TLB hit.

Cache/TLB miss. When the CPU accesses memory address i and the main memory
block containing 7 is not in the cache, or the translation for the page containing

7 is not in the TLB.

Cache/TLB miss penalty. The time in CPU cycles to load a block into the cache
and supply the requested data to the CPU on a cache miss or the time in CPU
cycles to load a page address translation into the TLB and supply it to the CPU

on a TLB miss.

Capacity miss. A memory access that causes a miss because all cache blocks or TLB

entries are occupied.

224

Compulsory miss. A memory access that causes a miss because it is the first access

into a main memory block or page.

Conflict miss. A memory access that hits in a fully-associative cache or TLB but

misses in a set-associative or direct-mapped cache or TLB.

Direct-mapped. A main memory block can be placed in only one particular cache
block or a page address translation can be placed in only one particular TLB

entry.

Eviction. The process of displacing data in the cache or TLB in order to accommodate

new data.

Fully-associative. A main memory block can be placed in any cache block or a page

address translation can be placed in any TLB entry.
Page size. The number of contiguous data elements in a page of virtual memory.

Physical cache. A cache which can only be addressed using a physical main memory

address, so an access to cache is proceeded by an address translation.

Replacement policy. The strategy used to determine which existing data to evict in

order to accommodate new data.

Set. The group of cache blocks, where any one block in the group can be used to hold

a given main memory block. See also set-associative.

Set-associative. A main memory block can be placed in any one of a cache blocks or

a page address translation can be placed in any one of ¢ TLB entries.

Spatial locality. When an access to a memory address is followed by an access to a

nearby memory address.

Temporal locality. When a memory address once accessed is accessed again in the

near future.

Virtual cache. A cache which can be addressed using a logical or virtual memory

address.

225

