Efficient Web Services Selection based on QoS
through a Distributed Parallel Semantic Approach

Luis H. V. Nakamura*T, Pedro F. do Prado*, Rafael M. de O. Libardi*, Luiz H. Nunes*,
Rodolfo 1. MeneguetteT, Julio C. Estrella*, Regina H. C. Santana*, Marcos J. Santana*, Stephan Reiff-Marganiec t
* Institute of Mathematics and Computer Science (ICMC), University of Sao Paulo (USP), Sdo Carlos-SP, Brazil
Email: {nakamura, pfprado, mira, lhnunes, jcezar, rcs, mjs} @icmc.usp.br
t Federal Institute of Sao Paulo (IFSP), Catanduva, Sdo Paulo, Brazil
Email: {nakamura, meguette}@ifsp.edu.br
1 University of Leicester, University Road, Leicester;, LE] 7RH - UK
Email: srm13@le.ac.uk

Abstract—This paper proposes a solution to performance
issues in the selection of Web services based on Quality of
Service (QoS) that uses inference mechanisms from Semantic
Web resources. Although several researchers highlight the
benefits provided by the use of the Semantic Web techniques for
searching and compose Web services with QoS, it can become
costly when it depends on the approach adopted. Thus, we
present a web service selection that uses QoS information in
a replicated and distributed ontologies over different service
providers. The results point to a significant improvement in the
ontology inference process and thus makes the use of semantic
resources viable in distributed systems to provide better QoS.

Keywords-web services; semantic web; quality of service;
performance;

I. INTRODUCTION

Provide services with QoS is a differential in a globalized
and competitive world. It is known that the number of
Internet users is constantly growing due to the supply of
devices such as smartphones, tablets and netbooks that allow
users to access the Internet easily and more frequently.

Nowadays, companies make business among themselves
(contractors and suppliers), enter into transactions with
financial institutions (banks), and are even accountable to
the government through applications running on the Web.
However, this integration is only possible if there is a
way to ensure the systems communication. The challenge
to communicate between different applications written in
different programming languages, and running on different
platforms, raises interoperability problems, which can be
mitigated through the use of Web services. However, there
is still a challenge to choose which Web service will meet
the QoS attributes desired by the client.

Semantic Web can be adopted to classify and select
Web services based on their quality attributes. It provides
information of a particular domain in an appropriate and
expressive way. Generally, Semantic Web researchers use
ontologies to represent the knowledge of a domain. Thus,
when the ontology is well structured and formalized, it

becomes a powerful knowledge base to store, manipulate
and make inferences about the information.

Previous works [1], [2] and [3], demonstrated that the
inference process requires a long time and expensive com-
putational resources when large amounts of information
is available. In this paper, we present improvements to
selection process of Web services based on QoS, which
are extremely important to both academy and industry
researches fields. The main contributions of this paper can
be summarised as: (1) provide a solution to the performance
problems in ontologies inference process and (2) contribute
with a new multidisciplinary approach for WS selection
based on QoS attributes. A module called DP-WSOnto
(Distributed and Parallel - Web Service Ontology) aims
to fulfill these goals adequately. DP-WSOnto was initially
introduced in a work in progress [4] and in this paper, other
results and the development are better detailed.

The rest of this paper is structured as follows: Related
work is discussed in the next Section II. In Section III
the ontology and module used in this project are briefly
described. Section IV presents the environment, planning
and results analysis for the performance evaluation. Finally,
Section V presents the conclusions and future work.

II. RELATED WORK

Several studies propose Semantic Web services discovery
seeking to increase the efficiency and response time. In [5],
the author proposes the combination of the inference engine
Pellet DL reasoner with the production rules engine named
Jena. The purpose is to explore the reasoning capabilities
of Pellet and also the production rules OWL 2 RL/RDF of
Jena resulting in a faster implementation.

In [6] the authors proposed a Four-Level Matching Model
for Semantic Web Service based on QoS Ontology. It
was divided into: application domain matching, description
matching of service, function matching of service and QoS
matching. Despite, this paper has described detailed formal

definition of all four types of matching. It has no per-
formance evaluation of the proposed model. So, it is not
possible to evaluate how fast and scalable this model is.

In [7] the authors used OWL as the ontology building
language. Using the ontology modeling tools protege_3.4.4,
they build a QoS ontology model which is extensible and hi-
erarchical, divided into three levels: upper, middle and lower
ontology. They proposed a Semantic Web Service Selection
Algorithm based QoS Ontology (SWSSA), composed of
four steps: firstly the service request vector takes semantic
matching with service advertisement vector set. Secondly,
they unify the measurement of QoS parameters. Thirdly,
used the advertisement vector set to take value matching.
Finally, they select the most adaptive service. In the paper,
the authors executed some experiments, but they focused
only on the users’ satisfaction. No performance evaluation
was made focusing on the average response time of the
requests or the scalability of the proposed algorithm.

Another work [8] proposes a clustering-based algorithm
using a vector space model. It uses WordNet resources
to reduce the dimension of the term vector and to make
semantic expansion to meet the user’s request. Other ap-
proaches in this context are proposed in [9], and [10] that
exploit clustering to filter and remove irrelevant research
services, making this search process more efficient. Another
way to improve the performance is proposed in [11] and it
consists of parallelization of algorithmic reasoning. In that
work, it was firstly proposed to partition the data set and
also partition the rules set. It presents a parallel inference
algorithm that uses the partition of rules and data to perform
classification. This algorithm was more efficient and faster
than sequential algorithms.

In this paper, we propose an inference process in par-
allel. We adopted the programming model (“Problem De-
composition”) because this approach does not need major
changes in algorithms and ontologies already implemented.
Moreover, we use virtualization capabilities to ensure better
performance and scalability.

III. DEVELOPMENT

The development addresses the preparation of the ontol-
ogy that is used by the DP-WSOnto module.

A. Ontology

The ontology proposed by [2] is used to validate the
module. It includes elements of Web services with QoS
context. Some of these elements are described as follows
[2]:

o Client: Clients access and use the Web services, they

have a QoS agreement with providers.

o Provider: The Providers include information from their

Web services (functional and nonfunctional (QoS)) in
the ontology, they also provide these Web services.

o Services The Services are Web services provided by

providers.

o Agreement: Agreements

providers and clients.

e Qo0S: A QoS element stores all QoS attributes of a

particular service or agreement.

Each element is represented by a class in the ontology
and each class has subclasses, establishing a class hierarchy.
The OWL provides relations among these classes (and sub-
classes) through properties that can also have characteristics.

In this way, the Client class is related to Agreement class
indicating that the client has an agreement. The Agreement
class is related to QoS class, it means a relation among
an agreement to a specific QoS. Thus, these relationships
can be semantically understood as: *“ The client has an
agreement and this agreement is related to a particular
Q0S”. Also, the Provider class is related to the Service class
which is connected to the QoS class. These relations result
semantically in the following: “Providers have Web services
that have a certain QoS”.

In addition, Client, Agreement, Service and QoS classes
have subclasses that classify their elements as Gold, Silver
and Bronze subclasses. The key issues are to determine the
subclass to which a service belongs and how the values of
the attributes in the QoS relate to the service. For example,
if a service is related to a QoS which was inferred to be a
Qo0SGold subclass, then the service will also be an element
in the ServiceGold subclass. The same applies for the client
element, because it will be a ClientGold only when its
agreement is related to a QoS inferred as a subclass Gold
(QoSGold). Therefore, at the time of entering information in
the ontology, the providers do not need to determine which
class the Web service is in, it is done by simply registering
their services as a “generic” service related to one “Generic
QoS . Using data from this generic QoS, the inference
engine can determine which subclass the new service will
be part of. Likewise, it happens for the clients that only need
to inform of the QoS values they wish in their agreement.

QoS attribute values of a particular service are nor always
constant, neither has the value to exactly equal that required
by the client. For this reason, a set of intervals for these
values was adopted by using constraints. The idea of using
data properties constraints to classify elements into “Equiv-
alent Classes” comes from an example of another ontology
in the literature, the Pizza Ontology, which is an example
used in the tutorial from the University of Manchester.
This tutorial shows an example of the use of equivalence
class restrictions on data properties [12], in which pizzas
are classified as HighCaloriePizza and LowCaloriePizza
according to a property that indicates the amount of calories
of each pizza.

A perceived problem in the work of [2] was that as more
elements (individuals or instances) of the Service class were
added to the ontology, more the inference time increased.

are established between

Thus, to investigate and compare this problem using the
Pizza ontology, the authors also created more individuals
(pizzas) in the ontology and noticed that the behavior was the
same. This problem limits the number of Web services that
could be registered in the ontology, because any changes in
the ontology require a new inference process, which would
increase the time in some cases.

B. DP-WSOnto Module

The DP-WSOnto (Distributed and Parallel - Web Service
Ontology) [4] module searches Web services with QoS in
parallel. When module starts, the ontology inference process
is executed by an inference machine (reasoner) called Pellet.
The Pellet aims to analyze, verify and make inferences on
the ontology elements. It is a complete inference engine and
widely used. However, in those cases that the ontology uses
“Equivalent Classes” restrictions, the inference processing
is performed in a single processing core. During the in-
vestigation of the complex source code, it was noticed the
existence of several recursive calls, making it difficult to be
parallelized. Thus, the code for the inference process was not
changed. However, a parallel approach was adopted through
threads creation. The number of threads should be equal
to the number of providers, because each thread reads and
infers the ontology of a specific provider. So, the previous
ontology (within various services of several providers) was
copied to other ontologies, each one containing only the
services of a single provider. Furthermore, a single thread
was used per core due performance reasons. Figure 1 shows
the flow adopted for this approach.

Inference Process
Master Thread

Slaves Threads

Ontology,

Access the
URL

Creates the
Slaves Threads

Create the Slaves Threads

Starts the Slaves

Threads (Using the

URL of the Ontology)
+

Creates the
Slave Threads
Dynamically

‘Are there enough
|cores? (number of

| cores > number of
providers?)

~———No

Returns the
Inferred
Ontology

Records the
Error in the

Log File Ontolo,
Memory

Stores the
Inferred G

Records the

information
in the Log
File

Figure 1. Inference Process Flow.

In this scenario, considering the existence of several
inferred ontologies into DP-WSOnto, it is presented a new
parallel approach for the process of searching for Web

services with QoS. In this new approach, multiple instances
of the search algorithms are started in parallel, each thread
receives three arguments: the ontology URL, an OntModel
object used to store the ontology inferred and a CyclicBarrier
object used by all threads to synchronize the process. Thus,
each algorithm instance reads one of the previously inferred
ontologies and at the end of the execution of all threads,
a unique and composed result is stored in memory to be
used by the client (Figure 2). The proposal exploits the use
of parallelism through decomposition of data (number of
services), and several threads are created to read data from
a distributed ontology.

Search Process
Master Thread

Slaves Threads

| Checks Slaves

Threads

Checks Slaves Threads

B

Begins the
Threads Slaves
processing (using
client's IP and

Na_p)

Are the threads in . 2
s ,I}minmd e [‘Infarred ontologies are

Checks the
Threads
Status

Retrieves
> the Inferred

Ontologi
tored in shared memory ntologies

Execute the
Search
Algorithms

Barrier waiting
the Threads
responses

Creates the
Threads

Records the
information in
Log file

-~} Retums the
Web Services

Found
<List>

Composes the response to the
client [With all Web Services
found in all Ontologies]

@ Continue

Figure 2.

Search Process Flow.

IV. PERFORMANCE EVALUATION

A. Environment Configuration

The computing infrastructure used in the performance
evaluation is described in Table I. The use of virtual ma-
chines is justified because the virtualization makes the ma-
chines reconfiguration flexible and faster, this is a technique
widely used in cloud computing today.

Table I
HARDWARE ELEMENTS

Elements Components Features

Real Machine for
Server Module

CPU (12 cores)

RAM Memory and Disk 12 GB and 500 GB

Intel(R) X5660 @ 2.80GHz

Virtual Machine for
Server Module

CPU (8 cores)

RAM Memory and Disk 8 GB and 21 GB

Intel(R) X5660 @ 2.80GHz

Real Machine for Client
and Database

CPU (4 cores)

RAM Memory and Disk 4 GB and ITB

Intel(R) 13-2100 @ 3.10GHz

Virtual Database
Server (MySql)

CPU (1 core)

RAM Memory and Disk 1 GB and 8 GB

Intel(R) 13-2100 @ 3.10GHz

Virtual Client
Desktop

CPU (1 core)

RAM Memory and Disk 1 GB and 8 GB

Intel(R) i3-2100 @ 3.10GHz

Besides the hardware elements of Table I, five real
machines running the Apache Web server and providing
replicated ontologies were used as providers. The list of
software elements and their uses in the experiments are
described in Table II.

Table II
SOFTWARE ELEMENTS

El t Utilization Version
Linux Debian Real Machine (Module) 2.6.32-5-amd64
Linux Ubuntu Real Machine (Client and DB) 3.0.0-26-generic
Linux Ubuntu Virtual Machines 3.2.0-29-generic
Hypervisor KVM - QEMU emulator qemu-kvm-0.14.1
Apache Web Servers Provide ontologies via URL 2.2.14
Apache Tomcat Host the Web services 6.0.26
Apache Axis2 SOAP messages 14.1
jUDDI Web services Repository 0.9rc4
JVM All components 1.6.0_22
MySQL Server Store performance results 5.1.41-3
Pellet Reasoner 222
Jena Create algorithms with Semantic 2.6.3
Logd) Record logs (Error, Trace, etc.) 1.2.16

B. Experiments Design

The experiment design should provide information on
two main points: (1) evaluate the performance gain when
the inference process is conducted in parallel using copies
of the ontology in a distributed scenario and, (2) evaluate
the performance gain in the search process for services
with QoS when it executes algorithms in parallel over the
DP-WSOnto. Therefore, in the scope of this work two
experiments designs are considered. The first one conducts
a performance comparison between sequential and parallel
inference process approaches. Table III shows the factors
and levels related to this Experimental Design (ED) which
was called as ED-Ontology.

Table T
FACTORS AND LEVELS RELATIVE TO ED-ONTOLOGY

Factor Levels Description
Number of 300, 600, Number of Services (individuals)
Services 900 and 1200 registered in ontologies,
divided equally among the five
providers and replicated ontologies.
Approach Sequential and Approach adopted
Parallel in the inference process.

The second design is related to the search process of Web
services with QoS which is executed by the DP-WSOnto
algorithms. The search algorithm will perform the search
process that was described in Section III-B and is executed
only after the module initialization. In other words, the
search algorithm will perform the search as the ontologies
have been inferred. Therefore, these are distinct activities
that occur at different times. Table IV shows the factors and
levels related to this experimental design that was called as
ED-Search.

For the ED-Ontology, ten repetitions were performed for
the eight possible combinations. For the ED-Search, twenty

Table IV
FACTORS AND LEVELS RELATIVE TO ED-SEARCH

Factor Levels Description

Number of Services 300, 600 Number of Services
and 1200 in the ontologies.

Approach Sequential e Search approaches.
Parallel

repetitions were made for the twelve possible combinations.
A 95% confidence level was adopted for both experiments
designs. The response variable adopted for ED-Ontology is
the average time spent on the inference process. For ED-
Search, the response variable is the average response time
(RT). The RT is the time spent from sending the request until
the arrival of the response in the client. Thus, RT includes
the network traffic time, search process in the ontology and
also the marshalling and unmarshalling of SOAP messages.

C. Result Analysis

1) Inference Process - (DE-Ontology): Detailed results
of the ED-Ontology are available in Table V, which shows
the Experiment (Exp.), Average Time (AT) of the inference
process, Standard Deviation (SD), Confidence Interval (CI)
and Maximum (MAX) and Minimum (MIN) intervals (cal-
culated from average time and confidence interval).

Table V
ED-ONTOLOGY RESULTS (SECONDS)

Exp. AT SD CI Int. MAX : MIN
Seq-300 35.98227 0.69766 | 0.43240 36.41467 : 35.54987
Para-300 7.94248 0.22382 | 0.13873 8.08121 : 7.80375
Seq-600 136.39977 | 3.29345 | 2.04126 138.44103 : 134.35851
Para-600 13.57439 0.34926 | 0.21647 13.79086 : 13.35792
Seq-900 313.13576 | 4.52627 | 2.80536 | 315.94112 : 310.33040
Para-900 22.45356 0.48272 | 0.29919 22.75275 : 22.15437
Seq-1200 543.42814 | 9.21674 | 5.71249 | 549.14063 : 537.71565
Para-1200 35.68345 0.59537 | 0.36901 36.05246 : 35.31444

The approach Parallel has a shorter time to infer ontolo-
gies. An improvement in that time was an expected result,
but the enhancement in processing speed was surprising. For
example, the parallel approach for 300 services was about
4.5 times faster than the sequential approach; with 1200
services, the difference was approximately 15 times. These
results make the inference process feasible for those cases
where there is a need for a faster response or where the
ontology needs to be constantly updated. Thus, the negative
effect of caching can be minimized (caching is working with
an outdated ontology).

The speedup was calculated to validate and measure the
benefit gained by parallelization. Therefore, the values of
speedup obtained for 300, 600, 900 and 1200 services are
(4.5314), (10.0508), (13.9478), and (15.2303) respectively.
The efficiency [13] for 300, 600, 900 and 1200 services
are respectively: (0.9062), (2.0101), (2.7895), and (3.04606).
For 300 services, this ratio was less than 1 because the
overhead of our approach (division of tasks, process and

retrieval of results) takes more time than the sequential
processing of the ontology.

2) Search Process - (DE-Search): These results follow
the same tendency, the more services registered in the
ontologies (higher load) the longer the response time (on
average). This indicates that the overhead generated by the
threads creation and execution of parallel approach has not
overcome the sequential execution with 300 services. In the
other possible cases, the parallel approach was always better
than the sequential approach. Table VI shows the speedup
and efficiency results (number of threads: p = 5).

1,62
1,60 I

1,40
1,20
1,00 0,86
0,80
0,60 0,47
0,40 x I
020 | o obH

0,00
Number of 300 600 1200
Services |Sequential || Parallel

Response Time (seconds)

Figure 3. Response Time (RT) Results.

Table VI
Speedup AND Efficiency (p = 5) (ED-SEARCH)

Experiment Speedup (RT) Efficiency (RT)
300-SPARQL 1.3128 0.2625
600-SPARQL 2.1080 0.4216
1200-SPARQL 3.4573 0.6914

V. CONCLUSION AND FUTURE WORK

This paper presented a solution to improve the per-
formance in the inference process of ontologies for Web
Services selection with QoS, especially those that consider
the use of constraints “Equivalent Classes”. The inference
process time had a great improvement and the use of
virtualization resources also contributed to obtain a better
performance and scalability. Moreover, the benefit provided
by this research also can be adopted by different branches
of researches that use ontologies and require inference
processes.

In future works, there are plans to perform new perfor-
mance evaluations considering other ontologies and using
other inference engines comparing our results with other
studies of the literature.

ACKNOWLEDGMENTS

The authors thank the Brazilian Foundation FAPESP and
PIPECT/IESP for the financial support given to this work.

REFERENCES

[1] J. Zhang, X. Yu, P. Liu, and Z. Wang, “Research on improv-
ing performance of semantic search in uddi,” in Intelligent
Systems, 2009. GCIS ’09. WRI Global Congress on, vol. 4,
may 2009, pp. 572 -576.

[2] L. Nakamura, J. Estrella, M. Santana, and R. Santana, “Se-
mantic web and ontology applied to web services discovery
with qos,” in Sistemas Computacionais (WSCAD-SSC), 2011
Simpdosio em, oct. 2011, p. 5.

[3] C. Surianarayanan and G. Ganapathy, “A survey on opti-
mization approaches to semantic service discovery towards
an integrated solution,” ICTACT Journal on Soft Computing,
vol. 2, no. 4, pp. 377-383, 2012.

[4] L. Nakamura, P. do Prado, R. De O Libardi, L. Nunes,
J. Estrella, R. Santana, M. Santana, and S. Reiff-Marganiec,
“Fast selection of web services with qos using a distributed
parallel semantic approach,” in Web Services (ICWS), 2014
IEEE International Conference on, June 2014, pp. 680-681.

[5] G. Meditskos and N. Bassiliades, “Dlejena: A practical
forward-chaining owl 2 rl reasoner combining jena and pel-
let,” Web Semant., vol. 8, no. 1, pp. 89-94, Mar. 2010.

[6] G. Guo, F. Yu, Z. Chen, and D. Xie, “A four-level matching
model for semantic web service selection based on qos
ontology,” in Information Science and Engineering (ISISE),
2010 International Symposium on, Dec 2010, pp. 630-634.

[71 W. Junhao, G. Jianan, J. Zhuo, and Z. Yijiao, “Semantic web
service selection algorithm based on qos ontology,” in Service
Sciences (IJCSS), 2011 International Joint Conference on,
May 2011, pp. 163-167.

[8] H. Gao, S. Wang, L. Sun, and F. Nian, “Hierarchical clus-
tering based web service discovery,” in Service Science and
Knowledge Innovation, ser. IFIP Advances in Information and
Communication Technology, K. Liu, S. Gulliver, W. Li, and
C. Yu, Eds. Springer Berlin Heidelberg, 2014, vol. 426, pp.
281-291.

[9] S. Han, H. Wang, and L. Cui, “A user experience-oriented
service discovery method with clustering technology,” in
Computational Intelligence and Design. ISCID ’09. Second
International Symposium on, vol. 2, dec. 2009, pp. 64 —67.

[10] J. Liu, K. He, J. Wang, F. Liu, and X. Li, “Service organiza-
tion and recommendation using multi-granularity approach,”
Knowledge-Based Systems, vol. 73, no. 0, pp. 181 — 198,
2015.

[11] R. Soma and V. Prasanna, “Parallel inferencing for owl
knowledge bases,” in Parallel Processing, 2008. ICPP ’08.
37th International Conference on, sept. 2008, pp. 75 —82.

[12] K. Holger, A. Rector, R. Stevens, C. Wroe, S. Jupp, G. Moul-
ton, and N. Drummond, “A Practical Guide To Building OWL
Ontologies Using Protégé 4 and CO-ODE Tools Edition 1.2,”
2009.

[13] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction
to Parallel Computing (2nd Edition). Pearson Addison
Wesley, 2003.

