
Car-Sharing between Two Locations: Online1

Scheduling with Two Servers2

Kelin Luo1
3

School of Management, Xi’an Jiaotong University4

[Xianning West Road, Xi’an, China]5

luokelin@xjtu.edu.cn6

https://orcid.org/0000-0003-2006-06017

Thomas Erlebach8

Department of Informatics, University of Leicester9

[Leicester, United Kingdom]10

te17@leicester.ac.uk11

https://orcid.org/0000-0002-4470-586812

Yinfeng Xu13

School of Management, Xi’an Jiaotong University14

[Xianning West Road, Xi’an, China]15

yfxu@xjtu.edu.cn16

Abstract17

In this paper, we consider an on-line scheduling problem that is motivated by applications such18

as car sharing, in which users submit ride requests, and the scheduler aims to accept requests of19

maximum total profit using two servers (cars). Each ride request specifies the pick-up time and20

the pick-up location (among two locations, with the other location being the destination). The21

length of the time interval between the submission of a request (booking time) and the pick-up22

time is fixed. The scheduler has to decide whether or not to accept a request immediately at the23

time when the request is submitted. We present lower bounds on the competitive ratio for this24

problem and propose a smart greedy algorithm that achieves the best possible competitive ratio.25

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms26

→ Online algorithms27

Keywords and phrases Car-sharing system, Competitive analysis, On-line scheduling28

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.5029

1 Introduction30

In a car-sharing system, a company offers cars to customers for a period of time. Customers31

can pick up a car in one location, drive it to another location, and return it there. Car32

booking requests arrive on-line, and the goal is to maximize the profit obtained from satisfied33

requests. We consider a setting where all driving routes go between two fixed locations,34

but can be in either direction. For example, the two locations could be a residential area35

and a nearby shopping mall or central business district. Other applications that provide36

motivation for the problems we study include car rental, taxi dispatching and boat rental for37

river crossings.38

1 This work was partially supported by the China Postdoctoral Science Foundation (Grant No.
2016M592811), and the China Scholarship Council (Grant No. 201706280058).

© Kelin Luo, Thomas Erlebach and Yinfeng Xu;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 50; pp. 50:1–50:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luokelin@xjtu.edu.cn
https://orcid.org/0000-0003-2006-0601
mailto:te17@leicester.ac.uk
https://orcid.org/0000-0002-4470-5868
mailto:yfxu@xjtu.edu.cn
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.50
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

50:2 Car-Sharing between Two Locations: Online Scheduling with Two Servers

In a real setting, customer requests for car bookings arrive over time, and the decision39

about each request must be made immediately, without knowledge of future requests. This40

gives rise to an on-line problem that bears some resemblance to interval scheduling, but in41

which additionally the pick-up and drop-off locations play an important role: The server that42

serves a request must be at the pick-up location at the start time of the request and will43

be located at the drop-off location at the end time of the request. A server can serve two44

consecutive requests only if the drop-off location of the first request is the same as the pick-up45

location of the second request, or if there is enough time to travel between the two locations46

otherwise. We allow ‘empty movements’ that allow a server to be moved from one location to47

another while not serving a request. Such empty movements could be implemented by having48

company staff drive a car from one location to another, or in the future by self-driving cars.49

We assume that every request is associated with a profit r > 0 that is obtained if the50

request is accepted. When a server moves while not serving a request, a certain cost c,51

0 ≤ c ≤ r, is incurred. The goal is to maximize the total profit, which is the sum of the52

profits of the accepted requests minus the costs incurred for moving servers while not serving53

a request. We refer to this problem as the car-sharing problem. The time interval between the54

submission of a request (booking time) and the pick-up time is called the booking interval. In55

this paper, we focus on the special case of two servers and assume that the booking interval56

for each request is a fixed value a that is the same for all requests. We assume that a ≥ t,57

where t is the time to move a server from one location to the other.58

In [8], the authors studied the car-sharing problem for the special case of a single server,59

considering both the case of fixed booking intervals and the case of flexible booking intervals,60

and presented tight results for the competitive ratio. The optimal competitive ratio was61

shown to be 2r/(r − c) for fixed booking intervals and (3r − c)/(r − c) for flexible booking62

intervals if 0 ≤ c < r, and 1 for fixed booking intervals and proportional to the length of63

the booking horizon (the range of allowed booking intervals) for flexible booking intervals if64

c = r.65

The car-sharing problem belongs to the class of dynamic pickup and delivery problems66

surveyed by Berbeglia et al. [2]. The problem that is closest to our setting is the on-line67

dial-a-ride problem (OLDARP) that has been widely studied in the literature. In OLDARP,68

transportation requests between locations in a metric space arrive over time, but typically it69

is assumed that requests want to be served ‘as soon as possible’ rather than at a specific time70

as in our problem. Known results for OLDARP include on-line algorithms for minimizing71

the makespan [1, 3] or the maximum flow time [7]. Work on versions of OLDARP where72

not all requests can be served includes competitive algorithms for requests with deadlines73

where each request must be served before its deadline or rejected [9], and for settings with a74

given time limit where the goal is to maximize the revenue from requests served before the75

time limit [6]. In contrast to existing work on OLDARP, in this paper we consider requests76

that need to be served at a specific time that is specified by the request when it is released.77

Another related problem is the k-server problem [5, Ch. 10], but in that problem all requests78

must be served and requests are served at a specific location.79

Off-line versions of car-sharing problems are studied by Böhmová et al. [4]. They show that80

if all customer requests for car bookings are known in advance, the problem of maximizing81

the number of accepted requests can be solved in polynomial time using a minimum-cost82

network flow algorithm. Furthermore, they consider the problem variant with two locations83

where each customer requests two rides (in opposite directions) and the scheduler must accept84

either both or neither of the two. They prove that this variant is NP-hard and APX-hard.85

In contrast to their work, we consider the on-line version of the problem with two servers.86

K. Luo and T. Erlebach, Y. Xu 50:3

In Section 2, we define the problem, introduce terminology, and present lower bounds87

on the competitive ratio. If 0 ≤ c < r, the lower bound is 2, and if c ≥ r, the lower bound88

is 1. In Section 3, we propose a smart greedy algorithm that achieves the best possible89

competitive ratio. Section 4 concludes the paper.90

2 Problem Formulation and Preliminary Results91

2.1 Definitions and Problem Formulation92

We consider a setting with only two locations (denoted by 0 and 1) and two servers (denoted93

by s1 and s2). The travel time from 0 to 1 is the same as the travel time from 1 to 0 and94

is denoted by t. Let R denote a sequence of requests that are released over time. The i-th95

request is denoted by ri = (t̃ri , tri , pri) and is specified by the booking time or release time96

t̃ri , the start time (or pick-up time) tri , and the pick-up location pri ∈ {0, 1}. We assume97

that the booking interval tri − t̃ri is equal to a fixed value a for all requests ri ∈ R, and98

we assume that a ≥ t so that an available server always has enough time to travel to the99

pick-location of a request. If ri is accepted, the server must pick up the customer at pri100

at time tri and drop off the customer at location ṗri = 1− pri , the drop-off location of the101

request, at time ṫri = tri + t, the end time (or drop-off time) of the request. We say that102

the request ri starts at time tri . For an interval [b, d), we say that ri starts in the interval if103

tri ∈ [b, d).104

Each server can only serve one request at a time. Serving a request yields profit r > 0.105

The two servers are initially located at location 0. If the pick-up location pri of a request ri106

is different from the current location of a server and if at least t time units remain before the107

start time of ri, the server can move from its current location to pri . We refer to such moves108

(which do not serve a request) as empty moves. An empty move takes time t and incurs a109

cost of c, 0 ≤ c ≤ r, and we say that ri is accepted with cost in this case. If the server is110

already located at pri , we say that ri is accepted without cost. If two requests are such that111

they cannot both be served by one server, we say that the requests are in conflict. We do112

not require that the algorithm assigns an accepted request to a server immediately, provided113

that it ensures that one of the two servers will serve the request. In our setting with fixed114

booking intervals, however, it is not necessary for an algorithm to use this flexibility.115

We denote the requests accepted by an algorithm by R′, and the i-th request in R′,116

in order of request start times, is denoted by r′i. The l-th request which is assigned to sj117

(j ∈ {1, 2}) in R′, in order of request start times, is denoted by r′l,j . Suppose r′l,j (j ∈ {1, 2})118

is r′i. We say that request r′i is accepted without cost if l = 1 and pr′
l,j

= 0 or if l > 1 and119

pr′
l,j

= ṗr′
l−1,j

. Otherwise, r′i is accepted with cost. We denote the profit of serving the120

requests in R′ by PR′ . If R′c denotes the subset of R′ consisting of the requests that are121

accepted with cost, we have PR′ = r · |R′| − c · |R′c|. The goal of the car-sharing problem is122

to accept a set of requests R′ that maximizes the profit PR′ . The problem for two servers123

and two locations is called the 2S2L problem.124

2.2 Online Optimization and Competitive Analysis125

From an online perspective, the requests in R and the number of requests in R are unknown,126

and request ri only becomes known at time t̃ri . For any request sequence R, let PRA denote127

the objective value produced by an on-line algorithm A, and PR∗ that obtained by an optimal128

scheduler OPT that has full information about the request sequence in advance.129

MFCS 2018

50:4 Car-Sharing between Two Locations: Online Scheduling with Two Servers

The performance of an online algorithm for 2S2L is measured using competitive analysis130

(see [5]). The competitive ratio of A is defined as ρA = supR
PR∗
PRA

. We say that A is131

ρ-competitive if PR∗ ≤ ρ · PRA for all request sequences R. Let ON be the set of all on-line132

algorithms for a problem. A value β is a lower bound on the best possible competitive ratio133

if ρA ≥ β for all A in ON . We say that an algorithm A is optimal if there is a lower bound134

β with ρA = β.135

2.3 Lower Bounds136

In this subsection, we present the lower bounds for the 2S2L problem. We use ALG to denote137

any on-line algorithm and OPT to denote an optimal scheduler. We refer to the servers of138

ALG as s′1 and s′2, and the servers of OPT as s∗1 and s∗2, respectively. The set of requests139

accepted by ALG is referred to as R′, and the set of requests accepted by OPT as R∗. For140

the case c ≥ r, a lower bound of 1 on the competitive ratio of any algorithm holds trivially.141

I Theorem 1. For 0 ≤ c < r, no deterministic on-line algorithm for 2S2L can achieve142

competitive ratio smaller than 2.143

Proof. Initially, the adversary releases r1 and r2 with r1 = r2 = (t, t+ a, 1). We distinguish144

three cases.145

Case 1 : ALG accepts r1 and r2 (with cost). Note that r1 and r2 are assigned to146

different servers as they are in conflict. The adversary releases requests r3 and r4 with147

r3 = r4 = (ε + t, a + ε + t, 0) and r5 and r6 with r5 = r6 = (ε + 2t, a + ε + 2t, 1), where148

0 < ε < t. OPT accepts r3, r4, r5 and r6 without cost, but ALG cannot accept any of these149

requests as they are in conflict with r1 and r2. We have PR∗ = 4r and PR′ ≤ 2(r − c), and150

hence PR∗/PR′ ≥ 2.151

Case 2 : ALG accepts either r1 or r2. The adversary accepts r1 and r2. We have152

PR∗ = 2(r − c) and PR′ ≤ r − c, and hence PR∗/PR′ ≥ 2.153

Case 3 : ALG does not accept request r1 and r2. In this case, OPT accepts r1 and r2154

and we have PR∗ = 2(r − c) and PR′ = 0, and hence PR∗/PR′ =∞. J155

3 Upper Bound156

In this section, we propose a Smart Greedy Algorithm (SG) for the 2S2L problem, shown in157

Algorithm 1. Intuitively, if a request is acceptable, the algorithm always accepts it if this158

increases the profit by r, and it accepts the request only if it starts at least t time units later159

than the end time of the latest previously accepted request if the profit increase is positive160

but less than r. The algorithm uses the following notation:161

R′i is the set of requests accepted by SG before ri is released, together with the server to162

which each request is assigned. R′i ∪ {ri,s′j} denotes the union of R′i and {ri,s′j}, where163

ri,s′
j
represents the request ri assigned to server s′j , j ∈ {1, 2}, without conflict.164

rni,j denotes the latest request which was assigned to s′j , j ∈ {1, 2}, before ri is released.165

(If there is no such request, take rni,j to be a dummy request with drop-off location 0 and166

drop-off time 0.)167

ri is acceptable if and only if ∃j ∈ {1, 2} : tri − ṫrni,j ≥ t if pri = prn
i,j
, and tri − ṫrni,j ≥ 0 if168

pri 6= prn
i,j
.169

rni is the latest request that was accepted before ri is released. Note that rni = rni,j with170

j = arg max{trn
i,j
| j = 1, 2}. Note that ṫrn1 = 0.171

K. Luo and T. Erlebach, Y. Xu 50:5

If an accepted request is acceptable by both servers, it is assigned to the most economical172

server, which is the server s′j with j = arg max{PR′
i
∪{ri,s′

j
} | j = 1, 2}. If PR′

i
∪{ri,s′1

} =173

PR′
i
∪{ri,s′2

}, s′j is chosen as the server which has accepted rni (or arbitrarily in case rni174

does not exist).175

Algorithm 1 Smart Greedy Algorithm (SG)
Input: two servers, requests arrive over time with fixed booking interval a.
Step: When request ri arrives, accept ri and assign it to the most economical server s′j if ri is
acceptable and PR′

i
∪{ri,s′

j
}−PR′i = r (j ∈ {1, 2}), or if ri is acceptable, PR′

i
∪{ri,s′

j
}−PR′i > 0

(j ∈ {1, 2}) and tri − ṫrni ≥ t;

We use OPT to denote an optimal scheduler. We refer to the servers of SG as s′1 and176

s′2, and the servers of OPT as s∗1 and s∗2, respectively. For an arbitrary request sequence177

R = (r1, r2, r3, . . . , rn), note that we have tri ≤ tri+1 for 1 ≤ i < n because tri − t̃ri = a178

is fixed. Denote the requests accepted by OPT by R∗ = {r∗1 , r∗2 , . . . , r∗k∗} and the requests179

accepted by SG by R′ = {r′1, r′2, ...r′k}, indexed in order of non-decreasing start times. Denote180

the requests accepted by SG which start at location 0 by R′0 = {r′01 , r′02 , ...r′0k0
} and the181

requests accepted by SG which start at location 1 by R′1 = {r′11 , r′12 , ...r′1k1
}. Denote the182

requests accepted by OPT which start at location 0 by R∗0 = {r∗01 , r∗02 , ...r∗0k∗0
} and the183

requests accepted by OPT which start at location 1 by R∗1 = {r∗11 , r∗12 , ...r∗1k∗1
}. Note that184

R′0
⋃
R′1 = R′ and R∗0

⋃
R∗1 = R∗.185

I Theorem 2. Algorithm SG is 1-competitive for 2S2L if c = r.186

Proof. If c = r, accepting a request with cost yields profit r − c = 0. Without loss of187

generality, we can therefore assume that both SG and OPT only accept requests without188

cost. Observe that this means that both the SG servers (s′1 and s′2) and the OPT servers189

(s∗1 and s∗2) accept requests with alternating pick-up location, starting with a request with190

pick-up location 0. Therefore each server can accept at most one more request which starts191

at location 0 over the requests which start at location 1. That means when OPT accepts w192

requests which start at location 1, OPT at least accepts w requests which start at location193

0, and accepts at most w + 2 requests which start at location 0 (k∗1 ≤ k∗0 ≤ k∗1 + 2).194

Considering the condition that requests r∗0j and r∗1j are both assigned to the same195

server for j < i and r∗0i and r∗1i are assigned to different servers (without loss of gener-196

ality, suppose r∗0i is assigned to s∗1 and r∗1i is assigned to s∗2), we reassign r∗1i to server197

s∗1, reassign all requests in R∗\({r∗01 , r∗02 , ..., r∗0i+1}
⋃
{r∗11 , r∗12 , ..., r∗1i }) that are assigned198

to s∗1 (denote the set of these requests by <1) to server s∗2, and reassign all requests in199

R∗\({r∗01 , r∗02 , ..., r∗0i+1}
⋃
{r∗11 , r∗12 , ..., r∗1i }) that are assigned to s∗2 (denote them by <2) to200

server s∗1. As each server accepts requests with alternating pick-up location, starting with a201

request with pick-up location 0, we have ṫr′0
i
≤ tr′1

i
(for all i ≤ k′1) and ṫr∗0

i
≤ tr∗1

i
(for all202

i ≤ k∗1). That means for i ≤ k∗1 , r∗0i and r∗1i are not in conflict, and hence reassigning r∗1i to203

server s∗1 is valid. Observe that s∗2 must serve a request which has pick-up location 0 and204

starts during interval [tr∗0
i
, tr∗1

i
− t] and that request is r∗0i+1. Because tr∗0

i+1
≤ tr∗1

i
− t and the205

first request in <1, denoted by ro, has pick-up location 1 and starts after tr∗1
i
, ro and r∗0i+1206

are not in conflict. As any two consecutive requests in <1 are not in conflict, reassigning207

all requests of <1 to server s∗2 is valid. Note that tr∗0
i+2
≥ ṫr∗1

i
as OPT accepts at most two208

requests which start during interval [tr∗0
i
, tr∗1

i
] (during interval [0, tr∗1

i
] if i = 1) and have209

MFCS 2018

50:6 Car-Sharing between Two Locations: Online Scheduling with Two Servers

pick-up location 0. Because the first request (rl) in <2 starts at 0 and starts after ṫr∗1
i
, rl and210

r∗1i are not in conflict. As any two consecutive requests in <2 are not in conflict, reassigning211

all requests of <2 to server s∗1 is valid. From this it follows that R∗ is still a valid solution212

with the same profit after the reassignment. For simplification of the analysis, we reassign213

the requests in R∗ and R′ based on the above process until both request r∗0i and r∗1i are214

assigned to the same server for i ≤ k∗1 , and r′0i and r′1i are assigned to the same server for215

i ≤ k′1. Note that this reassignment does not affect the validity of R∗ and R′, and PR∗ and216

PR′ do not change.217

We claim that R∗ can be transformed into R′ without reducing its profit, thus showing218

that PR∗ = PR′ . As SG accepts the request rγ which is the first acceptable request that219

starts at location 0 and the request rδ which is the first acceptable request that starts at220

location 1 (rδ is the first request in R that starts at location 1 and starts after ṫrγ), it is221

clear that tr′01
≤ tr∗0

1
and tr′11

≤ tr∗1
1
. If r′01 6= r∗01 , we can replace r∗01 by r′01 in R∗0, and if222

r′11 6= r∗11 , we can replace r∗11 by r′11 in R∗1.223

Now assume, that R′ and R∗ are identical with respect to 2i requests (i requests in R∗0224

and i requests R′0, and i requests in R∗1 and i requests in R′1, where 1 ≤ i ≤ k∗1), and both225

requests r∗0j and r∗1j are assigned to the same server for 1 ≤ j ≤ i.226

Without loss of generality, suppose r′1i is assigned to s∗1 by OPT and r′1i is assigned to s′1227

by SG. Observe that s∗1 and s′1 are at location 0 at time ṫr′1
i
. We claim that s∗2 (resp. s′2)228

is at location 0 at time ṫr′1
i−1

and ṫr′1
i−1
≤ tr∗0

i+1
. If r′1i−1 is assigned to s∗2 (resp. s′2), s∗2 (resp.229

s′2) is at location 0 at time ṫr′1
i−1

and ṫr′1
i−1

= min{ṫr′1
i−1
, ṫr′1

i
} ≤ tr∗0

i+1
. If r′1i−1 is assigned to230

s∗1 (resp. s′1), we have ṫr′1
i−1
≤ tr′0

i
≤ tr∗0

i+1
. Observe that OPT does not accept any request231

which starts in period (tr′1
i−1
, ṫr′1

i−1
). As both SG servers, s′1 and s′2, and OPT servers, s∗1232

and s∗2, accept requests with alternating pick-up location and starting with a request with233

pick-up location 0, either the pick-up location of the request ro (where ro is the last request234

which starts at or before tr′1
i−1

and is assigned to s∗2 (resp. s′2)) is 1, or s∗2 (resp. s′2) does not235

accept any request which starts before tr′1
i−1

. Hence s∗2 (resp. s′2) is at location 0 at time ṫro236

(≤ ṫr′1
i−1

), or at time 0 if ro does not exist, and stays at that location until time ṫr′1
i−1

.237

If there are two requests r∗0i+1 and r∗1i+1, as s′2 is at location 0 at ṫr′1
i−1

and ṫr′1
i−1
≤ tr∗0

i+1
,238

there must also be two requests r′0i+1 and r′1i+1 with tr′0
i+1
≤ tr∗0

i+1
and tr′1

i+1
≤ tr∗1

i+1
, as SG239

could accept r∗0i+1 and r∗1i+1 by s′2. We can replace r∗0i+1 and r∗1i+1 by r′0i+1 and r′1i+1 in R∗0 and240

R∗1. If k∗0 = k∗1 , the claim thus follows by induction.241

If k∗0 6= k∗1 (k∗0 − k∗1 = 1 or k∗0 − k∗1 = 2), then R∗1 is already identical to R′1, and the first242

k∗1 requests of R∗0 are already identical to the first k∗1 requests of R′0 by the argument above.243

If k∗0 − k∗1 = 1, there is a request r∗0k∗1 +1. As s′2 is at location 0 at ṫr′1
k∗1−1

and ṫr′1
k∗1−1

≤ tr∗0
k∗1 +1

,244

there must also be one request r′0k∗1 +1 with tr′0
k∗1 +1

≤ tr∗0
k∗1 +1

, as SG could accept r∗0k∗1 +1 by s′2.245

We can replace r∗0k∗1 +1 by r′0k∗1 +1 in R∗0, making R∗0 identical to R′0. If k∗0 − k∗1 = 2, there246

are two requests r∗0k∗1 +1 and r∗0k∗1 +2. Note that r∗0k∗1 +1 and r∗0k∗1 +2 must be assigned to different247

servers by OPT as k∗0 − k∗1 = 2. Recall that s∗1 is at location 0 at ṫr′1
k∗1
, and s∗2 is at location248

0 at ṫr′1
k∗1−1

. Hence tr∗0
k∗1 +1

≥ ṫr′1
k∗1−1

and tr∗0
k∗1 +2

≥ ṫr′1
k∗1
. As s′1 is at location 0 at ṫr′1

k∗1
and s′2 is249

at location 0 at ṫr′1
k∗1−1

, there must also be two requests r′0k∗1 +1 and r′0k∗1 +2 with tr′0
k∗1 +1

≤ tr∗0
k∗1 +1

250

and tr′0
k∗1 +2

≤ tr∗0
k∗1 +2

, as SG could accept r∗0k∗1 +1 by s′2, and accept r∗0k∗1 +2 by s′1. We can replace251

r∗0k∗1 +1 and r∗0k∗1 +2 by r′0k∗1 +1 and r′0k∗1 +2 in R∗0, making R∗0 identical to R′0. As R∗1 is already252

identical to R′1, R∗ is identical to R′ because R∗ = R∗0
⋃
R∗1 and R′ = R′0

⋃
R′1. J253

K. Luo and T. Erlebach, Y. Xu 50:7

I Theorem 3. Algorithm SG is 2-competitive for 2S2L if c = 0.254

Proof. We partition the time horizon [0,∞) into intervals (periods) that can be analyzed255

independently. Period i, for 1 < i < k, is the interval [max{ṫr′
i−1
, tr′

i
}, max{ṫr′

i
, tr′

i+1
}).256

Period 1 is [0,max{ṫr′1 , tr′2}), and period k is [max{ṫr′
k−1

, tr′
k
},∞). (If k = 1, there is only257

a single period [0,∞).) Set tr′
k+1

= ∞ and ṫr′0 = 0. Let R∗i denote the set of requests258

accepted by OPT that start in period i, for 1 ≤ i ≤ k. For all 1 ≤ i ≤ k, if max{ṫr′
i−1
, tr′

i
} ≥259

max{ṫr′
i
, tr′

i+1
}, R∗i = ∅, and hence PR∗

i
= 0. Denote R′i = {r′i} for 1 ≤ i ≤ k.260

For 1 < i ≤ k, r′i starts at time tr′
i
and the first request of R∗i starts during the interval261

[max{ṫr′
i−1
, tr′

i
},max{ṫr′

i
, tr′

i+1
}) (or the interval [max{ṫr′

k−1
, tr′

k
},∞) if i = k). Furthermore,262

r′1 is the first acceptable request in R, and so the first request of R∗1 cannot start before tr′1 .263

Hence, for all 1 ≤ i ≤ k, the first request in R∗i cannot start before tr′
i
.264

We bound the competitive ratio of SG by analyzing each period independently. As265

R′ =
⋃
iR
′
i and R∗ =

⋃
iR
∗
i , it is clear that PR∗/PR′ ≤ α follows if we can show that266

PR∗
i
/PR′

i
≤ α for all i, 1 ≤ i ≤ k. For 1 ≤ i ≤ k we distinguish the following cases in order267

to bound PR∗
i
/PR′

i
. As R′i = {ri}, PR′

i
= r (because c = 0). We need to show PR∗

i
≤ 2r.268

Case 1 : k = 1. Without loss of generality, suppose r′1 is assigned to s′1. We claim R∗269

contains at most one request (r′1). Assume that R∗ contains at least two requests and the270

second request is ro. As s′2 is at location 0 at time 0, ro would be acceptable to SG by s′2.271

Hence, there cannot be such a request ro that starts in period [0,∞). As we have shown272

that OPT can accept at most one request (r′1), we get that PR∗
PR′
≤ r

r < 2.273

Case 2 : k > 1. For all 1 ≤ i ≤ k, we claim that R∗i contains at most two requests274

(each server accepts at most one request). Assume that s∗q (q ∈ {1, 2}) accepts at least two275

requests. Let ro be the second request (in order of start time) which is assigned to s∗q in R∗i .276

We distinguish three sub-cases. Without loss of generality, suppose r′i is assigned to s′1.277

Case 2.1 : ṫr′
i
> tr′

i+1
(Fig. 1.a shows an example). If i > 1, the period i, which is the278

period [max{ṫr′
i−1
, tr′

i
}, max{ṫr′

i
, tr′

i+1
}) = [max{ṫr′

i−1
, tr′

i
}, ṫr′

i
), has length less than t. If279

i = 1, note that the period [tr′1 ,max{ṫr′1 , tr′2}) = [tr′1 , ṫr′1) has length less than t and no280

request of R∗1 can start before tr′1 during period 1, [0,max{ṫr′1 , tr′2}). Therefore, each server281

can accept at most one request that starts during period i, and hence R∗i contains at most282

two requests.283

Figure 1 c = 0, |R′| = k > 1, 1 ≤ i ≤ k

Case 2.2 : ṫr′
i
≤ tr′

i+1
and ṫr′

i−1
> tr′

i
(Fig. 1.b shows an example). Observe that s′1 is284

at pr′
i
at tr′

i
. As the drop-off time of r′i−1 is later than the pick-up time of r′i, r′i−1 must285

be assigned to s′2 and we have that s′2 is at ṗr′
i−1

at ṫr′
i−1

. As the first request in R∗i does286

not start before ṫr′
i−1

, we have tro ≥ ṫr′
i−1

+ t. This means that ro would be acceptable to287

s′2. Therefore, SG accepts either ro or another request starting before tro , and that request288

becomes r′i+1. Hence, there cannot be such a request ro that starts in period i.289

Case 2.3 : ṫr′
i
≤ tr′

i+1
and ṫr′

i−1
≤ tr′

i
(Fig. 1.c shows an example). As the drop-off time of290

r′i−1 is earlier than the pick-up time of r′i, s′2 is at the drop-off location of the request rl (where291

MFCS 2018

50:8 Car-Sharing between Two Locations: Online Scheduling with Two Servers

rl denotes the latest request that starts at or before tr′
i
and is assigned to s′2; if there is no292

such request, let rl be a dummy request with ṫrl = 0 and ṗrl = 0) at ṫrl and ṫrl ≤ ṫr′i−1
≤ tr′

i
.293

Observe that s′2 does not accept any request which starts during period [tr′
i
, ṫr′

i
), s′2 does not294

start to move before tr′
i
for serving the next request, and hence s′2 is at ṗrl (0 or 1) at tr′

i
.295

As the first request in R∗i does not start before tr′
i
, we have tro ≥ tr′i + t. This means that296

ro would be acceptable to s′2. Therefore, SG accepts either ro or another request starting297

before tro , and that request becomes r′i+1. Hence, there cannot be such a request ro that298

starts in period i.299

As we have shown that R∗i contains at most two requests, we get that PR∗
i
≤ 2r. Since300

PR′
i

= r, we have PR∗
i
/PR′

i
≤ 2r/r = 2. The theorem follows. J301

I Lemma 4. When 0 < c < r, for all 1 < i ≤ k, one server of SG is at pr′
i
at tr′

i
and the302

other server of SG is at 0 or 1 at max{ṫr′
i−1
, tr′

i
}.303

Proof. For 1 < i ≤ k, without loss of generality, suppose r′i is assigned to s′1. Observe that304

s′1 is at pr′
i
at tr′

i
.305

If ṫr′
i−1

> tr′
i
, then r′i−1 must be assigned to s′2, and hence s′2 is at ṗr′

i−1
(0 or 1) at ṫr′

i−1
306

(= max{ṫr′
i−1
, tr′

i
}).307

If ṫr′
i−1
≤ tr′

i
, then s′2 is at 0 or 1 at the drop-off time t′ (t′ ≤ ṫr′

i−1
) of the latest request308

which is assigned to s′2 and starts at or before tr′
i
. (If no such request exists, s′2 is at 0 at309

t′ = 0.) Suppose rf is the first request that starts at or after tr′
i
and is served by s′2. If rf does310

not exist, then s′2 does not move after ṫr′
i−1

, and s′2 is at 0 or 1 at max{ṫr′
i−1
, tr′

i
} (ṫr′

i−1
≤ tr′

i
).311

If rf exists and rf is accepted with cost, then trf − ṫr′i ≥ t (ṫr′i ≤ ṫrnf) because SG accepts a312

request rj with cost only if the condition trj − ṫrnj ≥ t is satisfied. That means s′2 starts an313

empty move at or after ṫr′
i
. If rf exists and rf is accepted without cost, then s′2 starts to314

move at or after tr′
i
(trf ≥ tr′i). Therefore s

′
2 is at 0 or 1 at tr′

i
(= max{ṫr′

i−1
, tr′

i
}). J315

I Lemma 5. When 0 < c < r, for all 1 ≤ i ≤ k, if r′i is accepted with cost, then one server316

of SG is at pr′
i
at tr′

i
and the other server of SG is at ṗr′

i
at tr′

i
.317

Proof. For 1 ≤ i ≤ k, without loss of generality, suppose r′i is assigned to s′1. Observe that318

s′1 is at pr′
i
at tr′

i
.319

If i = 1, then pr′1 = 1 and s′2 is at ṗr′1 (location 0) at time 0. Suppose ro is the first320

request which is assigned to s′2. If pro = 0, then s′2 starts to move at tro (≥ tr′1), and hence321

s′2 is at 0 at tr′
i
. If pro = 1, then tro ≥ ṫr′1 + t because by definition SG accepts a request rj322

with cost only if the condition trj − ṫrnj ≥ t is satisfied. Observe that s′2 starts to move at323

tro − t (≥ ṫr′1), and hence s′2 is at 0 at tr′
i
.324

If 1 < i ≤ k, s′2 is at 0 or 1 at max{ṫr′
i−1
, tr′

i
} according to Lemma 4. As r′i is accepted with325

cost, tr′
i
− ṫr′

i−1
≥ t because SG accepts a request rj with cost only if the condition trj− ṫrnj ≥ t326

is satisfied, and hence max{ṫr′
i−1
, tr′

i
} = tr′

i
. We prove this lemma by contradiction. Assume327

that s′2 is at pr′
i
at tr′

i
. Note that r′i is acceptable to SG by s′2 without cost, and hence SG328

assigns r′i to s′2 because SG always assigns a request to the most economical server (Recall329

Algorithm 1). This contradicts our initial assumption that r′i is assigned to s′1. J330

I Lemma 6. When 0 < c < r, for all 1 < i < k, if r′i is accepted without cost and r′i+1 is331

accepted with cost, then one server of SG is at pr′
i
at tr′

i
, and the other server of SG is at ṗr′

i
332

at max{ṫr′
i−1
, tr′

i
}.333

Proof. For 1 < i < k, without loss of generality, suppose r′i is assigned to s′1. Observe that334

s′1 is at pr′
i
at tr′

i
. According to Lemma 4, s′2 is at 0 or 1 at max{ṫr′

i−1
, tr′

i
}. As r′i+1 is335

K. Luo and T. Erlebach, Y. Xu 50:9

accepted with cost, tr′
i+1
− ṫr′

i
≥ t because SG accepts a request rj with cost only if the336

condition trj − ṫrnj ≥ t is satisfied. Note that pr′
i+1

= pr′
i
, otherwise r′i+1 is acceptable to SG337

by s′1 without cost.338

We prove this lemma by contradiction. Assume that s′2 is at pr′
i
at max{ṫr′

i−1
, tr′

i
}.339

Suppose rf = r′i+1. Observe that pr′
f

= pr′
i
and tr′

f
≥ ṫr′

i
+ t ≥ max{ṫr′

i−1
, tr′

i
}. From this340

it follows that r′f is acceptable to SG by s′2 without cost, and hence SG assigns r′f to s′2341

because SG always assigns a request to the most economical server (Recall Algorithm 1).342

This contradicts the statement that r′i+1 is accepted with cost. J343

I Lemma 7. When 0 < c < r, for all 1 < i < k, if r′i is accepted without cost and r′i+1 is344

accepted with cost, then r′i−1 must be accepted without cost.345

Proof. For 1 < i < k, without loss of generality, suppose r′i−1 is assigned to s′1. Observe346

that s′1 is at pr′
i−1

at tr′
i−1

(and is at ṗr′
i−1

at ṫr′
i−1

). We prove this lemma by contradiction.347

Assume r′i−1 is accepted with cost. According to Lemma 5, s′2 is at ṗr′
i−1

at tr′
i−1

. As r′i is348

accepted without cost, the pick-up location of r′i is ṗr′i−1
. Suppose rf = r′i+1. Observe that349

trf ≥ ṫr′i + t (because rf is accepted with cost) and prf = pr′
i

= ṗr′
i−1

(otherwise, the server350

that has served r′i could accept rf without cost).351

If r′i is assigned to s′1, then s′2 does not accept any request which starts in period352

[max{ṫr′
i−2
, tr′

i−1
}, trf), and hence s′2 is at ṗr′

i−1
in period [max{ṫr′

i−2
, tr′

i−1
}, trf − t). If r′i is353

assigned to s′2, then s′1 does not accept any request which starts in period [ṫr′
i−1
, trf), and354

hence s′1 is at ṗr′
i−1

in period [ṫr′
i−1
, trf − t). As rf is released and t̃rf = trf − a ≤ trf − t,355

server s′q (for a q ∈ {1, 2}) is at ṗr′
i−1

and does not plan to move, hence rf is acceptable to356

SG by s′q without cost. From this it follows that rf will be accepted by SG without cost357

because SG always assigns a request to the most economical server. This contradicts the358

statement that r′i+1 is accepted with cost. J359

For simplification of the analysis, we suppose that the OPT servers make an empty360

movement only if they do so in order to serve a request ri such that the pick-up location of361

ri is the pick-up location of the previous request which is assigned to the same server, or362

the pick-up location is 1 if ri is the first request which is assigned to a server s∗q (q ∈ {1, 2}),363

and we suppose that for all such requests ri (ri ∈ R∗), the OPT server serving ri makes an364

empty movement between tri − t and tri . This simplification does not affect the validity of365

R∗, and does not decrease PR∗ .366

I Theorem 8. Algorithm SG is 2-competitive for 2S2L if 0 < c < r.367

Proof. Assume that SG accepts k (k = |R′|) requests. We partition the time horizon [0,∞)368

into k′ (1 ≤ k′ ≤ k) intervals (periods) that can be analyzed independently. We partition369

the time horizon based on Algorithm 2, in such a way that all requests in the first period370

are accepted with cost (if r′1 is accepted with cost), and exactly one request of each period371

(except the first period if r′1 is accepted with cost), the first request of each period, is accepted372

without cost. Denote the request number in R′ (in order of starting time) of the first request373

of period j (1 ≤ j ≤ k′) by lj . For 1 < j < k′, SG j period is [tr′
lj
, tr′

lj+1
). SG 1 period is374

[0, tr′
l2

) and SG k′ period is [tr′
l
k′
,∞) (If k′ = 1, there is only a single period [0,∞)). We375

set lk′+1 = k + 1, tr′0 = 0 and tr′
k+1

= ∞. Let R′j (1 ≤ j ≤ k′) denote the set of requests376

accepted by SG that start in SG j period. For 1 < j ≤ k′, if tr′
lj−1

= tr′
lj
, let R′j−1 = {r′lj−1

}377

and R′j = {r′lj , r
′
lj+1..., r

′
lj+1−1}. Note that there are exactly lj+1− lj (lj+1− lj ≥ 1) requests378

in R′j (1 ≤ j ≤ k′), and R′j = {r′lj , r
′
lj+1..., r

′
lj+1−1}.379

MFCS 2018

50:10 Car-Sharing between Two Locations: Online Scheduling with Two Servers

Algorithm 2 Partition Rule (PR)
Initialization: k = |R′|, k′ = 1, j = 1, lj = j for all 1 ≤ j ≤ k.

For i = 2 to k
if r′i is accepted without cost then
j = j + 1, lj = i;

k′ = j, lk′+1 = k + 1.

For all 1 < j ≤ k′, we have the following property: if |R′j | = 1, then r′lj is accepted380

without cost; if |R′j | > 1, then r′lj is accepted without cost, the remaining requests in R′j381

are accepted with cost. For j = 1, if r′1(= r′l1) is accepted with cost, all requests in R′1382

are accepted with cost; if r′1 is accepted without cost, then except r′1 all requests in R′1 are383

accepted with cost.384

I Definition 9. For 1 < j ≤ k′, tj is defined as follows: tj = tr′
lj

if r′lj−1 is accepted with385

cost, r′lj is accepted without cost, ṫr′
lj−1

> tr′
lj

and ṗr′
lj−1

= pr′
lj

(Fig. 2 shows an example).386

Otherwise, tj = max{ṫr′
lj−1

, tr′
lj
}. tk′+1 = tr′

k+1
=∞.387

Figure 2 An example of tj

For 1 < j ≤ k′, tj+1 = tr′
lj+1

or tj+1 = max{ṫr′
lj+1−1

, tr′
lj+1
}, and tj = tr′

lj
or tj =388

max{ṫr′
lj−1

, tr′
lj
}. Because tr′

lj
≤ tr′

lj+1
and ṫr′

lj−1
≤ tr′

lj+1
(if r′lj−1 and r′lj are assigned to389

the same server, then ṫr′
lj−1
≤ tr′

lj
; and if r′lj−1 and r′lj are assigned to different servers, then390

ṫr′
lj−1
≤ tr′

lj+1
), tj ≤ tj+1 if tj = max{ṫr′

lj−1
, tr′

lj
} and tj+1 = tr′

lj+1
. As tj ≤ max{ṫr′

lj−1
, tr′

lj
}391

and tj+1 ≥ tr′
lj+1

, we have that tj ≤ tj+1 always holds. For 1 < j ≤ k′, OPT period j is392

defined as [tj , tj+1). OPT period 1 is defined as [0, t2) (If k′ = 1, there is only a single period393

[0,∞)). Let R∗j denote the set of requests accepted by OPT that start in OPT period j,394

and R∗i = ∅ if tj = tj+1.395

For all 1 < j ≤ k′, r′lj starts at time tr′
lj

and the first request of R∗j starts during396

the interval [tj , tj+1) where tj = tr′
lj

or tj = max{ṫr′
lj−1

, tr′
lj
} (recall the definition of tj).397

Furthermore, r′1 is the first acceptable request in R, and so the first request of R∗1 cannot398

start before r′1. Hence, for all 1 ≤ j ≤ k′, the first request in R∗j cannot start before tr′
lj
.399

We bound the competitive ratio of SG by analyzing each period independently. As400

R′ =
⋃k′

j=1 R
′
j and R∗ =

⋃k′

j=1 R
∗
j , it is clear that PR∗/PR′ ≤ α follows if we can show that401

PR∗
j
/PR′

j
≤ α for all 1 ≤ j ≤ k′. For 1 ≤ j ≤ k′, if tj = tj+1, then R∗i = ∅ and hence PR∗

i
= 0.402

Otherwise, for 1 ≤ j ≤ k′ we distinguish the following cases in order to bound PR∗
j
/PR′

j
.403

CASE 1: j = 1. The first request of SG period 1 is r′1. Without loss of generality, suppose404

r′1 is assigned to s′1.405

K. Luo and T. Erlebach, Y. Xu 50:11

CASE 1.1: r′1 is accepted with cost. Note that all requests in R′j are accepted with cost406

and PR′1 = (l2 − l1)(r− c) (if k′ = 1, then PR′ = k(r− c)). Observe that pr′
i

= 1 (1 ≤ i < l2)407

and all requests in R′1 are assigned to s′1 by the definition of Algorithm 1. As r′l2−1 is accepted408

with cost, one server is at pr′
l2−1

at tr′
l2−1

(and this server is at ṗr′
l2−1

at ṫr′
l2
−1), and the409

other server is at ṗr′
l2−1

at tr′
l2−1

(by Lemma 5). As r′l2 is accepted without cost, we have410

ṗr′
l2−1

= pr′
l2
. If k′ = 1, t2 =∞. If k′ > 1, then t2 = tr′

l2
: if ṫr′

l2−1
> tr′

l2
, t2 = tr′

l2
because411

pr′
l2

= ṗr′
l2−1

, r′l2−1 is accepted with cost and r′l2 is accepted without cost; if ṫr′
l2−1
≤ tr′

l2
,412

t2 = max{ṫr′
l2−1

, tr′
l2
} = tr′

l2
. As s′2 does not accept any request which starts before tr′

l2
413

and s′2 would not accept any request with cost which starts in period [tr′
l2
, ṫr′

l2
) (Recall that414

Algorithm 1 accepts a request rj with cost only if trj − ṫrnj ≥ t is satisfied.), s′2 is at 0 in415

period [0, tr′
l2

]. We claim that R∗j only contains requests which start at 1. Otherwise, the416

request is acceptable to SG by s′2 without cost. Assume that R∗j contains a request ro which417

start at location 0. As tro ≤ t2 = tr′
l2
, ro is acceptable to SG by s′2 without cost. Therefore,418

SG accepts either ro or another request starting before tro , and that request becomes r′l2 .419

Hence, there cannot be such a request ro in R∗j .420

Note that each server of OPT does not accept any request which starts in period [0, tr′1).421

For all l1 ≤ i ≤ l2−2, we claim that each server of OPT can accept at most one request which422

starts during period [tr′
i
, tr′

i+1
) (l1 ≤ i ≤ l2 − 2), or period [tr′

l2−1
, t∗) (if k′ > 1, t∗ = tr′

l2
;423

if k′ = 1, t∗ = tr′
k

+ 2t). Assume that s∗q (q ∈ {1, 2}) accepts at least two requests in one424

of those periods. Let ro be the second request (in order of start time) which is assigned to425

s∗q and starts during period [tr′
i
, tr′

i+1
) (l1 ≤ i ≤ l2 − 2) or period [tr′

l2−1
, t∗). As the request426

does not start before tr′
i
(l1 ≤ i ≤ l2 − 1), we have tro ≥ tr′

i
+ 2t. ro is acceptable to SG427

with cost. Therefore, SG accepts either ro or another request starting before tro , and that428

request becomes r′i+1 (l1 ≤ i < l2). Hence, there cannot be such a request ro that starts429

during period [tr′
i
, tr′

i+1
) (l1 ≤ i ≤ l2 − 2) or period [tr′

l2−1
, t∗). Therefore OPT can accept at430

most 2(l2 − l1) (= 2(l2 − 2− l1 + 1 + 1)) requests that start during period [tr′1 , t
∗).431

When k′ = 1, we claim that OPT does not accept any request which starts in period432

[t∗,∞). Without loss of generality we assume that OPT accepts at least one request. Let ro433

be the request in R∗1 that starts during period [t∗,∞). As tro ≥ tr′k + 2t. ro is acceptable to434

SG. Therefore, SG accepts either ro or another request starting before tro , and that request435

becomes r′k+1. Hence, there cannot be such a request ro that starts in period [t∗,∞).436

As we have shown that R∗j contains at most 2(l2− l1) requests and the pick-up locations of437

them are the same (location 1), we get that PR∗
j
≤ 2(l2−l1)(r−c). Since PR′

j
= (l2−l1)(r−c),438

we have PR∗
j
/PR′

j
≤ 2(l2 − l1)(r − c)/((l2 − l1)(r − c)) = 2.439

CASE 1.2: r′1 is accepted without cost. If k = 1, then k′ = 1, s′2 is at 0 in period [0,∞).440

If k > 1, we claim that r′2 is also accepted without cost. Assume that r′2 is accepted with cost,441

we have tr′2 − ṫr′1 > t because Algorithm 1 accepts a request rj with cost only if trj − ṫrnj ≥ t442

is satisfied. If pr′2 = 0, r′2 is acceptable to SG by s′2 without cost; if pr′2 = 1, r′2 is acceptable443

to SG by s′1 without cost. Therefore s′2 must be accepted by SG without cost because by444

definition (see Algorithm 1) SG always assigns a request to the most economical server. This445

contradicts the assumption that r′2 is accepted with cost. Observe that t2 = max{ṫr′1 , tr′2}446

(Recall from the definition of t2 that t2 = tr′2 only if r′1 is accepted with cost), |R′1| = 1 and447

hence PR′1 = r. As s′2 does not accept any request which starts before tr′2 and s′2 would not448

accept any request with cost which starts in period [tr′2 , ṫr′2) (Recall that Algorithm 1 accepts449

a request rj with cost only if trj − ṫrnj ≥ t is satisfied.), s
′
2 is at 0 in period [0, tr′2].450

We claim that R∗1 contains at most two requests (each server serves at most one request).451

Assume that s∗q (q ∈ {1, 2}) accepts at least two requests. Let ro be the second request (in452

MFCS 2018

50:12 Car-Sharing between Two Locations: Online Scheduling with Two Servers

order of start time) which is assigned to s∗q in R∗1. As the first request in R∗1 does not start453

before tr′1 , we have tro ≥ tr′1 + t. If pro = ṗr1 , ro is acceptable to SG by s′1 without cost; if454

pro = pr1 , ro is acceptable to SG by s′2 without cost. Hence, there cannot be such a request455

in R∗1. Since PR′1 = r, we have PR∗1 ≤ 2r, and hence PR∗1/PR′1 ≤ 2r/r = 2.456

CASE 2: j > 1 (1 < j ≤ k′). The first request of SG period j is r′lj .Without loss of457

generality, suppose r′lj is assigned to s′1. We distinguish the following cases based on |R′j |.458

CASE 2.1: |R′j | = 1. Note that r′lj is accepted without cost. We distinguish two sub-cases.459

(1) ṫr′
lj
> tr′

lj+1
. Because r′lj (= r′lj+1−1) is accepted without cost, tj+1 = max{ṫr′

lj
, tr′

lj+1
} =460

ṫr′
lj

(Recall that tj+1 = tr′
lj+1

only if r′lj+1−1 is accepted with cost by the definition of tj+1).461

As OPT period j [tj , tj+1) has length less than t (tj = max{ṫr′
lj−1

, tr′
lj
} or tj = tr′

lj
), each462

server of OPT can accept at most one request in R∗j , and hence R∗j contains at most two463

requests.464

(2) ṫr′
lj
≤ tr′

lj+1
(tr′

lj+1
=∞ if j = k′). Note that tj+1 = tr′

lj+1
. There are two sub-cases465

based on the position of s′2 at max{ṫr′
lj−1

, tr′
lj
} (recall that by Lemma 4, s′2 is at pr′

lj
or ṗr′

lj
466

at time max{ṫr′
lj−1

, tr′
lj
}).467

The first sub-case is that s′2 is at pr′
lj

at max{ṫr′
lj−1

, tr′
lj
}. We claim that R∗j contains468

at most two requests (each server serves at most one request). Assume that s∗q (q ∈ {1, 2})469

accepts at least two requests. Let ro be the second request (in order of start time) which is470

assigned to s∗q in R∗j . As the requests in R∗j do not start before tr′
lj
, we have tro ≥ tr′lj + t. If471

pro = ṗr′
lj
, ro is acceptable to SG by s′1 without cost; if pro = pr′

lj
, ro is acceptable to SG by472

s′2 without cost. Therefore, SG accepts either ro or another request starting before tro , and473

that request becomes r′lj+1. Hence, there cannot be such a request ro that starts in OPT474

period j.475

The second sub-case is that s′2 is at ṗr′
lj
at max{ṫr′

lj−1
, tr′

lj
}. Note that tj = max{ṫr′

lj−1
, tr′

lj
}476

(Recall from the definition of tj that tj = tr′
lj

only if ṫr′
lj−1

> tr′
lj

and ṗr′
lj−1

= pr′
lj

are477

satisfied. From this it follows that r′lj−1 must be assigned to s′2, that means s′2 is at ṗr′
lj−1

478

(= pr′
lj
) at ṫr′

lj−1
(= max{ṫr′

lj−1
, tr′

lj
}). This contradicts the initial assumption that s′2 is479

at ṗr′
lj

at max{ṫr′
lj−1

, tr′
lj
}.). We claim that R∗j contains at most two requests (each server480

serves at most one request) and the pick-up locations of these two requests are pr′
lj
. Assume481

that R∗j contains a request ri which starts at ṗr′
lj
. As the requests in R∗j cannot start482

before tj (tj = max{ṫr′
lj−1

, tr′
lj
}), ri is acceptable to s′2 (without cost) as s′2 is at ṗr′

lj
at483

max{ṫr′
lj−1

, tr′
lj
}. Hence, there cannot be such a request ri that starts in OPT period j.484

Next assume that s∗q (q ∈ {1, 2}) accepts at least two requests. Let ri and ro be the first485

and second request (in order of start time) which is assigned to s∗q in R∗j . As the requests486

in R∗j do not start before tr′
lj

and the pick-up location of ri and ro both are pr′
lj
, we have487

tro ≥ tr′
lj

+ 2t. If pro = ṗr′
lj
, ro is acceptable to SG by s′1 without cost; if pro = pr′

lj
, ro is488

acceptable to SG by s′2 with cost. Therefore, SG accepts either ro or another request starting489

before tro , and that request becomes r′lj+1
(if it is accepted without cost) or gets added to490

R′j (if it is accepted with cost). Hence, there cannot be such a request ro that starts in OPT491

period j.492

As we have shown that R∗j contains at most two requests, we get that PR∗
j
≤ 2r. Since493

PR′
j

= r, we have PR∗
j
/PR′

j
≤ 2r/r = 2.494

CASE 2.2: |R′j | > 1. Note that r′lj is accepted without cost and r′lj+1 is accepted with495

cost. We have that s′2 is at ṗr′
lj

at max{ṫr′
lj−1

, tr′
lj
} by Lemma 6, and that r′lj−1 is accepted496

K. Luo and T. Erlebach, Y. Xu 50:13

without cost by Lemma 7. Hence, tj = max{ṫr′
lj−1

, tr′
lj
} (recall from the definition of tj that497

tj = tr′
lj

only if r′lj−1 is accepted with cost). As r′lj+1−1 is accepted with cost, one server is at498

pr′
lj+1−1

at tlj+1−1 (and this server is at ṗr′
lj+1−1

at ṫr′
lj+1−1

), and the other server is at ṗr′
lj+1−1

499

at tr′
lj+1−1

(Recall Lemma 5). As r′lj+1
is accepted without cost, we have ṗr′

lj+1−1
= pr′

lj+1
.500

If ṫr′
lj+1−1

> tr′
lj+1

(1 ≤ j < k′), tj+1 = tr′
lj+1

according to the definition of ts (1 ≤ s ≤ k′).501

If ṫr′
lj+1−1

≤ tr′
lj+1

(1 ≤ j < k′), tj+1 = max{ṫr′
lj+1−1

, tr′
lj+1
} = tr′

lj+1
. Hence, tj+1 = tr′

lj+1
502

(1 ≤ j < k′). Observe that if j = k′, tj+1 = tr′
lj+1

=∞.503

We claim that R∗j only contains requests which start at pr′
lj
. Assume that R∗j contains a504

request ri which starts at ṗr′
lj
. As the first request in R∗j cannot start before tj , we have505

tri ≥ tj = max{ṫr′
lj−1

, tr′
lj
}. As s′2 is at ṗr′

lj
at max{ṫr′

lj−1
, tr′

lj
} and s′2 does not accept any506

request which starts in period [max{ṫr′
lj−1

, tr′
lj
}, tri), and hence ri is acceptable to SG by507

s′2 without cost. This contradicts the property of R′j that except r′lj all requests in R′j are508

accepted with cost. Hence, there cannot be such a request ri that starts in OPT period j.509

We claim that each server of OPT can accept at most one request which starts in period510

[tj , tr′
lj+1

), or period [tr′
i
, tr′

i+1
) (lj + 1 ≤ i ≤ lj+1 − 2), or period [tr′

lj+1−1
, t∗) (if 1 ≤ j < k′,511

t∗ = tr′
lj+1

; if j = k′, t∗ = tr′
k

+ 2t). Assume that s∗q (q ∈ {1, 2}) accepts at least two512

requests in one of these periods. Let ro be the second request (in order of start time) which513

is assigned to s∗q and starts in one of these periods. As the requests in R∗j that start in514

one of these periods do not start before the corresponding tr′
i
(lj ≤ i ≤ lj+1 − 1) and have515

the same pick-up location pr′
lj
, we have tro ≥ tr′

lj
+ 2t. ro is acceptable to SG with cost.516

Therefore, SG accepts either ro or another request starting before tro , that request becomes517

r′i+1 (lj ≤ i ≤ lj+1 − 2), or we get a contradiction to r′lj+1−1 being the last request that is518

accepted with cost and starts in period [tr′
lj+1−1

, t∗) (i = lj+1 − 1). Hence, there cannot be519

such a request ro that starts in period [tj , tr′
lj+1

), or period [tr′
i
, tr′

i+1
) (lj + 1 ≤ i ≤ lj+1 − 1).520

Therefore OPT can accept at most 2(lj+1 − lj) (= 2(lj+1 − 2− (lj + 1) + 1 + 2)) requests521

that start in period [tr′
lj+1

, t∗).522

When j = k′, we claim that OPT does not accept any request which starts in period523

[t∗,∞). Without loss of generality we assume that OPT accepts at least one request. Let ro524

be the request in R∗j which starts during period [t∗,∞). As tro ≥ tr′k + 2t, ro is acceptable525

to SG with cost. Therefore, SG accepts either ro or another request starting before tro , and526

that request becomes r′k+1. Hence, there cannot be such a request ro that starts in period527

[t∗,∞).528

As we have shown that R∗j contains at most 2(lj+1 − lj) requests and the pick-up529

locations of them are the same (pr′
lj
), we get that PR∗

j
≤ 2r + 2(lj+1 − lj − 1)(r − c). Since530

PR′
j

= r+ (lj+1− lj −1)(r− c), we have PR∗
j
/PR′

j
≤ (2r+ 2(lj+1− lj −1)(r− c))/(r+ (lj+1−531

lj − 1)(r − c)) = 2.532

Because PR∗
j
/PR′

j
≤ 2 holds for all 1 ≤ j ≤ k′, we have PR∗/PR′ ≤ 2. This proves the533

theorem. J534

4 Conclusion535

We have studied an on-line problem with two servers and two locations that is motivated536

by applications such as car sharing and taxi dispatching. The upper bounds for the 2S2L537

problem are all achieved by the smart greedy algorithm. A number of directions for future538

work arise from this work. If there are k servers, does a kind of greedy algorithm still work539

MFCS 2018

50:14 Car-Sharing between Two Locations: Online Scheduling with Two Servers

well? Furthermore, it would be interesting to extend our results to the case of more than540

two locations. It would be interesting to determine how the constraints on the servers affect541

the competitive ratio for the general car-sharing problem with k servers and m locations.542

References543

1 Norbert Ascheuer, Sven Oliver Krumke, and Jörg Rambau. Online dial-a-ride problems:544

Minimizing the completion time. In Horst Reichel and Sophie Tison, editors, STACS545

2000, 17th Annual Symposium on Theoretical Aspects of Computer Science, Lille, France,546

February 2000, Proceedings, volume 1770 of LNCS, pages 639–650. Springer, 2000. URL:547

https://doi.org/10.1007/3-540-46541-3_53, doi:10.1007/3-540-46541-3_53.548

2 Gerardo Berbeglia, Jean-François Cordeau, and Gilbert Laporte. Dynamic pickup and549

delivery problems. European Journal of Operational Research, 202(1):8–15, 2010. URL:550

https://doi.org/10.1016/j.ejor.2009.04.024, doi:10.1016/j.ejor.2009.04.024.551

3 Antje Bjelde, Yann Disser, Jan Hackfeld, Christoph Hansknecht, Maarten Lipmann, Julie552

Meißner, Kevin Schewior, Miriam Schlöter, and Leen Stougie. Tight bounds for online TSP553

on the line. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-554

SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta555

Fira, January 16-19, pages 994–1005. SIAM, 2017. URL: https://doi.org/10.1137/1.556

9781611974782.63, doi:10.1137/1.9781611974782.63.557

4 Katerina Böhmová, Yann Disser, Matús Mihalák, and Rastislav Srámek. Scheduling558

transfers of resources over time: Towards car-sharing with flexible drop-offs. In Evan-559

gelos Kranakis, Gonzalo Navarro, and Edgar Chávez, editors, 12th Latin American Sym-560

posium on Theoretical Informatics (LATIN 2016), volume 9644 of LNCS, pages 220–561

234. Springer, 2016. URL: https://doi.org/10.1007/978-3-662-49529-2_17, doi:562

10.1007/978-3-662-49529-2_17.563

5 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge564

University Press, 1998.565

6 Ananya Christman, William Forcier, and Aayam Poudel. From theory to practice: max-566

imizing revenues for on-line dial-a-ride. J. Comb. Optim., 35(2):512–529, 2018. URL:567

https://doi.org/10.1007/s10878-017-0188-z, doi:10.1007/s10878-017-0188-z.568

7 Sven Oliver Krumke, Willem de Paepe, Diana Poensgen, Maarten Lipmann, Alberto569

Marchetti-Spaccamela, and Leen Stougie. On minimizing the maximum flow time in the570

online dial-a-ride problem. In Thomas Erlebach and Giuseppe Persiano, editors, Approx-571

imation and Online Algorithms, Third International Workshop, WAOA 2005, Palma de572

Mallorca, Spain, October 6-7, 2005, Revised Papers, volume 3879 of LNCS, pages 258–269.573

Springer, 2006. URL: https://doi.org/10.1007/11671411_20, doi:10.1007/11671411_574

20.575

8 Kelin Luo, Thomas Erlebach, and Yinfeng Xu. Car-sharing between two locations: On-576

line scheduling with flexible advance bookings. In Proceedings of the 24th International577

Computing and Combinatorics Conference, COCOON 2018, LNCS. Springer, 2018. To578

appear.579

9 Fanglei Yi and Lei Tian. On the online dial-a-ride problem with time-windows. In Nimrod580

Megiddo, Yinfeng Xu, and Binhai Zhu, editors, Algorithmic Applications in Management,581

First International Conference, AAIM 2005, Xian, China, June 22-25, 2005, Proceedings,582

volume 3521 of LNCS, pages 85–94. Springer, 2005. URL: https://doi.org/10.1007/583

11496199_11, doi:10.1007/11496199_11.584

https://doi.org/10.1007/3-540-46541-3_53
http://dx.doi.org/10.1007/3-540-46541-3_53
https://doi.org/10.1016/j.ejor.2009.04.024
http://dx.doi.org/10.1016/j.ejor.2009.04.024
https://doi.org/10.1137/1.9781611974782.63
https://doi.org/10.1137/1.9781611974782.63
https://doi.org/10.1137/1.9781611974782.63
http://dx.doi.org/10.1137/1.9781611974782.63
https://doi.org/10.1007/978-3-662-49529-2_17
http://dx.doi.org/10.1007/978-3-662-49529-2_17
http://dx.doi.org/10.1007/978-3-662-49529-2_17
http://dx.doi.org/10.1007/978-3-662-49529-2_17
https://doi.org/10.1007/s10878-017-0188-z
http://dx.doi.org/10.1007/s10878-017-0188-z
https://doi.org/10.1007/11671411_20
http://dx.doi.org/10.1007/11671411_20
http://dx.doi.org/10.1007/11671411_20
http://dx.doi.org/10.1007/11671411_20
https://doi.org/10.1007/11496199_11
https://doi.org/10.1007/11496199_11
https://doi.org/10.1007/11496199_11
http://dx.doi.org/10.1007/11496199_11

	Introduction
	Problem Formulation and Preliminary Results
	Definitions and Problem Formulation
	Online Optimization and Competitive Analysis
	Lower Bounds

	Upper Bound
	Conclusion

