
CO7002 Analysis and Design of Algorithms

Credits: 15 Convenor: Dr. S. Fung Semester: 2nd

Prerequisites: none

Lectures: 30 hours
Surgeries: 10 hours

Problem Classes: 9 hours
Class Test Hours: 1 hours
Independent Study: 62.5 hours

Assessment: Coursework: 40% + Three hour exam in May/June: 60%

Subject Knowledge

Aims The module aims to introduce students to the design of algorithms as a means of problem-solving.
Students will learn how to analyze the complexity of algorithms. Major algorithm design techniques will be
presented and illustrated with fundamental problems in computer science and engineering. Students will also
learn the limits of algorithms and how there are still some problems for which it is unknown whether there exist
efficient algorithms.

Learning Outcomes Students should be able to demonstrate how the worst-case time complexity of an
algorithm is defined; compare the efficiency of algorithms using asymptotic complexity; design efficient algo-
rithms using standard algorithm design techniques; demonstrate a number of standard algorithms for problems
in fundamental areas in computer science and engineering such as sorting, searching, and problems involving
graphs.

Methods Class sessions together with lecture slides, recommended textbook, worksheets, printed solutions,
and web support.

Assessment Marked coursework, class test, traditional written examination.

Skills

Aims Students will become more experienced in the application of logical and mathematical tools and
techniques in computing. They will develop the skills of using standard algorithm design techniques to develop
efficient algorithms for new problems. They will develop skills to judge the quality of the algorithms.

Learning Outcomes Students will be able to solve problems which are algorithm based by using various
design techniques. They will be able to apply prior knowledge of standard algorithms to solve new problems, and
mathematically evaluate the quality of the solutions. They will be able to produce concise technical writing for
describing the solutions and arguing their correctness.

Methods Class sessions together with worksheets.

Assessment Marked coursework, class test, traditional written examination.

Explanation of Prerequisites Typical materials assumed for this module are: the basic notions associ-
ated with an imperative programming language such as arrays, while loops, for loops, linked lists, recursion, etc.;
and logical and discrete mathematical notions such as induction, asymptotic notation, recurrence relations and
their solution, geometric and arithmetic series, etc.

Module Description This module introduces students to the design and analysis of algorithms. Algorithms
are step-by-step procedures, such as those executed by computers, to solve problems. Typical problems include,
for example, “what is the shortest path between two locations in a network?”, or “what is the maximum set of
activities that can be chosen subject to time constraints?” Just because a problem can be solved, does not mean that
there exists a practically time-efficient solution. It is the goal of algorithm designers to develop better and better
algorithms for the solution of fundamental or new problems. The main methods used to design algorithms will
be illustrated through examples of fundamental importance in computer science and engineering. These design

The Department of Informatics 1



methods not only apply to the problems illustrated in the module, but also to a much wider range of problems in
computer science and engineering. As a result, students can apply the design methods learned to other problems
they encounter. Alternatively, it can be the case that no algorithms of a certain quality exist; algorithm designers
then need to identify this limitation of algorithms. Techniques for analysing the efficiency of algorithms and the
inherent complexities of problems will be explained.

Syllabus Asymptotic analysis of algorithms: the notion of asymptotic complexity using big-O notation;
solving recurrence relations; master theorem; limitations of algorithms (lower bounds using decision trees).

Algorithm design techniques: divide and conquer; greedy algorithms; dynamic programming.

Algorithms for fundamental problems: sorting (mergesort, Quicksort); searching (binary search); minimum span-
ning trees (Kruskal’s and Prim’s algorithms); graph traversal; shortest paths (Dijkstra’s algorithm, Bellman-Ford
algorithm, Floyd-Warshall algorithm); network flow (Ford-Fulkerson algorithm).

Reading List

[B] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, 3rd edition; ISBN:
978-0-262-53305-8, MIT Press, 2009.

[B] S. Dasgupta, C. H. Papadimitriou and U. Vazirani, Algorithms, McGraw-Hill, 2007.

[B] J. Kleinberg and E. Tardos, Algorithm Design, Addison-Wesley, 2006.

[B] S. Skiena, The Algorithm Design Manual, 2nd edition, Springer, 2008.

Resources Course notes, web page, study guide, worksheets, past examination papers.

Module Evaluation Course questionnaires, course review.

The Department of Informatics 2


