
TextDS: The DOM text nodes consumes a huge part of
memory used for representing XML documents (~30-60% of
tree).

Standard techniques exist where we may compress the textual
data concatenated (FM-Index [6]), however providing pointers to
where each text data start and end is very costly. We use
succinct data structures [3] in place of these explicit pointers to
the lists of attributes values and text nodes.

NameCodeDS, NamePool, HashTable: We use a similar data
structure of tinyTree Namepool (http://saxon.sourceforge.net/).
We make use the hash-tables for XML names, by mapping
them to 32-bit namecodes and we provide optimisations for
these namecode storing them compactly via shorter codes with-
in integer arrays.

AttributeDS: Attributes themselves are not apart of the DOM
tree, but are referenced to the elements where they are defined
through a NameNodeMap. We provide a mapping of attributes
to the elements they belong to using a tree-like bit-string,
illustrated in Figure 6.

Introduction
XML is a standard format for data exchange and storage. XML
documents are processed by a number of applications in the
following manner: the XML document is parsed, and a tree
representation of the XML document is created within the memory
of the computer. This representation is then accessed through the
standard DOM interface.

The DOM interface is very flexible, and is commonly used for XML
processing. Our focus is on static XML documents --- while DOM
does have functionality that allows (fairly arbitrary) changes to the
XML document, this functionality is not frequently used. Indeed,
there are a few DOM implementations for static documents.

We discuss the advantages and disadvantages of existing
implementations of the DOM and describe a new approach in our
DOM implementation that is based upon succinct data structures.

Motivations
A major disadvantage of most implementations of the DOM is a
high memory requirement, referred to as ``XML bloat''. The in-
memory DOM representation of an XML document can be many
times larger than the XML file itself, for example figure 1. This
means that even moderately large XML documents cannot be
processed within the main memory of a reasonably high-end
machine.

Given the DOM tree of the simple XML document in figure 2, many
implementations of the DOM use a pointer-based representation
for associations between the various data elements.

These pointers are a primary cause for the ``XML bloat'‘. A single
node in the tree representation of an XML document may have
pointers to its parent, first-child, and its next and previous siblings,
among others. Each pointer would require 32 or 64 bits, so one
would expect more than 20 bytes or 40 bytes per node.

Acknowledgments
I thank GOD for the understanding He has given.
I would like to thank Professor Rajeev Raman as my supervisor for the advice and
support. Both Rajeev Raman and Naila Raman’s collaborative work has made the
engineering of SDOM possible.

Succinctness
We describe a implementation of the DOM that does not require
the use of node-pointers, and is based upon succinct data
structures.

Succinct data structures use the information-theoretically
minimum number of bits to encode a object. For example, an
ordinal tree on n nodes is a rooted tree, where the children of a
node are ordered from left-to-right (XML documents are
essentially ordinal trees). The lower bound for representing an
ordinal tree on n nodes is 2n - O(log n) bits [1,5].

This is much better than the pointer-based representations
(described earlier), which would use asymptotically 4n log2n
bits.

Succinct Tree representation

Conclusions
Motivated by succinct representations we have discovered new
uses for the application of XML document content and its
structure. By the engineering of SDOM.

SDOM provides flexibility in XML processing by having tuning
parameters in the SDOM components. This greatly reduces
space usage where memory is limited or increases space usage
where performance is critical.

We have shown that Succinct trees improve the space
complexity without compromising too much on query time. Also,
to represent XML trees close to optimum space, while
supporting a wide range of operations efficiently.

O’Neil Delpratt
(Joint work with Rajeev Raman, Naila Rahman)

Department of Computer Science, University of Leicester

O’Neil Delpratt
(Joint work with Rajeev Raman, Naila Rahman)

Department of Computer Science, University of Leicester

Literature cited
[1] Dennis M. Sosnoski, http://www.sosnoski.com/opensrc/xmlbench/index.html,

2006.
[2] O’Neil Delpratt, Naila Rahman, Rajeev Raman, Engineering the LOUDS

succinct tree representation. In proc. WEA 2006, LNCS 4007, p 134-145,
Springer, 2006.

[3] O’Neil Delpratt, Naila Rahman, Rajeev Raman, Compressed Prefix Sums.
SOFSEM 2007, LNCS 4362, p 235-247, Springer.

[4] Jacobson, Space-efficient static trees and graphs. In Proc. 30th FOCS, 549-554,
1989.

[5] R. F. Geary, N. Rahman, R. Raman and V. Raman. A simple optimal
representation for balanced parentheses. In Proc. 15th CPM, LNCS 3109, pp.
159-172.

[6] Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, S. Muthukrishnan,
Compressing and Searching XML Data Via Two Zips, In: Proceedings of the
15th International World Wide Web Conference, ACM Press, Edinburgh, UK,
May 2006, ISBN 1-59593-323

Figure 1. Test of
Memory usage for
standard DOM
implementations.
Loaded the XML
specification in a DOM
object in java [1].

For further information
Please contact ond1@mcs.le.ac.uk. More information on this and related projects
including published paper can be obtained at www.cs.le.ac.uk/people/ond1
Poster version in PDF-version
www.cs.le.ac.uk/people/ond1/XMLcomp/XMLPrague_SDOM_Poster.pdf

Figure 5. Overview of parsing XML document into SDOM components.

1489
1230

2500

0
500

1000
1500
2000
2500

Memory
usage (KB)

Xerces-J 2.0.1
1:8 ratio

Crimson 1.1.3
1:6 ratio

Oracle
XML9.2.0.2.0

1:12 ratio
DOM Implementations

XMLSpec.xml file loaded in memory (197KB)

SAX-Parser

STree NameCodeDS

AttributeDSTextDS

NamePool

Hash TableDocType

XML
Document

DOM Interface

SDOM

XQuery and XSLT processing

Parentheses tree
operations
A parentheses representation
supports operations for a
parenthesis location: ENCLOSE,
FINDCLOSE, FINDNOPEN and
INSPECT.

Providing us with tree navigation:

• Parent, first-child, next-sibling,
previous-sibling. Iterator: next-node,
previous-node

Example:
ENCLOSE(i): Returns the position of the
opening parenthesis of the pair that tightly
encloses the parenthesis i.

DOM Node operation
getParentNode:
Nodes represented by 2 numbers: pair(d,p)

getParentNode(d,p){

p’:= ENCLOSE(p)

d’:= d-(p-p’+1)/2

return pair(d’,p’)
}

Get parent node of 7th node at position 12:

getParentNode (<7,12>):
p’:=ENCLOSE(12)=1; d’:=7-(12-1+1)/2=1;
return (1,1);

Parentheses Tree
Construction:

Figure 4. Parenthesis tree representation[2] of
XML doc (figure 2)

Depth first Order sequence of tree:

We consider the parenthesis sequence
as a sequence of bits(called bit-string)

Facts:

• Nodes represented by the opening
parenthesis.

• Node location in the tree are known
by their position in the parenthesis
sequence (p) and by their count of
opening parenthesis (d). Pair{d,p}

Engineering Succinct DOMEngineering Succinct DOMEngineering Succinct DOM

Figure 2. Left: Simple XML document. Right:
DOM tree structure of Left, with numbering. cr: carriage return char, sp: space char

00100100111010011010011011

()

()

()

()

() ()

()

()

()

() ()

()()

<root><element1 attr1=’a’ attr2=’a’ attr3=’a’/>
<element2 />
<-- comment -->
<element3 attr1=’a’ attr2=’b’>
<element1 attr1=’a’ attr2=’b’
attr3=’c’ attr4=’d’>
<element4 attr1=’a’>
<element5 /></root>

// 41 532

a a a a b a b c ad

 el 1 2 c 3 4 5
attr 1 2 3 5 6 7 8 9 10 11
 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 0

Fig. 6. Top Left: Example XML doc with elements and attributes. Top Right: Tree-like
mapping of elements attributes. Bottom: Bit-string of the AttributeDS representation.

12766KB1877KB1488KB389KB5243KBOrders.xml

4518KB1223KB1088KB135KB2253KBPartsupp.xml

4239KB848KB688KB160KB1081KBMondial-3.0.xml

Xerces
C++

SDOM
Total

Text
(uncompressed)

SDOM
Components

Original
file size

XML docs

Figure 7. Test XML files and their sizes. SDOM space usage with no text compression applied.
SDOM memory usage compared to Xerces-C.

Experiments
Experiments on our version SDOM was done by reading and
storing an XML document in main memory, and traversing its
tree. Reading element’s attributes were also accessed

0.111
0.036
0.016

SDOM

0.023
0.007
0.005

Xerces

4.80Orders.xml
4.48Partsupp.xml
2.94Mondial-3.0.xml

SDOM Slowdown
relative to Xerces-C

XML docs Figure 7. Test files.
Preliminary tree
traversal performance
times (milliseconds).
SDOM slowdown wrt. to
Xerces-C.

Current
Node

Parent

Next
Sibling

Previous
Sibling

Figure 3. Pointer based
representation of the DOM node.

SDOM Components
We have implemented Succinct DOM (SDOM) in C++. The
process of building the SDOM data structure from an XML
document is via a SAX parser. Figure 5 shows the architecture
of SDOM. We have already discussed the tree structure
(STree), we now give an overview of the other components.

<<book catalogue=“XML”>>
<<author>>

Delpratt&&cop;
<</author>>
<<title>> SDOM Design

<<title>>
<<year>> 2007 <</year>>

<</book>>

 2n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
n 1 2 3 4 5 6 7 8 9 10 11 12 13

(() (() (())) () (()) () (()) ())

catbook

titleauthor year[cr][sp] [cr][sp]

Delpratt & SDOM Design 2007

[cr][sp][cr][sp]

“XML”1

1072 133

4

8

9

11

12
&ent;

co

5

6

catbook

titleauthor year[cr][sp] [cr][sp]

Delpratt & SDOM Design 2007

[cr][sp][cr][sp]

“XML”1

1072 133

4

8

9

11

12
&ent;

co

5

6

Developed: 12th June 2007

