
TextDS: The DOM text nodes consumes a huge part of 
memory used for representing XML documents (~30-60% of 
tree).

Standard techniques exist where we may compress the textual 
data concatenated (FM-Index [6]), however providing pointers to 
where each text data start and end is very costly. We use 
succinct data structures [3] in place of these explicit pointers to 
the lists of attributes values and text nodes. 

NameCodeDS, NamePool, HashTable: We use a similar data 
structure of tinyTree Namepool (http://saxon.sourceforge.net/). 
We make use the hash-tables for XML names, by mapping 
them to 32-bit namecodes and we provide optimisations for 
these namecode storing them compactly via shorter codes with-
in integer arrays.

AttributeDS: Attributes themselves are not apart of the DOM 
tree, but are referenced to the elements where they are defined 
through a NameNodeMap. We provide a mapping of attributes 
to the elements they belong to using a tree-like bit-string, 
illustrated in Figure 6.

Introduction
XML is a standard format for data exchange and storage. XML 
documents are processed by a number of applications in the 
following manner: the XML document is parsed, and a tree 
representation of the XML document is created within the memory 
of the computer.  This representation is then accessed through the 
standard DOM interface.  

The DOM interface is very flexible, and is commonly used for XML
processing. Our focus is on static XML documents --- while DOM 
does have functionality that allows  (fairly arbitrary) changes to the 
XML document, this functionality is not frequently used.  Indeed, 
there are a few DOM implementations for static documents.

We discuss the advantages and disadvantages of existing 
implementations of the DOM and  describe a new approach in our 
DOM implementation that is based upon succinct data structures.

Motivations
A major disadvantage of most implementations of the DOM is a 
high memory requirement, referred to as ``XML bloat''.  The in-
memory DOM representation of an XML document can be many 
times larger than the XML file itself, for example figure 1. This 
means that even moderately large XML documents cannot be 
processed within the main memory of a reasonably high-end 
machine. 

Given the DOM tree of the simple XML document in figure 2, many
implementations of the DOM use a pointer-based representation 
for associations between the various data elements. 

These pointers are a primary cause for the ``XML bloat'‘. A single 
node in the tree representation of an XML document may have  
pointers to its parent, first-child, and its next  and previous siblings, 
among others. Each pointer would require 32 or 64 bits, so one 
would expect more than 20 bytes or 40 bytes per node.
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Succinctness
We describe a implementation of the DOM that does not require 
the use of node-pointers, and is based upon succinct data 
structures. 

Succinct data structures use the information-theoretically 
minimum number of bits to encode a object.  For example, an 
ordinal tree on n nodes is a rooted tree, where the children of a 
node are ordered from left-to-right (XML documents are 
essentially ordinal trees). The lower bound for representing an 
ordinal tree on n nodes is 2n - O(log n) bits [1,5]. 

This is much better than the pointer-based representations 
(described earlier), which would use asymptotically 4n log2n
bits.

Succinct Tree representation

Conclusions
Motivated by succinct representations we have discovered new 
uses for the application of XML document content and its 
structure. By the engineering of SDOM.

SDOM provides flexibility in XML processing by having tuning 
parameters in the SDOM components. This greatly reduces 
space usage where memory is limited or increases space usage 
where performance is critical.

We have shown that Succinct trees improve the space 
complexity without compromising too much on query time. Also, 
to represent XML trees close to optimum space, while 
supporting  a wide range of operations efficiently.
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Figure 1. Test of 
Memory usage for 
standard DOM 
implementations. 
Loaded the XML 
specification in a DOM 
object in java [1].
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Figure 5.  Overview of parsing XML document into SDOM components.
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Parentheses tree 
operations
A parentheses representation  
supports operations for a 
parenthesis location: ENCLOSE, 
FINDCLOSE, FINDNOPEN and 
INSPECT. 

Providing us with tree navigation: 

• Parent, first-child, next-sibling, 
previous-sibling. Iterator: next-node, 
previous-node

Example:
ENCLOSE(i): Returns the position of the 
opening parenthesis of the pair that tightly 
encloses the parenthesis i.

DOM Node operation 
getParentNode:
Nodes represented by 2 numbers: pair(d,p)

getParentNode(d,p){                     

p’:= ENCLOSE(p)

d’:= d-(p-p’+1)/2

return pair(d’,p’)            
}

Get parent node of 7th node at position 12:

getParentNode (<7,12>):                   
p’:=ENCLOSE(12)=1; d’:=7-(12-1+1)/2=1;                                    
return (1,1); 

Parentheses Tree 
Construction:

Figure 4. Parenthesis tree representation[2] of 
XML doc (figure 2)

Depth first Order sequence of tree:

We consider the parenthesis sequence 
as a sequence of bits( called bit-string)

Facts:

• Nodes represented by the opening 
parenthesis.

• Node location in the tree are known          
by their position in the parenthesis 
sequence (p) and by their count of 
opening parenthesis (d). Pair{d,p}

Engineering Succinct DOMEngineering Succinct DOMEngineering Succinct DOM

Figure 2. Left: Simple XML document. Right: 
DOM tree structure of Left, with numbering. cr: carriage return char, sp: space char
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<root><element1 attr1=’a’ attr2=’a’ attr3=’a’/>
<element2 />
<-- comment -->
<element3 attr1=’a’ attr2=’b’>
<element1 attr1=’a’ attr2=’b’
attr3=’c’ attr4=’d’>
<element4 attr1=’a’>
<element5 /></root>

// 41 532

a a a a b a b c ad

 el    1 2 c   3     4  5 
attr 1 2 3    5 6  7 8 9 10  11  
 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 0 

Fig. 6. Top Left: Example XML doc with elements and attributes. Top Right: Tree-like 
mapping of elements attributes. Bottom: Bit-string of the AttributeDS representation. 
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Experiments
Experiments on our version SDOM was done by reading and 
storing an XML document in main memory, and traversing its 
tree. Reading element’s attributes were also accessed
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Figure 3. Pointer based 
representation of the DOM node.

SDOM Components
We have implemented Succinct DOM (SDOM) in C++. The  
process of building the SDOM data structure from an XML 
document is via a SAX parser.  Figure 5 shows the architecture 
of SDOM.  We have already discussed the tree structure 
(STree), we now give an overview of the other components.
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