version 1.2 provides an efficient in-memory representation of large static XML documents, with
stable and predlctable memory usage, which can be used as a plug-in to create a variety of XML processing APIs. SIXML is based

on succinct data structures, which use an information-theoretically minimum amount of space to represent a given data type
(see Wikipedia page: http://Ira.le.ac.uk/handle/2381/3363).

@presenting XML Documentsey catioque-savars \ (Memery Usage \

I . <§uthor>5elman</auﬂ1qr>)
N main memory j';:';f;gggﬂ ﬁg??mmmg(/mp In the table below, we show the space usage of SIXDOM-(CT) compared to
& </book> Xerces-C, Saxon’s TinyTree and a state of the art XML compressor, XMILL.

Percentage given is the proportion of the file size.

“ﬂ SIXDOM | Xerces-C |Saxon s:xnom-
1.1

3 “ . Orders.xml 5MB 37% 451% 157% :17% 12%
“[er]lsp]” “[er][sp]” [erllsp] !
Lineitem.xml 32MB 28% 399% 161% {13% 5%
“Selman” B “2000" 1
e e XCDNA.xml 607MB 50% 491% 130% 514% 8%
The benefits of representing an XML document in main memory: . i
Fast navigation and fast data access/modification. Memory usage typically less than 50% the file size. SIXDOM-CT compresses
the text, space usage is even better.
Case Study: Xerces-C 2.8 Running times
In Xerces-c the DOM tree is represented using pointers, see Fig 1.1 which i : g :
shows the 4 pointers required as minimum per node in the DOM tree. Typically In the paper [EDBT '08] we provide a comprehensive performance test.
node types representations such as DOM_Element and DOM_Text require Typical results: 0,
416 and 216 bits per node, respectively. The DOM implementation gives a Test : Full navigation of document, retrieving all text nodes
robust API for the DOM tree, at a high memory Results: SIXDOM 1.1 was ~1.8 times slower than Xerces-C DOM

usage cost, due to the use of pointers. Rpcent

SIXDOM benefits:

Previous— Sl 3 © \Very low memory footprint.
A 2 Next-Siblin P P
sibling 9 © Good for mobile devices.

_ el y, _° ey)
SIXML 1.2
Fast Parsing,
Plug-in to XML Processing APls,
Highly space efficient,
Fast navigation and data access.

(Pointerless Data Structure \ [Forthcoming STYML 1.2 \

Is there a succinct "(pointerless)" in y repr tation of
XML documents, which can give the full XML processing functionality? < Release Summer 2010
eatures:
We can represent the tree in Figure 1.2 as a
parentheses string
© Document-order numbering. © Fast, memory efficient parsing. Using the Expat parser (creation of
James Clark). Very low memory footprint.

© Very fast navigation using 2.88 bits/node. =

[G}rQyRR '06, V\?EA '06, EE?BT '08] / \) (\D © Cross platform support to languages such as Java and C#.Net.
Using parentheses string and other y, © Release XML processing APIs based on Succinct
"succinct" building blocks we are able data structures.
to represent nodes in <14 bits per node, .
rather than the minimum 216 bits in
Xerces-C ‘
SIXDOM 1.1 . To maximise the potential of SIXML we are interested in
Provides an highly efficient in-memory 12345 6 78 9 industrial support and partnerships
representations XML Docs in main 23
memory. Features: (,((())()(()))\

* DOM API (Level 2 and partially 3) 0010001101 00111 011

* Nodelnfo interface (Saxon) Figure 1.2

(CH o e LTl Y _ £
O'Neil Delpratt
iversity of ond1@mcs.le.ac.uk

f£ % Un
ERSE)
3 L lce ster (Joint work with Rajeev Raman and Naila Rahman)

Website under construction: http://www.cs.le.ac.uk/SixML/

