niversity of

¥ Leicester

SIXML Version 1.2

Succinct indexible XML (SiXML) version 1.2 provides an efficient in-memory representation of
large XML documents, with stable and predictable memory usage. It provides a framework
around which a variety of XML processing APIs can be implemented. SiXML is based on
succinct data structures, whose memory usage is information-theoretically minimum.

http://www.cs.le.ac.uk/SiXML/

Case Study: Apache Xerces-C++ 2.8

Represents XML documents in main
memory as a tree.

» Fast navigation.

» Fast data access/modification.

A Xerces-C++ DOM element node is
almost all pointers and requires -
416 bits on a 32-bit machine. =

fDefaultAttributes fSchemaType

fAttributes

DOM

DOMParentNode element

DOMNodelmpl DOMChildNode

DOMNodeListimpl

PreviousSibling OwnerDocument

NextSibling FirstChild

SiXDOM and Xerces Performance Comparision

Xerces-C++ vs. SiXDOM (C++) and Xerces2 vs SiXDOM(Java) on
benchmark XML documents on Linux PC with 8GB RAM.

e C++ Virtual Memory Usage
Xmark Xmark Xmark

Treebank iroteins dbli fact9.6 factl9.2 fact38.4

SiXDOM 127% 95% 110% 100% 95% 95%
FAILED
(VM usage given as percentage of file size)

e C++ Parse and Traverse Speed (Wall Clock Time, secs)

1000
900 Xerces C++
800 Traverse Time

700 " Xerces C++ Parse
600 Time

500 SiXDOM Traverse
400 Time

300 u SiXDOM Parse time
200

1027 -.‘—.I

5 A0S o\® ° Y2
\‘ee“a“\k o . ’@°‘°@ ia6‘°‘\

Pointerless Data Structures
* Represent the structure of the tree as a parenthesis string,
« plus efficient index for “matching parens” (total <5 bits/node).

« Also using pointer-less data structures for attributes, text etc.

4 789

(00) A

001011

SiXDOM 1.2 Features: ‘

« 64-bit C++ implementation of DOM API (Level 2 and partially 3)
* Only contains the static DOM methods

« SWIG Bindings for Java and Python

SIXDOM Timeline

Decrease

parsing time Compilation
and memory

. with Cmake
requirements

Dynamic
Functionality

. to SIXDOM
Integration

with Zorba

« Java Resident Memory Usage o S

Treebank SwissProt iroteins dbli factor19.2 factor38.4

SiXDOM 134% 131% 96% 112% 103% 105%

FAILED FAILED FAILED FAILED

Java Parse and Traverse speed (Wall Clock Time, secs)

400 Xerces2 Java

350 Traverse Time
300
250

200 Parse Time

133 SiXDOM Traverse
15 0 I Time

0 — L . = SiXDOM Parse

o X
er"““ - o wsF o o (e °‘\'9

Note

+ Each SiXDOM document collection has 3-4MB fixed cost.

* Use TreeWalker Interface to avoid memory leaks during
traversal (Node objects are created on demand and garbage-
collected on deletion of SiXDOM document collection).

1 Xerces2 Java

3 Time
£ c‘°‘3$

We are currently looking for industrial partners.
UK government funding available for joint projects.

Andreas Poyias, Stelios Joannou ({ap468, sj148}@leicester.ac.uk)
SiXDOM developed by O’Neil Delpratt, Stelios Joannou, Naila Rahman and Rajeev Raman

