

Pre-Proceedings of the Sixth International

Workshop on Graph Transformation and Visual

Modeling Techniques (GT-VMT 2007)

Satellite Event of Supported by

Editors: Karsten Ehrig, Holger Giese

Preface

This volume contains the proceedings of the Sixth International Workshop on Graph
Transformation and Visual Modeling Techniques (GT-VMT 2007), held in Braga, Portugal on
March 31 and April 1, 2007, as a satellite event to the European Joint Conference on Theory and
Practice of Software (ETAPS’07).

The GT-VMT workshop series serves as a forum for all researchers and practitioners interested in
the use of graph-based notation, techniques and tools for the specification, modeling, validation,
manipulation and verification of complex systems. Previous workshops have been organized in
Geneva (2000), Crete (2001), Barcelona (2002 and 2004), and Vienna (2006).

Due to the variety of languages and methods used in different domains, the aim of the workshop
is to promote engineering approaches that starting from high-level specifications and robust
formalizations allow for the design and the implementation of such visual modeling techniques,
hence providing effective tool support at the semantic level (e.g., for model analysis,
transformation, and consistency management). In fact, the workshop series attracts the interest
of communities working on popular visual modeling notations like UML, Graph Transformation,
Business Process/Workflow Models.

This year's workshop will have an additional focus on application of graph transformation and
visual modeling techniques in engineering, biology, and medicine.

The organizers acknowledge the support by the European Association of Software Science and
Technology (EASST) and the IST Integrated Project SENSORIA (Software Engineering for
Service-Oriented Overlay Computers) funded by the European Union in the 6th framework
program as part of the Global Computing Initiative.

We warmly thank Reiko Heckel for proposing us to organize the workshop in connection with
ETAPS 2007. We also thank all our colleagues in the Program Committee and those who helped
us as external reviewers. A special thank goes to the GT-VMT 2006 organizers for drawing the
workshop logo. We are very grateful to the ETAPS 2007 organizers, for taking care of all the local
organization.

The final proceedings will be published in the journal Electronic Communications of the EASST
after the workshop. ECEASST is a fully refereed journal and provides a forum for practitioners,
educators and researchers for disseminating innovative research in the area of software and
system technology. The volumes in the ECEASST series are available online at
http://www.easst.org/eceasst.

March 2007 Karsten Ehrig and Holger Giese

Program committee

Paolo Baldan (University of Venice, Italy)
Roberto Bruni (University of Pisa, Italy)
Andrea Corradini (University of Pisa, Italy)
Hartmut Ehrig (TU Berlin, Germany)
Karsten Ehrig (University of Leicester, UK) [co-chair]
Gregor Engels (University of Paderborn, Germany)
Reiko Heckel (University of Leicester, UK)
Holger Giese (University of Paderborn, Germany) [co-chair]
Gabor Karsai (Vanderbilt University, US)
Jochen Küster (IBM Zürich Research)
Mark Minas (Universität der Bundeswehr München, Germany)
Jörg Niere (University of Siegen, Germany)
Francesco Parisi-Presicce (University of Rome, Italy)
Arend Rensink (University of Twente, Netherlands)
Andy Schürr (University of Darmstadt, Germany)
Gabi Taentzer (TU Berlin, Germany)
Daniel Varró (TU Budapest, Hungary)
Bernhard Westfechtel (University of Bayreuth, Germany)
Hans Vangheluwe (McGill University in Montreal, Canada)
Martin Wirsing (Ludwig-Maximilians-Universität München, Germany)
Albert Zündorf (University of Kassel, Germany)

List of Referees

As already mentioned, the papers were refereed by the program committee and
by the following external referees, whose help is gratefully acknowledged.

Florian Brieler
Pieter Van Gorp
Frank Hermann
Ákos Horváth
Ruben Jubeh
Anneke Kleppe
Thomas Maier
Ulrike Prange
Christian Schneider
Christian Soltenborn
Gergely Varro

Contents and Program for Saturday 31/03/2007

Invited Session

09:00 to 09:05 Opening

09:05 to 10:30 Gheorghe Paun (Romanian Academy and Sevilla University, Spain)
Membrane Computing [and Graph Transformation] page 1

10:30 to 11:00 Coffee Break

Session on Verification and Model Transformation

11:00 to 11:30 Rule-Level Verification of Business Process Transformations using CSP
(Dénes Bisztray, Reiko Heckel) page 3

11:30 to 12:00 Bisimulation Verification for the DPO Approach with Borrowed Contexts
(Guilherme Rangel, Barbara König, Hartmut Ehrig) page 16

12:00 to 12:30 Transforming Collaborative Service Specifications into Efficiently Executable State Machines
(Frank Alexander Kraemer, Peter Herrmann) page 30

12:30 to 14:15 Lunch

Session on Pattern Matching

14:15 to 14:30 Ensuring Containment Constraints in Graph-based Model Transformation Approaches
[short talk] (Christian Köhler, Holger Lewin, Gabriele Taentzer) page 45

14:30 to 15:00 Generic Search Plans for Matching Advanced Graph Patterns
(Ákos Horváth, Gergely Varró, Dániel Varró) page 57

15:00 to 15:30 A Query Language With the Star Operator
(Johan Lindqvist, Torbjörn Lundkvist, Ivan Porres) page 69

15:30 to 16:00 Triple Patterns: Compact Specifications for the Generation of Operational Triple Graph
Grammar Rules (Juan de Lara, Esther Guerra, Paolo Bottoni) page 81

16:00 to 16:30 Coffee Break

Session on Graph Transformation Language Operations

16:30 to 17:00
A Subgraph Operator for Graph Transformation Languages
(Daniel Balasubramanian, Anantha Narayanan, Sandeep Neema, Feng Shi, Ryan Thibodeaux,
Gabor Karsai) page 95

17:00 to 17:30 Adding Recursion to Graph Transformation
(Esther Guerra, Juan de Lara) page 107

17:30 to 18:00 Visual Programming with Recursion Patterns in Interaction Nets
(Ian Mackie, Jorge Sousa Pinto, Miguel Vilaca) page 121

18:00 to 18:15 Simulating Multi-graph Transformations Using Simple Graphs [short talk]
(Frank Hermann, Harmen Kastenberg, Iovka Boneva, Arend Rensink) page 133

Contents and Program for Sunday 01/04/2007

Invited Session

09:00 to 10:30 2nd Invited Talk
Topic to be announced.

10:30 to 11:00 Coffee Break

Session on Application of Graph Transformations

11:00 to 11:30 Evaluating Workflow Definition Language Revisions with Graph-Based Tools
(René Wörzberger, Markus Heller, Frank Häßler) page 147

11:30 to 11:45
Graph Based Engineering Systems - A Family Of Software Applications And their Underlying
Framewor [short talk]
(Gregor Wrobel, Ralf-Erik Ebert, Matthias Pleßow) page 159

11:45 to 12:00 Imposing Hierarchy on a Graph [short talk]
(Brendan Sheehan, Benoit Gaudin, Aaron Quigley) page 171

12:00 to 12:15 The Jury is still out: A Comparison of AGG, Fujaba, and PROGRES [short talk]
(Ulrike Ranger, Christian Fuß, Christof Mosler, Erhard Schultchen) page 183

12:15 to 14:15 Lunch

Working Groups

14:15 to 14:30 Building of Working Groups

14:30 to 15:30 Discussion in Working Groups

15:30 to 16:00 General Discussion of the Results

16:00 to 16:30 Closing and Coffee Break

ECEASST

Membrane Computing [and Graph Transformation]

Gheorghe P̆aun

Institute of Mathematics of the Romanian Academy, Bucharest, Romania, and
Research Group on Natural Computing, Sevilla University, Spain

george.paun@imar.ro, gpaun@us.es

Membrane computing is a branch of natural computing initiated in [5] which abstracts comput-
ing models from the organization and the functioning of the living cell and from the cooperation
of cells in tissues, organs (brain included) or other higher order structures. The resulting models,
called P systems, can be briefly described as devices which process multisets of abstract objects
in the compartments delimited by membranes. According to the arrangement of membranes,
there are cell-like P systems (with the membranes embedded hierarchically), tissue-like (with
the membranes placed in the nodes of an arbitrary graph), and neural-like P systems (with a
special case, of spiking neural P systems).

A P system can be used as a computing device, generating/acccepting sets of numbers, of vec-
tors of numbers, languages, sets of trees or graphs, arrays, etc. Many variants were considered,
with biological, mathematical, or computer science motivation, and most of them were proved
to be Turing complete. When an enhanced parallelism is available, e.g., by means of mem-
brane division, computationally hard problems (typically,NP-complete problems) were solved
in polynomial time – by a space-time trade-off.

Recently, membrane computing was much used as a framework for devising models in biol-
ogy, economics, linguistics, computer science, optimization.

The talk is intended to be a general introduction to membrane computing, starting by placing it
in natural computing, presenting the basic ideas and main types of results and applications, and
pointing whenever necessary the interplay with graph theory and graph transformation (graph
theory provides ideas/tools for studying P systems, while P systems can be used for handling
graphs, e.g., as objects in membranes, or indirectly, as graphs describing membrane structures).
Research topics are mentioned. No biological background is necessary.

For further (introductory) details in membrane computing, the reader is referred to the mono-
graph [6], the volume [1], the papers [7], [3], as well as to the web page [10] (a complete bibliog-
raphy of the domain can be found at this site, many downloadable papers, software, applications,
etc.).

Bibliography

[1] G. Ciobanu, Gh. P̆aun, M.J. Ṕerez-Jiḿenez, eds.:Applications of Membrane Computing,
Springer, Berlin, 2006.

[2] R. Freund, M. Oswald, A. P̆aun: P systems generating trees. In G. Mauri et al., eds.,Mem-
brane Computing, International Workshop, WMC5, Milano, Italy, 2004, Selected Papers,
LNCS 3365, Springer-Verlag, Berlin, 2005, 221–232.

[3] M. Ionescu, Gh. P̆aun, T. Yokomori: Spiking neural P systems.Fundamenta Informaticae,
71, 2-3 (2006), 279–308.

Pre-Proceedings GT-VMT 2007 1/195

mailto:george.paun@imar.ro, gpaun@us.es

Membrane Computing [and Graph Transformation]

[4] N. Jonoska, M. Margenstern: Tree operations in P systems andλ -calculus.Fundamenta
Informaticae, 59, 1 (2004), 67–90.

[5] Gh. P̆aun: Computing with membranes.Journal of Computer and System Sciences, 61, 1
(2000), 108–143 (and TUCS Report 208, November 1998,www.tucs.fi).

[6] Gh. P̆aun:Membrane Computing. An Introduction. Springer, Berlin, 2002.

[7] Gh. P̆aun, G. Rozenberg: A guide to membrane computing,Theoretical Computer Sci., 287,
1 (2002), 73–100.

[8] Gh. P̆aun, Y. Sakakibara, T. Yokomori: P Systems on graphs of restricted forms.Publ. Math.
Debrecen, 60 (2002), 635–660.

[9] R. Rama, H. Ramesh: On generating trees by P systems. InProc. SYNASC 05, Timişoara,
Romania, IEEE Press, 2005, 462–466.

[10] The P Systems Web Page:http://psystems.disco.unimib.it .

Pre-Proceedings GT-VMT 2007 2/195

ECEASST

Rule-Level Verification of Business Process Transformations
using CSP

Dénes Bisztray1, Reiko Heckel2

Department of Computer Science, University of Leicester

1 dab24@mcs.le.ac.uk, 2reiko@mcs.le.ac.uk

Abstract: Business Process Reengineering is one of the most widely adopted tech-
niques to improve the efficiency of organisations. Transforming process models, we
intend to change their semantics in certain predefined ways, making them more flex-
ible, more restrictive, etc.

To understand and control the semantic consequences of change we use CSP to
capture the behaviour of processes before and after the transformation. Formalising
process transformations by graph transformation rules, we are interested in verify-
ing semantic properties of these transformations at the level of rules, so that every
application of a rule has a known semantic effect.

It turns out that we can do so if the mapping of activity diagrams models into the
semantic domain CSP is compositional, i.e., compatible with the embedding of pro-
cesses into larger contexts.

Keywords: Business Process Reengineering, Activity Diagrams, Graph Transfor-
mation, CSP, Verification

1 Introduction

A business process is a flow of actions, representing the work of an individual, internal system, or
external partner company, towards a definite business goal [Hav05]. A business process model is
a specification of a set of business processes. Of the different aspects addressed by such models
we will be interested in the behavioural one, the workflow specification.

When organisations adapt to new markets or optimise their business processes, their workflows
need to change, too. Business Process Reengineering is concerned with the systematic analysis
and redesign of business process models. Depending on the objectives, changes may apply to
the internal structure of the process model, preserving its semantics, or to the behaviour itself,
making the workflow more flexible or more restrictive, adding new features, etc.

Workflows are often modelled diagrammatically, e.g., by UML activity diagrams [OMG05].
Their semantics, the collection of all workflows conforming to the model, can be formalised as
a (potentially infinite) set of action sequences, called traces. Rather than specifying these sets
explicitly, one can define a mapping into a process calculus like CSP (Communicating Sequen-
tial Processes [Hoa85]). This allows the use of theories and tools for analysing properties of
processes [Ros97]. In particular it becomes possible to check if a process transformation has the

Pre-Proceedings GT-VMT 2007 3/195

mailto:dab24@mcs.le.ac.uk
mailto:reiko@mcs.le.ac.uk

Rule-Level Verification of Business Process Transformations using CSP

desired semantic effect, e.g., if the processes before and after the change are equivalent, if one is
a restriction or extension of the other.

However, if the workflow models are sufficiently complex, a complete formal analysis of the
corresponding CSP processes may be impossible or too costly. Therefore, we are are looking
for a formalisation of local process transformations, which can be analysed separately for their
semantic effect and sequentially composed in order to implement more complex changes.

To define process transformations, we formalise the abstract syntax of activity diagrams in
terms of typed graphs, where a type graph T G plays the role of a metamodel for the language
and instance graphs G typed over T G represent individual diagrams. Changes to these diagrams
can then be specified by typed graph transformation rules, providing us with a formalisation of
local workflow redesign steps.

Hence our approach combines two main ingredients: CSP as a semantic domain and analysis
technique for workflow models, and rule-based graph transformations for specifying local re-
design steps. The main question is about the relation of one with the other: How does a redesign
transformation affect the semantics of processes?

It turns out that the question can be answered at the level of rules if the mapping from activity
diagrams to CSP is compositional in the sense that the mapping of a sub-activity diagram yields
a sub-CSP process at the semantic level. Describing the mapping from activity diagrams to CSP
by triple graph grammars [Sch94], we can use results from the theory of graph transformation to
verify the compositionality of the mapping.

The paper is structured as follows: in Section 2, we informally introduce the concept of se-
mantics based verification of business process redesign. In Section 3 we present the mapping of
activity diagram to CSP. Section 4 formally states the requirements needed to verify the semantic
effect of transformations at the rule level and discusses them with respect to the mapping defined
before. Section 5 concludes the paper.

2 Business Process Reengineering

For a motivating example, we consider a simple transformation on a workflow that describes the
unpacking of a notebook computer.

Figure 1: Sample process of unpacking a notebook

As Figure 1 illustrates, the workflow consists in three steps. First, we have to plug in the power

Pre-Proceedings GT-VMT 2007 4/195

ECEASST

cord. Then, we secure the notebook with a cable lock. Finally, we have to switch on the computer.
Analysing this process, we discover that this process could be made more flexible. For reacting
to a situation where the cable lock is not available in time we may decide that the notebook
can be switched on independently from securing it. The new process model, which allows both
activities in either order as shown in Figure 2, represents a semantic extension of the old one.

Figure 2: Redesigned notebook unpacking

Formally, the semantics of these processes is defined by standard CSP expressions. Up to
substitution of process equations, the result of the mapping introduced in detail in Section 3
is shown below, with definition (1) describing the original process and equation (2-4) for the
redesigned process.

UNPACKO = plugPowerCord → secureNotebook → switchOn → SKIPUNPACKO . (1)

UNPACKR = plugPowerCord → (S1 ‖ S2) (2)

S1 = secureNotebook → processJoin → SKIPS1 (3)

S2 = switchOn → processJoin → SKIPS2 (4)

SKIPA is defined as a process which does nothing but terminating successfully, with alphabet
A∪{X} [Hoa85].

Analysing the processes before and after the transformation, we discover that

• the original process has only one trace 〈plugPowerCord, secureNotebook, switchOn〉;

• ignoring the processJoin action, in the redesigned process there are the two
traces 〈plugPowerCord, switchOn, secureNotebook〉, 〈plugPowerCord, secureNotebook,
switchOn〉.

The behaviour of the old process is thus present in the new one, i.e., traces(UNPACKO) ⊆
traces(UNPACKR).

If the activity of unpacking a notebook is embedded into a larger process (e.g., setting up a
workplace), it should be possible to derive the global consequences from the changes made to the
smaller process. More generally, we want to predict the semantic effect of an operation before
even performing it on the real (and potentially large) process. Thus, we formalise the change by

Pre-Proceedings GT-VMT 2007 5/195

Rule-Level Verification of Business Process Transformations using CSP

Figure 3: Redesign rule

graph transformation rules as the one sketched in Figure 3 and apply the mapping to CSP on its
left- and right-hand side.

PROCL = A → B → SKIPPROCL (5)

PROCR = (A → processJoin → SKIPA ‖ B → processJoin → SKIPB) (6)

We can indeed observe that, after hiding the processJoin action, the traces of PROCL are
included in those of PROCR, and from general results about CSP trace refinement [Hoa85] it
follows that this relation is closed under the embedding of CSP processes into context. To benefit
from this fact we have to formalise and study the mapping of activity diagrams to CSP, which is
described in the following section by means of triple graph grammars.

3 Mapping Activity Diagram to CSP

This section specifies a mapping from activity diagrams to CSP processes. Contrary to previous
approaches [LBC00], we follow the approach of triple graph grammars (TGGs), where the ab-
stract syntax of both activity diagrams and CSP processes are represented by typed graphs, i.e.,
instances of corresponding metamodels. A third metamodel as depicted in Figure 4, is used to
capture the relation between corresponding elements of diagrams and processes. A brief intro-
duction to TGGs is provided, however the detailed explanation can be found in [Sch94].

Figure 4: Triple graph grammar concept

3.1 Abstract Syntax

The metamodel for CSP processes, as far as required for our mapping rules, is shown in Fig-
ure 5(a). Following the Composite Pattern [BMR+96], a Process Expression either represents a
Prefix (x→ E) of a basic Event x followed by expression E, a Process equation P = E assigning
an expression E to a process name P, or a binary Process Operator combining two expressions.

Pre-Proceedings GT-VMT 2007 6/195

ECEASST

(a) Abstract syntax for CSP (b) Abstract syntax for Activity Diagram

Figure 5: Abstract Syntax

• If b is a Boolean and E and F are process expressions, a Condition is an expression E 6<
b 6> F (if b then E else F);

• if E and F are expressions, Split is their sequential composition E;F (upon termination of
E, continue as F);

• if E and F are expressions Concurrency yields their synchronous parallel composition
E ‖ F (perform E and F in lock-step synchronisation of shared events).

A simplified metamodel for activity diagram based on [OMG05] is shown in Figure 5(b).
Nodes not present in the standard document include the BranchingNode and AssemblingNode.
The BranchingNode is the superclass of the fork-like nodes that have one incoming edge and
several outgoing edges. The AssemblingNode is the superclass for the join-like nodes, that have
several incoming edges and one outgoing edge. Without loss of generality we restrict Action
nodes to have only one incoming one outgoing edge.

Figure 6: Correspondence metamodel

Pre-Proceedings GT-VMT 2007 7/195

Rule-Level Verification of Business Process Transformations using CSP

In order to be able to specify triple graph grammar rules, we require a correspondence meta-
model as given in Figure 6. The EventAction is connected via associations to both Event in the
Activity Diagram metamodel and Action in the CSP metamodel. The same is assumed for Pro-
cEdge as the intermediary of Process and ActivityEdge, etc. Such associations are omitted from
the illustrations to simplify the layout.

3.2 Transformation Method

Next we illustrate the design of our transformation rules, concentrating on a single rule for a
detailed representation while using a semi-formal notation based on the concrete syntax for the
others.

Consider the following simple example rule for transforming an Action node. The concrete
syntax of the transformation rule is depicted in Figure 7.

Figure 7: Action rule with concrete syntax

The idea behind the mapping is to relate an Edge in the activity diagram to a Process name in
CSP. A previously introduced edge/process name A is defined in terms of a new prefix expression,
and the continuation edge/process name B is introduced.

Figure 8: TGG Rule

The formal TGG rule is shown in Figure 8, to be read from top to bottom. In the top (the left-
hand side of the rule) a triplet of ActivityEdge, ProcEdge and Process is matched. The bottom
(right-hand side) generates simultaneously the Action and outgoing ActivityEdge of the activity
diagram, the PrefixOperator with the Event and continuation Process and the relational elements
between them.

Pre-Proceedings GT-VMT 2007 8/195

ECEASST

In order to be used for a transformation from activity diagrams to CSP (rather than a sym-
metrical specification of their correspondence), the translation of the TGG rule to ordinary graph
transformation rule is illustrated in Figure 9. There are various tools that enable the automatic
generation of graph transformation rules from TGG rules. We match the pattern of an Action
with incoming and outgoing edges, and create the corresponding CSP elements. A negative ap-
plication condition [EEPT06] is defined for the relational element to prevent us from applying
the same rule twice.

Figure 9: Graph Transformation rule

Indeed, a pragmatic benefit of TGGs consists in the use of the correspondence model for
controlling the progress of transformation. The creation of relational elements, in combination
with negative application conditions on the correspondence and target model, allow us to retain
the original model and restrict ourselves to non-deleting rules. These two properties will be
important later.

3.3 Transformation Rules

In this section we define the remaining transformation rules based on the concrete syntax of CSP
and activity diagrams.

First, we consider the InitialNode depicted in Figure 10. Although this node is not mapped
to anything directly, its outgoing ActivityEdge is related to a process definition with the same
name. This will be the first process.

The transformation of a DecisionNode depicted in Figure 12 is a more complicated case. The
concrete syntax is obvious, but Condition is a binary operator. Thus, we have to build a binary
tree bottom-up as depicted in Figure 11. First we match the else branch with an arbitrary edge
and create the lowest element of the tree. Then we build a tree adding the elements one-by-one,
gluing its top to the Process that represents the incoming edge.

Pre-Proceedings GT-VMT 2007 9/195

Rule-Level Verification of Business Process Transformations using CSP

Figure 10: InitialNode

Figure 11: Abstract syntax tree for the result of DecisionNode transformation

Note that this transformation, which creates non-determinism at the syntactic level, leads to
semantically equivalent processes. According to [OMG05], the order in which guards are eval-
uated is undefined and the modeler should arrange that each token only be chosen to traverse
one outgoing edge, otherwise there will be race conditions among the outgoing edges. Hence, if
guard conditions are disjoint, syntactically different nestings are semantically equivalent.

Figure 12: DecisionNode

The MergeNode is a simpler case, as illustrated in Figure 13. It is mapped to an equation
identifying the processes corresponding to the two incoming edges.

Figure 13: MergeNode

ForkNode and JoinNode represent the most complex cases. Before describing the transfor-
mation, we discuss some observations. If in an activity diagram the names of Action nodes are
unique, the intersection of the alphabets of the corresponding processes is empty. This is partly
intended because in this way the processes will not get stuck while waiting for some random

Pre-Proceedings GT-VMT 2007 10/195

ECEASST

other process that accidentally has events with similarly names. On the other hand we need
synchronisation points in order to implement the joining of processes. Thus we add an event
processJoin to the alphabet of every participating processes. Since events that are in the alpha-
bets of all participating processes require simultaneous participation, this fact is used to join
concurrent processes by blocking them until they can perform the synchronisation event.

The rule for the ForkNode is shown in Figure 14. The Concurrency operator is binary, so by
processing the nodes one-by-one, we create a binary abstract syntax tree of Concurrency nodes
like we did in Figure 11 for the Condition operator. Since P ‖ (Q ‖ R) = (P ‖Q) ‖ R, the different
trees are semantically equivalent.

Figure 14: ForkNode

The transformation of JoinNode is depicted in Figure 15. The first edge that meets the JoinN-
ode is chosen to carry the continuation process, while the others terminate in a SKIP. As we
mentioned, CSP expressions 2-4) are based on this transformation. The process corresponding
to D is substituted, since it terminates after the syncronisation.

Figure 15: JoinNode

4 Rule-Level Verification

In this section we provide a formalisation of the notions required to define the compositionality
condition of the mapping and state the main objective of the approach as a theorem. As mentioned
in Section 1, we handle business processes as typed graphs, and reengineering steps as graph
transformations. Since the contributions in this section are based on equivalence and refinement
of CSP processes, we summarise the necessary definitions based on [Hoa85].

A trace is a finite sequence of symbols recording the events in which the process has engaged
up to some point in time. The set of all traces of a process P is denoted by traces(P). Processes
P and Q are trace equivalent (P ≡ Q) if traces(P) = traces(Q). P is a refinement of Q (P v Q)
if traces(P) ⊆ traces(Q). A context is a process expression E(X) with a single occurrence of a

Pre-Proceedings GT-VMT 2007 11/195

Rule-Level Verification of Business Process Transformations using CSP

L

m
��

c

��

// R

c

��

m∗
��

G

��

// H

��
c(G) ? c(H)

c(L) S

KS

c(R)

Figure 16: CSP correspondence for behaviour verification

distinguished process variable X . The relations of trace equivalence and refinement are closed
under context, i.e., P ≡ Q =⇒ E(P)≡ E(Q) and P v Q =⇒ E(P)v E(Q).

Denoting the mapping from activity diagrams to CSP by c, the idea of rule-level verification
is illustrated in Figure 16. The original business process is given by graph G, the redesigned
one by the resulting graph H of the application of rule p : L → R at match m and comatch m∗.
Applying the mapping c to the rule’s left- and right hand side, we compare the corresponding
CSP expressions c(L) and c(R), checking, e.g., that c(L) v c(R) (the right process has more
traces than the left one). From this relation at the level of the rule we hope to conclude that the
same holds for all its transformations, i.e., c(G) v c(H). For such a property to hold, we make
the following assumption on the mapping c.

Definition 1 (compositionality) A mapping c from graphs to CSP expressions is com-
positional if for all injective graph morphisms m : L → G there exists a context E
such that c(G) ≡ E(c(L)). Moreover, this context is uniquely determined by the part of
G not in the image of L, i.e., given a pushout diagram as below with injective mor-
phisms only, and a context F with c(D) ≡ F(c(K)), then E and F are equivalent.

K
l //

d
��

L

m
��

D
g // G

Definition 1 applies particularly where L is the left hand side of a rule and G is the given graph
of a transformation. In this case, the CSP expression generated from L contains the one derived
from G up to equivalence, while the context is uniquely determined by G\m(L).

Theorem 1 If a mapping c from graphs to CSP expressions is compositional, for all transfor-

mations G
p,m +3 H via rule p : L→ R with injective match m, it holds that c(L) , c(R) implies

c(G) , c(H), where , is any relation in {≡,v,w}.

Proof. By assumption the match m, and therefore the comatch m∗ : K → H are injective. Since
the mapping c is compositional, according to Definition 1 there are contexts E and F such that

Pre-Proceedings GT-VMT 2007 12/195

ECEASST

B
b0 //

��

G0
c +3

m0

��

Gn

mn

��
C //

(2)

H0
c +3 Hn

(1)

Figure 17: Extension diagram

c(G)≡ E(c(L)) and c(H)≡ F(c(R)). Now, E(c(L)) , E(c(R)) since c(L) , c(R) and the rela-
tion is closed under context. Finally, E(c(R))≡ F(c(R)) by the uniqueness of the context.

In the following we discuss how our mapping from activity diagram to CSP satisfies the com-
positionality condition. Since we did not introduce our mapping formally, we only provide a
sketch of a proof. The main argument is based on the Embedding Theorem [Ehr77] and its ex-
tension to conditional graph transformations [Hec95]. In the basic version we assume a graph
H0 including a smaller one G0 with inclusion morphism m0. For a sequence of transformation
c : G0

∗ +3 Gn we create a boundary graph B and a context graph C. The boundary graph is
the smallest subgraph of G0 which contains the identification points and dangling points of m0.
Since (2) is a pushout, the context graph can be determined. If none of the productions of c
deletes any item of B, then m0 is consistent with c and there is an extension diagram over c and
m0. This basically means that Hn is the pushout complement of c and m0, thus can be determined
without applying the transformation c on H0. Hence, the compositionality condition holds for c.

Adding context and boundary graph to our picture, we get the extension diagram in Figure 17.
The initial graph G0 is either the LHS or the RHS of a production rule in the reenginering
transformation. With our previous notation, Gn equals c(G0), i.e., our graph transformation im-
plements the mapping c and our inclusion graph morphism is the match m0 for the actual rule.

In our case, consistency of the embedding is trivial because, due to the use of triple graph
grammars, our rules never delete nodes. Moreover, the embeddings we are interested in only add
new context to the source model part of the graph, while negative conditions are only concerned
with the correspondence and target part. This ensures that the embedding never violates any of
the application conditions, i.e., the embedding theorem holds for the conditional transformations,
too [Hec95].

Uniqueness of the context follows from the fact that the mapping c is deterministic.

5 Conclusion

In this paper we have studied the relation between two dimensions of model transformations: a
semantic dimension representing a mapping of models into another formalism, and a dimension
of change capturing the evolution of models. We have investigated an example and defined a
condition which ensures that the effect of change on the semantics of models is predictable at
the level of rules.

The approach differs from previous work on semantics-preserving transformation [BEH06] by
the use of denotational rather than operational semantics. This makes is necessary to introduce
a “semantic” formalism like CSP, but it allows the use of theories and tools of the semantic

Pre-Proceedings GT-VMT 2007 13/195

Rule-Level Verification of Business Process Transformations using CSP

domain for analysing models. A similar approach has been proposed in [EGHK02], but without
formalising it.

Future work consists in completing the definition of the mapping and the proof that it satisfies
the compositionality condition. In relation to business processes we intend to add a concept of
observable vs. hidden actions to make more flexible use of existing notions of process equiva-
lence.

Acknowledgements: This work has been partially sponsored by the project SENSORIA, IST-
2005-016004. The authors also wish to thank Hartmut Ehrig for pointing out an improvement of
the main theorem of the paper.

Bibliography

[BEH06] L. Baresi, K. Ehrig, R. Heckel. Verification of model transformations: A case study
with BPEL. In Bruni et al. (eds.), Proc. 2nd Symposium on Trustworthy Global
Computing (TGC 2006), November 2006, Lucca, Italy. LNCS. November 2006.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. A System of Patterns.
Pattern-Oriented Software Architecture Volume 1. John Wiley and Sons, 1st edition,
August 1996.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation (Monographs in Theoretical Computer Science). An EATCS Series.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[EGHK02] G. Engels, L. Groenewegen, R. Heckel, J. Küster. Consistency-preserving model
evolution through transformations. In Jezequel et al. (eds.), Proc. UML 2002, Dres-
den, Germany. LNCS 2460. Springer-Verlag, Oct. 2002.

[Ehr77] H. Ehrig. Embedding Theorems in the Algebraic Theory of Graph Grammars. In
Fundamentals of Computation Theory, Proceedings of the 1977 International FCT-
Conference. Pp. 245–255. Poznan-Kórnik, Poland, September 1977.

[Hav05] M. Havey. Essential Business Process Modeling. Theory In Practice. O’Reilly Me-
dia, August 2005.

[Hec95] R. Heckel. Embedding of Conditional Graph Transformations. In Valiente Feruglio
and Rosello Llompart (eds.), Proc. Colloquium on Graph Transformation and its
Application in Computer Science. 1995.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International
Series in Computer Science. Prentice Hall, April 1985.

[LBC00] G. Luttgen, M. von der Beeck, R. Cleaveland. A compositional approach to state-
charts semantics. In Foundations of Software Engineering. Pp. 120–129. 2000.

Pre-Proceedings GT-VMT 2007 14/195

ECEASST

[OMG05] OMG. Unified Modeling Language, version 2.0. Website, August 2005.
http://www.omg.org/technology/documents/formal/uml.htm

[Ros97] A. W. Roscoe. Theory and Practice of Concurrency. Prentice Hall, 1st edition,
November 1997.

[Sch94] A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In Tin-
hofer (ed.), Proc. WG’94 Int. Workshop on Graph-Theoretic Concepts in Computer
Science. LNCS 903, pp. 151–163. Springer-Verlag, 1994.

Pre-Proceedings GT-VMT 2007 15/195

http://www.omg.org/technology/documents/formal/uml.htm

ECEASST

Bisimulation Verification for the DPO Approach with
Borrowed Contexts

Guilherme Rangel1, Barbara König2 and Hartmut Ehrig3

1 rangel@cs.tu-berlin.de
3 ehrig@cs.tu-berlin.de,

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany

2 barbara koenig@uni-due.de
Institut für Informatik und Angewandte Kognitionswissenschaft,

Universität Duisburg-Essen, Germany

Abstract:

Bisimilarity is the most widespread notion of behavioral equivalence and
hence algorithms for bisimulation checking are of fundamental importance
for verifying that two systems are behaviorally equivalent (seen from the per-
spective of the environment). We investigate this problem in the context of
behavioral equivalences of graphs and graph transformation systems, where
the extension of the DPO approach to borrowed contexts provides us with
a formal basis for reasoning about bisimilarity of graphs. In this paper we
extend Hirschkoff’s on-the-fly algorithm for bisimulation checking, enabling
it to verify whether two graphs are bisimilar with respect to a given set of
productions. We then apply this framework to refactoring problems and ver-
ify instances of a model transformation which describes the minimization of
deterministic finite automata.

Keywords: Bisimulation, Graph Transformation, Refactoring, Automata

1 Introduction

Model transformation [MV05] concerns the automatic generation of models from other
models according to a transformation definition, which describes how a model in the
source language can be transformed into a model in the target language. Such transfor-
mations can take place between different models or, more specifically, inside one single
model (refactoring). Software refactoring is a modern software development activity to
cope with the internal modification of source code to improve system quality, without
changing the observable behavior.

Graph transformation systems (GTS) are well-suited to model not only refactorings
but also model transformation (see [MT04] for the correspondence between refactoring
and GTS). A GTS specifies model transformation by defining graph transformation rules
to translate one model into another. The general idea is to have a graph describing an

Pre-Proceedings GT-VMT 2007 16/195

instance of the source model as a start graph and to apply graph productions until no
further production can be applied and the resulting graph is an instance of the target
model. Model transformations via GTS can be found in [EE06, EW06, VVE+06]. A
crucial question that must be asked is whether a given refactoring (or model transfor-
mation) is behavior-preserving, which means that transforming one model into another
model does not change the original external behavior. In practice, the proof of behavior-
preserving transformations is not an easy task and therefore one normally relies on test
suite executions and informal arguments in order to improve confidence that the behav-
ior is preserved. In a recent paper Narayanan and Karsai [NK06] proposed a method for
checking bisimilarity in model transformations using GTS which is similar to ours. The
new contribution of our paper is to present an efficient bisimulation checking algorithm,
which works on the fly for infinite state spaces, and to develop the theory in the very
general framework of borrowed contexts [EK04].

In this paper we give a formal treatment of the question of behavior-preserving refactor-
ing. We define model refactoring by graph productions in the Double Pushout Approach
(DPO) [CMR+97], which is one of the standards for GTS. Our goal is to show that in-
stances of one model are bisimilar to their refactored counterparts, which implies behavior
preservation. We employ the extension of DPO to borrowed contexts [EK04], which pro-
vides the means to reason about bisimilarity. We also extend Hirschkoff’s [Hir01] on-the-
fly bisimulation checking algorithm to deal with our setting. A case study of refactoring
is presented in terms of minimization of deterministic finite automata (DFA), where we
can test if a given DFA is bisimilar to its minimal refactored version. Since the procedure
to check bisimilarity by hand is quite tedious we have implemented a tool in Objective
Caml [OCa] to support this activity.

2 Graphs with Interfaces and Borrowed Contexts

In this section we recall the DPO approach to graph rewriting and its extension with
borrowed contexts.

Definition 1 (Graph and graph morphism) A graph G = (V, E, s, t, lv, le) consists
of a set V of nodes, a set E of edges, two functions s, t : E → V (source and target)
and two labeling functions for nodes and edges lv : V → ΩV , le : E → ΩE , where ΩV

and ΩE are node and edge labels. A graph morphism f : G1 → G2 is a pair of functions
f = (fE : E1 → E2, fV : V1 → V2), which is compatible with source, target and labeling
functions of G1 and G2, i.e., fV ◦ s1 = s2 ◦ fE , fV ◦ t1 = t2 ◦ fE , le2 ◦ fE = le1 and
lv2 ◦ fV = lv1 .

In the standard DPO approach, graph productions rewrite graphs with no interaction
with any other entity than the graph itself and the production. In the DPO with borrowed
contexts [EK04] graphs have interfaces and may borrow missing parts of left-hand sides
from the environment via the interface. This leads to open systems which take into
account interaction with the outside world.

Pre-Proceedings GT-VMT 2007 17/195

ECEASST

Definition 2 (Graphs with interfaces and graph contexts) A graph G with in-
terface J is a morphism J → G and a context consists of two morphisms J → E ← J .
The embedding1 of a graph with interface J → G into a context J → E ← J is a graph
with interface J → G which is obtained by constructing G as the pushout of J → G and
J → E.

J //

²²

PO

E

²²

Joo

¡¡

G // G

Definition 3 (Rewriting with borrowed contexts) Given a graph with interface
J → G and a production p : L ← I → R, we say that J → G reduces to K → H with
transition label2 J → F ← K if there are graphs D, G+, C and additional morphisms
such that the diagram below commutes and the squares are either pushouts (PO) or
pullbacks (PB) with injective morphisms. In this case a rewriting step with borrowed
context (BC for short) is feasible: (J → G) J→F←K−−−−−−→ (K → H).

D // //

²²

²²

PO

L
²²

²²

PO

Ioo //

²²

²²

PO

R
²²

²²

G // //

PO

G+

PB

Coo // H

J

OO

// // F

OO

Koo

OO >>

Consider the diagram above. The upper left-hand square merges L and the graph G to
be rewritten according to a partial match G ← D → L. The resulting graph G+ contains
a total match of L and can be rewritten as in the standard DPO approach, producing
the two remaining squares in the upper row. The pushout in the lower row gives us
the borrowed (or minimal) context F , along with a morphism J → F indicating how F
should be pasted to G. Finally, we need an interface for the resulting graph H, which can
be obtained by “intersecting” the borrowed context F and the graph C via a pullback.
Note that the two pushout complements that are needed in Definition 3, namely C and
F , may not exist. In this case, the rewriting step is not feasible. Let us also remark that
the arrows depicted as → in the diagram above can also be non-injective (see [SS05]).

Note that our notion of labels exactly coincides with labels derived by relative pushouts
[LM00, SS05].

3 Bisimilarity

Here we show how to use transition labels in order to check bisimilarity between two
graphs with interfaces. A bisimulation is an equivalence relation between states of tran-
sition systems, associating states which can simulate each other.
1 The embedding is defined up to isomorphism since the pushout object is unique up to isomorphism.
2 Transition labels, derived labels and labels are synonyms in this paper.

Pre-Proceedings GT-VMT 2007 18/195

Definition 4 (Bisimulation and Bisimilarity) Let P be a set of productions and
R a symmetric relation containing pairs of graphs with interfaces (J → G, J → G′).
The relation R is called a bisimulation if, whenever we have (J → G)R (J → G′) and a
transition (J → G) J→F←K−−−−−−→ (K → H), then there exists a graph with interface K → H ′

and a transition (J → G′) J→F←K−−−−−−→ (K → H ′) such that (K → H)R (K → H ′).
We write (J → G) ∼ (J → G′) whenever there exists a bisimulation R that relates

the two graphs with interface. The relation ∼ is called bisimilarity.

In the graph setting not all labels that can be derived from a graph and a set of
productions are relevant for the bisimulation. We will distinguish two kinds of transition
labels.

Definition 5 Let (J → G) J→F←K−−−−−−→ (K → H) be a transition of (J → G). We
say that the transition is independent whenever we can add two morphisms D → J
and D → I to the diagram in Definition 3 such that the diagram below commutes, i.e.,
D → I → L = D → L and D → J → G = D → G. We write (J → G) J→F←K−−−−−−→d (K →
H) if the transition is not independent and we call it dependent.

D //

²²

ºº

''
L

²²

Ioo //

²²

R

²²

G // G+ Coo // H

J

OO

// F

OO

Koo

OO >>

An independent label has a borrowed context F that provides the entire left-hand side
L for G and hence G does not contribute to the rewriting. (A trivial example is a label
derived with D = ∅.) The figure above on the right schematically depicts this situation
where the partial match occurs only in the overlap of the interfaces J and I leading to
an independent label.

The bisimulation game for graphs mainly takes dependent labels into account. That
is, if we modify Definition 4 in such a way that only dependent transitions (J →
G) J→F←K−−−−−−→d (K → H) have to be simulated (either by a dependent or independent
transition), then the resulting bisimilarity ∼ is unchanged (see [EK04]).

One of the main advantages of the borrowed contexts technique is that the derived
bisimilarity is automatically a congruence, which means that whenever one graph with
interface is bisimilar to another, one can exchange them in a larger graph without effect
on the observable behavior. This is very useful for model refactoring since we can replace
one part of the model by another bisimilar one.

Theorem 1 (Bisimilarity is a Congruence [EK04]) The bisimilarity relation ∼ is
a congruence, i.e., it is preserved by contextualization as given in Definition 2.

Pre-Proceedings GT-VMT 2007 19/195

ECEASST

Bisimulation proofs often yield infinite relations. Hence up-to techniques [San95] for
bisimulation are useful to relieve the onerous task of bisimulation proofs by reducing the
size of the relation needed to define a bisimulation. Bisimulation up-to is defined by
replacing (K → H)R (K → H ′) by (K → H)F(R) (K → H ′) in Definition 4, where F
is a function from relations to relations that defines the up-to technique (for details see
[EK04]). We use for instance F iso which generates all isomorphic copies of every pair in
R. A more powerful up-to technique is given by Fcontext , which embeds all pairs into
the same contexts (as in Definition 2), for all pairs and all compatible contexts.

The search of dependent labels among several partial matches might lead to cases
where the pushout complement F or C (see Definition 3) does not exist and so the
borrowed context step is not feasible. In [BGK06] a technique, based on initial pushouts,
is defined to check if a partial match allows the existence of F and C.

Proposition 1 [BGK06] Let p : L ← I → R be a production and f : D → L a
monomorphism such that the diagram below on the left is the initial pushout of f . The
pushout complement F of Definition 3 exists if and only if there is a monomorphism
D → G and a morphism JD → J such that the diagram on the right commutes.

JD
//

g

²²

IPO

FD

²²

D
f

// L

JD
g

//

²²

=

D

²²

J // G

Symmetrically one can check that the pushout complement C exists by taking the
initial pushout over D → G.

4 Partial Match Finding

Here we propose an algorithm that takes as input a graph with interface J → G and
a set P of productions of the form p : L ← I → R to find all possible partial matches
G ← D → L that will lead to dependent labels. We first need to introduce partial
morphisms.

Definition 6 (Partial graph morphism) Let G = (V, E, s, t, lv, le) be a graph as in
Definition 1. A subgraph S of G, written S ⊆ G, is a graph with V S ⊆ V G, ES ⊆ EG,
sS = sG|ES , tS = tG|ES , lSv = lGv |V S and lSe = lGe |ES . A partial graph morphism f : G ⇀
G′ is a total graph morphism f : dom(f) → G′ from a subgraph dom(f) ⊆ G to G′.

Given L (the left-hand side of a production) and G, we try to find partial matches
which lead to a feasible BC step with a dependent label. We describe a procedure
in 5 steps for one single production p, but it must be carried out for all productions
of P. Step 1 determines a subgraph Lclean of L, which is the largest subgraph of L
containing only node and edge labels that also occur in G. The graph Gclean is defined
analogously (with the roles of L and G exchanged). Step 2 creates all possible subgraphs
Lsub

i (i ∈ N) of Lclean . Step 3 finds all injective partial matches pmj : Lsub
i ⇀ Gclean

Pre-Proceedings GT-VMT 2007 20/195

(j ∈ N). Step 4 splits each partial match pmj as a span of total injective morphisms
L ← Lclean ← Dj → Gclean → G. Step 5 stores L ← Dj → G as a partial match to
derive a label if L ← Dj → G satisfies the conditions of Proposition 1 (for the existence
of F and C) and will lead to a dependent label (Definition 5).

5 Matching Labels and Existence of Derivable Labels

The bisimulation game for graphs demands the comparison of labels. More specifically,
two labels µi = Ji → Fi ← Ki (i = 1, 2) are called isomorphic (µ1

∼= µ2) if they are
isomorphic cospans. Remember that a dependent label can be answered by either a
dependent or independent label. Since the algorithm in the previous section derives only
dependent labels, we propose a way to check whether a dependent label for one graph is
also derivable for the other graph. This if more efficient than deriving all independent
labels for the other graph, which could be a lot, and checking whether they match.

Definition 7 (Derivable Label) Given a graph J → G, a label J ′ → F ′ ← K ′ and
a set P of productions, we say that J ′ → F ′ ← K ′ is derivable from J → G and P if it
yields a feasible BC step, as in Definition 3.

D //

²²

PO(PB)

L
mi

1

²²

PO

Ioo //

PO
²²

R

²²

G m2

// G+ Coo // H

J ∼ //

??ÄÄÄÄÄÄÄÄ ((

J ′ //

PO

F ′
PB

OO

K ′oo

OO >>

This can be checked as follows: if there exists an isomorphism J
∼→ J ′ we obtain

J → F ′ as the composition J
∼→ J ′ → F ′ and in addition G → G+ ← F ′ as a pushout

of G ← J → F ′. For all productions P we find all possible total matches mi
1 : L → G+

(i ∈ N). For each mi
1 and m2 : G → G+, if mi

1 and m2 are jointly surjective (i.e.,
mi

1,V (LV)∪m2,V (GV) = G+
V and mi

1,E(LE)∪m2,E(GE) = G+
E) we can take G ← D → L

as a pullback of G → G+ ← L and thus obtain a pushout. We compute the pushout
complement G+ ← C ← I of G+ ← L ← I and the pushout C → H ← R of C ← I → R.
We then check if there exists a morphism K ′ → C such that the rightmost square in the
second row is a pullback and add the induced morphism K ′ → H. If there exists a total
match mi

1 : L → G+, which allows us to complete this diagram, we say that the label
J ′ → F ′ ← K ′ is derivable from J → G and P. Note that this is easier than partial
match finding since we are only looking for total matches.

6 Algorithm for Bisimulation “On the Fly”

Classical methods for bisimulation checking (e.g., see [PT87]) take as input the full state
spaces which are derived from the initial processes to be compared. Their drawback is

Pre-Proceedings GT-VMT 2007 21/195

ECEASST

that the whole state space must first be computed and stored. Fernandez and Mounier
defined in [FM91] a method for building the state space on the fly and checking bisim-
ilarity based on depth-first search (DFS). Hirschkoff [Hir01] extended their work to not
only allow breadth-first search (BFS), but also to deal with bisimulation up-to.

Hirschkoff’s algorithm takes two states P and Q of labeled transition systems (LTSs)
and checks their bisimilarity by analyzing their state space product, which consists of
pairs of the form (P,Q) as states and transition labels µ between states indicating that
both states are able to evolve along the same label µ, i.e., (P, Q)

µ→ (P ′, Q′). The al-
gorithm initially checks whether P and Q are immediately bisimilar (none of them has
further labels leading to successor states) or non-bisimilar (one makes a step which the
other is not able to mimic). If P and Q are not found immediately (non-)bisimilar, their
state space product is expanded by adding their successors reached by a common label
and so the bisimilarity of (P, Q) can be only known after the recursive analysis of all
successors in the state space product. With this basic technique the LTSs in question
must be finite. But in some cases the algorithm is able to perform finite proofs for states
whose state space product is infinite using up-to techniques in order to handle infinite
bisimulations as finite bisimulations up-to. Hirschkoff proved that the breadth-first ver-
sion of the algorithm is computationally complete with respect to a given up-to technique
F , which means that the algorithm can check the bisimilarity of two states if and only
if a finite bisimulation up to F relating the two states to be checked exists. Hirschkoff
used his algorithm to check bisimilarity of polyadic π-calculus [Mil93] processes.

We extend Hirschkoff’s algorithm to check bisimilarity between graphs with interfaces
with respect to a given set of graph productions. We also did minor efficiency improve-
ments and added extra details to the algorithm, trying to make clear aspects that were
not easy to understand in the original version.

Remember that in order to calculate all dependent labels which originate from a
given graph with interface and a set P of productions we employ the algorithm defined
in Section 4 to find partial matches between the left-hand side of the rules of P and the
graph with interface. For every partial match we then use Definition 3 to complete the
whole borrowed context diagram, which gives us the dependent label and the resulting
graph with interface. The matching of labels is specified in Definition 7.

In the setting of graphs, the bisimulation checking algorithm explores the state space
product (defined below) of two graphs to be compared. We use here some shortcuts:
graphs with interfaces J → G are represented as P and Q, and labels J → F ← K as µ.

Definition 8 (State Space Product) The state space product of two graphs P0 and
Q0 is the transition system generated from the initial state (P0, Q0) using the following
inference rules:

dep1 : P
µ−→d P ′ Q

µ′−→Q′

(P,Q)
µ−→ (P ′,Q′)

dep2 : P
µ−→ P ′ Q

µ′−→d Q′

(P,Q)
µ−→ (P ′,Q′)

µ ∼= µ′

The successors of (P, Q) are all (P ′, Q′) such that P ′ and Q′ respectively correspond to
evolutions of P and Q along an isomorphic label µ. The rules dep1 and dep2 cover the
situation when one dependent label (indicated with→d above) is answered (i.e. matched)

Pre-Proceedings GT-VMT 2007 22/195

by either a dependent or independent isomorphic label. If one graph can not answer,
we say that the pair fails to evolve, i.e., we can infer immediately that P and Q are not
bisimilar.

Definition 9 (Failure) Given two graphs P and Q we say that the pair (P, Q) fails
to evolve whenever it holds:
(P

µ−→d P ′ ∧ @Q′ : Q
µ′−→ Q′ s.t. µ ∼= µ′) ∨ (Q

µ−→d Q′ ∧ @P ′ : P
µ′−→ P ′ s.t. µ ∼= µ′).

The data structures used by the algorithm are: a structure S containing pairs of
states that still have to be inspected; a Table storing information about each pair of
graphs under inspection and three sets V , W and R, containing pairs of graphs that
are respectively supposed to be bisimilar, known to be non-bisimilar and known to be
bisimilar. By accessing S as stack (resp. queue) the algorithm performs a depth-first
(resp. breadth-first) search on the state space product.

The main procedure is bisimulation check, which calls: succeeds, fails and prop-
agate. The procedure bisimulation check first checks with succeeds whether (P, Q)
is immediately bisimilar (e.g. none of them is able to derive any further (dependent)
label). If (P, Q) is not immediately bisimilar, fails checks if the pair fails to evolve or if
it is already known as non-bisimilar (i.e., it is in W). If it fails we insert it into W and
use propagate to update the information about the state space product in Table with
this new result, which can possibly lead to the discovery of new (non-)bisimilar graphs.
When we find that a new pair evolves to other pairs, we assume that it is bisimilar (insert
it into V) and only after the analysis of all its successors (where the notion of successor is
specified in Definition 8) we are able to decide whether the pair is really bisimilar (as we
assumed) or not. If by processing S we find a pair that is in V (supposed to be bisimilar)
we move it to R and update Table using propagate. When all pairs have already been
analyzed (S = ∅) the algorithm can determine the bisimilarity of (P, Q).

a
(3,5)
(1,4)

(3,6)
S

b

(3,6)(2,5) (3,5)
fails

(2,6)
fails

2 3

a a
1

b 5 6

a a
4

b

(1,4)

a
aa

Table
(P, Q) successors m fails

(1, 4)
(2,5)• (2,6)• (3,5)◦ (3,6)◦

2 3 5 6
£¤ £ ¤ false

(3, 5) true

(3, 6)
(3,6)◦

3 6
¤¤ false

Above, one can see two small transition systems, their respective state space product,
the states under investigation in S and their current information in Table. The states
1–6 represent graphs and a, b are labels. Consider the pair (1, 4) in Table. The entry
successors shows the successors of (1, 4) in the state space product together with a
boolean value true (•) or false (◦), indicating which pairs of successors have already
been analyzed. The entry m lists the successor states (e.g. 3 and 6 with false [¤], 2
and 5 with true [£]), indicating which state has found a bisimilar partner. Whenever
a pair of successors has been analyzed, if it turns out to be bisimilar both m-fields of
the pair are set to true (£). Successors (2, 5) and (2, 6) have been explored and only

Pre-Proceedings GT-VMT 2007 23/195

ECEASST

(2, 5) is bisimilar. If all successors of (P, Q) have been analyzed (all are set to •) and
all fields of m are set to true (£) then (P, Q) is bisimilar. If there is in m at least one
graph with false (¤) then (P, Q) is not bisimilar. The entry fails indicates if a pair
fails to evolve (according to Definition 9). A non-bisimilar pair has always at least one
successor leading to a failure, but it is worth observing that a bisimilar pair might also
have successors leading to a failure. In the example even though (2, 6) and (3, 5) fail, it
is clear that (1, 4) is bisimilar.

bisimulation check(P, Q) :=
W := ∅;
(∗) R := ∅; V := ∅;
insert (P, Q) into S and Table; status := true;
while S 6= ∅ do

take (P0, Q0) from S;
if succeeds((P0, Q0))

then insert (P0, Q0) into R;
propagate((P0, Q0), true);

else if fails ((P0, Q0))
then insert (P0, Q0) into W ;

propagate((P0, Q0), false);

else if (P0, Q0) ∈ V

then move (P0, Q0) from V to R;
propagate((P0, Q0), true);

else if (P0, Q0) ∈ R

then propagate((P0, Q0), true);
else {pair (P0, Q0) is new}

insert (P0, Q0) into V ;

{(P0, Q0)
µ→ successor(P0, Q0)}

insert successors of (P0, Q0) into S;
for each successor(P0, Q0) do

if successor(P0, Q0) /∈ Table
∧ successor(P0, Q0) /∈ W ∪R ∪ V
then insert it into Table;

end for
end while

if (P, Q) /∈ R
then return false
else if status then return true else loop back to (∗)

succeeds(P, Q) := Table(P, Q).successors = ∅
∧ Table(P, Q).fails = false

fails(P, Q):=
if (P, Q) ∈ Table

then Table(P, Q).fails ∨ (P, Q) ∈ W
else (P, Q) ∈ W

propagate((P, Q), success) :=
if (P, Q) ∈ R ∧ success = false

then status := false;
if (P, Q) ∈ Table
∧ Table(P, Q).successors is complete3

then remove (P, Q) from Table;

for each (Pf , Qf) ∈ Table with (Pf , Qf)
µ→ (P, Q) do

Table(Pf , Qf).successors(P, Q) := true;
if success

then Table(Pf , Qf).m(P) := true;
Table(Pf , Qf).m(Q) := true;

if Table(Pf , Qf).successors is complete
then
if ∃j = false ∈ Table(Pf , Qf).m
then

insert (Pf , Qf) into W ;
propagate ((Pf , Qf), false);

else
if (Pf , Qf) ∈ V

then take it from V to R;
propagate ((Pf , Qf), true);

end for

A new pair (P,Q) is inserted into Table as follows. Using Definition 8 and Definition 9
we can determine if (P, Q) fails to evolve and if it has successors. We insert (P,Q) into
Table with the following data in case of failure: successors = ∅, m = ∅ and fails = true.
If the pair does not fail we fill successors with the successors of (P, Q), m with the states
of the successors of (P, Q) and all boolean values are set to false.

The procedure propagate is in charge of updating the information in Table concerning
the state space product analysis. Every time we rediscover a new pair we decide that it
is bisimilar (i.e., it is moved to R). If during the exploration of the state space we find
that this very pair is non-bisimilar we set the variable status to false, which means that
the result of the current run of the algorithm is not reliable. In this case we restart it
retaining the information in W about states which are already known to be non-bisimilar.

The procedure propagate keeps in Table only the pairs under analysis, removing the
3 This means that either all successors of (P, Q) have already been analyzed (•) or successors = ∅.

Pre-Proceedings GT-VMT 2007 24/195

ones that have already been analyzed. Observe that when one pair is propagated, the
predecessors of this pair should also be informed of the new results. When a pair is
propagated with true or false the algorithm always sets this pair as analyzed (true [•])
in the list of successors of each of its predecessors that are still under analysis (in Table).
Only if the pair is propagated with true its respective graphs in m of its predecessors
are set to true (£). When the last successor of a given pair has been analyzed we can
verify whether our initial hypothesis about its bisimilarity is still true. If the pair has
at least one graph in m set as false it is non-bisimilar (our hypothesis was wrong) and
we propagate this result. Otherwise we conclude that our hypothesis was correct and
propagate this information.

If the algorithm has to handle bisimulation up-to we have only to replace in bisimula-
tion check (P0, Q0) ∈ V by (P0, Q0) ∈ F(V) and (P0, Q0) ∈ R by (P0, Q0) ∈ F(R) ,
where F describes the up-to technique. For the refactoring proposed in this paper (see
Section 8) we use the up-to context technique (Fcontext) [EK04] informally described
in Section 3.

Our version of the bisimulation checking algorithm is very similar to Hirschkoff’s. Our
main contribution to the algorithm is the full specification of how Table is used to store
and process the state space product investigation. A small efficiency improvement can be
seen in the for each statement of bisimulation check, where we added extra conditions
in order to avoid reanalyzing pairs already investigated. Furthermore we checked that the
algorithm also works in our setting of borrowed contexts, taking into account especially
the issue of independent and dependent labels.

7 Tool Support for DPO with Borrowed Contexts

The derivation of labels and the bisimulation proof demand a great amount of time even
for small examples and when done by hand they are particularly susceptible to errors.
To overcome this we have implemented a tool in Objective Caml (OCaml), which is
a functional language very appropriate for rapid prototyping. The tool uses directed
labeled graphs and when we want to check the bisimilarity of two graphs, we specify a
set of graph productions and also the graphs with interfaces to be checked. We have
already implemented graphs with interfaces, graph productions, and procedures for label
derivation and matching. OCaml is mainly textual, but for the sake of visualization, our
graphs, rules and derived labels can be visualized with the package Graphviz [gra]. Our
next goal is to implement the described algorithm for bisimulation checking.

8 Refactoring Deterministic Finite Automata

We will now come back to our original motivation: showing that refactoring preserves
behavior. Let us first explain how the current theory of DPO with borrowed contexts
could be used to prove that a refactoring process is behavior-preserving. Consider a
model M , whose operational semantics is given by a set OpSemM of graph productions
and a refactoring for this model M as a set RefactoringM of productions of the form

Pre-Proceedings GT-VMT 2007 25/195

ECEASST

L ← I → R. If we can prove for each rule of RefactoringM that we have the bisimilarity
(I → L) ∼ (I → R) with respect to OpSemM , this means that each rule does not change
the behavior of the model under refactoring. Since bisimilarity is a congruence we can
compose (I → L) and (I → R) with identical contexts and the respective compositions
remain bisimilar. That is, for all instances of M , RefactoringM preserves the original
behavior. This approach can be currently used only for refactoring rules without features
such as negative application conditions and layers, which are often necessary to model
refactorings.

accept

W

W

W W

W

W

W WW W

W

W

W

W

0 11

1

0
FSFS

0

DFA2DFA1 Loop

Jump Accept

a a

aa a

a

a

1
FS

0

0 1

a
W

W

FSFS FS

Each DFA is described as a graph, where nodes are the states and directed labeled
edges are the transitions (see DFA1 and DFA2 above). A loop labeled FS marks a state
as final. An interface node labeled W has an edge pointing to the current state and
this edge points initially to the start state. Note that the node W is the only possibility
to establish interaction with the environment. The node W receives a letter (e.g. ‘a’)
from the environment in form of an a-edge connecting W -nodes. Then, according to
the operational semantics (given by the rules Jump, Loop and Accept) the DFA may
change its state. Whenever an accept-edge between W -nodes is consumed by a DFA,
this means that the string previously processed was accepted.

Below we define graph productions to minimize DFAs by eliminating equivalent states.
The idea of the algorithm is to identify the distinguishable states, followed by the merging
of equivalent states. Note that to the left of each rule we depict the negative application
conditions. The algorithm is defined by several graph productions spread over three
layers, where each layer applies its rules as long as possible before the rules of the next
layer can be used. In practical terms, the transformation begins with rules of layer 0. If
no more rule of layer 0 is applicable, the rules of layer 1 come into play. The rules in
layer 0 (see Figure 1) examine the transitions labels for every two states and determine
if they are distinguishable. The rule in layer 1 merges equivalent nodes, i.e., nodes
without a dist edge between them. Finally, the rules in layer 2 remove all dist edges
and redundant transitions between two states.

Observe that the minimization algorithm demands rules spread over layers and neg-
ative application conditions and so we are not able to prove that all refactorings via

Pre-Proceedings GT-VMT 2007 26/195

Layer 1

FS
dist

FS

1

1

RHS

FS

FS

a

a

a

a

dist

a

1

a

FS FS FS

1

RHS

FS

RHS

dist

a

a

dist

a

a

dist

a

a

dist

RHS a

dist

a

a

dist

a

a

a

distdist

a aa

a

a

a

a a

FS FSFS

FS

dist

RULE6

RULE7

RULE8

RULE9

dist

dist

RULE5

RULE4

RULE3

RULE2

RULE1

Layer 0

Layer 2

Figure 1: Productions for DFA minimization

these rules are behavior-preserving. For this reason our goal in this paper is to check
that a given DFA and its minimal refactored version are bisimilar. Note that for DFAs
borrowed context bisimilarity coincides with language equivalence. Furthermore in our
setting bisimilarity on automata seen as transition systems corresponds to the bisimilar-
ity that we obtain via the borrowed context technique.

Consider DFA1 and DFA2 previously depicted. By applying the minimization algo-
rithm on DFA1 we obtain DFA2 as its minimal version. We then call the procedure
bisimulation check and verify that DFA1 and DFA2 are indeed bisimilar. In Figure 2
we show the state space product for this example, where the omitted interfaces of the
graphs in the tuples contain only one node labeled W . Note that the state space product
does not contain independent labels (which exist).

9 Conclusions and Future Work

We have shown how to use the DPO approach with borrowed contexts to automatically
check the bisimilarity of systems specified in terms of graphs. Furthermore we suggested
as a case study for refactoring the minimization of DFAs.

Our plan is to extend this work in such a way that whenever we define a refactoring as
graph productions we should also be able to prove that all instances prior to refactoring
are bisimilar to their refactored counterparts. The first step to be made to accomplish
such an objective is the extension of the current theory of DPO with BC to handle rules
with negative application conditions and layers, which are often used in refactorings.

Pre-Proceedings GT-VMT 2007 27/195

ECEASST

FS

w

w

w w
w

w

w w

w

w

w

w w

w

w

w w w

w

w w

w

w

w w

w

w

w w

10

1

1

FS

w

1

0

0

w

w w

w
accept

0
0

1FS

FS
0

1

0

accept 0

1

1

w

0

FS

0

1

1

w

1 0 1

FS 0 FS0

1

1

w

0

FS

0

1

1

1
w

0

0 1

0FS

Figure 2: State space product for DFA1 and DFA2

Acknowledgements: We are grateful to Gabriele Taentzer and Paolo Baldan for in-
teresting discussions on using DPO with borrowed contexts in the context of refactoring.

Bibliography

[BGK06] F. Bonchi, F. Gadducci, B. König. Process Bisimulation via a Graphical
Encoding. In Corradini et al. (eds.), Proc. of ICGT’06. LNCS 4178, pp. 168–
183. Springer, 2006.

[CMR+97] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, M. Loewe. Alge-
braic Approaches to Graph Transformation Part I: Basic Concepts and Dou-
ble Pushout Approach. In Rozenberg (ed.), Handbook of Graph Grammars
and Computing by Graph transformation, Volume 1: Foundations. Pp. 163–
246. World Scientific, 1997.

[EE06] H. Ehrig, K. Ehrig. Overview of Formal Concepts for Model Transformations
Based on Typed Attributed Graph Transformation. In Proc. of GraMoT ’05.
ENTCS 152, pp. 3–22. Elsevier Science, 2006.

[EK04] H. Ehrig, B. König. Deriving Bisimulation Congruences in the DPO Approach
to Graph Rewriting. In Walukiewicz (ed.), Proc. of FoSSaCS ’04. LNCS 2987,
pp. 151–166. Springer, 2004.

[EW06] K. Ehrig, J. Winkelmann. Model Transformation From VisualOCL to OCL
Using Graph Transformation. In Proc. of GraMoT ’05. ENTCS 152, pp. 23–
37. 2006.

Pre-Proceedings GT-VMT 2007 28/195

[FM91] J.-C. Fernandez, L. Mounier. On the Fly Verification of Behavioural Equiva-
lences and Preorders. In Proc. of CAV’91. LNCS 757, pp. 181–191. Springer-
Verlag, 1991.

[gra] Graphviz - Graph Visualization Software. Internet. http://www.graphviz.org.

[Hir01] D. Hirschkoff. Bisimulation Verification Using the Up to Techniques. Interna-
tional Journal on Software Tools for Technology Transfer 3(3):271–285, Aug.
2001.

[LM00] J. J. Leifer, R. Milner. Deriving Bisimulation Congruences for Reactive Sys-
tems. In Proc. of CONCUR ’00. Volume 1877, pp. 243–258. Springer-Verlag,
London, UK, 2000.

[Mil93] R. Milner. The polyadic π-Calculus: a tutorial. In Hamer et al. (eds.), Logic
and Algebra of Specification. Springer-Verlag, Heidelberg, 1993.

[MT04] T. Mens, T. Tourwe. A Survey of Software Refactoring. IEEE Transactions
on Software Engineering 30(2):126–139, 2004.

[MV05] T. Mens, P. Van Gorp. A Taxonomy of Model Transformation. In Proc. of
GraMoT ’05. Volume 152, pp. 125–142. 2005.

[NK06] A. Narayanan, G. Karsai. Towards Verifying Model Transformations. In
Bruni and Varró (eds.), Proc. of GT-VMT ’06. ENTCS, pp. 185–194. Vi-
enna, 2006.

[OCa] Objective Caml. http://caml.inria.fr/ocaml/.

[PT87] R. Paige, R. E. Tarjan. Three Partition Refinement Algorithms. SIAM Jour-
nal on Computing 16(6):973–989, 1987.

[San95] D. Sangiorgi. On the Proof Method for Bisimulation. In Wiedermann and
Hájek (eds.), Proc. of MFCS ’95. LNCS 969, pp. 479–488. Springer, 1995.

[SS05] V. Sassone, P. Sobociński. Reactive systems over cospans. In Proc. of LICS
’05. Pp. 311–320. IEEE, 2005.

[VVE+06] D. Varró, S. Varró-Gyapay, H. Ehrig, U. Prange, G. Taentzer. Termination
Analysis of Model Transformations by Petri Nets. In Corradini et al. (eds.),
Proc. of ICGT ’06. LNCS 4178, pp. 260–274. Springer, Natal, Brazil, 2006.

Pre-Proceedings GT-VMT 2007 29/195

ECEASST

Transforming Collaborative Service Specifications
into Efficiently Executable State Machines

Frank Alexander Kraemer and Peter Herrmann

Norwegian University of Science and Technology (NTNU),
Department of Telematics, N-7491 Trondheim, Norway

Abstract: We describe an algorithm to transform UML 2.0 activities into state
machines. The implementation of this algorithm is an integral part of our tool-
supported engineering approach for the design of interactive services, in which
we compose services from reusable building blocks. In contrast to traditional ap-
proaches, these building blocks are not only components, but also collaborations in-
volving several participants. For the description of their behavior, we use UML 2.0
activities, which are convenient for composition. To generate code running on exist-
ing service execution platforms, however, we need a behavioral description for each
individual component, for which we use a special form of UML 2.0 state machines.
The algorithm presented here transforms the activities directly into state machines,
so that the step from collaborative service specifications to efficiently executable
code is completely automated. Each activity partition is transformed into a separate
state machine that communicates with other state machines by means of signals,
so that the system can easily be distributed. The algorithm creates a state machine
by reachability analysis on the states modeled by a single activity partition. It is
implemented in Java and works directly on an Eclipse UML2 repository.

Keywords: Model Transformation, UML 2.0, Activities, State Machines

1 Introduction

In a highly competitive market for modern networked services, it is important to deliver new
services with short development times, in order to react on new customer demands quickly and
to keep development costs low. These efforts are hampered by the typically high complexity of
such services, which arises mainly from the fact that a service needs the coordinated effort of
several participating components (cf. [1]). Hence, if we want to understand what a service does,
we have to look at the behavior of all its participating components. Moreover, when services
need to be adjusted or composed from other services, we must consider the descriptions of all
participating components again and make sure that they interact correctly. Literature (e.g., [2])
as well as experience from our own work [3, 4, 5] stated that there are two dominant perspectives
on a system delivering services:

• In the component-oriented perspective, systems are decomposed into physically distrib-
uted components, which are modelled separately. Services are specified indirectly by the
composed behavior of the components. This perspective is well supported by traditional
standards like SDL and its descriptions are easily transformable into executable code.

Pre-Proceedings GT-VMT 2007 30/195

Transforming Collaborative Service Specifications into Executable State Machines

Code Generation
Model
Transformation

Collaboration-Oriented:
UML 2.0 Collaborations + Activities

Component-Oriented:
UML 2.0 State Machines

Executable
System

Service
Composition

Libraries of Reusable
Service Building Blocks

Figure 1: Engineering approach for interactive services

• In the collaboration-oriented perspective, services are modeled by a number of collabora-
tions as the main structuring elements. A collaboration specifies the interactions between
the components involved in it, as well as the corresponding local behavior of the compo-
nents to accomplish the service. Collaborations describe services in a self-contained form
and may be composed from other ones. Within an application domain, collaborations
contributing to a service are often similar which makes them ideal elements of reuse.

These two perspectives are the shaping forces behind our approach for the rapid engineering of
interactive services, outlined in Fig.1. Services are composed from collaborations that identify
the interactions as well as the local behavior of a set of components that are necessary to fulfill
a certain task. To express the structural aspects of collaborations as well as their composition
(e.g., the participants and which roles they play in a service), we use the conforming concept of
UML 2.0 collaborations. For the behavioral aspect (e.g., what a collaboration does as well as
how collaborations are coupled together), we use UML 2.0 activities.

As an example, we consider an access control system (ACS) [6, 7]. It controls the opening
mechanism of a door and lets pass only authorized people that can prove their identity by pre-
senting a security card and a secret number at an input panel. The opening mechanism and input
panel are connected to a local station installed close to the door. Once a user draws the card and
enters the pin, the resulting data (called pid) is transferred to a central station that authenticates
the user and checks authorization right by querying two servers. If both, the authentication and
authorization are successful,ok is sent back to the local station that opens the door.

In [4] we introduced how the ACS can be easily composed from reusable collaboration el-
ements expressed by a combination of UML 2.0 collaborations for the structure (Fig.2) and
activities for the behavior (Fig.3). These diagrams describe the system from a collaboration
oriented perspective. To execute the system, however, we need a description of the behavior of
the individual components, i.e., a description from a component-oriented perspective, as outlined
above. In our approach, we use for this purpose so-calledexecutableUML 2.0 state machines
and composite structures, that are a suitable input for our code generators. To automate the step
from the collaboration-oriented specifications in form of activities to the component-oriented
design in form of state machines, we use a model transformation performed by the algorithm
described in this article. Evidently, the introduction of such an automated transformation step
accelerates the development of services drastically. In addition to the omission of manual labor
for constructing the state machines, no new errors are introduced. Whenever a service specifi-
cation needs to be updated, the state machines are simply generated again to ensure consistency.
The algorithm creates the state machines without any intermediate representation and is therefore
quite efficient concerning memory usage. Before we describe the principles of the transforma-
tion in Sect. 4 and the detailed algorithm in Sect. 5, we outline in the next two sections the two

Pre-Proceedings GT-VMT 2007 31/195

ECEASST

local
station

:Door Control

door

panel

:Panel Control
authorization

 server

:Authenticate

:Authorize

authentication
server

central
station

:Transfer

Figure 2: Collaboration to compose the sub-services of the access control system

Transfer

Door Control

Authenticate

Authorize

local station
Access Control System

central station

authorization server

authentication server

unlock

lock

nok

pid

ok

nok

pid prep1

[ok1]

[nok2]

val1

retrieve

prep2

val2

retrieve

[ok2]

[nok1]

ok w1

w2

w3

w4

d1

d2

f1

j1

j2

j3

j4

m1

Panel Control

res1

res2

Figure 3: Activity diagram modeling the detailed behavior of the system

development perspectives outlined above. Sect. 6 sketches then a proof of the correctness of the
transformation in temporal logic. We close with a discussion of related approaches and some
concluding remarks.

2 Collaborations and Activities for Service Composition

While the collaboration in Fig.2 shows how the system is composed structurally from elemen-
tary collaborations that were taken from a library, the activity diagram in Fig.3 states how their
behavior is coordinated. For each collaboration use of Fig.2 (e.g., Authenticate), we find a
structured node (in dashed lines) in the activity that specifies the behavior contributed by the
collaboration use. Each collaboration role of Fig.2 (e.g.,central station) is a location of com-
putation and represented by an activity partition in Fig.3. The door and the panel are part of
the environment, and, hence, do not have their own activity partition. Instead, they communicate
with the local station by explicit signal send and receive actions. The local station receives a
pid from the panel control and forwards it via the transfer collaboration to the central station.
Depending on the result received from the central station (ok or nok), the local station will either
cause the panel to displaynok and leave the door locked, or it will cause the panel display to
showok and unlock the shutter of the door. In this case, a timer will be started which locks the

Pre-Proceedings GT-VMT 2007 32/195

Transforming Collaborative Service Specifications into Executable State Machines

Central Station
0

2
Res1 / d

nok1

NOK

nok2

0

NOK

ok2

0

prep1
Req1

Req2
prep2

-

*

0

Local Station

0

Res1

0

retrieve

0

Res2

0

retrieve

Authentication S.

Authorization S.
4

Res1 / d

ok1

val1 val2

val2

NOK

nok2

0

OK

ok2

0

val2

8
Res2 / d

nok2

NOK

nok1

0

NOK

ok1

0

16
Res1 / d

ok2

val1

NOK

nok1

0

OK

ok1

0

val1

Res1

Res2

Res2 PID

Req1

Req2

Res2 Res1 Res1

OK
unlock

1

set timer

lock

0

OK

timer

*

NOK

-

NOK

*

PID

-

PID

*

Figure 4: Executable state machines for the system components

door shutter again after a while. As activities have a Petri net like semantics [8], we can use to-
kens and places to understand the behavior of the diagram in Fig.3. Once a token representing a
pid arrives at the central station, it is prepared (described by the operationsprep1andprep2) and
sent to the authentication respective the authorization server. For that, the token is duplicated at
the fork nodef1, so that the subsequent behaviors may happen in parallel. Both servers evaluate
the pid and send their results back to the central station.

The results may arrive in any order. For example, if the result of the authorization server
arrives first, it is evaluated by the central station (operationval2) which branches in decisiond2
depending on the validity of the authorization. If the result was valid, a token is placed inw4.
This node is an extension of a decision node (cf. [4]) as tokens can rest in it. It is represented by
a filled diamond. The central station waits now for the arrival of the authentication result, which
is evaluated inval1, and a token is placed either onw1or w2. When the other result arrives, two
waiting decisions hold one token, so that exactly one of the join nodesj1..j4 can fire. Obviously,
j4 fires in the case that both results were ok and causes the central station to send an ok to the
local station. In the other three cases (when at least one result isnok) one of the other join nodes
j1..j3 fires. These cases are combined by merge nodem1and anok is sent to the local station.
We assume that the panel control only sends a newpid after it received anok or anok.

3 State Machines for Service Execution

Fig. 4 presents the executable UML state machines generated by our algorithm from the activity
in Fig. 3. The state machines interact with each other by transmitting signals which are buffered
in event queues. Similar to SDL, UML allows for the use of send signal actions and signal
triggers to describe the transmission and reception of signals. Each state machine has an initial
state and a number of transitions that are triggered by either signal receptions or by timeouts.
Transitions may include choices guarded by constraints (likeok1). As an effect, a transition may
execute actions such as the sending of signals, the call of an operation (likeval1) or the control
of a timer. States can declare an event to be deferred by listing it in their body followed by the
keyword “/defer” (abridged here to “/d”). This event is left in the queue until a state is entered
that does not defer it anymore but declares a transition for its consumption. For compactness, we

Pre-Proceedings GT-VMT 2007 33/195

ECEASST

presented a transition that can be executed from any control state by referring to a state called
“* ”. After it executes, the state machine returns into its originating state, denoted by “-”.

As these executable state machines are the input for our code generators [9], they must fulfill
some constraints to achieve efficient code. In particular, they are event-driven, which means that
each transition is only executed as the reaction to either the creation of the state machine itself,
the reception of a signal, or the expiration of an internal timer. In consequence, transitions are
enabled based purely on their source state and trigger, so that guards may only be declared on
branches following choices. Moreover, for each pair of control state and trigger, merely one
transition may be declared to prevent fairness conflicts between competing transitions.

These executable state machines have a long tradition in the telecommunication area (see for
example [10]) and facilitate the efficient implementation on a range of different platforms and
architectures, including J2EE. We defined in [5] their execution semantics in terms of tempo-
ral logic and described, how they can be efficiently implemented using a scheduler as virtual
machine layer. Of course, the constraints on the executable state machines needed to generate
efficient code highly influence the layout of our algorithm which we discuss in the following.

4 Transformation from Activities to State Machines

In our approach, an activity partition corresponds to one physical point of execution. We there-
fore generate one state machine for each activity partition. This also makes it possible to consider
the activity partitions separately and not the entire activity, as discussed later. To separate the
partitions from each other, we have to cut those edges which cross partition borders. These edges
model the control flows between different system components. As communication between the
state machines is done entirely by means of signals, a flow crossing the boundaries of activity
partitions must be implemented as a signal transmission. In activities, flows between actions
occur instantaneously, i.e., a token leaves an action and enters a subsequent one without resting
in the flow. The transmission between state machines, however, is buffered. Introducing signal
transmissions in flows between partitions therefore implies virtual places that may hold tokens.
We add these places where flows enter a partition, as illustrated in Fig. 5 by the circles with the
queue symbols inside. These so-calledqueue places, which are also attached to receive actions,
simulate the input queue of the state machines implementing an activity partition. In the model,
these input queues are of unlimited capacity1. Thus, the virtual places are unbounded (i.e., can
hold any number of tokens).

As described above, the state machines execute a transition as a reaction to the arrival of a
signal. This event corresponds to the emission of a token from the virtual queue places. Hence,
when we construct a transition, we simulate the emission of one token from a queue place. The
token passes along the flows and nodes of the activity diagram until it reaches a control node
where it has to wait for further events to happen. These are three kinds of nodes: (1)Join nodes
synchronize different flows, that may arrive in any order. An incoming token may have to wait
for the other incoming flows to arrive. (2)Waiting decisionssynchronize competing join nodes
(see Sect. 2). A token has to rest inside a waiting decision if none of the succeeding joins can
fire. (3) Timer nodesmay contain tokens describing that the timers are active. At these nodes

1 Of course, in an implementation, buffer capacity is limited, which can be addressed the means described in [5].

Pre-Proceedings GT-VMT 2007 34/195

Transforming Collaborative Service Specifications into Executable State Machines

Access Control System
central station

nok

pid
prep1

[ok1]

[nok2]

val1

prep2

val2

[ok2]

[nok1]

ok

w1

w3

w4

d1

d2

f1

j1

j2

j3

j4

m1

w2

Scenario before
i) join input arrives

ii) join fires

after

iv) waiting decision
 fires join

iii) waiting decision
 is loaded

res1

res2

a) b)

Figure 5: (a) Places for the nodes (b) Rules for token transitions

and also at initial nodes, we appendinner places. For instance, Fig. 5 (a) illustrates the inner
places of the central station in which tokens rest to wait for further input events. In contrast to
the queue places, these inner places will constitute the control states of the state machine. For
instance, the token in the waiting decisionw2 of Fig. 5 (a) means that a valid authentication
result arrived and that the central node waits for the result of the authorization. (The join nodes
do not have own places, as all their incoming flow originate from waiting decisions, which hold
the token instead.) For the number of control states to be finite, the number of tokens in an inner
place must be bounded. Moreover, to keep the state space small, we allow only one token in
each inner place. This is not a limitation since tokens that would fill an inner place are stored in
the unlimited queue places as discussed later. The set of control states for one state machine is
then the powerset of the inner places.

We can construct a state machine transition by following the passing of the tokens between
two stable token markings. The marking of the inner places before passing the tokens define
the source state of the transition and the next stable marking refer to the target state. The token
taken from a queue place models the input signal consumed by the transition. The activity nodes
passed by the token are transformed in the following way: Call operation actions and send signal
actions are simply copied into the effect of a transition. Decision nodes with guards are added
to the transition and lead to different branches. A flow leaving the current activity partition is
translated to a send signal action. Fork nodes duplicate tokens, to that the subsequent flows are
executed in parallel. In the transition, this is mapped by executing their actions interleaved. For
instance, the transition triggered byPID in Central Stationin Fig. 4 simply executes first the
actionprep1and thenprep2. Initial nodes emit tokens once the activity is started and are treated
by the initial transition of a state machine.

A problem is the handling of joins. The passing of a token after all incoming flows arrived
would result in a transition without a trigger event, violating constraints of our event-driven state
machines. Therefore we use the token passing rules illustrated in Fig. 5 (b). When a token
arrives at a join and there are other incoming edges that do not yet offer a token (since their flow
did not arrive yet), the token is stored and a new stable control state is reached(i), awaiting the
next event. If, however, the arriving token completes the join(ii) , the transition continues with

Pre-Proceedings GT-VMT 2007 35/195

ECEASST

its outgoing edge, and all tokens of the incoming edges are removed. Waiting decisions work
similarly, but consider a set of subsequent join nodes. If none of these joins is ready, the decision
is filled with a token(iii) , and a new stable state is reached. If one of the joins is ready, the
transition continues at its outgoing edge, consuming the token from the decision node(iv).

In addition to the events of signal reception resulting from the split control flows, explicit sig-
nal receptions contribute to the set of unbounded queue places. Furthermore, timers are sources
of events. When a timeout occurs, a token is emitted on the timer’s outgoing edge. The transi-
tion is then constructed in the same way as for signal receptions. Some events may lead to states
describing that an inner place contains more than one token. For example, if the central station
is connected to several local stations, a pid could arrive while another pid is under evaluation. In
this case it might happen, that, after the central station received a validres1and waits forres2,
another validres1is coming, which requires nodew2 to hold two tokens. To prevent this, we do
not create a transition for flows leading to a marking with several tokens in an inner place, but
defer the incoming event, which may proceed after the inner place is emptied.

5 The Transformation Algorithm

To realize the transformation from activities to state machines introduced above, we can proceed
in quite different ways. For instance, one could perform a complete reachability analysis over all
allowed token allocations in the previously introduced inner and queue places of an activity and
create a transition for every step. The disadvantage is that, especially in highly concurrent sys-
tems, the number of reachable states is very large, rendering the approach not scalable. Another
possibility would be to perform a purely syntactical analysis of an activity. Here, for each edge
between places, a set of transitions is generated. Thereby, a separate transition is created for all
states in which tokens are contained in the corresponding places. This algorithm is quite efficient
since every inner place of the activity is checked only once, but will lead to a large number of
transitions leaving unreachable states. To prevent these disadvantages, we follow an intermedi-
ate approach. Reflecting that for every activity partition a separate state machine is created, we
perform a reachability analysis over the states of an activity partition only, which are constituted
by its inner places. Thus, the number of reachable states is kept small. Starting from the initial
state, for each reached state and every possible input signal a separate transition is created. As
we handle each incoming signal in all control states, some of these transitions may be never fired
(if their input signal cannot occur in the state). However, an unnecessary transition would simply
result in a code fragment that is never executed. While this is not a real problem, nevertheless,
we plan to eliminate these transitions using interface descriptions of the other partitions. These
interface descriptions may be offered as part of the collaboration building blocks of a library.

In the following, we explain our algorithm in detail. Fig. 6 depicts the main loop (lines7 to
27). As in most reachability analysis algorithms, this loop guarantees that all reachable markings
of an activity partition are analyzed. The markings yet to be checked are listed in the variable
reachablewhile visitedcontains all markings which were already analyzed. In the initial part
of the algorithm(1..6), a new and empty state machine is created. Thereafter, the first marking to
be checked, the initial transition of the state machine and the set of events to be received by the
state machine are computed. As our algorithm creates a state machine transition for each pair

Pre-Proceedings GT-VMT 2007 36/195

Transforming Collaborative Service Specifications into Executable State Machines

transform(ActivityPartition a) : StateMachine

1 var stm: StateMachine = new StateMachine()
2 var firstState: State = computeFirstState(a)
3 createInitialTransition(firstState, stm)
4 var events: Set of Event = computeEvents(a)
5 var visited: Set of State = /0
6 var reachable: Set of State = {firstState}
7 while reachable 6= /0 do
8 var current: State = reachable.removeFirst();
9 visited = visited ∪ {current}

10 for all e ∈ events do
11 if ¬(e is timeout ∧ timerActive(current)) then
12 if harmsBoundedness(current, e) then
13 current.deferEvent(e)
14 else

15 var t: Transition = new Transition(stm);
16 t.setSource(current)
17 t.setTrigger(e)
18 var marking: long = getMarking(current)
19 if e is timeout then marking = unsetTimer(e,marking)
20 var Edge edge = retrieveEdge(e)
21 var targets: Set of State
22 = buildTransition(edge,marking,t,a,stm)
23 reachable = reachable ∪ (targets / visited)
24 end if
25 end if
26 end for
27 end while
28 return stm. �

Figure 6: Main control

of reachable marking and event (see Sect. 4), the loop contains a nested for-loop(10..26) cycling
through all events. The for-loop contains two nested if-statements. The first one(11..25) is used
to ignore events triggered by a timer which is not active in the current state. The second if-
statement enables us to handle violations of the desired 1-boundedness property correctly. If the
traversal of an edge in the checked activity would lead to two or more tokens in any inner place,
the algorithm does not create a transition but defers the event in the current state(13). Otherwise,
a new transition is built in the else-statement(15..23).

The transitions of a state machine are created by means of the recursive methodbuildTransi-
tion (20), listed in Fig. 7. It considers the traversal of a token from one stable marking to another.
For each edge part of the flow triggered by the event it is called recursively and builds the cor-
responding transition along the way. The method returns the set of stable states reached by the
transition. It is a set, as a flow may lead to several distinct reachable states after a decision node.
The returned states are used by the main loop to determine the reachable markings of the partition
yet to be checked. The method contains an order of nested if-statements describing the behavior
for each possible node in the analyzed activity edge. It returns if the edge leaves the partition(2),
reaches a join which cannot be fired in the current activity marking(12), starts a timer(17), arrives
at a waiting decision in which none of the corresponding joins can be fired in the current mark-
ing (50), or reaches a flow final resp. activity final node(58, 62). In all these cases a new stable
state is reached and the created transition can be completed. When another edge is reached, the
transition is not yet complete and its building process has to be continued by a recursive call of
buildTransition. These cases are a join which can be executed after being reached by a token
on the analyzed edge(10), a send action(27), an operation call(30), a merge(32), a decision(40), a
waiting decision from which a corresponding join can be fired after being reached by a token(48),
and a fork(57). While most steps in creating a transition follow directly the ideas presented in
Sect. 4, we will look now on the decisions and forks which are a little subtle. A decision leads
to the addition of a choice pseudo state to the transition behind which more than one continuing
transition fragments are added. This is done by the for-loop(36..42) which callsbuildTransition
for each of the choice’s branches. The parallel emission of tokens at forks is addressed at(55).
As one state machine executes only one action at a time, we map parallel executing flows inside
one activity partition to an interleaved execution, which is a correct refinement. This execution
is computed by the methodcollectEffectswhich is not listed here for the sake of brevity.

Pre-Proceedings GT-VMT 2007 37/195

ECEASST

buildTransition(Edge edge, long c, Transition t, ActivityPartition a, StateMachine stm) : Set of State

1 var node: Node = edge.getTarget()

2 if leavesPartition(edge,a) then
3 addSendSignalAction(t,edge)
4 var target: State = getState(c)
5 t.setTarget(target)
6 return {target}

7 else if node is join then
8 if canFire(join,c) then
9 var n: long = markingAfterJoinFired(c)

10 return buildTransition(outgoing(edge),n,t,a,stm)
11 else
12 var n: long = markingAfterJoinInputArrived(c)
13 var target: State = getState(n)
14 t.setTarget(target)
15 return {target}
16 end if

17 else if node is timer then
18 addSetTimerAction(t,node)
19 var n : long = markingAfterTimerSet(c)
20 var target: State = getState(n)
21 t.setTarget(target)
22 return {target}

23 else if node is send action then
24 addSendSignalAction(t,node)
25 var target: State = getState(c)
26 t.setTarget(target)
27 return buildTransition(outgoing(node),c,t,a,stm)

28 else if node is call operation action then
29 t.addEffect(node)
30 return buildTransition(outgoing(node),c,t,a,stm)

31 else if node is merge then
32 return buildTransition(outgoing(node),c,t,a,stm)

33 else if node is decision then
34 var p: Pseudostate = new Pseudostate(stm,CHOICE)
35 var reachable: Set of State
36 for all o ∈ node.outgoings() do
37 var t = new Transition(stm)
38 t.setSource(p)
39 t.setGuard(o.getGuard())
40 var r: Set of State = buildTransition(o,c,t,a,stm)
41 reachable = reachable ∪ r
42 end for
43 return reachable

44 else if node is waiting decision then
45 for all o ∈ node.outgoings() do
46 var join: Node = o.target;
47 if canFire(join, marking) then
48 return buildTransition(o,c,t,a,stm)
49 end if
50 end for //no join could fire
51 var n : long = markingAfterDecisionSet(c)
52 var target: State = getState(n)
53 t.setTarget(target)
54 return {target}

55 else if node is fork then
56 collectEffects(outgoings(node),t)
57 return computeForkedState(outgoings(node))

58 else if node is flow final then
59 var target: State = getState(c)
60 t.setTarget(target)
61 return {target}

62 else if node is activity final then
63 t.setTarget(new FinalState(stm))
64 return {}
65 end if �

Figure 7: Method to build a transition

6 Correctness of the Transformation

To verify that the algorithm carries out transformations in a correctness-preserving manner, we
use the linear-time temporal logic cTLA [12] as a formalism which is based on Leslie Lamport’s
TLA [13]. cTLA enables the description of resources and constraints in a process-like notion
and provides a coupling structure based on conjoining actions (i.e., predicates on pairs of states
describing sets of transitions). Refinement verifications are carried out as temporal logic implica-
tion proofs (cf. [13]). As the semantics of activities is based on Petri-nets [8], UML 2.0 activities
can easily be expressed by cTLA processes as pointed out in [14]. An activity, basically, is a
cTLA system description consisting of processes each describing a single activity partition. The
variables of a process model its inner places while each queue place of a partition is described
by a separate input queue.

For the state machines forming the input of our code generators, we defined a special di-
alect cTLA/e [5] which describes the coupling between components by assigning a single in-
put queue to each component. A state machine transition is specified by a cTLA action which

Pre-Proceedings GT-VMT 2007 38/195

Transforming Collaborative Service Specifications into Executable State Machines

reflects that the transition depends only on the current state and the first signal in the input
queue. Moreover, each component contains an extra queue to handle deferred events. The re-
finement of specifications modeling activities to cTLA/e-based descriptions is carried out by
a sequence of correctness-preserving refinement steps accompanied by cTLA/TLA implication
proofs (cf. [13]). For the sake of brevity, we do not give a thorough introduction to cTLA here
and sketch the proof steps only briefly.

To verify formally that a state machineS derived from an activity partitionA keeps all the
functional properties state byA, we must perform by temporal logic deductions that the impli-
cationS⇒ A holds. According to Abadi and Lamport [15], this can be achieved by finding a
so-called refinement mapping from the states ofSto those ofA. A refinement mapping takes into
account that cTLA models applications as state transition systems. A system formula consists
of an initial condition describing the set of initial states, cTLA actions which are predicates on
a pair of a current state and a next state and model a set of state transitions each, and liveness
properties expressed by fairness assumptions on actions which enforce that actions are eventu-
ally executed when they are consistently enabled. A refinement mapping fulfills the following
properties:

• An initial state ofS is mapped to an initial state ofA.
• Each cTLA action ofS is either mapped to an action ofA or to a so-called stuttering step

in which the mapped current and next states ofA are identical.
• Each fairness assumption ofA is provided by the fairness assumptions ofS(i.e., if an action

ψ of A is consistently enabled, the fairness assumptions ofS enforce a state sequence in
which eventually an action is carried out which is mapped toψ).

In Sec. 4 we stated that the state space of an activity partitionA is partly defined by its inner
places which are placed before joins, at decision nodes, at initial nodes, and at timers. Moreover,
it contains queue places which are situated at points where an incoming flow passes the partition
border and on receive actions. The state space of a state machine is defined in [5] and consists
of the literal states of the state machine, an input queue, a defer queue, output queues for all
connected state machines, and flags for each timer. Furthermore, activities may contain auxiliary
variables which our algorithm directly maps to auxiliary variables of the corresponding state
machines. Every auxiliary variable must be read and modified in one activity partition only. To
outline the correctness of the algorithm, we introduce a mapping of the state space fromSto that
of A and sketch thereafter that it fulfills the refinement mapping properties:

• To find a mapping fromSto the queue places ofA, we have to consider the state machines
Sn linked with Ssince the queue places describe the interaction between different system
elements. At an activity partition, we have a separate queue place for every signal typest
while in the corresponding state machine, we have central queues for all signals. Moreover,
in the activity we do not distinguish if a signal is still at the side of the outgoing partition,
already in the incoming partition, or deferred. Reflecting these properties, we map all
signalss of type st, which are either in the output queue of a neighboring state machine
Sn, in the input queue ofS, or in its defer queue, to the queue placeqpst for st in A:

∀st : qpst = {s|s.type= st∧s∈ inputQS∪de f erQS∪
⋃

Sn∈NeighborsS

Sn.out putQS}

Pre-Proceedings GT-VMT 2007 39/195

ECEASST

• A mapping ofS to the inner places ofA located at joins, decision nodes, and initial nodes
has to consider that we use 1-boundedness in the inner placesip and that the algorithm
creates the states ofSas a string of flagsf l ip each being set to 0 if the corresponding inner
placeip is empty and to 1 ifip contains a tokento:

∀ip : ip = IF f l ip = 1 THEN{to} ELSE{}

• To find a mapping fromS to the inner places ofA describing a timer is a little more
complex. Indeed, the algorithm adds also a flagf lt for each timert in A to the state repre-
sentation inS. Nevertheless, to find a decent mapping, one has to consider the handling of
timers in state machines. When a timer expires, it creates a signal which is attached to the
local input queue. Thus, we must map both the states ofS in which the flagf lt of timer t
is enabled and in which a signalst caused byt is in the input or defer queue to a setting in
A where a tokento is on the inner placeipt of t. That is expressed by the mapping listed
below:

∀ipt : ipt = IF f lt = 1∨st ∈ inputQS∪de f erQS THEN {to} ELSE{}

• The mapping from the auxiliary variables fromS to those ofA is the identity function.

In the first step of the proof that the function listed above fulfills the refinement mapping
properties, we have to verify that the initial state ofS is mapped to that ofA. Initially, the queue
places inA are empty while the input, output, and defer queues ofS do not contain elements
as well. Thus, the mapping of the queue places fulfills the property. The inner places ofA are
empty except those located at an initial node and the algorithm maps this token placement to
the initial state ofS in which just the flags representing the inner places of the initial nodes are
set to 1. Since the auxiliary variables ofSandA contain the same initial settings, therefore, the
initial state ofS is mapped to the initial state ofA.

Next, we prove that every cTLA action in the model of the state machineS is mapped either to
a cTLA action of the activity partitionA or to a stuttering step. As introduced in [5], the model
of S contains different kinds of actions. One type describes the transitions ofS and for each
transitiontr f , a cTLA actionφtr f is defined. The algorithm createstr f only if a flow f exists
modifying the token setting ofA. In the following, we state a number of properties preserved by
the algorithm in the creation of the corresponding transitiontr f which are used for the refinement
proof:

1. A transition tr f is only created if in its source state all flagsf l ip representing the inner
placesip of f , which must contain tokens to enable the execution off , are set to 1.

2. The algorithm createstr f only for a flow f if the execution of f does not violate the
1-boundedness property of the inner places inA.

3. If the queue place inf , from which a token is removed, has the typest, tr f is only triggered
if st is at the front of the input queue.

4. By executing a transitiontr f which does not leave an initial state, the signal at the front of
the input queue is consumed.

5. A transitiontr f consuming a signal from the input queue, which was created by a timer, is
generated if the corresponding flowf starts at an inner place describing a timer node.

Pre-Proceedings GT-VMT 2007 40/195

Transforming Collaborative Service Specifications into Executable State Machines

6. The target states oftr f are generated by starting with the source state and resetting the
flags representing inner places, from which tokens were removed, to 0 while those with a
new token are set to 1.

7. If in the flow f a token crosses the border to a partitionAn or heads to a send action with
destinationAn, tr f puts a send signal into the output queue devoted to the state machineSn

realizingAn.
8. A call operation action passed inf is reflected by adding its code totr f . Here, we demand

that an auxiliary variable may be modified only once inf and, in consequence, intr f .

Assuming thatφtr f is the cTLA action modelingtr f andψ f those of the flowf , these properties
are sufficient to prove the implicationφtr f ⇒ ψ f . By the first three properties, we can assure that
the enabling condition ofφtr f implies that ofψ f since according to the mapping all necessary
tokens are set (1), the 1-boundedness after carrying outf is preserved (2), and the queue place,
from which f leaves, contains an element (3).

The other properties are used to verify that the effects ofφtr f are correctly mapped to those
of ψ f . The elimination of a signal of typest from the input queue is mapped to the removal
of a token from the queue placest (4). In addition, if tr f consumes a signalst created by a
timer from the input queue,st is mapped to a flowf removing a token from the corresponding
timer node (5). We can further verify thattr f is a correct realization of the token flow between
the inner places inf (6). The delivery of a signals to an adjacent state machineSn does not
spoil the corresponding mapping ofSn to a neighboring activity partitionAn sinces is added to
an incoming queue place ofAn if S puts it to its output queue devoted toSn (7). Finally, it is
guaranteed that the auxiliary variables are correctly mapped (8). It is not difficult to verify that
these properties imply that the mapping listed above mapsφtr f to ψ f which is omitted, however,
for brevity.

Other cTLA actions inSspecify the execution of timers and the addition of timer signals to the
input queue, model the deferral of a signal by transferring it from the input to the defer queue,
and describe the transfer of signals from the neighbor’s output queue to the own input queue. It
can be easily shown that these actions lead to stuttering steps inA.

In the third step, we have to verify that the fairness assumptions of the actionsψ f describing
the flows inA are kept. The algorithm guarantees that for every token placement in the inner
nodes ofA enabling a flowf , a transitiontr f is generated implementingf . Thus, with respect
to the first two properties listed above, an actiontr f is enabled wheneverf can fire. The only
impeding condition is the third property sincetr f may only be executed if the signalsconsumed
by it is at the first place of the input queue. According to the mapping, however, the cTLA action
ψ f specifying f can be enabled ifs is either in the output queue of the neighboring state machine
Sn or in any place on the input or defer queues ofS. Thus, we must verify thats is eventually
being moved to the front of the input queue where it will remain consistently until an actionφtr f

is executed. Ifs is still in the output buffer ofSn, it will be moved to the end of the input buffer of
Sby the fair2 action modeling the transmission fromSn to S. Since signals befores in the input
resp. defer queue are either continuously being deferred or eventually being consumed,s will
eventually be consistently at the front of the input queue. Iff is not enabled,s may be deferred

2 In [12] we established that liveness can only be guaranteed in a distributed system if transmitted messages are
eventually being delivered. This is expressed by the fairness assumption on the action specifying the transmission.

Pre-Proceedings GT-VMT 2007 41/195

ECEASST

itself but is brought back to the front of the input queue by other transitions. As there is only
a finite number of transitionstr f modeling f , in consequence, one of those will be consistently
being enabled iff can be triggered infinitely often as well. Due to the fairness assumption of the
corresponding cTLA actionφtr f it will be eventually fired which, because of the mapping, causes
also the triggering ofψ f .

Thus, we could verify that the mapping listed above is a refine mapping. According to [15], we
thereby proved that the state machineStogether with its neighboring state machinesSn produced
by the algorithm is a correct implementation of the activity partitionA. Since this proof can be
carried out for all partitions of the activity, we established that the algorithm transforms activities
to state machines in a correct way.

7 Related Work

To our best knowledge, the algorithm presented here is the first one that directly transforms
UML 2.0 activity diagrams into the executable state machines described above. Our work is
related to that of Eshuis on model checking of activity diagrams [11], in which activity diagrams
are transformed into the input language of NuSMV, a symbolic model verifier [16]. We could
not adapt this algorithm for our work, since, as discussed in Sect. 5, syntactical algorithms cause
in our field of application a high number of considered unreachable states. To execute activity
graphs, Eshuis and Wieringa [17] describe an algorithm for an event router to coordinate the
behavior of components. Aiming at workflow systems, their execution differs from ours as it
assumes a centralized architecture and the activity is considered as a whole, rather than splitting
up the activity into its partitions and creating distributed state machines as we do.

There is a number of approaches that take scenario descriptions based on sequence diagrams
(like MSCs or UML sequence diagrams) to synthesize state machines [18, 19, 20, 21]. While
the resulting state machines are similarly executable as the ones we described, the input of these
synthesizers in form of sequence diagrams differs from activity diagrams. Sequence diagrams
often specify only a set of scenarios rather than a complete behavior, which may lead to behaviors
that are not expressed explicitly. They focus on the interactions and identify signals. In contrast,
activities focus on the operations and decisions that have to be performed by its participants, and
our algorithm generates the necessary interactions in form of signal transmissions automatically.

Use case maps (UCM, [22]) offer a notation that is close to that of UML activities, as they also
allow the specification of behavior in terms of causal paths that may involve several components.
Yong He et al. conducted an experiment [23] in which a specification expressed by use case
maps was transformed into message sequence charts. These, in turn, were transformed into
executable SDL specifications using the tool MSC2SDL [18]. Similar to that, Castejón [24]
outlines an algorithm that takes specifications in UCM and UML 2.0 collaborations to generate
state machines from sequence diagram fragments contained in the collaborations.

8 Concluding Remarks

We described an algorithm that transforms UML 2.0 activities into a UML 2.0 state machines,
from which we can easily generate efficiently executable code. The algorithm is implemented in

Pre-Proceedings GT-VMT 2007 42/195

Transforming Collaborative Service Specifications into Executable State Machines

Java and integrated into our Eclipse-based tool suite, so that we now have a complete automated
development process from collaborative specifications based on activities to implementations on
various platforms. As input and output we use models stored in the Java UML 2.0 repository
from the Eclipse UML2 project. The algorithm does not construct an intermediate graph, but
only UML model elements that are part of the desired output state machines, so that it is efficient
with respect to the memory needed. The time for the transformation of the presented example is
negligible; the state machines appear practically instantly. Moreover, we expect the algorithm to
scale well also for more complex systems, as the increased complexity of a system leads more to
a higher number of partitions than to more complex ones causing only a linear increase.

This work describes a step of a more comprehensive engineering approach for the creation
of interactive services by correctness-preserving design steps. Initially, a service specification
is composed from various abstract collaborations that, to a large extent, can be obtained from
domain-specific libraries. Such abstract collaborations are often quite simple and can also be
understood by customers, who are not experts in software technology but want to focus on their
actual business. In succeeding steps, such abstract specifications are incrementally refined until
the specification has a degree of detail that enables direct translation to software. Due to the
algorithm, we are now able to perform these refining design steps entirely in the collaboration-
oriented perspective. As pointed out in [4], for this purpose we can use the activities with their
convenient properties as reusable building blocks.

Bibliography

[1] Floch, J., Bræk, R.: Towards Dynamic Composition of Hybrid Communication Services.
6th Int. Conf. on Intelligence in Networks (SMARTNET), Deventer, Kluwer, (2000)

[2] Rößler, F., Geppert, B., Gotzhein, R.: Collaboration-Based Design of SDL Systems. 10th
Int. SDL Forum on Meeting UML, Springer-Verlag (2001) 72–89

[3] Sanders, R.T., Castejón, H.N., Kraemer, F.A., Bræk, R.: Using UML 2.0 Collaborations
for Compositional Service Specification. In: ACM / IEEE 8th Int. Conf. on Model Driven
Engineering Languages and Systems. (2005)

[4] Kraemer, F.A., Herrmann, P.: Service Specification by Composition of Collaborations —
An Example. 2nd Int. Workshop on Service Composition (Sercomp), Hong Kong (2006)

[5] Kraemer, F.A., Herrmann, P., Bræk, R.: Aligning UML 2.0 State Machines and Tempo-
ral Logic for the Efficient Execution of Services. Int. Conf. on Distributed Objects and
Applications (DOA), 2006, Montpellier, LNCS 4276, Springer (2006) 1613–1632

[6] Bræk, R., Haugen, Ø.: Engineering Real Time Systems: An Object-Oriented Methodology
Using SDL. The BCS Practitioner Series. Prentice Hall (1993)

[7] Broy, M., Stølen, K.: Specification and Development of Interactive Systems: Focus on
Streams, Interfaces, and Refinement. Springer (2001)

[8] Object Management Group: Unified Modeling Language: Superstructure (2006)

Pre-Proceedings GT-VMT 2007 43/195

ECEASST

[9] Kraemer, F.A.: Rapid Service Development for Service Frame. Master’s thesis, University
of Stuttgart (2003)

[10] Bræk, R.: Unified System Modelling and Implementation. Int. Switching Symposium,
Paris, France (1979) 1180–1187

[11] Eshuis, R.: Symbolic Model Checking of UML Activity Diagrams. ACM Transactions on
Software Engineering and Methodology15(1) (2006) 1–38

[12] Herrmann, P., Krumm, H.: A Framework for Modeling Transfer Protocols. Computer
Networks34(2) (2000) 317–337

[13] Lamport, L.: Specifying Systems. Addison-Wesley (2002)

[14] Graw, G., Herrmann, P.: Transformation and Verification of Executable UML Models.
Electronic Notes on Theoretical Computer Science, Elsevier Science101(2004) 3–24

[15] Abadi, M., Lamport L.: The Existence of Refinement Mappings. Theoretical Computer
Science82 (2) (1991) 253–284

[16] Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A.: NuSMV 2: An Opensource Tool for Symbolic Model Checking.
14th Int. Conf. on Computer Aided Verification (CAV), LNCS 2404, Springer (2002)

[17] Eshuis, R., Wieringa, R.: An Execution Algorithm for UML Activity Graphs. 4th Int. Conf.
on The Unified Modeling Language, Modeling Languages, Concepts, and Tools (UML),
London, Springer (2001) 47–61

[18] Mansurov, N., Zhukov, D.: Automatic Synthesis of SDL Models in Use Case Methodology.
In Dssouli, R., von Bochmann, G., Lahav, Y., eds.: SDL Forum, Elsevier (1999) 225–240

[19] Whittle, J., Schumann, J.: Generating Statechart Designs from Scenarios. 22nd Int. Conf.
on Software Engineering (ICSE), New York, ACM Press (2000) 314–323

[20] Krüger, I., Grosu, R., Scholz, P., Broy, M.: From MSCs to Statecharts (1999)

[21] Uchitel, S., Kramer, J., Magee, J.: Synthesis of Behavioral Models from Scenarios. IEEE
Trans. Softw. Eng.29(2) (2003) 99–115

[22] Buhr, R.J.A., Casselman, R.S.: Use Case Maps for Object-Oriented Systems. (1996)

[23] He, Y., Amyot, D., Williams, A.W.: Synthesizing SDL from Use Case Maps: An Experi-
ment. 11th SDL Forum, Stuttgart. LNCS 2708, Springer (2003) 117–136

[24] Castej́on, H.N.: Synthesizing State-machine Behaviour from UML Collaborations and Use
Case Maps. 12th Int. SDL Forum, Grimstad. LNCS 3530, Springer (2005)

Pre-Proceedings GT-VMT 2007 44/195

ECEASST

Ensuring Containment Constraints in Graph-based Model
Transformation Approaches

Christian Köhler1, Holger Lewin2, Gabriele Taentzer3

1 christian.koehler@cwi.nl
Department of Software Engineering,

CWI Amsterdam, The Netherlands

2 kinscher@cs.tu-berlin.de
Department of Software Engineering and Theoretical Computer Science

Technical University of Berlin, Germany

3 taentzer@mathematik.uni-marburg.de
Department of Mathematics and Computer Science

Philipps-University Marburg, Germany

Abstract:

Within model driven software development, model transformation has become a key
activity. A number of transformation approaches for metamodel-defined modeling
languages have been developed in the past years and are going to be established
in research and industry. None of these have made it to a standard yet. There is
a demand for correct model transformation in various senses. Formal methods are
helpful for showing correctness issues of model transformations. As one approach,
graph transformation has been applied to the field of model transformation and is a
perspective for achieving provable correct model transformations. We show in this
paper, that containment associations as proposed by the OMG are an integral part
of MOF-based languages and imply a couple of constraints which must be ensured
in model transformation approaches. Based on a double-pushout approach to graph
transformation, conditions are stated that ensure these containment constraints. This
is an important step for achieving formal transformation semantics for modeling
languages based on MOF, or specifically EMF.

Keywords: Model Transformation, Graph Transformation, MOF, EMF

1 Introduction

Model driven engineering is an emerging approach to software engineering aiming at fast de-
velopment of high-quality software. The central entities in the terminology of model-driven
software development are of course the models. Relations between these models are basically
of two kinds: instantiations of so-called metamodels by models and model transformations be-
tween models typed by the same metamodel. A metamodel defines the common structure of all
possible instantiations and therefore can be seen as some kind of language definition.

Pre-Proceedings GT-VMT 2007 45/195

mailto:christian.koehler@cwi.nl
mailto:kinscher@cs.tu-berlin.de
mailto:taentzer@mathematik.uni-marburg.de

Ensuring Containment Constraints in Graph-based Model Transformation Approaches

In this paper we consider a special kind of models, which are called structural data models.
These models do not include any definition of behavior, but structural aspects only. Therefore,
they are mainly used to specify domain specific languages. The two most popular modeling
languages for structural data models are the Meta Object Facility (MOF) [OMG06] and the
Eclipse Modeling Framework (EMF) [EMF]. While MOF is a slightly richer language, EMF
comes with powerful code generation facilities. The key concepts in both languages are classes
with inheritance and attribution and associations with multiplicity and containment properties.
EMF can generate Java code which supports the creation, modification, storage, and loading of
model instances. Moreover, it provides generators to support the editing of instance models.

It is possible to interpret these structures as graphs and define model transformations formally
through graph transformations. Attribution of nodes and edges [EEPT06], node inheritance
[EEPT05] and multiplicity constraints for nodes and edges [TR05] have already been studied
in this area. An important property that has not been considered in this context are containment
or composite associations.

Containment associations define an ownership relation between objects. Thereby, they induce
a tree structure in model instantiations. In UML 2, ownership does not only occur in the form
of composite associations between classes, but also at various other points, like components and
their subcomponents or states and substates in state charts. In MOF and EMF, the tree structure
induced by containment associations is further used to implement a mapping to XML, known as
XMI (XML Metadata Interchange).

Containment always implies a number of constraints for model instantiations that must be
ensured at run-time. The MOF specification [OMG06] states as semantical constraints for con-
tainment edges the following:

• ”An object may have at most one container.”

• ”Cyclic containment is invalid.”

As mentioned earlier, EMF provides full implementations of their models. These implemen-
tations always ensure these constraints. In fact, the MOF specification also says how such a
constraint should be ensured, e.g.:

• ”If an object has an existing container and a new container is to be set, the object is
removed from the old container before the new container is set.”

However, there is no suggestion how to avoid a cyclic containment of objects. Being a part of
the MOF specification, these two properties are essential for valid models and therefore must be
always ensured. This is especially the case when it comes to defining transformations for these
models. A model transformation approach for MOF and EMF has to deal with these issues, i.e.
must ensure that the result of a model transformation conforms to these constraints. We consider
in this paper a graph transformation approach with formal semantics. The way of ensuring
the containment constraints as stated in the MOF specification is not applicable in this context,
since it would break the formal transformation semantics and therefore make existing results on
termination and confluence of graph transformations invalid.

Therefore, we consider containment associations explicitly in the following and apply their
properties in the context of a graph-based model transformation approach.

Pre-Proceedings GT-VMT 2007 46/195

ECEASST

This paper is structured as follows: Section 2 gives a short introduction to model transfor-
mation by algebraic graph transformation. In Section 3, we consider graphs with containment
relations and define the necessary containment conditions which have to be fulfilled by graph
transformations. Section 4 gives a short description of related work in this area. At last, Section
5 contains a conclusion and refers to possible future work in the field of model checking and
model transformation.

2 Model Transformation by Graph Transformation

Model transformations define relations between model instances. The most common scenario
is a mapping from a source model to a target model. In this situation, an instance of the target
model can be either completely constructed from scratch or updated incrementally. Transforma-
tions are usually defined through transformation rules. Basing model transformation on graph
transformation, rules consist of one positive pattern, an arbitrary number of negative patterns and
a description of the in-place modifications that should be performed. To apply a rule, it is nec-
essary to either specify or automatically find a pattern match in the model instance that should
be transformed. Thereafter, the existence of negative patterns has to be checked. If they are
fulfilled, the in-place modifications can be applied.

In the graph transformation approach, patterns are given through graphs, while transformations
of graphs are usually defined through pushout constructions. Here, we use the double-pushout
approach (DPO) where a transformation rule is given by a span of injective graph homomor-
phisms (L l← K r→ R). Such a rule can be applied w.r.t. a given match m into a source model
instance. See the following figure:

L K R

M C N

Source Target

(PO) (PO)

loo r //

m

��

c

��

n

��goo h //h //

Trans f ormation
//

The input should be a graph corresponding to a valid model instance according to the MOF
specification / EMF implementation. Therefore it must fulfill the containment constraints stated
in the introduction. The aim is now to ensure that the result is also not violating the containment
constraints. We achieve this goal by restricting the possible transformations. A rule application
w.r.t. a given match is allowed, if the result does not violate the containment constraints. This is
crucial for working with MOF and EMF models, especially for ensuring semantical properties
like termination and confluence of transformations. For this purpose, we now introduce graphs
with distinguished containment edges and use the double-pushout approach for defining transfor-
mations between them. Of course, other model constraints like multiplicities, have to be ensured,
too, but are outside of the scope of this paper. For more details see [TR05].

Pre-Proceedings GT-VMT 2007 47/195

Ensuring Containment Constraints in Graph-based Model Transformation Approaches

3 Graphs with Containment Edges

Classes and associations can be interpreted as nodes and edges in a model graph. Accordingly,
objects and links can be seen as nodes and edges in an instance graph. The ’instance of’-relation
between these two graphs is achieved through a typing graph homomorphism, assigning to each
object (each link) of an instance graph, a class (an association) in the corresponding model graph.

Definition 1 (Graph with containment edges) A graph with containment edges is a tuple G =
(V,E,C,source, target) consisting of a set of nodes V , a set of edges E, a distinguished set of
containment edges C ⊆ E and two functions source, target : E → V assigning a source and a
target node to each edge. The containment edges induce the following transitive binary relation:

• contains1 = {(x,y) ∈V ×V | ∃e ∈C : (source(e) = x∧ target(e) = y) } ∪
{(x,y) ∈V ×V | ∃z ∈V : (x contains z∧ z contains y)}

The containment edges must have the following properties:

• e1,e2 ∈C : target(e1) = target(e2) ⇒ e1 = e2 (at most one container).

• (x,x) /∈ contains for all x ∈V (no cycles).

This definition ensures that there are no containment cycles and that an object has at most one
incoming containment edge, i.e. not more than one container. Accordingly, a homomorphism
for graphs with containment edges is a usual graph homomorphism that preserves containment
edges and their order properties.

Definition 2 (Homomorphism for graphs with containment edges) Given two graphs with con-
tainment edges G1, G2, a pair of functions (hV ,hE) with hV : V1→ V2 and hE : E1→ E2 forms
a valid homomorphism h : G1→ G2 for graphs with containment edges, if it has the following
property:

• e ∈C1 ⇒ hE(e) ∈C2 (containment edges are preserved).

These two definitions induce the category of graphs with containment edges, which will be
denoted as CGraphs in the following.

As already mentioned above, typing is accomplished by a graph homomorphism from an in-
stance graph to a model graph. It is important to note that the constraints for containment edges
as stated in Definition 1 apply to instance graphs only, not to model graphs. As shown in Fig-
ure 1, model graphs can have containment cycles, being the substates relation in this example.
However, an instance of this model must not violate these constraints. Correspondingly, the con-
straints in the MOF specification apply to objects and links only, not to classes and associations.

Since we use the DPO approach to transform graphs with containment edges, it is necessary
to show that the category of graphs with containment edges has pushouts2 [EEPT06]. Pushouts

1 If there is no confusion, we use infix notation for contains, e.g. (x contains y) instead of (x,y) ∈ contains.
2 Analogously for the category of graphs with containment edges typed over a fixed metamodel graph.

Pre-Proceedings GT-VMT 2007 48/195

ECEASST

:StateMachine

:State

:State

:StateMachine

:State :State

:Transition

targetsource

states

states

statesstates

:State

subStates

StateMachine

Transition State

source

target

subStates

typed by typed by

Figure 1: A model graph (top), two instance graphs (bottom) and a typed graph homomorphism.

of plain graphs are constructed as in Set (componentwise for nodes and edges). Given a span
of graph homomorphisms (G1←G0→G2), the pushout result can be constructed by gluing the
graphs G1,G2 over the interface graph G0. Transformation rules in the DPO approach are spans
of injective graph homomorphisms. Applying such a transformation rule consists of two steps.
At first, a pushout complement graph and then a usual pushout graph has to be constructed. This
construction is now considered for graphs with containment edges.

Containment edges can be seen as a conservative extension of plain graphs. A pushout of
graphs with containment edges must also be a valid pushout of plain graphs, forgetting the con-
tainment properties of the edges. Given a span of valid graphs with containment edges, the
question arises whether the pushout result as constructed for plain graphs also is a valid graph
with containment edges. The pushout morphisms must be valid homomorphisms for graphs with
containment edges respectively (preserve the containment edges).

As shown in Figure 2, the result graph does not necessarily have the designated order proper-
ties. Although graphs G0, G1 and G2 are valid graphs with containment edges, the ’at most one
container for each object’-property in the pushout result G3 is violated. The second example
in Figure 3 shows, that there might also appear a containment cycle in the pushout result. This
gives rise to state a condition under which a pushout in the category Graphs is also a valid graph
with containment edges, i.e. has no containment cycles and each node has at most one container.
Therefore, we introduce first the notions of so-called newly contained points and cyclic contained
points.

Pre-Proceedings GT-VMT 2007 49/195

Ensuring Containment Constraints in Graph-based Model Transformation Approaches

:StateMachine

:State :State

G0

:StateMachine

:State :State

G1

:StateMachine

:State :State

G2

:StateMachine

:State :State

G3

f1

f1’

f2 f2’

subStates subStates

states states states

states states states

Figure 2: Invalid pushout of graphs with containment edges. A State node in the result graph G3
has two containers.

:State

:State :State

G0

:State

:State :State

G1

:State

:State :State

G2

:State

:State :State

G3

f1

f1’

f2 f2’

:State

:State

:State

:State

subStates

subStates

subStates

subStates

subStates

subStatessubStates

subStates

Figure 3: Invalid pushout of graphs with containment edges The pushout result G3 has a con-
tainment cycle.

Pre-Proceedings GT-VMT 2007 50/195

ECEASST

Definition 3 (Newly contained points) For a homomorphism between graphs with containment
edges h : G0→ G1, the set of newly contained points NCPh ⊆V0 is defined as

• NCPh = {x ∈V0 | ∀y ∈V0 : (y,x) /∈ contains0 ∧ ∃z ∈V1 : (z,hV (x)) ∈ contains1}3

Definition 4 (Cyclic contained points) For a span of homomorphisms between graphs with

containment edges (G1
f1← G0

f2→ G2), the set of cyclic contained points CCPf1, f2 ⊆ V1 ∪V2 is
defined as

• CCPf1, f2 = {x ∈V1∪V2 | ([x]≡, [x]≡) ∈ t(R) }

where t(R) is the transitive completion of R = { ([x1]≡, [x2]≡) | (x1,x2)∈ contains1 ∪ contains2 }
and [x]≡ denotes the equivalence class of an x ∈ V1 ∪V2 w.r.t. the equivalence relation ≡ =
t(s(r(∼))), with ∼= {(f1(x0), f2(x0)) | x0 ∈V0}.

Given a homomorphism h : G0→ G1 of graphs with containments, NCPh is the set of nodes
in G0 that do not have a container in G0, but do have one in G1. The definition of the set of
cyclic contained points CCPf1, f2 is more complex. It is based on the equivalence relation ≡ that
states which nodes of G1 and G2 have a common source in the interface graph G0 and which are
therefore glued together in the pushout result G3. The relation t(R) is the transitive closure of
the containment relations of G1 and G2, based on the equivalence classes induced by ≡. Cyclic
contained points are those nodes for which this relation is reflexive, i.e. ([x]≡, [x]≡) ∈ t(R).
These nodes must form a containment cycle in the pushout result G3 by construction.

These two definitions of newly contained points and cyclic contained points induce the condi-
tion under which a pushout of graphs with containment edges exists.

Definition 5 (Containment condition) Given a span of graphs with containment edges (G1
f1←

G0
f2→ G2), where f1 and f2 are valid homomorphisms for graphs with containment edges, the

containment condition is stated as:

• NCPf1 ∩NCPf2 = /0 and

• CCPf1, f2 = /0

If the newly contained points of f1 and f2 are disjoint, as stated in the first condition, each
node in the result graph has at most one container. For ensuring that there is no containment
cyclic in G3 the set of cyclic contained points must be empty.

Theorem 1 (Pushouts of graphs with containment edges) Given a span of homomorphisms

between graphs with containment edges (G1
f1← G0

f2→ G2), the pushout result in the category of

graphs (G1
f ′2→ G3

f ′1← G2) forms also a valid pushout in CGraphs, if and only if the containment

condition holds for the span (G1
f1← G0

f2→ G2).
3 contains0 and contains1 are the induced containment relations of graphs G0 and G1 .

Pre-Proceedings GT-VMT 2007 51/195

Ensuring Containment Constraints in Graph-based Model Transformation Approaches

Proof. At most one container. Let a ∈ NCPf1 ∩NCPf2 , then:

• f1(a), f2(a) have incoming containment edges e1 ∈C1,e2 ∈C2 that have no origin in G0.

• b := f ′2 ◦ f1(a) = f ′1 ◦ f2(a) ∈V3. The images of a are glued together by construction.

• b has two incoming containment edges f ′1(e2) 6= f ′2(e1).

Conversely, consider b ∈V3 with two incoming containment edges:

• Without loss of generality, the containment edges can be written as f ′2(e1) and f ′1(e2) with
e1 ∈C1 and e2 ∈C2. If both had an origin in G1 for instance, G1 would already violate the
containment properties.

• There is a∈V0 with f ′2 ◦ f1(a) = b = f ′1 ◦ f2(a). The node b must have origins in V1, V2 and
finally a ∈ V0 because there must be target nodes of e1 and e2 and these must have been
glued together to the node b ∈V3.

• Node a has no incoming containment edge. Otherwise this edge would have images in G1
and G2 and there would be only one incoming containment edge for b in G3. Therefore, a
is a is a newly contained point, both of f1 and f2.

No cycles. The idea of the proof is the construction of a sequence of nodes a0, ...,an in G1∪G2
that corresponds to a containment cycle in the pushout graph G3. Every cycle in G3 consists of
edges from G1 and G2. Since G1 and G2 are cycle free, the cycle in G3 emerges from gluing of
edges by identifying certain nodes. Nodes from G1∪G2 are identified, iff they are in the same
equivalence class w.r.t. equivalence relation ≡. So every containment cycle in G3 corresponds
to a sequence a0, ..,an s.t. there is either a containment edge from ai to ai+1 or ai and ai+1 are
identified in G3. Furthermore a0 and an are identified in G3.

If there is a x3 ∈V3 : x3 contains3 x3, then exist a0, ...,an ∈ V1∪V2 with:

• i ∈ [0,n] : ∃ (ai,ai+1) ∈ contains1 ∪ contains2. If there is a path of containment edges
in G3, the path consists of containment edges that have preimages in E1 ∪E2. We write
this path as list of ai ∈ V1 ∪V2. At least one of the ai is container for ai+1, since every
containment path consists of at least one edge.

• (ai,ai+1) /∈ contains1∪contains2⇒ [ai]≡ = [ai+1]≡. If there is no containment edge from
ai to ai+1, both are in the same equivalence class w.r.t. the pushout construction, i.e. they
will be identified in G3. These are the points where the subpaths from G1 and G2 are glued
to the containment path in G3.

• [a0]≡ = [an]≡. Without loss of generality, the path begins and ends at nodes which are
glued.

• f ′1/2(a0) = f ′1/2(an) = x3, with f ′1/2(ai) = f ′1(ai) if ai ∈V1 and f ′1/2(ai) = f ′2(ai) if ai /∈V1.

So in the transitive completion t(R) exists a tuple (r1,r2), r1 = [a0], r2 = [an] with r1 = r2.

Pre-Proceedings GT-VMT 2007 52/195

ECEASST

Conversely, if there is a pair (r1,r2) ∈ t(R) with r1 = r2, there exist a0, ...,an ∈ V1∪V2 with

• i ∈ [0,n] : ∃ (ai,ai+1) ∈ contains1∪ contains2. (r1,r2) ∈ t(R) implies a containment path
consisting of at least one containment edge of E1∪E2.

• (ai,ai+1) /∈ contains1 ∪ contains2 ⇒ [ai]≡ = [ai+1]≡. If ai does not contain ai+1, they
denote the points where the subpaths from G1 and G2 are glued in G3.

• [a0]≡ = r1 = r2 = [an]≡.

So there is at least one containment edge in G3 s.t.:

• (f ′1/2(ai), f ′1/2(ai+1)) ∈ contains3

• (f ′1/2(ai), f ′1/2(ai+1)) /∈ contains3⇒ f ′1/2(ai) = f ′1/2(ai+1)

• f ′1/2(a0) = f ′1/2(an)

So there is a containment cycle in G3: (f ′1/2(a0), f ′1/2(an)) ∈ contains3.

Using the DPO approach to graph transformation, we can state the conditions under which a
match is valid for a given rule now. That means the result has a valid graph structure (no dangling
edges) and all containment constraints are fulfilled. The first constraint is ensured by checking
the gluing condition [EEPT06] before constructing the pushout complement. When constructing
the pushout complement, edges and nodes may be deleted from the input graph. Containment
constraints cannot get violated in this phase, because containment cycles or multiple containers
for an object can only appear if containment edges are added to a valid model instance. After
computing the pushout complement, the containment condition must be verified to construct the
actual transformation result through a pushout of graphs with containment edges.

4 Related Work

Graphs with additional order structure are also discussed in [DSLO04], where the nodes and
edges are labelled using partially ordered sets. However, this partial order is an additional fea-
ture and not induced by the graph structure. Therefore, one injective morphism in a span is
already enough for ensuring the existence of a pushout in the category of these so called Poset
labelled graphs. Moreover, these graphs are applied in the area of architectural design of soft-
ware components.

Further, graphs with additional containment relations are also considered in the context of
hierarchical graph transformation (see e.g. [BKK05]). Similarly, each graph item may have
at most one container and the containment relation has to be acyclic. But in contrast to our
approach, each node and edge (except of the root) must belong to a container in most kinds of
hierarchical graphs. Thus, a typical hierarchical graph forms a special case of our graphs with
containment edges which does not require that all graph items are contained and that a unique
root does exist. For graphs with containment relations as well as for hierarchical graphs, graph
transformation has to be defined accordingly to the kind of graphs considered. That means the

Pre-Proceedings GT-VMT 2007 53/195

Ensuring Containment Constraints in Graph-based Model Transformation Approaches

pushout construction being the basic building block of algebraic graph transformation, is defined
such that the result graph is an object of the corresponding category.

So called ownership types are an object oriented model for containment. An extensive intro-
duction to ownership types can be found in [Cla01]. This approach is based on an extension
of Abadi and Cardelli’s object calculus with subtyping. A so called containment invariant is
introduced to prove the soundness of ownership types systems.

5 Conclusion and Future Work

The extension of the graph-based approach to model transformation by graphs with containment
edges better reflects transformations of MOF, EMF and UML 2 models. The containment con-
dition stated above ensures that a transformation rule can only be applied to a model instance, if
the result does not violate any containment constraints.

In the case of EMF, the implementations generated from a model ensure at run-time that these
containment constraints are always satisfied. If EMF detects a violation of these constraints at a
certain point, it deletes containment edges that produce the problem. This behavior breaks the
formal semantics that was achieved through the graph transformation approach. Therefore, it is
important to first check whether the result of a transformation step would be valid. Only if this
is ensured, the rule can actually be applied. By that, we can avoid the problems of invalid model
instances, ensuring formal transformation semantics.

Even though it can be argued, that this approach is conservative (since it restricts the possible
applications of a transformation rule), it has the advantage of avoiding situations where an invalid
model instance has to be repaired, by deleting edges for instance. Especially, the naive strategy of
applying a transformation first, without any restrictions and repairing the model in the end might
lead to unexpected results. Moreover, it is not obvious how to resolve problems like containment
cycles in a canonical way.

The containment condition can be used in model transformation frameworks to ensure well-
defined transformation semantics. The gluing condition together with the containment condition
are the basis for semantical analysis of MOF/EMF model transformation, e.g. termination and
confluence (critical pair analysis) [EEPT06].

Further work should lead to notions of consistency of model transformations which might
not only be limited to basic model constraints, but also high-level properties of models and
model transformations formulated in OCL for instance. A translation of OCL constraints into
the language of graph transformation has been started in [WTEK06]. Consistency checks are
probably going to play an important role in the field of model driven engineering in the future. A
comprehensive theoretical foundation can lead to an improved tool support to check the quality
of models and model transformations.

Bibliography

[BKK05] G. Busatto, H.-J. Kreowski, S. Kuske. Abstract Hierarchical Graph Transformation.
Mathematical Structures in Computer Science 15(4), pp. 773-819., 2005.

Pre-Proceedings GT-VMT 2007 54/195

ECEASST

[BRST05] J. Bezivin, B. Rumpe, A. Schürr, L. Tratt. Model Transformation in Practice Work-
shop Announcement. 2005.
http://sosym.dcs.kcl.ac.uk/events/mtip/

[CH03] K. Czarnecki, S. Helsen. Classification of Model Transformation Approaches.
OOPSLA 03 Workshop on Generative Techniques in the Context of Model-Driven
Architecture, 2003.

[Cla01] D. Clarke. Object Ownership and Containment. PhD thesis, School of Computer
Science and Engineering University of New South Wales, 2001.
http://citeseer.ist.psu.edu/468103.html

[DSLO04] M. Denford, A. Solomon, J. Leaney, T. O’Neill. Architectural Abstraction as
Transformation of Poset Labelled Graphs. Journal of Universal Computer Science,
vol. 10, no. 10, 1408-1428, 2004.
http://www.jucs.org/jucs 10 10/architectural abstraction as transformation/
Denford M.pdf

[EEL+05] H. Ehrig, K. Ehrig, J. de Lara, G. Taentzer, D. Varró, S. Varró-Gyapay. Termination
Criteria for Model Transformation. Proc. Fundamental Approaches to Software En-
gineering (FASE), Lecture Notes in Computer Science, ISSN 0302-9743, Springer
Verlag, 2005.
http://www.springerlink.com/content/dkpvlnfgrn3k8xp7/

[EEPT05] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Formal Integration of Inheritance with
Typed Attributed Graph Transformation for Efficient VL Definition and Model Ma-
nipulation. Proc. of IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC’05), IEEE Computer Society, 2005.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation, EATCS Monographs, ISBN 3-540-31187-4, Springer Verlag. 2006.
http://www.springer.com/3-540-31187-4

[EMF] Eclipse Modeling Framework (EMF) Homepage.
http://www.eclipse.of/emf

[EMT] Eclipse Model Transformation (EMT) Project Homepage at TU-Berlin.
http://tfs.cs.tu-berlin.de/emftrans

[Koe06] C. Koehler. A Visual Model Transformation Environment for the Eclipse Modeling
Framework. Diploma thesis, Technical University of Berlin. 2006.
http://tfs.cs.tu-berlin.de/emftrans/papers/06-ChristianKoehler.pdf

[KS06] A. Königs, A. Schürr. Tool Integration with Triple Graph Grammars - A Survey.
Electronic Notes in Theoretical Computer Science 148, 113-150, 2006.

[KSW04] J. M. Kuester, S. Sendall, M. Wahler. Comparing Two Model Transformation
Approaches. Proc. of OCL MDE, 2004.

Pre-Proceedings GT-VMT 2007 55/195

http://sosym.dcs.kcl.ac.uk/events/mtip/
http://citeseer.ist.psu.edu/468103.html
http://www.jucs.org/jucs_10_10/architectural_abstraction_as_transformation/Denford_M.pdf
http://www.jucs.org/jucs_10_10/architectural_abstraction_as_transformation/Denford_M.pdf
http://www.springerlink.com/content/dkpvlnfgrn3k8xp7/
http://www.springer.com/3-540-31187-4
http://www.eclipse.of/emf
http://tfs.cs.tu-berlin.de/emftrans
http://tfs.cs.tu-berlin.de/emftrans/papers/06-ChristianKoehler.pdf

Ensuring Containment Constraints in Graph-based Model Transformation Approaches

http://www.cs.kent.ac.uk/projects/ocl/oclmdewsuml04/papers/6-kuster sendall
wahler.pdf

[OMG06] Object Management Group (OMG). Meta Object Facility (MOF) Core Specification
Version 2.0. 2006.
http://www.omg.org/technology/documents/modeling spec catalog.htm#MOF

[TEB+06a] G. Taentzer, K. Ehrig, E. Biermann, G. Kuhns, E. Weiss, C. Koehler. Graphical
Definition of In-Place Transformations in the Eclipse Modeling Framework. Model
Driven Engineering Languages and Systems, Lecture Notes in Computer Science
4199, Springer Verlag, 2006.
http://www.springerlink.com/content/t681013811w30537/

[TEB+06b] G. Taentzer, K. Ehrig, E. Biermann, G. Kuhns, E. Weiss, C. Koehler. EMF Model
Refactoring based of Graph Transformation Concepts. To appear in the Electronic
Communications of the EASST, 2006.

[TEG+06] G. Taentzer, K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovszky,
U. Prange, D. Varró, S. Varró-Gyapay. Model Transformation by Graph Trans-
formation: A Comapartive Study. Model Transformations in Practice Workshop,
MoDELS 2005, 2006.
http://sosym.dcs.kcl.ac.uk/events/mtip05/submissions/

[TR05] G. Taentzer, A. Rensink. Ensuring Structural Constraints in Graph-Based Models
with Type Inheritance. Fundamental Approaches to Software Engineering, Lecture
Notes in Computer Science 0302-9743, Springer Verlag, 2005.
http://www.springerlink.com/content/98tey0jerhy7pryn

[WTEK06] J. Winkelmann, G. Taentzer, K. Ehrig, J. M. Küster. Translation of Restricted OCL
Constraints into Graph Constraints for Generating Meta Model Instances by Graph
Grammars. To appear in GT-VMT 2006, Electronic Notes in Theoretical Computer
Science, 2006.

Pre-Proceedings GT-VMT 2007 56/195

http://www.cs.kent.ac.uk/projects/ocl/oclmdewsuml04/papers/6-kuster_sendall_wahler.pdf
http://www.cs.kent.ac.uk/projects/ocl/oclmdewsuml04/papers/6-kuster_sendall_wahler.pdf
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#MOF
http://www.springerlink.com/content/t681013811w30537/
http://sosym.dcs.kcl.ac.uk/events/mtip05/submissions/
http://www.springerlink.com/content/98tey0jerhy7pryn

ECEASST

Generic Search Plans for Matching Advanced Graph Patterns

Ákos Horváth1, Gergely Varró2 and Dániel Varr ó3

1 ahorvath@mit.bme.hu
3 varro@mit.bme.hu

Department of Measurement and Information Systems
Budapest University of Technology and Economics,

H-1521 Budapest, Magyar tudósok k̈orútja 2., Hungary

2 gervarro@cs.bme.hu
Department of Computer Science and Information Theory

Budapest University of Technology and Economics,
H-1521 Budapest, Magyar tudósok k̈orútja 2., Hungary

Abstract: In the current paper, we present search plans which can guide pattern
matching for advanced graph patterns with edge identities, containment constraints,
type variables, negative application conditions, attribute conditions, and injectivity
constraints. Based on a generic search graph representation, all search plan oper-
ations (e.g. checking the existence of an edge, or extending a matching candidate
by navigating along an edge) are uniformly represented as special predicates with
heuristically assigned costs. Finally, an executable search plan is defined as an ap-
propriate ordering of these predicates. As a main consequence, attribute, injectiv-
ity, and negative application conditions can be checked early (but not unnecessarily
early) in the pattern matching process to cut off infeasible matching candidates at
the right time.

Keywords: graph pattern matching, search plan

1 Introduction

While nowadays model-driven system development is being supported by a wide range of con-
ceptually differentmodel transformation tools, nearly all of these tools have to solve a common
problem: the efficient query and manipulation of complex graph-like model structures. Tools
based on the rule and pattern-based formal paradigm ofgraph transformation (GT)[Roz97,
EEKR99] already integrate research results of several decades. In these tools, a matching of the
left-hand side (LHS) of a graph transformation rule is being sought by some graph pattern match-
ing algorithm, which might be invalidated by valid matchings of negative application conditions
(NAC) [HHT96]. Finally, the engine performs some local modifications to add or remove graph
elements to the matching pattern.

Graph pattern matching leads to the subgraph isomorphism problem that is known to be NP-
complete in general [Ata99], which means that highly time-consuming computations are ex-
pected for the worst-case scenario from theoretical aspects. However, practical model transfor-
mation problems rather have a regular and sparse graph structure, which drastically reduces the

Pre-Proceedings GT-VMT 2007 57/195

mailto:ahorvath@mit.bme.hu
mailto:varro@mit.bme.hu
mailto:gervarro@cs.bme.hu

Generic Search Plans for Matching Advanced Graph Patterns

execution time of graph pattern matching. In order to provide acceptable performance in real-
world application scenarios, graph transformation tools apply sophisticated pattern matching al-
gorithms, which are mostly based on either constraint satisfaction (like AGG [ERT99]) or local
searches driven by search plans (like PROGRES [Zün96], Dörr’s approach [Dör95], FUJABA
[FNTZ98] or GReAT [AKN+06]). As a commonality, all such algorithms have to appropriately
order elementary operations (such as navigations and edge existence checks) in advance by using
tool-specific heuristics, which later guide the pattern matching process itself.

Research [Zün96, GSR05, GBG+06, VVF05] has been focusing so far on the performance
optimal ordering of elementary pattern matching operations like (i) the enumeration of objects
and links of a certain type, (ii) the navigation along links of a given type, and (iii) the existence
checks for links. On the other hand, the ordering of (iv) attribute, (v) injectivity and (vi) NAC
constraint checking operations has been hard wired into the graph transformation engines by
using some simple heuristics.

For instance, in case of NAC checking operations, two wiring strategies are known in GT tools.
The “as soon as possible” (ASAP) style positioning (used by Fujaba) places the NAC checking
operation to the first possible location where all its arguments are bound. Intuitively, when the
size of the NAC pattern is small compared to the unexplored part of the LHS pattern, a quickly
retrieved matching for the NAC may significantly reduce the search space by avoiding the un-
necessary traversal of the remaining part of the LHS. On the other hand, when the NAC is large,
the corresponding check operation can be time consuming, so a delayed execution may provide
better overall performance for the pattern matching of the LHS. This idea is implemented by the
“as late as possible” (ALAP) strategy (used by PROGRES), which executes NAC checking only
when a complete matching for the LHS has been found.

These best engineering practices are acceptable for performing cheap checks like checking
attribute and injectivity constraints, but when a single search plan operation represents a complete
pattern matching process like in case of checking a NAC or calling native external libraries (as
in AGG or VIATRA 2), hard-wired positioning may cause performance degradation as (a) it lacks
flexibility and extensibility and (b) it ignores the complexity of the actual search plan operation.
However, checking NAC is critical to model transformation problems in order to forbid multiple
application of a rule on the same matching.

This is a common situation in case of model-specific search plans [VVF05, GBG+06] where
the cost of search plan operations depends on the actual graph being transformed. However,
even in the case of (traditional) metamodel-specific search plans (like in FUJABA, GReAT or
PROGRES), the bindings of input parameters of rules may have a huge impact on the optimal
ordering of complex search plan operations. Intuitively, if many input parameters are passed to a
rule, the ASAP strategy can be too expensive for complex NACs.

In the current paper, we propose a general framework for uniformly representing a large variety
of search plan operations by expressing them as cost-weighted predicates. As an appropriate
ordering of these predicates defines an executable search plan, this approach is able to uniformly
guide the pattern matching process for advanced graph patterns regardless of how we assign
the actual costs to different search plan operations. As a result, better performance is expected,
especially, for checking negative application conditions, which avoids the previous problems.

The main practical advantages of our approach are modularity, flexibility, and extensibility.
The different phases of pattern matching (e.g. cost assignment, generation of search plans, exe-

Pre-Proceedings GT-VMT 2007 58/195

ECEASST

cution of search plans etc.) are fully separated and independent, thus they can be adapted to very
different graph transformation engines and strategies (metamodel-based vs. model-based search
plans). Furthermore, new types of predicates can be introduced easily by assigning appropriate
costs without altering the algorithms for search plan generation.

The rest of the paper is structured as follows. First, Section2 briefly introduces a combined
graph-based representation for models and metamodels used in the paper (and in the VIATRA 2
framework). Then Section3 proposes our unified predicate based framework for driving pattern
matching processes. Related work is discussed in Section4, while Section5 concludes our paper.

2 Background

2.1 Models and Metamodels

Metamodeling is a fundamental part of model transformation design as it allows the structural
definition (i.e., abstract syntax) of modeling languages.

In the paper, we use a unified hierarchical and directed graph representation which stores
metamodels and models in a combined model space. Intuitively, the morphisms from instance
nodes (and edges) to their respective node (edge) types are stored explicitly in our graph model.
This unified graph representation serves as the underlying model of the VIATRA 2 framework.

This way, graph nodes (called entities in VIATRA 2) uniformly represent MOF packages,
classes, or objects on different metalevels, while graph edges with identities (called relations
in V IATRA 2) denote MOF association ends, attributes, link ends, and slots in a uniform way.
As a summary, nodes represent basic concepts of a (modeling) domain, while edges represent
the relationships between other model elements. Nodes are arranged into a strict containment
hierarchy (to denote model element containment either on the metamodel or model-level).

There are two special relationships between graph elements: thesupertypeOf (inheritance,
generalization) relation represents binary superclass-subclass relationships between nodes or
edges, while theinstanceOf relation represents type-instance relationships (to explicitly rep-
resent the meta-levels).

By using explicitinstanceOfrelationship, metamodels and models can be stored in the same
model space in a compact way. Furthermore, this allows the use of so-calledgeneric patterns
in transformation rules (see later in Figure2), which capture common graph algorithms (e.g.
transitive closure, graph searches, etc.) independently of a certain metamodel.

Example1 Figure 1 presents the joint representation of a simplified UML metamodel and an
instance model. The metamodel is contained in the UMLMeta element. Both the classes of the
metamodel (such as Package, Assoc, etc.) and the objects of the instance model (such as jar,
jarEntry, etc.) uniformly appear as nodes (entities). Instance-of relation between nodes is also
represented by dotted edges (for easier readability not all edges are illustrated). This example
illustrates the joint graph representation and also the V IATRA 2 representation.

Pre-Proceedings GT-VMT 2007 59/195

Generic Search Plans for Matching Advanced Graph Patterns

// metamodel
entity (UMLMeta){

entity (Package){
relation (EOA,Package,Assoc);
relation (EOC,Package,Class);
relation (SUB,Package,Package);}

entity (Class);
entity (Assoc){

relation (CF,Assoc,AssocEnd);
supertypeOf (Assoc,Class);}

entity (AssocEnd){
relation (STF,AssocEnd,Class);}

}
// instance model

Package(java);
Package.SUB(sub1,java,lang);
Package(lang);
Package.SUB(sub2,lang,jar);
Package(jar);
Package.EOC(eo1,jar,jarEntry);
Package.EOC(eo2,jar,jarFile);
class(jarEntry); class(jarFile);

Figure 1: VPM example

2.2 Graph Patterns

Graph transformation (GT) is a rule and pattern-based paradigm frequently used for describing
model transformation. A graph transformation rule contains a left-hand side graphLHS, a right-
hand side graphRHS, and (one or more) negative application condition graphsNAC connected
to LHS. A negative application condition [HHT96] is a graph morphism, which maps theLHS
pattern to aNAC pattern. The application of a rule to ahost (instance) modelM replaces a
matching of theLHS in M by an image of theRHS.

Graph patterns(precondition pattern) consist of theLHS pattern, theNAC pattern, and the
mapping between them. They represent conditions (or constraints) that have to be fulfilled by
a model in order to execute transformation steps on the model. The most critical step of graph
transformation is graph pattern matching, i.e., to find such a matching of theLHS pattern in the
model space that is not invalidated by a matching of the negative application condition graph
NAC, which prohibits the presence of certain combinations of nodes and edges. So we restrict
our current investigations only to graph patterns and graph pattern matching.

Example2 An example graph pattern is depicted in Figure 2, where the left side illustrates
the graph representation and the right side shows the V IATRA 2 representation, which is detailed
in [BV06]. This pattern is our running example through the paper, as it contains all advance graph
pattern elements (e.g., attribute check, nac, etc.), and requires a generic graph representation.

TransitiveC pattern is a generic implementation of the transitive closure, which can be used
with any metamodel MM passed as a parameter, where NT is matched to the Node Typeand ET

Pre-Proceedings GT-VMT 2007 60/195

ECEASST

to the Edge Type, which runs between NT type nodes (with a restriction on the name attributes).
X represents the inspected element for the transitive closure and Z expresses the closure nodes.
The injectivity constraints define that all variables are matched to different elements and the
negative application condition expresses that there is no edge R3 between the X and Z nodes.
For easier readability the explicit ”instance of” edges (dotted lines) are only depicted between
the NT type element and the X, Y and Z nodes.

pattern transitiveC(X,Z,MM) ={ // meta model
entity (NT) in MM;
relation (ET,NT,NT);
check(name(NT)!= " CLASS" && name(ET)!= " EOC");
// instance model nodes
entity (X); instanceOf (X,NT);
entity (Z); instanceOf (Z,NT);
entity (Y); instanceOf (Y,NT);
X!=Y; Y!=Z; X!=Z;
// instance model edges
relation (R1,X,Y); instanceOf (R1,ET);
relation (R2,Y,Z); instanceOf (R2,ET);
R1!=R2;
// nac check

neg nac1(X,Z,ET)={
entity (X); entity (Z);
relation (R3,X,Z); instanceOf (R3,ET);}

}

Figure 2: The pattern graph oftransitiveC(X,Z,MM)

2.3 Graph Pattern Matching

Each variable of a graph pattern is bound to a constant node in the model such that thismatching
(binding) is consistent with edge labels, and source and target nodes of the model. Amatching
for a precondition patternis a matching for itsLHS pattern, provided that no matching should
exist for itsNAC pattern.

To drive the pattern matching process, the generation of search plans is a frequently used
concept. Informally, a search plan defines the order of traversal (a search sequence) for the nodes
of the instance model to check whether the pattern can be matched. The model is traversed
according to a specific search plan.

Example3 For instance, a matching of the pattern transitiveC of Figure 2 in model Figure 1
with UMLMetaas the input of MM is the following: X = java, Y = lang, Z = jar, R1 = sub1, R2
= sub2, ET = SUBand NT = Package(MM = UMLMeta). Where a possible traversal order for
the pattern is: (0) MM (it is an input parameter),(1) NT, (2) ET, (3) X, (4) Y, (5) Z, and for the
nac1 negative application condition is: (1) ET, (2) X, (3) Z.

Pre-Proceedings GT-VMT 2007 61/195

Generic Search Plans for Matching Advanced Graph Patterns

3 Unified Search Plan Representation

This section introduces our approach on handling advanced graph patterns. First Subsection3.1
presents the concept ofsearch graphs, which can handle complex constraints on the graph
patterns (e.g., containment, generic type parameters etc.). Then Subsection3.2 introduces the
adornment constraints, followed by Subsection3.3which proposes our complex constraint cost
approximation, and finally, Subsection3.4 introduces the revised representation of search plans
based on the elementary steps of a pattern matching process (search operations).

3.1 Search Graph

A search graphis a joint representation of pattern graph elements and operation constraints that
drives the pattern matching process. In our interpretation a search graph is ahypergraphrepre-
senting aconstraint net, where graph nodes reflect variables, and hyperedges express constraints
(predicates) between the variables. A search graph is directly derived from the pattern graph as
follows:

1. Pattern variable: Each element (node or edge) of the pattern graph is mapped to apattern
variable. These elements (depicted by grey ovals, e.g.,X in Figure3) represent the arguments of
the constraints.

2. Operation Constraint: Each constraint on the pattern graph (containment, connectivity
etc.) is mapped to an n-ary (usually binary) operation predicate, (illustrated by rectangles in our
figures, e.g.,trg in Figure3) that has to be fulfilled during the matching process. The constraints
used in our approach are the following (however, the actual set of constraints can be extended
easily):

1. Simple predicatesrepresent core constraints between two pattern variables.

• A source constraintsrc(Src,E) expresses that nodeSrc is the source of edgeE in the
pattern graph.

• A target constrainttrg (Trg,E) expresses that nodeTrg is the target of edgeE in the
pattern graph.

• An ’instance of’ constraintinst(A,Type) means thatA is an instance ofType, where
both elements are represented in the model space.

• A containment constraintin(A,Container) expresses thatContainer containsA.

2. Complex predicatesare defined between an arbitrary number of pattern graph elements.

• Theinjectivity constraintinj (A1, ...,An) means that theAi must be matched to differ-
ent graph elements (injective matching).

• Thenegative application conditionnacj(A1, ...,An) expresses that the check ofnacj

should be initiated with the given input parameters.

Pre-Proceedings GT-VMT 2007 62/195

ECEASST

• Theattribute check constraintattr (A1, ...,An) evaluates a Boolean expression check-
ing, based on the attributes of the pattern nodes, which are accessed by variables
A1, ...,An.

Example4 The search graph of Figure 2 is illustrated in Figure 3 (including some parts of the
pattern graph itself to improve readability). The search graph contains eight pattern variables;
MM, ET and NT represent the metamodel part of the pattern graph, while variables X, Y, Z, R1
and R2 represent the nodes and edges of the instance model. The operation predicates directly
define the constraints of the pattern graph: src, trg define the source and target node of an edge.
For example, X is the source of edge R1, in defines that ET and NT should be contained directly
by node MM, nac1 represents the negative application condition with input parameters ET, X
and Z, inj defines the injectivity check between its input variables like between X, Y, and finally
inst represents the direct instance of relations (e.g., between R1 and ET).

Figure 3: Search graph of GT pattern transitiveC(X,Z,MM)

3.2 Adornment

An operation constraint may represent different concrete search operations depending on the
binding of its arguments.

Pre-Proceedings GT-VMT 2007 63/195

Generic Search Plans for Matching Advanced Graph Patterns

An adornment(see in [Ull89]) consists of a string, composed of lettersB (bound) andF (free).
The meaning of letterB in an adornment is that the variable must be bound to a value in that
position. The meaning of the letterF in an adornment is that the variable is not bound in that
position.

A search operationconsists of a constraint and an adornment, they are the atomic units of
pattern matching and represents a single step in the matching process. A search operation is
either anextendtype operation which extends the matching by a new element (e.g match the
target node along an edge), or achecktype operation used for checking constraints between
pattern elements (e.g., whether an edge runs between two nodes). For example, if adornments
FB or BF are attached to a simple constraint, then they represent an extend type search operation,
and in case ofBB it is a check type operation.

Though 2n different adornments can be assigned to each n-ary operation constraint in theory,
only a subset of these adornments are used, which respect elementary complexity consideration.

Usually for the simple constraints the permitted adornments areFB; BF; BB , while FF
represents a far too expensive operation, as we need to cumulate all pairs of elements in the
model.

For complex constraints only theB...B adornments are permitted, as all variables must be
bound to an element in case of injectivity checking, NAC checking and Boolean term evaluation.

In Figure3, permitted adornment values are illustrated with small tables near the constraints.
The table has two columns, which show the adornment and the cost of the operation (which is
discussed in Subsection3.3), respectively.

3.3 Cost of Search Operations

At this point, a joint representation of search constraints is available. In order to generate efficient
search plans cost functions (weights) have to be defined for the operations. Due to space limita-
tions in the paper we are using the more common meta-model based (compile time) weighting
and the number values are only used to illustrate the order of magnitude of operation costs, but
it is important to mention that the approach is also capable of handling model (runtime) based
weighting. The only differences are in case of runtime weighting are (i) the usage of runtime
statistics collected from the instance model, (ii) and the more precise weighting ofsimple extend
type predicates (e.g., the weight of an’instance of’ constraintis based onactual numberof the
instance elements in the model), andnac checkpredicates, where the cost can be directly derived
from the pattern graph of thenac.

Weighting thesimple operationfollows the guidelines of edge multiplicity based cost func-
tions (e.g., if an edge multiplicity is one-to-many, then its cost is higher then if it is one-to-one)
with the following restriction: the lowest cost is assigned to theBB adornments (checktype op-
eration), and there is no difference between the cost ofFB and theBF (extendtype operation).
Among the constraints we use the cost ordering based on our earlier transformation experiments
and [VSV06]: in << trg = src<< inst

In case of complex constraints, assigning costs to operations is easier on one hand as they have
only one permitted adornmentB...B , but on the other hand better cost prediction is possible
using a priori knowledge. In case ofinj and attr constraints the number of input parameters
provides a good prediction for complexity, while in case of anacconstraint the wholenacpattern

Pre-Proceedings GT-VMT 2007 64/195

ECEASST

graph matching cost can be evaluated at compile time. The cost functions are the following:

• For inj andattr constraint the cost function is linear in the number of parameters.

• For nac constraint the cost function is proportional to the number of constraints in the
search graph of thenacpattern. The idea behind this selection is that anaccheck may cut
the search space significantly when thenacpattern is small.

3.4 Search Plans

A search planis a totally ordered list of search operations (one possible traversal of the search
graph). As the atomic operations already have cost values attached, we can evaluate the cost of a
whole search plan.

Thecost of a search plan(denoted byw(P)) is defined by the formulaw(P) = ∑n
i=1 ∏i

j=1w j ,
wherew j is the weight of thejth operation according to the order defined by the search plan, and
n is the number of operation constraints in the original search graph. As described in [VVF05],
this formula is an estimation for the size of the search space that has to be traversed during pattern
matching, if model-specific search graphs are used and the weightw j expresses the expected
number of iterations performed during the execution of thejth operation. As a consequence, the
search plan with the minimum costw(P) will have the best expected run-time performance. If the
weights are fixed and determined at compile-time, this cost function is still an acceptable choice
as the search plan that is optimal wrt.w(P) prefers the early execution of low cost operations.
For generating the actual search plans, only minor modifications to the techniques described
in [VVF05] are needed.

Example5 The following example shows two search plans of the running example pattern
graph: Figure 4(a) represents the search plan where X,Z and MM parameters are bound, while
Figure 4(b) shows the search plan where only X and MM are the fixed input parameters.

In case of Figure 4(a), the nac1 is in the first quarter of the search plan, which means it is an
ASAP like positioning, and checks the negative application condition before the extend operation
towards the R1,R1 and Y variables. While in case of the search plan depicted in Figure 4(b) the
nac1 check is in the end as in case of an ALAP like ordering.

This simple example shows, that the joint search plan representation is capable of handling
different positioning for advance constraints, which (like in case of checking a NAC) could result
better search plans, compared to hard-wired positioning.

4 Related work

All graph transformation tools use some clever strategies for pattern matching. Since an intensive
research has been focused to graph transformation for a couple of decades, several powerful
methods have already been developed. First we focus on the three most advanced compiled
approaches that use search plan guided and local search based algorithms.

Fujaba [KNNZ00] performs local search starting from the node selected by the system de-
signer and extending the matching step-by-step to neighbouring nodes and edges. Fujaba fixes

Pre-Proceedings GT-VMT 2007 65/195

Generic Search Plans for Matching Advanced Graph Patterns

constraint type comment

in jBB(Z,X) check Z not equals to X
inFB(NT,MM) extend NT under MM
instBB(X,NT) check X is instance of NT
instBB(Z,NT) check Z is instance of NT
trgFB(ET,NT) extend target of ET is NT
srcBB(ET,NT) check source of ET is NT

nacBBB
1 (X,Z,ET) check nac1 check

attrBB
1 (ET,NT) check attr1 is evaluated

trgFB(R2,Z) extend target of R2 is Z
instBB(R2,ET) check R2 is instance of ET
srcBF(R2,Y) extend source of R2 is Y
instBB(Y,NT) check Y is instance of NT
in jBB(Y,Z) check Y not equals to Z
in jBB(X,Y) check X not equals to Y
trgFB(R1,Y) extend target of R1 is Y
srcBB(R1,X) check source of R1 is X

instBB(R1,ET) check R1 is instance of ET
in jBB(R1,R2) check R1 not equals to R2

(a) X,Z and MM are fixed input parameters

constraint type comment

inFB(NT,MM) extend NT under MM
instBB(X,NT) check X is instance of NT
trgFB(ET,NT) extend target of ET is NT
srcBB(ET,NT) check source of ET is NT
attrBB

1 (ET,NT) check attr1 is evaluated
srcFB(R1,X) extend source of R1 is X

instBB(R1,ET) check R1 is instance of ET
trgBF(R1,Y) extend target of R1 is Y
instBB(Y,NT) check Y is instance of NT
in jBB(X,Y) check X not equals to Y
srcFB(R2,Y) extend source of R2 is Y

instBB(R2,ET) check R2 is instance of ET
in jBB(R1,R2) check R1 not equals to R2
trgBF(R2,Z) extend target of R2 is Z
instBB(Z,NT) check Z is instance of NT

in jBB(Y,Z) check Y not equals to Z
in jBB(Z,X) check Z not equals to X

nacBBB
1 (X,Z,ET) check nac1 check
(b) X and MM are fixed input parameters

Figure 4: Search plans of transitiveC

a single traversal strategy at compile-time for each rule by automatically generating Java code
for the pattern matching process. During code generation Fujaba places attribute, injectivity and
NAC checks to the earliest allowed location. As a consequence, the corresponding run-time op-
erations are executed immediately after all the necessary variables have been fixed, which means
that this engine implements a hard-wired as soon as possible strategy.

PROGRES [Zün96] uses the advanced concept of operation graphs for representing structural
constraints on the ordering of basic operations, which are similar to search graphs in the current
paper. Costs of search plan operations are defined by using a very sophisticated application do-
main independent cost model. PROGRES can assign weights to attribute checking operations,
which enables their proper scheduling in search plans. On the other hand, injectivity and NAC
checks are excluded from the cost model, which results in their hard-wired positioning at run-
time. Injectivity constraints are tested as soon as all its arguments are known, while negative
application conditions are checked late, i.e., when a complete matching for the pattern has been
found. Compared to our approach, PROGRES supports navigation along indexed attributes in
addition to attribute checking.

The pattern matching engine of GReAT [AKN+06] only allows injective matchings whose
corresponding constraints are checked in an ’as soon as possible’ style just like attributes, which
are tested immediately whenever a new partial matching has been calculated as a result of an ex-
tension of a smaller matching. In GReAT, negative application conditions can only be expressed
by zero cardinality edges, which normally restricts the size and complexity of NACs, but reduces
expressiveness obviously.

Algorithms that handle pattern matching as a constraint satisfaction problem (CSP) like [LV02]

Pre-Proceedings GT-VMT 2007 66/195

ECEASST

in AGG [ERT99] do not directly involve the concept of search plans as stated in [VSV06]. How-
ever, the underlying constraint solver engine has to define a variable binding order, which can
be considered as a search plan derived dynamically at run-time. As a consequence, CSP-based
graph transformation engines by their nature support that dynamicity that has been achieved by
our approach for local search based algorithms. However, as constraint solver implementations
typically use the first-fail principle for determining the variable binding order, this technique still
schedules the attribute, injectivity and NAC checking operations to the earliest possible location.

Altogether, we believe that our current contribution is in the increased generality and modu-
larity of the search graphs, and in the more flexible handling of negative application conditions.
This way, the current paper is complementary to (and can be integrated with) the recent advances
in model-specific search plans (as in GrGen [GBG+06] or [VVF05]).

5 Conclusion

In the current paper, we have presented a general framework for uniformly representing search
plan operations. The essence of the approach is to express the operations as cost weighted predi-
cates and assign the weights based on the binding of their input parameters. We used adornments
to capture binding constraints on the predicates and introduced a compile-time weighting for a
variety of advance pattern graph elements. The implementation based on these techniques will
be available in the new VIATRA 2 release.

In the future, it will be interesting to apply our solution on recursive graph patterns, where
recursive call represents a new predicate in the search graph, which does not have any restrictions
on its adornment, making cost assignment complicated.

Acknowledgements: The paper is partially supported by the SENSORIA European IP (IST-
3-016004).

Bibliography

[AKN +06] A. Agrawal, G. Karsai, S. Neema, F. Shi, A. Vizhanyo. The Design of a Language for
Model Transformations.Software and Systems Modeling5(3):261–288, September
2006.

[Ata99] M. J. Atallah (ed.).Algorithms and Theory of Computation Handbook. CRC Press,
1999.

[BV06] A. Balogh, D. Varŕo. Advanced Model Transformation Language Constructs in the
VIATRA2 Framework. InProc. of the 21st ACM Symposium on Applied Computing.
Pp. 1280–1287. ACM Press, Dijon, France, April 2006.

[Dör95] H. Dörr. Efficient Graph Rewriting and Its Implementation. LNCS 922. Springer-
Verlag, 1995.

Pre-Proceedings GT-VMT 2007 67/195

Generic Search Plans for Matching Advanced Graph Patterns

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg (eds.).Handbook on Graph
Grammars and Computing by Graph Transformation. Volume 2: Applications, Lan-
guages and Tools. World Scientific, 1999.

[ERT99] C. Ermel, M. Rudolf, G. Taentzer.In [EEKR99] . Chapter The AGG-Approach: Lan-
guage and Tool Environment, pp. 551–603. World Scientific, 1999.

[FNTZ98] T. Fischer, J. Niere, L. Torunski, A. Z̈undorf. Story Diagrams: A new Graph Rewrite
Language based on the Unified Modeling Language. In Engels and Rozenberg (eds.),
Proc. of the 6th International Workshop on Theory and Application of Graph Trans-
formation. LNCS 1764, pp. 296–309. Springer Verlag, 1998.

[GBG+06] R. Geiß, V. Batz, D. Grund, S. Hack, A. M. Szalkowski. GrGen: A Fast SPO-Based
Graph Rewriting Tool. InProc. of the 3rd International Conference on Graph Trans-
formation. 2006. Accepted paper.

[GSR05] L. Geiger, C. Schneider, C. Reckord. Template- and Modelbased Code Generation
for MDA-Tools. In Giese and Z̈undorf (eds.),Proc. of the 3rd International Fu-
jaba Days. Pp. 57–62. Paderborn, Germany, September 2005.ftp://ftp.upb.de/doc/
techreports/Informatik/tr-ri-05-259.pdf.

[HHT96] A. Habel, R. Heckel, G. Taentzer. Graph Grammars with Negative Application Con-
ditions.Fundamenta Informaticae26(3/4):287–313, 1996.

[KNNZ00] T. Klein, U. Nickel, J. Niere, A. Z̈undorf. From UML to Java And Back Again.
Technical report, University of Paderborn, 2000.

[LV02] J. Larrosa, G. Valiente. Constraint Satisfaction Algorithms for Graph Pattern Match-
ing. Mathematical Structures in Computer Science12(4):403–422, 2002.

[Roz97] G. Rozenberg (ed.).Handbook of Graph Grammars and Computing by Graph Trans-
formation. Volume 1: Foundations. World Scientific, 1997.

[Ull89] J. D. Ullman.Principles of Database and Knowledge-Base Systems. Volume II: The
New Technologies. Computer Science Press, 1989.

[VSV06] G. Varŕo, A. Scḧurr, D. Varŕo. Experimental Evaluation of Optimization Techniques
in Graph Transformation Tools by Benchmarking.Software and Systems Modeling,
2006. Submitted paper.

[VVF05] G. Varŕo, D. Varŕo, K. Friedl. Adaptive Graph Pattern Matching for Model Trans-
formations using Model-sensitive Search Plans. In Karsai and Taentzer (eds.),Proc.
of Int. Workshop on Graph and Model Transformation (GraMoT’05). ENTCS 152,
pp. 191–205. Tallinn, Estonia, September 2005.

[Zün96] A. Zündorf. Graph pattern-matching in PROGRES. InProc. 5th Int. Workshop on
Graph Grammars and their Application to Computer Science. LNCS 1073, pp. 454–
468. Springer-Verlag, 1996.

Pre-Proceedings GT-VMT 2007 68/195

ftp://ftp.upb.de/doc/techreports/Informatik/tr-ri-05-259.pdf
ftp://ftp.upb.de/doc/techreports/Informatik/tr-ri-05-259.pdf

ECEASST

A Query Language With the Star Operator

Johan Lindqvist and Torbjörn Lundkvist and Ivan Porres

{johan.lindqvist,torbjorn.lundkvist,ivan.porres}@abo.fi
TUCS Turku Centre for Computer Science

SoSE Graduate School on Software Systems and Engineering
Department of Information Technologies, Åbo Akademi University

Joukahaisenkatu 3-5A, FIN-20520 Turku, Finland

Abstract: Model pattern matching is an important operation in model transforma-
tion and therefore in model-driven development tools. In this paper we present a
pattern based approach that includes a star operator that can be used to represent re-
cursive or hierarchical structures in models. We also present a matching algorithm,
motivating examples and we discuss its implementation in a modeling tool.

Keywords: Visual languages, Model transformation, Graph query, Graph subgraph
matching

1 Introduction

In the context of model-driven software development, a query language is used to find parts
of a model that fulfill some given constraints. A query language is a fundamental element in
rule-based model transformation languages. Query languages are also used to define model
constraints, where a model is invalid if it does not satisfy the query. Finally, a query language
combined with different aggregation operators can be used to compute metrics.

We consider that query languages should be declarative, in the sense that they should state
what to search for in a model, but not how to perform the actual search. Also, we are interested
in expressive query languages that can define complex patterns in a succinct way. The Object
Management Group (OMG) proposes a standard for a model transformation language called
Query-View-Transform (QVT) [OMG05a], that contains a query language. The OMG Object
Constraint Language [OMG03] can also be used to query models.

In this article we explore the idea of a query language based on graph matching. Our ap-
proach can benefit from the fact that modeling languages and models are considered as graphs,
since the application of graph theory to computer science provides a solid foundation to model-
driven development tools, specially in the area of model transformations [Roz97]. Successful
approaches to graph transformation in the context of software development are presented for
example in [BH02, VVP02, ARS05].

Probably, the simplest graph matching approach is one based on subgraph isomorphism. A
software model and a query are represented as graphs and a match of the query is any subgraph
of the target model that is isomorphic to the query. However, this approach is not sufficient to
express many queries succinctly. Therefore, it has been extended to include negative application
conditions [HHT96] and multi-objects [SWZ99]. Still, these extended forms of graph pattern
matching may not be able to express many interesting queries. Many computer languages con-

Pre-Proceedings GT-VMT 2007 69/195

A Query Language With the Star Operator

tain hierarchical and recursive structures. Examples of these structures in UML [OMG05b] are
package containment hierarchies in class diagrams or state hierarchies in statecharts. As a con-
sequence, we often need to specify queries to match recursive structures where the number of
elements to match is not known a priori.

In this article, we propose a new query language that supports what we call the star operator.
This operator conceptually resembles the Kleene star operation over sets of strings. Used in
our query language, it can match against a subgraph that appears repeatedly zero or more times
in a graph representing a model. In our opinion, when we combine the star operator with the
isomorphism operator that denotes isomorphic matches and the negation operator, that denotes
the absence of a match, we can express complex queries by rather using short and intuitive
pattern.

We proceed as follows: In Section 2 we describe the basics of our query language and provide
some examples of queries for the UML language. Section 3 presents an overview of a matching
algorithm for this query language. The next section discusses the practical implementation of the
approach in an experimental modeling tool. Finally, we conclude in Section 5 with a description
of future work.

2 Regions in a Pattern

In this section we will describe the concept of regions in a pattern, and introduce three operators
that can be applied to regions: the isomorphic, star and negation operator.

A pattern consists of a of a typed and directed graph annotated with information necessary
to perform a query. The graphs in the patterns are constructed according to a metamodel. The
pattern graph can be compared against a target graph. A match occurs if all nodes and edges of
the pattern graph can be mapped to a subgraph of the target graph, with respect to the annotations
of the pattern graph. The result is a mapping of the pattern and target graphs, which allows the
nodes and edges of a pattern graph to be bound to the target graph.

In order to increase the expressiveness of a pattern based query, we have introduced the con-
cept of operators and regions in a pattern. A region is defined over a connected subgraph of a
pattern, such that a node belongs only to one region. In our approach we have defined a region as
the scope of a matching operator. As a consequence, a pattern consists of several non-overlapping
regions, where each region is associated with an operator. Edges can still connect nodes in sepa-
rate regions. Edges that cross the boundaries of a region are called connection points since they
connect two regions. These connection points can be computed from the pattern graph and are
used, depending on the operator associated with the region, to validate whether the region fulfills
the specific requirements of the operator associated with the region.

Next, we will describe the definition of the isomorphic, negation and star operator applied over
a region.

2.1 Isomorphic Regions

The semantics of an isomorphic region as part of a pattern graph, is that it is possible to find a
subgraph in the target model that is isomorphic to the region. A pattern graph can have several

Pre-Proceedings GT-VMT 2007 70/195

ECEASST

isomorphic regions. However, if a pattern consists only of isomorphic regions, the regions could
be merged without affecting the result of the pattern matching process.

2.2 Negative Regions

The semantics of a negative region as part of a pattern graph, is that an occurrence of all nodes
and edges of a negative region in the target results in a failed match. Since the negation operator
is always defined over a region in the pattern, it is possible to model complex negative conditions
that involve several nodes and edges. A similar approach where the negation operator is defined
over regions can be found in [HHT96].

2.3 Star Regions

In order to be able to describe patterns with recursive or hierarchical structures, we have intro-
duced the concept of a star operator. The star operator in a pattern is conceptually similar to the
star operator in Kleene algebra [Koz91]. A pattern with a star region can be used to generate
a set of patterns where the contents of the star region is inserted an arbitrary number of times
and replaced by an isomorphic region. Analogous to the Kleene star operator, the generation of
patterns begins with a pattern where the subgraph is not inserted. We will discuss the constraints
that apply to valid star regions later in this section.

The structure of the subgraph represented in a star region must follow some specific require-
ments. This is necessary, as the patterns used for defining a query as well as new patterns that
are generated by expanding the star regions into several subgraphs must preserve the structure
defined by the metamodel. To ensure that the star region can be expanded, it needs to have at
least two connection points to other regions. This limitation only applies to star regions. These
connection points are called the ends of the star region, where one end is incoming and the other
end is outgoing with respect to the nodes in the star region. The connection points define the
position in the pattern graph where subgraphs generated from the star region are inserted. When
the star region is expanded, the outgoing end of each generated subgraph is connected to the
incoming end of the next.

Beside the two required ends, the star region may contain other connection points, which are
required to connect to the same nodes inside the region as the ends do. These additional con-
nection points are associated with either one of the ends and connect the last subgraph generated
in the direction of the associated end with another region. If zero subgraphs are generated, all
the connection points of the star region thus in effect connect the two regions on either side of
the ends of the star region.The star region can contain any number of nodes and edges which are
instantiated in each generated subgraph.

Figure 1 shows the generation of patterns based on a pattern with a star region in detail. In
the top part of the figure an example pattern G with two isomorphic regions R1 and R3 and a
star region R2 is shown. R2 consists of two interconnected nodes, 2’ and 3’. There are also two
directed edges with label m, one incoming edge from node 1’ in R1 to 2’ in R2 and one outgoing
edge from node 3’ in R2 to 4’ in R3. The bottom part of the figure shows three different patterns
that can be generated based on G. The generation of G1 is done by applying a production that
replaces R2 with the empty graph, and creates a new edge m from 1’ to 4’. The pattern G2 is

Pre-Proceedings GT-VMT 2007 71/195

A Query Language With the Star Operator

retrieved by replacing the previously rewritten edge m in G1 with an instance of the star region
R2 and the edges in the connection points are rewritten. Similarly, the pattern G3 is retrieved by
again replacing one of the rewritten edges with a new instance of the star region. To make the
figures clearer, all rewritten edges are drawn with a wider stroke. These patterns can now be used
to find a mapping to a target graph.

1':S

4':T
2':T
 3':S

R
2

Pattern Graph
G

m

m
n

R
1

R
3

=

=

*

Pattern Graph
G
1

1':S

4':T

m

Pattern Graph
G
2

1':S

4':T
2':T
 3':S

m

m
n

Pattern Graph
G
3

1':S

4':T

2':T

3':S

2'':T

3'':S
 m

m

n

m

n

Figure 1: (Top) A pattern graph formed by two isomorphic regions, R1 and R3, and one star
region R2. (Bottom) Three possible patterns that could be generated from pattern G in the top of
the figure.

Using this approach, it is possible to use a single pattern to describe recursive and hierarchical
structures by generating a set of patterns that can be compared to a target graph using subgraph
isomorphism.

A star region can be seen as an extension of the concept of multi-objects, or set nodes as
defined in PROGRES [SWZ99]. While a multi-object can express multiple instances of a single
node, the star region can express multiple instances of a subgraph. We have extended the concept
of multi-objects by defining star regions in the query graph, where all connections of the nodes
within or at the border of the region are explicit. This extension is also partly due to the fact
that a multi-object can have an edge to another multi-object, but it is unclear whether the edge
represents a single edge or multiple edges. Other related approaches are the works of graph
transformations with variables presented in [MHar, HJE06, Hof05]. Karsai and Agrawal present
in [KA03] an approach that allows cardinalities in individual nodes, but it is unclear whether this
approach supports whole regions.

2.4 Examples

In this section we present some examples that illustrate how the CQuery language can be used
to define queries to match common model structures in UML. We have chosen to display both
the patterns and matching model fragments using the abstract syntax, which is an object graph

Pre-Proceedings GT-VMT 2007 72/195

ECEASST

Q5:5 y:E437

Q5:5 V P5 x RP:7s353o7Co+pos35 Q5:5

G 7 P:l3[:53o7Cl:ss

Q3+pl Q5:5

5:Pg 5

]..I 37Eo+37g

*

p:P 75

]..I sp E3:l3[:53o7

*

ou5go37g

*souPE

]..I

s5:5 y:E437

]..I

5opI

p:P 75

]..I suNv P5 x

*

s5:5 y:E437

]..I

5P:7s353o7s*

E43ld

]..I g 7 P:l3[:53o7

*

Eo75 x5

]..IN 4:v3oP

*

Figure 2: A simplified fragment of the UML 1.4 metamodel.

1’:Class 2’:Generalization 5’:Class
childparent

3’:Class 4’:Generalization
childparent

= * =

Q5 : Qy : QE : Q4 : Q3 : 7VPxxRsosCPV+pPG+lo7VPxx RsosCPV+pPG+lo7VPxx

[PCsoG [PCsoGg]+V. g]+V.

Q5 : Qy : QE : QQE : Q4 : Q3 : QQy : 7VPxx RsosCPV+pPG+lo 7VPxx 7VPxx RsosCPV+pPG+lo 7VPxxRsosCPV+pPG+lo

[PCsoG [PCsoGg]+V. g]+V. g]+V.[PCsoG

Figure 3: (Top) An example of a query with a star region defined over a class and a generalization
and the parent relation. (Center, Bottom) Two model fragments that matches the query defined
on the top, shown as object diagrams. The mapping is indicated with the corresponding numbers.

syntax similar to UML object diagrams, rather than the concrete syntax of the target modeling
language, since the concrete syntax hides information about relations between the objects. In
a tool environment, however, creating the queries using the concrete syntax of the modeling
language can be beneficial.

In the examples we will use a slightly simplified version of the UML 1.4 metamodel, which is
shown in Figure 2.

2.4.1 UML Generalizations

A sample query with two isomorphic regions and a star region is illustrated in the left part of
Figure 3. The star region is marked with a dashed rectangle with the ’*’ symbol, and the iso-
morphic regions with rounded rectangles and a ’=’ symbol. The connection points for the star
region are marked with circles at the border of region. The star region contains a UML Gener-
alization 2’ and a Class 3’. The Generalization is linked to the superclass 1’ and the subclass 3’
via a parent and a child relationship, respectively. These relations connect the star region to

Pre-Proceedings GT-VMT 2007 73/195

A Query Language With the Star Operator

1’:StateMachine2’:CompositeState

3’:CompositeState

4’:CompositeState 7’:CompositeState

5’:StateVertex 9’:Transition 8’:StateVertex

subvertex

subvertex subvertex

subvertexsubvertex

top

transitions

source target

*

* *

=

=

Q5 :

Qy :

QE : Q4 :

Q3 : 7VPxVRsoC+opoC

Glp[RsosV[

+sPxgC+opoC+sPxgC+opoC

+opoC]p.Is[C

olp[RsosV[R

oVx

R*uNCloCv

opldCo

R*uNCloCv

RV*l.C

Q5 :

Qy :

QE :

Q4 :

Q3 :

QQ7 :

QV :

Q7 :

PxRsxoC+pG+l+p

GCRs[pG+l+p

PxRsxoC+pG+l+p

GCRs[pG+l+p

G+l+pgl].CIp

PxRsxoC+pG+l+p

*ulIoC+CxI

PxRsxoC+pG+l+p

oxNu]p +luvp+

+xs

oNd�pu+p

oNd�pu+p

oNd�pu+p

oNd�pu+p

+ulIoC+CxIo

oNd�pu+p

Figure 4: (Left) An example of a pattern that illustrates how transitions are connected to states
and state machines. (Right) Two model fragments that matches the query.

the adjacent isomorphic regions. On the right hand side of the figure two different UML model
fragments in object diagram syntax are shown that are matches of the query on the left hand side.
Here, the mappings between the pattern and the target models are shown using corresponding
object names, i.e., 1’ in the pattern corresponds to ’1 in the target. The Generalization 2’ and
the Class 3’ in the star region were matched once in the first model fragment, and twice in the
second model fragment. The pattern can be matched to targets where the star region is mapped
to the empty set. This case is not illustrated in the figure. However, that particular case would
imply that Class ‘1 has exactly one subclass ‘5.

2.4.2 UML StateMachines

The second example in Figure 4 shows a pattern that can be used to query a UML model for a
state machine with a transition between two states, where the states are transitively owned by
any number of composite states. The state machine owns a composite state in StateMachine.top
that can transitively own other states in the CompositeState.subvertex slot. Transitions, however,
are always owned by the state machine, and have associations to two states in Transition.source
and Transition.target.

The pattern described here is rather complex, as we can identify three different star regions.
Each of the three star regions consists of one composite state and is connected to the other
regions using the CompositeState.subvertex relations to the other regions. This pattern describes
that the two states (5’ and 8’) that connect to the transition (9’ in the figure), can be nested in
an arbitrary number of common container composite states (star region with composite state 3’).
Additionally, each of the states can independently be contained by any number of composite

Pre-Proceedings GT-VMT 2007 74/195

ECEASST

states (4’ and 7’). It must be noted, however, that there are three connection points in the star
region with composite state 3’ (one incoming and one outgoing edge). This is possible, since
a composite state can have any number of subvertices. When this star region is expanded to
two or more isomorphic regions, only one of these connection points is used to connect the next
occurence, as described in Subsection 2.3.

The right side of Figure 4 shows two model fragments that could be matched with patterns
generated from the pattern on the left. Due to the fact that each star region can individually
be expanded, it is possible to model all these different compositions for a state machine with
a transition in one single pattern. This query can be seen as a validation that a transition has
been inserted correctly in a statechart. Although the structure of state machines have changed
remarkably in UML 2.0, a relatively similar pattern with a larger amount of elements are required
for the UML 2.0 counterpart.

3 Matching Algorithm

In this section we will present a matching algorithm for patterns with isomorphic, star and nega-
tive regions.

We have discussed an intuitive interpretation of the query language where star regions are
expanded into regular graphs. In practice, the actual patterns are not expanded prior to matching
since an arbitrary number of possible patterns should be generated. Instead, the star regions are
expanded during pattern matching, and only as far as valid mappings against the target graph are
found.

The algorithm presented below is used to match the pattern against the target graph and expand
the star regions. To match individual regions, any traditional graph matching algorithm may
be used; we have used an algorithm based on CSP [Tsa93] and VF2 [CFSV01, CFSV04], as
presented in [Lil06].

The result of the matching algorithm is a set where each element is a mapping from the pattern
graph to the target graph. In every such mapping, each node in an isomorphic region in the pattern
is mapped exactly once, each node in a negative region exactly 0 times and each node in a star
region 0..n times. A node in the target graph can be mapped only once in each mapping.

The algorithm is split into two functions—query and matchRegion. Query initializes the
matching by selecting the region to start from, invokes the recursive matchRegion and lastly
discards any results where negative regions are successfully matched. Generally, the fewer map-
pings we find for the first isomorphic region matched, the faster the algorithm will work. There-
fore, we generally start from the largest isomorphic region in the pattern as we are likely to find
relatively few mappings for that region.

1 query (pattern, target):
2 r← choose one isomorphic region in pattern
3 mappings← matchRegion (r, {}, target, {})
4 for each negative region in pattern:
5 c← a connection from a non-negative region to negative region
6 discard each mapping in mappings for which matchRegion (negative region, mapping, target, c) returns results
7 return mappings

Pre-Proceedings GT-VMT 2007 75/195

A Query Language With the Star Operator

The function matchRegion recursively traverses the regions in the pattern, attempting to ex-
pand the mappings found until all regions have been matched. When this function is called, we
either have the situation where no mappings have been passed, or where one or more neighbors
of the passed region have been matched in the inputMapping. In the first case (lines 2–3), the
function starts by finding all valid mappings for the passed region, in the second case (lines 5–
18), it identifies a set of candidate mappings for the partial pattern consisting of all previously
matched regions and the passed region, i.e. a set of mappings where the most recently matched
connection point of the passed region is satisfied (lines 5–11). The matching is done recursively
for star regions, implementing the pattern generation described in Subsection 2.3 (lines 12-16).

The function then checks that all other connection points to previously matched regions are
satisfied, thereby ensuring that the mapping is valid, i.e. that the topology of the candidate
mapping is consistent with that of the pattern (lines 17–18). At this stage we have identified all
valid mappings for the partial pattern matched so far and continue with the next region in lines
19–20.

A note on connection points: In this algorithm, we assume that each connection point consists
of two nodes in separate regions that are connected through an edge. A connection point is
satisfied by a mapping where the two nodes are mapped to nodes in the target graph that are
likewise connected. There is an implicit connection point between the two ends of a star region
which is dealt with on line 13 below. The connection point between the region to match and
the previously matched region is passed on to matchRegion as a parameter in order to identify a
starting node for matching.

1 matchRegion (region, inputMapping, target, connection):
2 if inputMapping is empty:
3 Mappings← all valid mappings region→ target
4 else:
5 Mappings← {}
6 starting node← the node in region connected through connection
7 find all mappings starting node→ target node satisfying connection
8 for each target node in these mappings:
9 start with inputMapping plus a mapping starting node→ target node

10 from there, find all valid mappings region→ target
11 add these mappings to Mappings
12 if region is a star region:
13 c← connection to next instance of star region to be mapped
14 for each Mapping in Mappings:
15 replace Mapping with M← matchRegion (region, Mapping, target, c)
16 add inputMapping to Mappings
17 for each matched neighbor of region:
18 discard all Mappings where a connection between region and neighbor is not satisfied
19 for each connection c to a non-negative, unmatched neighbor of region:
20 replace each Mapping in Mappings with M← matchRegion (neighbor, Mapping, target, c)
21 return Mappings

4 Validation and Applications

We have built an experimental modeling tool called Coral [AP04]. In this tool we have im-
plemented CQuery and a matching engine that supports the concepts we have discussed in this
paper.

Pre-Proceedings GT-VMT 2007 76/195

ECEASST

Q5: yE4:3:7V

E4:3:7VPxVV: 7

R:soC7

+ os7C :P Cp: Vy Gl [g]+ o.I.C3C p*ou Gl
+ o.N:sxVov: Gl
+ o.dVx Gl
+ o.�x o3x4 Gl

dV o7sBCC4:x7
BCC4:x7

BCC4:x7
BCC4:x7

uC7Vxo7:

"##$

 :soC7

"##$ q5: yE4:3:7V

g

x&.V xuVE4:3:7V $pxVV: 7"##$

 :soC7g

Figure 5: The CQuery Metamodel

4.1 Validation

The main idea in the design of the CQuery language is that the base of the pattern is a model in
the target language. The CQuery language consists of elements that extend a modeling language
to include information to control a query. That is, the pattern consists of a model fragment in the
target language, annotated with query configuration in the CQuery language. Since the CQuery
language itself is separated from the modeling language of the target, the target language does
not have to be modified to support CQuery.

We have chosen this approach for two reasons: First, there is no need to have a separate
component that verifies that the patterns are possible to construct using the target metamodel,
since adherence to the metamodel is implicit. Second, we believe that the creation of patterns
is easier, since a significant part can be constructed as any other model in the target modeling
language. However, this approach does not prevent the queries being presented in any particular
syntax, including the concrete syntax of the target modeling language or a more general object
diagram syntax. A discussion on using the concrete syntax of a modeling language in model
transformation rules can be found in [BW06].

The CQuery metamodel is shown in Figure 5. The metamodel is rather small, containing only
3 metaclasses, where the Element can point to any abstract model element, and hence is not di-
rectly a part of the CQuery language. The base element is Pattern, which acts as the starting point
of a query. Each Pattern consists of a set of Regions and an abstract container element which
is an element in any modeling language. This element owns all model elements in the pattern
which are not annotations of CQuery. A Region is either an isomorphic, a negative or a star
region. This is indicated by the corresponding flags. However, only one of these flags can be set
for a particular region in a pattern. A Region consists of an arbitrary number of QueryElements.
The QueryElement contains information to control which attributes and outgoing edges should
be ignored when matching a single element. In a well-formed pattern, all abstract elements have
a corresponding QueryElement, and all QueryElements are owned by a Region.

The version of CQuery implemented in this tool is slightly different, but shares the same fea-
tures that have been discussed in this paper. In our tool it is possible to create a query using
the concrete syntax of the target modeling language. If the target language does not have a con-

Pre-Proceedings GT-VMT 2007 77/195

A Query Language With the Star Operator

crete syntax, it is still possible to create queries, but without the benefit of having diagrams. The
matching engine in CQuery is based on the algorithm described in Section 3 and [Lil06]. The
algorithm is based on the VF2 and CSP algorithms and facilitates search planning and backtrack-
ing.

All star regions can optionally set an isMaximal flag. This flag can be used to indicate whether
the matching engine should attempt to expand a star region a maximal number of times, instead
of attempting to match an adjacent region to a subgraph that could actually be seen as a match
to the star region. This feature can be very useful since an application that uses CQuery does not
need to evaluate all possible matches if the point of interest is only the maximal possible matches
of the star region. It must, however, be noted that although the isMaximal flag is set, this does
not rule out the possibility that a star region could match a target graph where the star region had
no occurrences.

4.2 Applications

The CQuery implementation is used by a variety of components and add-ons in the Coral tool.
The most straightforward application of CQuery is a model search facility. In this component it
is possible to load a set of query patterns defined in the Coral tool and search for occurrences of
a pattern in open modeling projects. The results of the CQuery based search are reported as a set
of mappings between elements in the query pattern and the target model.

We have also implemented a constraint evaluation component based on CQuery. This compo-
nent is an integral part of the Coral tool, and uses a set of CQuery patterns to detect if modeling
language constraints or well-formedness rules have been violated. This component is based on
an approach where user models are continuously checked for errors. If an error is detected, the
offending elements are reported along with an explanation, or a suggestion for correcting the
problem. An example of how this constraint evaluation component has been used in a domain-
specific language for System-on-Chip design called MICAS, can be found in [LLL+05].

Another application is a generic model to text transformation engine [Nym06], which uses the
CQuery language as the query facility. This application can e.g. be used for generating source
code or documentation based on UML models.

Perhaps the most ambitious use of CQuery is a transformation engine based on the double
pushout approach [Roz97]. The transformation rules are given as a pair of a left-hand side
(LHS) and a right-hand side (RHS), and an explicit mapping between the LHS and RHS. This
transformation engine uses CQuery for matching the LHS to an occurrence in a model, and
to specify the RHS. The transformation engine has support for negative, isomorphic regions
and star regions, and provides in-place transformation of models. The transformation engine is
extensively used in the Coral tool for defining the rules for editing models, e.g. inserting states
or transitions in a statechart, or classes and associations in class diagrams. We have found that
especially the star regions are necessary when defining model editing transformations in UML,
where complex hierarchies of model elements occur frequently. Using the star region, we have
been able to reduce the number of model transformation rules to define the editor.

The Coral tool, including CQuery and all components mentioned in this section are open
source and are available for download from http://mde.abo.fi/.

Pre-Proceedings GT-VMT 2007 78/195

ECEASST

5 Conclusions and Future Work

We have presented a query language for model-driven development applications that introduces
the concept of star regions to represent hierarchical and repetitive structures. This query language
has been implemented in a modeling tool and used successfully in different applications based
on UML and other domain-specific modeling languages.

There are two clear future directions. First, introduce new region operators, such as cardinality
or disjunction. However, the need for these new operators should arise from actual modeling
tools. Also, we are studying the application of our query language to model transformations. In
fact, a model transformation tool component based on CQuery has already been implemented
and we plan to present these results in the near future.

Bibliography

[AP04] M. Alanen, I. Porres. The Coral Modelling Framework. In Kai Koskimies and Porres
(eds.), Proceedings of the 2nd Nordic Workshop on the Unified Modeling Language
NWUML 2004. TUCS General Publications 35. TUCS Turku Centre for Computer
Science, Jul 2004.

[ARS05] C. Amelunxen, T. Rötschke, A. Schürr. Graph Transformations with MOF 2.0. In
Giese and Zündorf (eds.), Fujaba Days 2005. September 2005.

[BH02] L. Baresi, R. Heckel. Tutorial Introduction to Graph Transformation: A Software
Engineering Perspective. In Corradini et al. (eds.), Proc. Graph Transformation
- First International Conf., ICGT 2002, Barcelona, Spain. LNCS 2505. Springer,
2002.

[BW06] T. Baar, J. Whittle. On the Usage of Concrete Syntax in Model Transformation
Rules. Technical report LGL-REPORT-2006-002, 2006.

[CFSV01] L. P. Cordella, P. Foggia, C. Sansone, M. Vento. An improved algorithm for match-
ing large graphs. In Proceedings of the 3rd IAPR-TC-15 International Workshop on
Graph-based Representations. Italy. Pp. 149–159. 2001.

[CFSV04] L. P. Cordella, P. Foggia, C. Sansone, M. Vento. A (Sub)Graph Isomorphism
Algorithm for Matching Large Graphs. IEEE Trans. Pattern Anal. Mach. Intell.
26(10):1367–1372, 2004.

[HHT96] A. Habel, R. Heckel, G. Taentzer. Graph grammars with negative application condi-
tions. Fundamenta Informaticae 26(3-4):287–313, 1996.

[HJE06] B. Hoffmann, D. Janssens, N. V. Eetvelde. Cloning and Expanding Graph Transfor-
mation Rules for Refactoring. Electr. Notes Theor. Comput. Sci. 152:53–67, 2006.

[Hof05] B. Hoffmann. Graph Transformation with Variables. In Formal Methods in Software
and Systems Modeling. Pp. 101–115. 2005.

Pre-Proceedings GT-VMT 2007 79/195

A Query Language With the Star Operator

[KA03] G. Karsai, A. Agrawal. Graph Transformations in OMG’s Model-Driven Architec-
ture: (Invited Talk). In Pfaltz et al. (eds.), AGTIVE. Lecture Notes in Computer
Science 3062, pp. 243–259. Springer, 2003.

[Koz91] D. Kozen. A Completeness Theorem for Kleene Algebras and the Algebra of Regu-
lar Events. In Logic in Computer Science. Pp. 214–225. 1991.

[Lil06] T. Lillqvist. Subgraph Matching in Model Driven Engineering. Master’s Thesis in
Computer Science, Department of Information Technologies, Åbo Akademi Uni-
versity, Turku, Finland, March 2006.

[LLL+05] J. Lilius, T. Lillqvist, T. Lundkvist, I. Oliver, I. Porres, K. Sandström, G. Sveholm,
A. Pervez Zaka. An Architecture Exploration Environment for System on Chip De-
sign. Nordic Journal of Computing 12(4):361–378, 2005.

[MHar] M. Minas, B. Hoffmann. An Example of Cloning Graph Transformation Rules for
Programming. Electronic Notes in Theoretical Computer Science, To appear.

[Nym06] M. Nyman. A Model-Based Approach to Text Generation from Software Models.
Master’s Thesis in Computer Science, Department of Information Technologies,
Åbo Akademi University, Turku, Finland, May 2006.

[OMG03] OMG. UML 2.0 OCL Specification. October 2003. Document ptc/03-10-14, avail-
able at http://www.omg.org/.

[OMG05a] OMG. MOF 2.0 Query / View / Transformation Final Adopted Specification.
November 2005. OMG Document ptc/05-11-01, available at http://www.omg.org/.

[OMG05b] OMG. UML 2.0 Superstructure Specification. August 2005. Document formal/05-
07-04. Available at http://www.omg.org/.

[Roz97] G. Rozenberg (ed.). Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, 1997.

[SWZ99] A. Schürr, A. J. Winter, A. Zündorf. The PROGRES Approach: Language and Envi-
ronment. Handbook of Graph Grammars and Computing by Graph Transformation:
Vol. 2: Applications, Languages, and Tools, pp. 487–550, 1999.

[Tsa93] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, London and San
Diego, 1993.

[VVP02] D. Varró, G. Varró, A. Pataricza. Designing the Automatic Transformation of Visual
Languages. Science of Computer Programming 44(2):205–227, August 2002.
http://www.inf.mit.bme.hu/FTSRG/Publications/varro/2002/scp2002_vvp.pdf

Pre-Proceedings GT-VMT 2007 80/195

ECEASST

Triple Patterns: Compact Specifications for the Generation of
Operational Triple Graph Grammar Rules

Juan de Lara1, Esther Guerra2, Paolo Bottoni3

1 jdelara@uam.es
Escuela Polit́ecnica Superior

Universidad Aut́onoma de Madrid (Spain)
2 eguerra@inf.uc3m.es

Dep. Ingenieŕıa Informática
Universidad Carlos III de Madrid (Spain)

3 bottoni@di.uniroma1.it
Dip. Informatica

Universit̀a di Roma La Sapienza (Italy)

Abstract: Triple Graph Grammars (TGGs) allow the specification of high-level
rules modelling the synchronized creation of elements in two graphs related through
a correspondence graph. Low-leveloperationalrules are then derived to manipulate
concrete graphs. However, TGG rules may become unnecessarily verbose when el-
ements have to be replicated from one graph to the other, and their actual derivation
cannot exploit the presence of reoccurring patterns. Moreover they do not take ad-
vantage from situations in which a normal creation grammar for one of the graphs
exists, from which TGG operational rules can be derived to build the other graph.

We present an approach to generating TGG operational rules from normal ones,
reducing the information needed to derive them, through the definition ofTriple
Patterns, a high-level, compact, declarative, and visual notation for the description
of admissible structures in a triple graph. Patterns can be expressed with respect to
classes defined in a meta-model, and instantiated with derived classes at the model
level, thus exploiting the inheritance hierarchies. The application of the generated
rules results into the (synchronized or batch) creation of the structures specified
in the patterns. We illustrate these concepts by showing their application to the
synchronized incremental construction of visual models and of their semantics.

Keywords: Graph Transformation, Triple Graph Grammars, Visual Languages.

1 Introduction

Model transformation is becoming increasingly popular with the advent of model-driven devel-
opment technologies, such as MDA [MSUW04], where model-to-model transformation plays a
central role. In such transformations, an input modelMA conforming to a meta-modelMMA is
transformed into an output modelMB conforming to a (possibly different) meta-modelMMB.
Several scenarios are of interest here. For example, in a syntax directed visual modelling tool
with separate models for concrete syntax and for semantic interpretation (which contains the

Pre-Proceedings GT-VMT 2007 81/195

mailto:jdelara@uam.es�
mailto:eguerra@inf.uc3m.es�
mailto:bottoni@di.uniroma1.it�

Triple Patterns

relevant semantic roles, see [BDD+04]), one would like to model the synchronized evolution
of both models (although a batch update of the semantic model could also make sense). For
tool integration applications, a (bi-)directional – batch or incremental – transformation is desir-
able [Sch94]. Finally, one could be interested in checking the consistency of two given models.

Triple Graph Grammars (TGGs) [Sch94] were proposed by Schürr as a means to model the
transformation of two graphs (source and target) related through a correspondence graph (whose
nodes have morphisms to elements in the other two graphs). The main idea is to model the
synchronized evolution of the two graphs, as well as the correspondence graph relating both,
by means of triple rules. From thesecreation triple rules, algorithms were given to produce
operationalrules to perform a translation in either direction (from source to target or vice versa),
to create the correspondence graph given two already existing source and target graphs, or to
check the validity of the correspondence graph.

In the aforementioned scenario of a syntax directed visual modelling tool, the use of TGGs
may be too cumbersome. In these environments, one models by means of rules the possible
user editing actions. This brings advantages in cases when one has to model complex editing
actions, where many elements are created in the concrete syntax, but requires the designer to
define complex TGG creation rules as well. It is however possible to identify patterns for such
situations, whereby certain elements in the concrete syntax always play the same role in the
semantic model. Therefore, we propose an approach in which the designer has to provide the
creation grammar for the concrete syntax only, and some triple patterns specifying admissible
relations between concrete syntax elements and semantic roles. We have defined a collection
of algorithms which exploit these patterns to produce sets of TGG operational rules that either
do a batch translation from concrete syntax to the semantic model, or produce the synchronized
evolution of both. This reduces the amount of information that the designer has to input, since
many triple patterns can be “applied” to a normal graph transformation rule.

The approach we present is suitable for integration in meta-modelling environments, as the
algorithms explicitly take into account the inheritance hierarchies of the meta-models. Although
the presented examples are taken from the Visual Languages area, these ideas are readily ap-
plicable to general model-to-model transformations.

Paper Organization. Section2 introduces TGGs, and some of the extensions we have pro-
vided to the underlying graph model [GL07]. Section3 presentstriple patternsand the algo-
rithms for generating operational triple rules. In Section4, we take into account the inheritance
hierarchy of the meta-model, presenting the concept ofabstract triple patterns. Section5 com-
pares with related research, and Section6 discusses conclusions and future work.

2 Triple Graph Grammars

Triple graphsare made of three graphs: source, target and correspondence ones. Correspondence
graph nodes are used to relate elements in source and target graphs. Triple graphs are depicted

as p : psrc
ps←− pcorr

pt−→ ptar, wherepsand pt are morphisms from the nodes in graphpcorr to
nodes in the source and target graphs. The structure of each graphpX (for X ∈ {src,corr, tar})
is given bypX = (VX,EX,srcX : EX →VX, tarX : EX →VX), whereVX is the set of vertices,EX

is the set of edges, andsrcX andtarX are functions defining the source and target nodes of every

Pre-Proceedings GT-VMT 2007 82/195

ECEASST

edgee∈ EX. Labels for nodes and edges can also be given.
In [GL07], we extended the underlying triple graph structure originally proposed in [Sch94]

with attributes for nodes and edges, and a typing by a type triple graph (or meta-model triple)
which may contain inheritance relations between nodes or edges. Moreover, we made the relation
between the source and target graphs more flexible, by allowingpartial morphisms from nodes
in the correspondence graph to nodes and edges in the other two graphs.

Figure1(a) shows an example meta-model triple taken from the area of visual modelling lan-
guages. The lower part (source graph) contains a simplified meta-model with the base classes for
the concrete syntax of a visual language [BG04]. Briefly, in a diagrammatic language, signifi-
cantspatial relationsexist amongidentifiable elements. The latter are recognizable entities in the
language, to which a semantic role can be associated, and which are univocally materialized by
means of a complex graphic element. Each such element is composed in turn of simpler graphic
elements, each possessing one or more attach zones, which define its availability to participating
in different spatial relations, such as containment or touching.

post−conditions

IdentifiableElement
GraphicElement

Complex

GraphicElement

AttachZone

Hybrid

<<final>> DotTouchesTouches Contains

SpatialRelation
*

Container Connection
Entity

Role

SemanticRole

Token TransitionElementHolder

pre−conditionsdecorates

post−conditions

ReferrableElement

Tok2Sem Pl2Sem Tr2Sem

Role

PlaceSem TransSem

Identifiable

Element

Place ArcTP ArcPT Transition

Container EntityConnection

Token

1

1..*

1..*

Syntax

2

1

1..*

1

1

*

*

Correspondence

Semantics

(a) (b)

target

source0..1

0..1

Token Holder TransitionElement

TokSem

decorates pre−conditions

Figure 1: (a) Meta-Model Triple for the Syntax and Semantics of Visual Languages (b) Special-
ized Meta-Model for Petri Nets.

The upper part (target graph) contains a meta-model that describes the possible abstract roles
for a transition-based (i.e. token-holder) semantics (i.e. semantics in the style of Petri nets,
UML 2.0 activity diagrams and automata). The correspondence graph assigns semantic roles to
syntactic elements. When a meta-model for a new visual language is defined, the newly defined
concrete syntax concepts inherit from the classes in the syntax meta-model. If the language has a
transition-based semantics, then the designer can create concrete roles by subclassing the classes
in the semantics meta-model. Thus, predefined, customizable model transformation libraries
implementing the operational semantics can be reused for the new language. Figure1(b) shows
the definition of the syntactic and semantic roles for Petri nets (we have omitted arc weights for
simplicity of presentation). The significant spatial relations are refined (by means of a creation
graph grammar, with some rules shown in Figures2(a) and3) to be theTouchesrelation between
instances ofArcPT (ArcTP) and a sourcePlace(Transition) or a targetTransition(Place), and
theContainsrelation, between instances ofPlaceandToken. Note that aPlacecan play both the
role of anEntity, in relation to the arcs which refer to it, and that of aContainer, in relation to
theTokensit holds.

TGG rules model the transformation of triple graphs. In [GL07] we adapted TGG rules to
the Double Pushout approach (DPO) [EEPT06], in which rules are modelled using three com-

Pre-Proceedings GT-VMT 2007 83/195

Triple Patterns

ponents,L, K andR, where:L (the left hand side, LHS) contains the elements to be found in the
host graph where the rule is applied;K contains the elements preserved by the rule application;
andR (the right hand side, RHS) contains the elements that should replace the part identified by
L in the host graph. The DPO approach has been lifted to work with any (weak) adhesive HLR
category [EEPT06] (such as those for graphs, Petri nets, etc.). In [GL07] we showed that the
categoryTriAGraph TriATG of attributed typed triple graphs (short triple graphs) and morphisms
is an adhesive HLR category. Therefore, in our case,L, K andRare triple graphs.

t1 : Token : Contains
: target

: Touches : ArcTP : source

p2: Place
: target

: Touches : ArcTP : Touches

t1: Transition

: source
: source

t1: Transition

t1 : Token

: Contains

p1: Place

: source

: ArcTP

p2: Place
: target

: Touches
: target

: Touches

: ArcTP

addTwoOutPlaces

{new}

: Touches : Touches

(a) (b)

{new}

S
e
m

a
n
ti
c
s

C
o
rr

.
S

y
n

ta
x

tr1: Tr2Semts1: Tok2Sem

trs1: TransSemtks1: TokSem
: post−conditions

: post−conditions

addTwoOutPlaces

ps1: Pl2Sem

: decorates

pls1: PlaceSem

ps2: Pl2Sem

pls2: PlaceSem

: Touchesp1: Place

Figure 2: (a) Rule Modelling an Editing Action. (b) Triple Rule Modelling the Synchronized
Creation of Semantic Roles.

The motivation for this work is the following. Given a normal graph grammar modelling
the possible editing actions in a modelling environment (i.e. working in the concrete syntax
only), how can we obtain triple rules that update or build synchronously the semantic model?
As an example, Figure2(a) shows a rule modelling a complex editing action by which, given an
existing transition, two places are created, connected with arcs from the transition to the places,
and a token is inserted into one of the places. Figure2(b) illustrates the desired corresponding
triple rule that synchronously creates the semantic elements together with the syntactic ones,
designating the created places as post-conditions for the transition. We could build by hand a
TGG rule for each single syntax editing rule. However, this task is repetitive, as elements in the
concrete syntax are related in the same way to elements in the semantic model (as specified in
the meta-model triple), i.e. a reoccurring pattern can be identified in the triple rules.

3 Triple Patterns

In this section we present the concept ofTriple Pattern, together with an algorithm that, given a
rule (like the one in Figure2(a)) and a set of patterns, generates an operational TGG rule (like the
one in Figure2(b)). For simplicity of presentation, we assume the simple graph structure men-
tioned in the first paragraph of Section2 (i.e. untyped graphs, with nodes in the correspondence
graph having two morphisms: one to a node in the target and one to a node in the source graph,
like in [Sch94]). The adaptation of the algorithm to more complex graph models is straightfor-
ward. Assuming that the input rule acts on the source graph only, the algorithm generates a TGG
rule that synchronously creates the necessary elements in the target graph. Symmetrically, the
input rule could act on the target graph, and the generated TGG rule would complete the source
graph. Moreover, as in [Sch94], it is also easy to generate slightly different TGG rules: batch
rules (i.e. rules assuming that the source elements are already created, and which then create

Pre-Proceedings GT-VMT 2007 84/195

ECEASST

the target graph elements), rules for creating the correspondence graph, assuming that the source
and target graphs are created, and rules for checking the validity of the correspondence graph.

A triple patternp : psrc
ps←− pcorr

pt−→ ptar is a triple graph conformant to a meta-model triple.
Formally, given a triple patternp and a triple graphG, we say thatG satisfiesp (written G |= p)
if an injective triple graph morphismm : p→G exists.

Example. We first start by giving an intuition of the algorithm through an example. In this
paper, we use triple patterns in order to specify in a visual, high level, acausal notation the kind
of configurations we want to find in our semantic models when certain syntactic configurations
are met (or the other way round). Thus, our triple patterns are triple graphs conforming to the
meta-model of Figure1. Figure3 shows a triple pattern depicting the needed structure in the
syntactic model for a holder to have a token in the semantic model. In this case, aPlacein the
syntactic model has an associatedPlaceSemrole (a subclass ofHolder) in the semantic model.
Similarly, aTokenin the syntactic model has aTokSemrole in the semantic model (a subclass
of classTokenof the semantic meta-model). In the semantic model, a tokendecoratesa holder,
while at the syntactic level the placecontainsthe token.

: Pl2Sem

: PlaceSem : TokSem
: decorates

: Place : Contains : Token

: Tok2Sem

S
yn

ta
x

S
em

an
tic

s
C

or
r.

Pattern for Tokens

: Pl2Sem

: PlaceSem
: decorates

: Place
addToken (syntactic Rule)

: Place

Apply

S
yn

ta
x

{new}

addToken’ (Generated Operational Rule)

S
yn

ta
x

S
em

an
tic

s
C

or
r.

{new}
: TokSem

: Contains

: Tok2Sem

: Token

: Token: Contains

Figure 3: Applying a Pattern to a Rule.

Figure3 also shows a syntactic editing rule (“addToken”) modelling the creation of a token
inside a place in the syntactic model. The objective of the algorithm (“Apply”) is to obtain the
triple rule shown in the figure, where information about the actions to be done at the seman-
tic level has been incorporated, together with the mapping between the syntactic and semantic
models. Roughly, we first try to find a match from the pattern to the rule’s RHS. Then we glue
the pattern and the RHS of the syntactic rule through the matching, to obtain the triple rule’s
RHS. Finally, we construct the triple rule’s LHS by taking the elements in the correspondence
and semantic graphs (of the RHS) which are related to elements which were already present in
the syntactic rule’s LHS.

The following algorithm describes the application of a set of patterns to a non-deleting normal
rule, resulting in one triple rule. Later, we show how the algorithm can be easily modified for its
application to deleting (and non-creating) rules.

Apply(P: SetOfTriplePatterns, rl: Rule): TripleRule

Let P = {pi}i∈I be a set of triple patterns of the formpi : pi
src

psi

←− pi
corr

pti−→ pi
tar andrl a non-

deleting normal rulerl : L
l←− K

r−→ R with L = K, and which therefore can be written as
rl : L

r→ R. The application ofP to rulerl results in a triple rulerl ′ as follows:

Pre-Proceedings GT-VMT 2007 85/195

Triple Patterns

1. Initialize the triple rulerl ′, copying rulerl in the source part ofrl ′. The resulting triple

rule is written asrl ′ : Lrl ′
r ′→ Rrl ′ , wherer ′ is a triple graph morphism (see Figure4).

Ltar = /0
r ′tar= /0 // Rtar = /0

rl ′ = Lcorr = /0
r ′corr= /0 //

lt= /0

OO

ls= /0
²²

Rcorr = /0

rt= /0

OO

rs= /0
²²

Lsrc = L
r ′src=r // Rsrc = R

Figure 4: Initialization of Triple Rulerl ′.

2. ∀pi : pi
src

psi

←− pi
corr

pti−→ pi
tar ∈ P:

(a) ∀pi
src

mi
j→ Rsrc, with mi

j an injective match from the source part ofpi (i.e. pi
src) to the

source part ofRrl ′ (i.e. Rsrc):

i. if ∃pi
src

m′ij→ Lsrc with mi
j = r ′src◦m′i

j then do nothing (as no elements in the source
part of the rule have been newly created for this match)else

ii. ∀O : (Osrc = pi
src)

os←−Ocorr
ot−→Otar such that the diagram of Figure5(a) com-

mutes, and that@O′
x|Ox ⊂O′

x ⊆ pi
x, x∈ {corr, tar}:

Otar

mtv
v

zzvv

Â Ä // pi
tar

Rtar

Ocorr

=

=

=

=

os

²²

mcvvzzvv

Â Ä //

ot

OO

pi
corr

pti

OO

psi

²²

Rcorr

rs

²²

rt

OO

pi
src

mi
jzzvv

id // pi
src

Rsrc

(a)

Otar

mtw
w

{{ww

Â Ä // pi
tar

t pww
{{ww

Rtar tr // R′tar

Ocorr

os
²²

mcw
w

{{ww

Â Ä //

ot

OO

pi
corr

cp{{ww

pti

OO

psi

²²

Rcorr

rs

²²

rt

OO

cr // R′corr

rt ′

OO

rs′

²²

pi
src

mi
j{{ww

id // pi
src

t pww
{{ww

Rsrc tr // R′src

(b)

Figure 5: (a) Glueingpi with the Right Hand Side ofrl ′. (b) Building the Pushout.

A. replaceRrl ′ : Rsrc
rs←− Rcorr

rt−→ Rtar with the pushout object of the previ-

Pre-Proceedings GT-VMT 2007 86/195

ECEASST

ous diagram, i.e.Rrl ′ = PushOut(Rrl ′ ,O, pi) 1. The pushout is shown in
Figure5(b).

B. Add appropriate nodes to L
[1] ∀n∈VRsrc // Check if we have to copy the correspondence node toL
[2] Newtar = Newcorr = Newunconn= /0 // Sets with newly added nodes toL
[3] if (∃n′ ∈VLsrc s.t. r ′src(n′) = n) then // n is also inL
[4] // seek correspondence nodes which are not inL
[5] ∀c∈VRcorr s.t. rs(c) = n∧@c′′ ∈VLcorr s.t. r ′corr(c

′′) = c
[6] // add correspondence node to L
[7] VLcorr = VLcorr]{c′} and setls(c′) = n′, r ′corr(c

′) = c
[8] Newcorr = Newcorr]{c′} // add it to the set
[9] // check for nodes in the target graph ofR which are not inL
[10] if (∃n′′ ∈VRtar |rt (c) = n′′∧@o∈VLtar |r ′tar(o) = n′′) then
[11] // add node to target graph ofL and toNewtar set
[12] VLtar = VLtar]{n′′′} and setlt (c′) = n′′′, r ′tar(n′′′) = n′′

[13] Newtar = Newtar]{n′′′}
[14] ∀n∈Newtar// Add nodes to target graph for which no correspondence exists
[15] ∀m∈VRtar s.t. (@m′ ∈VLtar s.t. r ′tar(m

′) = m∧∃pathU (r ′tar(n),m))2

[16] VLtar = VLtar]{m′}, setr ′tar(m
′) = m, Newunconn= Newunconn]{m′}

[17] Newtar = Newtar]Newunconn

C. Add appropriate edges toLX (for X ∈ {corr, tar}):
[1] ∀n∈ NewX // visit all new nodes...
[2] // check if some edge stems fromr ′X(n) and ends in a node∈ L
[3] if (∃e∈ ERX ,m′ ∈VLX s.t. sourceRX (e) = r ′X(n)∧ targetRX (e) = r ′X(m′)∧
[4] @e′ ∈ ELX s.t. r ′X(e′) = e) then
[5] // Add the edge toL
[6] ELX = ELX]{e′}, r ′X(e′) = e, sourceLX (e′) = n, targetLX (e′) = m′

Note that in step ii, we look for a total match frompi
src to Rsrc, and partial matches from

pi
corr and pi

tar. Thus, the triple graphO models the domain of such partial matches. With the
pushout, we add the part ofpi which was not matched to the rule. In stepii .B we copy the
necessary correspondence nodes to the LHS, if they were added to the RHS by the pushout and
the RHS node they refer to also belongs to the LHS. More than one correspondence node can be
connected to a source or target graph node (line [5]). We also allow nodes in the target graph
which are not connected with any correspondence graph node (added to the RHS by the pushout,
and appropriately copied to LHS by lines [14-17]). These are useful if we want to model a source
graph node related with many elements in the target graph, or “composite” connections in the
target graph.

The application of a set of patterns to a rule acting on the target graph simply requires substi-

1 The pushout of triple graphs [GL07, Sch94] is built component-wise, where in addition all the faces of the two
cubes commute. Examples are shown in Figures5(b) and6
2 PredicatepathU (a,b) is true if a path froma to b exists (without taking into account the edge direction) where
no node in the path receives a morphism from correspondence graph nodes, excepta. Moreover,b should not be
connected (directly or indirectly) with a newly created node, i.e. a nodep s.t.@p′ ∈VLtar with r ′tar(p′) = p.

Pre-Proceedings GT-VMT 2007 87/195

Triple Patterns

tuting src by tar in the previous algorithm. It is also easy to apply patterns to deleting rules (i.e.
rules which delete elements but do not create anything), by substitutingL by R in the algorithm.

Example (continued). Figure6 shows some details about the execution of steps2.a.ii.Band
2.a.ii.C of the algorithm in the case of the rule and the patterns shown in Figure3. The upper
part shows how the pushout is performed, and the lower part also shows how the new elements
c’ andn”’ are added toL in the generated TGG rule. Note that thePlaceSemobject associated
with thePlacebelongs toL, as thePlaceobject also belongs toL (step B in the algorithm).

src

: Place
R

R

R

: Place : Contains

: TokSem

: Tok2Sem

: Token

c: Pl2Sem

: decorates

p
corr

p
src

p
tar

: Contains

: TokSem

: Tok2Sem

: Token

c: Pl2Sem

: decorates
R’

R’

R’

L’

L’

L’

(m, ms, mc) (id, 0 , 0)

: Place
p

O

O

r’ (n’’’)

r’ (c’)

r’ (n’)

corr

src
i

i

i

i

corr

tar

corr

src

i
j

n’’: PlaceSem

n’’: PlaceSem
tar

corr

src n: Place

rs(c)

rt(c)

tar

tar

corr

src

c’: Pl2Sem

lt(c’)

n’: Place

ls(c’)

n’’’: PlaceSem

tar

: Token

: Contains : Token

: Contains

Figure 6: Steps in the Application of the Pattern in Figure3.

Figure7 shows additional patterns for the Petri nets example. According to the left pattern,
output places of a transition in the syntactic graph are post-conditionPlaceSemobjects for the
TransSemobject associated with the transition. The pattern to the right models the correspon-
dence for input places. By applying the three patterns to the rule in Figure2(a) (twice the pattern
for post-conditions, and once that for tokens), we obtain the operational triple rule in Figure2(b).

Pattern for Pre−Condition Holders

: post−conditions

: Touches

: TransSem

: Tr2Sem

: Transition
: source

: Pl2Sem

: PlaceSem

: Place
: target

: Touches

: ArcTP

C
o

rr
.

S
e

m
.

S
y
n

ta
x

Pattern for Post−Condition Holders

: pre−conditions

: Touches

: TransSem

: Tr2Sem

: Transition

: Pl2Sem

: PlaceSem

: Place : Touches

: ArcPT

: source : target

C
o

rr
.

S
e

m
.

S
y
n

ta
x

Figure 7: Additional Patterns for the Example.

The advantage of these patterns is that they are specified once, and can then be applied to
complex syntactic rules. The visual language designer does not have to modify by hand each
syntactic rule to add the semantic information, but only has to specify the patterns once. More-

Pre-Proceedings GT-VMT 2007 88/195

ECEASST

over, the patterns do not have to take into account which elements are created and which are
already existing, as this is specified in the normal rules to which patterns are applied. Thus,
the pattern may be used in several ways (i.e. in parts of the rule which are newly created or in
existing ones).

4 Abstract Triple Patterns

We consider now patterns with “abstract objects” and their application to rules also containing
“abstract objects” (i.e. abstract rules). When looking for a match from an abstract pattern to a
rule, abstract objects in the pattern can be matched with objects of more concrete classes in the
rules. An abstract rule is equivalent to the set of concrete rules resulting from the valid substitu-
tions of the abstract objects by instances of the subclasses of the abstract object class [BELT04].

In order to illustrate these concepts, we introduce a new example, which models the concrete
syntax and the semantic roles for a visual language of arithmetic expressions. The meta-model
triple is shown in Figure8(a). The language is made of blocks (abstractBlockclass), which can
be interconnected through data flows (DataFlowclass). Blocks contain data values (Dataclass),
which are propagated through the data flows and processed by the blocks. There are four types
of blocks: constants (i.e. blocks which store non-modifiable data values), displays (blocks that
output a value), inputs (blocks which capture a value from outside the system), and operators.
The latter manipulate data values, and can be adders, subtractors, multipliers and dividers. Data
flows contain the argument position, which is needed for non-commutative operations.

*

Entity

Constant Display

Contains
Identifiable

Element

Value: Float

Data

DataSem

Value: Float

DataToken

Token

OpSem

Block

preHolder

order: Int

postHolder

order: Int

BlockHolder

Holder Transition

Element

DataFlow

paramNo: Int

Connection
1

Touches Referrable

Element

Input

Container

Type: [a, s, m, d]

Operator

Syntax

BlockSem

Semantics

Type: [a, s, m, d]

OperatorTransition

post−conditions

pre−conditions

2

target

source

0..1

0..1*

(a)

Syntax

Sem.

Corr.

:Display

:BlockHolder

{new}

createDisplay

Pattern for Blocks

:Block

:BlockSem

:BlockHolder

Syntax

Sem.

Corr.

Syntax

:BlockSem

Resulting TGG rule

{new}

:Display

A
p

p
ly

(b)

Figure 8: (a) Meta-Model Triple for an Arithmetic Expressions Language. (b) Application of an
Abstract Triple Pattern.

In the semantic level, blocks are considered holders, data is considered a token (with value),

Pre-Proceedings GT-VMT 2007 89/195

Triple Patterns

and operators are transitions. Differently from the Petri net case, operators have both the roles of
transitions and holders (for the value resulting from the operation).

Before presenting the algorithm, we show the intuition using simple examples. Figure8(b)
shows an abstract pattern to the left. The pattern shows the desired relation between blocks (any
kind of block, asBlock is an abstract class) at the syntactic level andBlockHolderobjects in
the semantic graph. The syntactic rule to the right models the creation of a display object. The
application of the pattern to the rule results in a triple rule where the block object in the triple
pattern has been matched to a display object, as display has a more concrete type.

Consider now the situation depicted in Figure9. The left part shows two patterns. The first one
describes that aBlockHolderis a post-condition for anOperatorTransitionobject at the semantic
level when anOperatorobject is connected through aDataFlowto aBlockabstract object. This
pattern is abstract, and would be equivalent to four patterns, resulting from the substitutions
of the Block object by objects of each one of its subclasses. The second pattern associates an
OperatorTransitionobject with anOperatorobject.

:Operator

Transition

Type = t

:Operator

Type = t

Syntax

Corr.

Sem.

:postHolder

order = n

:BlockSem

:BlockHolder

:Block

:Touches:DataFlow

paramNo = n

:OpSem

:Operator

Transition

:Touches

:Operator

:source

Corr.

Syntax

Sem.

b :Block

:DataFlow

paramNo = x

d: Display

b: Display

:Touches :DataFlow :Touches

:Touches
:target

d: Display

Pattern for OperatorsPattern for post−holders

:target

:source :target

{NAC}

{NAC}

paramNo = 1{new}

Connect2Display syntactic rule

:OpSem

Figure 9: Abstract Triple Patterns and Abstract Rule.

The syntactic rule shown to the right models the connection of a block to a display and forbids
the connection of two displays. In principle, the first pattern cannot be applied to the rule because,
although theBlockobject in the pattern can get instantiated to theDisplayobject in the rule, class
Operatoris more concrete than classBlock. However, there are cases when aBlockis an operator.
Therefore what we have to do is to consider all concrete rules equivalent to the abstract one, and
then apply the patterns. Here, we want to distinguish the case when an object is both aBlockand
anOperator, and the case where the object is aBlockand not anOperator.

In order to define the construction of concrete rules from abstract patterns, we rely on the
partial order¹ induced by the inheritance relationship on the set of classes in the meta-model,
so thatA¹ B if A inherits, even indirectly, fromB, or if A is equal toB.

The following algorithm describes the previous processes.

AbstractApply(P: SetOfTriplePatterns, rl: Rule): SetOfTripleRules

Let P = {pi}i∈I be a set of triple patterns of the formpi : pi
src

psi

←− pi
corr

pti−→ pi
tar andrl : L

l←−
K

r−→ R a non-deleting rule withL = K, and thereforerl : L
r→ R. The application ofP to rl

results in a set of triple rulesR′rl = {rl ′j} as follows:

1. SetR′rl = /0.

Pre-Proceedings GT-VMT 2007 90/195

ECEASST

2. Let Rrl = {rl k}∪{rl } be the set of concrete rules equivalent torl (see [BELT04]) and rl
itself.

3. ∀rl k ∈ Rrl , R′rl = R′rl ∪Apply(P, rl k). That is, we apply the patterns to each rule. Note that
we allow a match from a pattern to a rule if a structural match is found, and if all types in
the rule are more concrete or equal to the corresponding types in the abstract pattern.

4. ∀rl ′ ∈ R′rl : if ∃rl ′′ ∈ R′rl s.t. rl ′ is more concrete thanrl ′′ (rl ′ ¹ rl ′′) thenR′rl = R′rl \{rl ′}.
That is, we eliminate rules “subsumed” by others (same structure, equal or more concrete
types).

5. ∀rl ′ ∈R′rl : if ∃rl ′′ ∈R′rl s.t. rl ′′src¹ rl ′src then add a NAC torl ′ with all the nodes inrl ′′ that
are refinements of nodes ofrl ′, whererl ′src is the normal rule resulting by taking the source
graphs of triple rulerl ′.

Figure10 shows the result of applying the patterns in Figures8(b) and9 to the abstract rule
in Figure9. The first rule considers the case whenBlockobjects are notOperators. The second
considers the case when objects areOperators. Note how, due to the NACs, the application of
these rules is mutually exclusive

b :Block

:Touches :DataFlow

:BlockSem

:BlockHolder

d: Display

:Touches

:target

paramNo = 1 b: Display

{NAC}

b: Operator

:BlockHolder :BlockHolder

:BlockSem:BlockSem

d: Display

:Touches :DataFlow :Touches

b: Operator

S
yn

ta
x

C
o

rr
.

S
em

an
ti

cs

b: Display

{NAC}

:DataFlow

paramNo = x

:Touches :target

d: Display

:DataFlow

paramNo = x

:Touches :target

d: Display

Connect2Display’ generated TGG rule

:source

{new}

{NAC}

{NAC}

Connect2Display’’ generated TGG rule

:Operator
Transition

:postHolder

order = 1

:OpSem

:source :target

paramNo = 1{new}

{NAC}

S
yn

ta
x

C
o

rr
.

S
em

an
ti

cs

:BlockSem

:BlockHolder

Figure 10: Generated Operational TGG rules.

5 Related Work

Our approach is inspired by the seminal work in [Sch94] and aims at providing an efficient way
to obtain TGG operational rules, whenever a grammar for one of the graphs already exists. In
this scenario, patterns do not need to specify which elements should be created and which should
already exist in one of the graphs, as this is expressed in the normal rule to which the pattern is
applied. When specifying a declarative TGG rule, one has still to indicate which elements should
be present, and which ones are new. Thus, patterns may be used in several ways, which makes
them more flexible and declarative than normal TGG rules as defined in [Sch94].

In addition, we have taken advantage of meta-models with the concept of abstract patterns.
These are more compact than normal patterns, as they are equivalent to a number of concrete
patterns resulting from the substitution of each object by instances of subclasses of the former
object class. The concept of inheritance in TGG rules is of course not new, as existing TGG
approaches based on meta-models such as [KS06] and [BGN+04] already consider inheritance.

Pre-Proceedings GT-VMT 2007 91/195

Triple Patterns

Our contribution in this aspect is the observation that abstract patterns can be applied to rules with
more abstract typing, and that a set of operational triple rules is generated which discriminates
the right types by using negative application conditions. In addition, the concepts of triple rules
with inheritance is fully formalized in the DPO approach in [GL07].

Due to lack of space, we have only presented the algorithms for translating in both directions;
however generating operational rules for the scenarios described in [KS06] is also possible. In
particular, it is possible to produce rules for creating the correspondence graph (assuming the
source and target graphs already exist), to check the validity of the correspondence graph and
for incremental updates. Further developments of TGGs can also be taken into account. For
example, in [GW06], an efficient algorithm for incremental transformation was suggested, by
relating the created nodes in the correspondence graph. Our patterns can also be used to create
such relations.

A precedent to this work can be found in [G7̈9], where G̈ottler describes a programming
language as a triple with the syntax, the semantics and a functionφ describing how the semantic
model is built from the syntactic one. In addition, he proposes meta-rules that modify either
syntactic or semantic standard rules. In our case, we use triple patterns instead of meta-rules.
Our triple patterns generate triple rules that are used to build the semantic model. Thus, they
play the role of theφ function in G̈ottler’s approach.

We believe this work is also relevant for the QVT community [QVT], as some efforts have
been made to formalize QVT using TGGs. The most immediate similarities are found in the
QVT relations, however attempts to formalize also the QVT Core have also been made[Gre06].

With respect to the application area of visual languages, Baar has proposed the use of TGGs
to connect concrete and abstract syntax, so as to make it possible the static verification of the
compliance between both [Baa06]. His proposal is however related to the structure of the visual
sentence, and not to its operational interpretation. Moreover, it does not exploit inheritance, and
requires the presence of display managers, relating the abstract and the concrete syntaxes.

6 Conclusions and Future Work

In this paper we have presentedTriple Patternsas a compact means to obtaining operational
TGG rules starting from normal graph grammar rules. We have shown that the approach is
suitable for its combination with meta-modelling by considering the inheritance hierarchy in the
meta-models. We have applied these ideas to the synchronized evolution of syntax and semantic
models, improving previous work in [BDD+04].

There are several open issues. The first one is to study to which degree patterns can be au-
tomatically derived from the meta-model triple. In general this process cannot be fully auto-
mated. However, for our particular application case, it could be possible, as we just model three
kinds of structures at the semantic level:TokensdecoratingHolders, andHoldersbeing pre- and
post-conditions forTransitionElements. We could take the information of which classes in the
semantic meta-model inherit from the base classes, and to which classes they are related in the
syntax graph. However, for general applications, only an approximation can be derived.

Although not explicitly mentioned, our abstract patterns can only have abstract objects in the
source graph, as, typically, concrete elements in the target graph are created. One can however

Pre-Proceedings GT-VMT 2007 92/195

ECEASST

extend the notion of abstract rule [BELT04] to allow abstract nodes also inR and in the target
graph. For our application, this would allow the designer to include predefined patterns in the
semantic level (using only predefined classesToken, HolderandTransitionElement), thus helping
towards the automatic generation of the triple patterns from the meta-model triple.

Up to now we have not considered problems related to the manipulation of attributes, which
is up to future work. In addition we have only considered positive patterns, but we are currently
working to extending this approach with patterns containing also negative conditions. The al-
gorithms we have presented assume that the syntactic rules are “bigger” than the patterns. The
study of the opposite case is still an open problem. In principle, by considering partial matches
from patterns to rules, one could devise ways to generate additional triple rules with extended
context. It is also worth studying whether we can extend the application of a pattern to general
rules (i.e. not only deleting or non-deleting). A first line of attack might consider the splitting of
a general rule into a sequence of one deleting and one non-deleting rule.

Finally, we are considering the application of the notion of triple graph grammars and meta-
rules to the generation of operational semantics, for example the token game in the case of Petri
nets.

Acknowledgements: This work has been partially sponsored by the Spanish Ministry of Ed-
ucation and Science with projects MOSAIC (TSI2005-08225-C07-06) and MODUWEB (TIN
2006-09678), and the EC’s Human Potential Programme under contract HPRN-CT-2002-00275,
SegraVis. The authors gratefully thank the referees for their useful suggestions.

References

[Baa06] T. Baar. Correctly defined concrete syntax for visual models. InProc. MoDELS/UML
2006. LNCS 4199, pp. 111–125. Springer, 2006.

[BDD+04] P. Bottoni, M. De Marsico, P. Di Tommaso, S. Levialdi, D. Ventriglia. Definition
of visual processes in a language for expressing transitions.J. Vis. Lang. Comput.
15(3-4):211–242, 2004.

[BELT04] R. Bardohl, H. Ehrig, J. de Lara, G. Taentzer. Integrating Meta-modelling Aspects
with Graph Transformation for Efficient Visual Language Definition and Model Ma-
nipulation. InProc. FASE. LNCS, pp. 214–228. Springer, 2004.

[BG04] P. Bottoni, A. Grau. A Suite of Metamodels as a Basis for a Classification of Visual
Languages. InProc. VL/HCC. Pp. 83–90. IEEE Computer Society Press, 2004.

[BGN+04] S. Burmester, H. Giese, J. Niere, M. Tichy, J. Wadsack, R. Wagner, L. Wendehals,
A. Zündorf. Tool integration at the meta-model level: the Fujaba approach.J. Softw.
Tools Technol. Transfer6:203–218, 2004.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer.Fundamentals of Algebraic Graph Trans-
formation. Springer, 2006.

Pre-Proceedings GT-VMT 2007 93/195

Triple Patterns

[G7̈9] H. Göttler. Semantical Description by Two-Level Graph-Grammars for Quasihier-
archical Graphs. InProc. Workshop Graph Theoretic Concepts in Computer Sci-
ence – Graphs, Data Structures and Algorithms. Applied Computer Science 13. Carl
Hansen Verlag, 1979.

[GL07] E. Guerra, J. de Lara. Event-Driven Grammars: Relating Abstract and Concrete
Levels of Visual Languages.To appear in Software and Systems Modeling (SoSyM),
2007.

[Gre06] J. Greenyer. A Study of Model Transformation Technologies: Reconciling TGGs
with QVT. Master/diploma thesis, University of Paderborn, July 2006.

[GW06] H. Giese, R. Wagner. Incremental Model Synchronization with Triple Graph Gram-
mars. InProc. MoDELS/UML 2006. LNCS 4199, pp. 543–557. Springer, 2006.

[KS06] A. Konigs, A. Scḧurr. Tool Integration with Triple Graph Grammars - A Survey.
Electronic Notes in Theoretical Computer Science148:113–150, 2006.

[MSUW04] S. J. Mellor, K. Scott, A. Uhl, D. Weise.MDA Distilled. Addison-Wesley, 2004.

[QVT] QVT specification, at http://www.omg.org/docs/ptc/05-11-01.pdf.

[Sch94] A. Scḧurr. Specification of Graph Translators with Triple Graph Grammars. InProc.
WG’94. LNCS, pp. 151–163. Springer, 1994.

Pre-Proceedings GT-VMT 2007 94/195

ECEASST

A Subgraph Operator for Graph Transformation Languages

Daniel Balasubramanian, Anantha Narayanan, Sandeep Neema,
Feng Shi, Ryan Thibodeaux, and Gabor Karsai

Institute for Software-Integrated Systems
Vanderbilt University

Nashville, TN 37235, USA

Abstract: In practical applications of graph transformation techniques to model
transformations one often has the need for copying, deleting, or moving entire sub-
graphs that match a certain graph pattern. While this can be done using elementary
node and edge operations, the transformation is rather cumbersome to write. To
simplify the transformation, we have recently developed a novel approach that al-
lows selecting subgraphs from the matched portion of the host graph, applying a
filter condition to the selection, and performing a delete, move, or copy operation
on the filtered result in the context of a transformation rule. The approach has been
implemented in the GReAT language and tested on examples that show the practical
efficacy of the technique. The paper describes the technique in detail and illustrates
its use on a real-life example.

Keywords: model transformations, graph transformations

1 Introduction

Practical model-driven software development necessitates software tools that transform models,
and these tools are often implemented using graph transformation principles. Graph transforma-
tion formalisms (e.g. single and double pushout [Roz97]) are based on node and edge matching,
followed by creation of new nodes and edges, and/or removal of matched nodes and edges. In
real-life applications, where the model transformations were implemented using graph transfor-
mation rules, we have observed the need for a more sophisticated operation that can move, delete,
or copy entire subgraphs after the match has been computed.

The specific problem can be described as follows. We have a graph transformation language
that supports graph rewriting rules; the left hand side of the rule is matched against a host
graph, and if the match is successful, then the actions specified by the right hand side are ex-
ecuted. These actions can include deleting and inserting new edges and nodes. We argue that
these elementary graph modification operations are often very low level, and practical users may
want to use more complex, subgraph-oriented operations. The problem is especially apparent in
graph transformation languages where the pattern nodes and edges could have cardinalities (like
GReAT [AKN+06]), resulting in multiple matches from one activation of a rule. In this case,
one has to create many simple rules to iterate over the results of the matching, as well as relating
elements of different matches: clearly a cumbersome and error prone task.

For example, consider a model that contains a graph of nodes that are connected in a simple
linear fashion, and some of the nodes have their ‘color’ attribute set to ‘red’ and some set to

Pre-Proceedings GT-VMT 2007 95/195

A Subgraph Operator for Graph Transformation Languages

‘green’. If we want to find all the ‘red’ nodes and the edges that connect them (but only them),
this can be done with a simple graph pattern. However, moving these ‘red’ nodes plus the edges
between them into a different model container while discarding any ‘red-green’ edges requires
a rather non-trivial sequence of operations (consisting of simple node and edge addition and
deletions).

Motivated by this and similar examples, we have developed an approach for specifying (‘se-
lecting’) subgraphs from the result of the ‘match’ phase of the rule execution. These resulting
subgraphs can then be deleted, copied, or moved to a different part of the graph. We have im-
plemented this feature in the context of the GReAT language. The paper revisits the GReAT
rule execution behavior, introduces the new ‘group’ concept and how it has extended the rule
execution mechanism, presents a detailed example, describes related results, and summarizes the
results and discusses potential research directions.

2 Background

The GReAT toolkit is an integrated environment for the specification and execution of model
transformations using graph transformation rules. The GReAT language is a graphical language
for specifying the transformation rules in terms of the meta-models of the source and target
languages. In this section, we will review the basics of the GReAT language.

2.1 The GReAT Language

The meta-models of the source and target languages of the transformation are specified using
UML class diagrams and added as packages in GReAT. In addition to this, GReAT allows users
to add additional packages to specify cross-domain links and temporary links using the UML
notation. Along with rule construction ingredients such as Blocks and Rules, these form the
core concepts of the GReAT language, which can be subdivided into the following three sub-
languages:

• Pattern Specification Language

• Transformation Rule Language

• Sequencing and Control-Flow Language

Pattern Specification Language

The Pattern Specification Language is used to specify the graph pattern to be matched in the
host graph. The graph pattern consists of nodes and edges, which must correspond to classes
and associations from one of the existing packages. A pattern is a sub-graph in the host graph,
such as an association conn between two classes ClassA and ClassB contained in a class ClassC.
Figure 1 shows this pattern as seen in a GReAT rule. Such a pattern will match all associations
of type ‘conn’ between instances of classes ClassA and ClassB that are contained in a class of
type ClassC. A match binds the pattern variables classA, classB, and classC to three instances (of
the respective type) that satisfy the topological constraint expressed by the pattern. A condition

Pre-Proceedings GT-VMT 2007 96/195

ECEASST

Figure 1: Example GReAT Rule

requiring the absence of a node or edge is called a negative application condition, and it is
specified by using a pattern cardinality of zero for the appropriate elements.

Transformation Rule Language

The basic transformation entity of a GReAT transformation is called a transformation rule. A
rule consists of a graph pattern specified using the pattern specification language and an action
on the pattern elements or newly created elements. Three types of actions are allowed: Bind,
specifying that the element is to be matched in the host graph; CreateNew, specifying that the
element should be newly created; and Delete, specifying that the element must be matched and
then deleted from the graph. The rule interacts with other rules in the transformation using
an Input Interface for receiving nodes matched in a previous rule and an Output Interface for
passing elements to the next rule. A boolean expression can be inserted as a Guard to enforce the
execution of a rule only under certain conditions. In addition, a special element called Attribute
Mapping can be added to supplement the rule with C++ code. The Attribute Mapping code can
be used to perform additional functions such as performing computations and setting the values
of attributes for the existing or newly created objects. Note that a rule may generate multiple
matches. For instance, if classC contains two instances of classA and two instances of classB,
with the appropriate pairs connected via separate instances of the ‘conn’ association, the pattern
matching yields two matches and the rule actions will be executed for each match. Each rule
can also be configured to be executed for one, randomly selected match or for all the possible
matches. Figure 1 shows an example GReAT rule with the input ports on the left and the output
ports on the right. The node Item is marked with the CreateNew action (indicated by the tick
mark on the bottom right), and the rest of the nodes are marked with Bind.

A transformation rule in GReAT is a composite structure that includes both the LHS and the
RHS of the transformation. In other words, elements that are marked with the Bind action can be
considered as the LHS of the rule, and other elements in the same pattern that are marked with
the CreateNew or Delete actions can be considered as the RHS. (Note that nodes to be deleted

Pre-Proceedings GT-VMT 2007 97/195

A Subgraph Operator for Graph Transformation Languages

are matched first.)
The basic unit on which a rule operates is called a packet, which consists of nodes of the

host graph to be bound to the input ports of the rule, one-to-one. When a rule fires, the pattern
matching algorithm finds the matching subgraphs in the host graph, depending on the pattern
specified in the rule. As mentioned above, a single rule execution may find multiple matches.
From our example, given a classC, there could be multiple classB and classA objects associated
via a conn, all being the children of the classC. Once these matches are found, the rule actions
are executed for each match. For each match and action execution output packets are generated
and placed at the output ports of the rule. The nodes bound to the output ports of the rule will
provide the output packet(s) of the rule, and that will subsequently function as the input packet(s)
of the next rule in the sequence of rules. In the case of the first rule, the nodes forming the input
packet are specified by the user.

Sequencing and Control Flow Language

The sequencing and control flow language allows users to compose a series of rules specified
using the transformation rule language. The sequencing allows users to connect multiple rules
in a sequence such that each rule is executed in the order determined by the direction of the
connections between the ports of the rules.

For the sake of convenience and manageability, rules can be composed in a hierarchy by
placing a set of rules in a Block or a ForBlock. When a sequence of rules is placed in a Block,
each rule processes all its input packets and then passes the produced set of output packets to
the next rule. In the case of a ForBlock, each input packet of the parent ForBlock passes through
all the rules before the next packet is processed. Blocks also allow recursion by connecting the
output of the last rule in the block to the input interface of the block.

Conditional execution of rules can be specified by using the Test and Case blocks. A Test
block contains multiple Case blocks, each specifying a desired match and a set of connected
output ports, but no CreateNew and Delete elements. The output(s) of the Cases are connected
to the output(s) of the parent Test. Each Case is tried, and the output produced by the successful
one is place on the output interface of the Test.

3 The Group Operator

As it was discussed in section 2, our current implementation for a graph re-writing rule’s execu-
tion works in two sequential steps:

• Step 1: Find all the valid matches in the host graph for the given pattern (i.e., match the
LHS of the rule in the host graph) and the given binding for the input ports.

• Step 2: For each match, independently, apply the rule action(s). This can include deleting
elements, creating new elements, and changing attributes.

The major limitation with this algorithm is the inability to apply a single rule action across
multiple matches. After all matches are computed, the rule’s action is executed individually

Pre-Proceedings GT-VMT 2007 98/195

ECEASST

on each match; furthermore, there exists no mechanism by which one can access any informa-
tion about other matches while processing a specific match. This can sometimes pose a severe
limitation to the types of transformations one can write.

For instance, the user may need the ability to operate on an entire subgraph (composed from
multiple matches) as a whole rather than on individual elements. If this subgraph may contain an
arbitrary number of elements, then the graph pattern cannot be specified as a simple rule. What
is needed is a way to find smaller pieces of the subgraph, and then combine these pieces to form
the entire subgraph. In terms of GReAT this means we need a way to combine multiple matches
of a rule, and then perform the rule’s action on these combined matches.

To achieve this capability, we had to extend the existing GReAT language. The solution was
the introduction of a new syntactic element known as a ’Group’ into the language. A single
Group element can be inserted into any rule, which allows the user to select an arbitrary set of
pattern elements from that rule. A Group element is associated with a set of rule elements (pattern
nodes and edges), but the only action allowed on these elements is Bind. The elements in this set
are then used to form the subgraphs mentioned in the previous paragraph. It is important to note
that the introduction of a Group element into a rule does not affect the pre-existing semantics of
pattern matching in any way; that is, the set of matches found by a rule is the same regardless
of whether or not that rule contains a Group element. A Group affects the semantics of a rule
only after the pattern matching phase of that rule’s execution, at which point the Group is used
to specify how to form the set of subgraphs (also called subgroups to emphasize the relationship
with the Group element). The user has the ability to control the way in which matched elements
are added to the subgroups by specifying ’filtering criteria’ for the Group that determine whether
a matched element should be added to a subgroup or not. After all subgroups have been formed,
then normal rule execution proceeds, with the exception that actions are performed for each
subgroup (instead of for each match per the default behavior).

The precise semantics of a transformation rule that contains a Group element are informally
described below:

• Step 1: Find all the valid matches in the host graph for the given pattern and given bindings.
A match contains one matched element from the host graph for each pattern element.

• Step 2: After all the matches are found, insert a subset of the matched elements into a
single subgroup based on the user specified criteria. These criteria are boolean expressions
that compare matched elements of the current match to elements already inserted into
subgroups; if the expressions evaluate to true, then the matched elements are inserted into
the subgroup against which the expressions were evaluated. If the expressions evaluate
to false for all existing subgroups, then the matched elements are inserted into a newly
created subgroup.

• Step 3: Iterating over the subgroups, for each subgroup, execute the regular rule actions.
Note that these actions apply to rule elements that are not part of the Group, and they in-
clude actions like creating new elements, and changing attributes. Matched (non-grouped)
elements that are slated for deletion are removed at this time as well.

• Step 4: For each subgroup, apply the group action. This can be any of the following:

Pre-Proceedings GT-VMT 2007 99/195

A Subgraph Operator for Graph Transformation Languages

Figure 2: Signal Flow Model

– Bind: No action will be taken on any of the objects in the subgroup.

– Move: All of the objects in the subgroup will be moved into a single container: a
node that has a ’containment’ relationship with the Group expressed in the rule. If
this container is found via the matching process, then it must be a unique node. If
this container is newly created, then it is unique (per Step 3). Edges whose endpoints
are in different subgroups (or one of them is outside of all subgroups) are removed.

– Copy: All objects of the subgroup will be copied into all containers that have a ’con-
tainment’ relationship with the Group expressed in the rule. Edges whose endpoints
are in different subgroups (or one of them is outside of all subgroups) are removed.

– Delete: All objects in the subgroup will be deleted.

Steps 3 and 4 describe how the introduction of the group operator gives the ability to apply a
single rule action across multiple matches. Further, step 4 describes two abilities that were not
present in GReAT before the introduction of the Group operator: the ability to copy or move
entire subgraphs. While this moving and copying ability is trivial in the case that only a single
object is moved or copied, moving an entire subgraph, which includes a number of nodes and
edges, is a non-trivial task and requires the use of a group-like operator. This is especially true if
one does not know a priori the number of elements that will have to be moved.

The next section describes an example of the Group operator in a transformation.

4 Example of the Group Operator

This example, drawn from the domain of signal processing, demonstrates how to use the Group
operator in a transformation. Suppose we have a signal flow chain with five primitive compo-
nents, as shown in Figure 2.

Each primitive component has a numeric Id associated with it. We assume that the components
PC0, PC1, and PC2 have an Id of 0, while components PC3 and PC4 have an Id of 1. The
user wishes to write a transformation that will disconnect the components according to their
Id number and put each group of connected components in its own newly created compound
component; components with the same Id should be moved to the same compound component,
and the existing connections between them should be preserved. In our case, the result of the
transformation applied to the example model shown in Figure 2 should be composed of two new
compound components that contain the signal flow components as shown in Figure 3.

Pre-Proceedings GT-VMT 2007 100/195

ECEASST

Figure 3: Resulting Model

Figure 4: Group Rule

Figure 4 shows a GReAT transformation rule with a Group element that will accomplish this
transformation. The incoming context for this rule is the compound component in which the
signal flow chain is found. Figure 5 shows this transformation rule using a special visualization,
highlighting only those elements that belong to the Group (PC1, PC2 and Signal). As can be
seen in the rule shown in Figure 5, the Group element contains three elements: two primitive
components and the association class Signal. The action of the Group is “move”, meaning that
objects bound to pattern variables contained in the Group (i.e., PC1, PC2, and Signal) are moved
to the Compound Component “newCC”. The execution order of the rule is:

• Step 1: Pattern matching. Find all matches for the pattern described in the rule and apply
the Guard to discard matches in which two primitive components with different Id-s are
bound to PC1 and PC2. The code in the Guard is:

return (PC1.Id()==PC2.Id());

This ensures that only matches consisting of two connected primitive components with the
same Id will be considered. For the input model shown in figure 2, the matches are:

Pre-Proceedings GT-VMT 2007 101/195

A Subgraph Operator for Graph Transformation Languages

Figure 5: Group Rule visualized in Set Mode

{(PC0, PC1), (PC1, PC2), (PC3, PC4)}

• Step 2: Form the subgroups. Host graph elements that are part of the same match will all
be inserted into the same subgroup, and the subgroups are formed using the user specified
grouping criteria. The grouping criteria code for our example above is the following:

return (the_PC1.Id()==other_PC2.Id());

This code is an attribute of the Group and works as follows. PC1 and PC2 are prefixed
with “the ” and “other ”, respectively. These special prefixes give the ability to compare
model elements that are part of different matches. The “the ” prefix refers to a graph
element (bound to a pattern element) found in the current match that is being considered
for insertion into a subgroup, while the “other ” prefix refers to graph elements that are
already contained in a subgroup. In our example, the code returns true (and results in
the insertion of the graph elements from Groups of two different matches into the same
subgroup) if the Id of primitive PC1 in one match is the same as the Id of the primitive
PC2 in a different match. The two subgroups formed in our example will be:

Group 1: PC0, PC1, PC2 (and the connections between them)
Group 2: PC3, PC4 (and the connections between them)

• Step 3: Apply the regular rule action, which in our example is the creation of new objects.
After the subgroups are formed in step 2, a new CompoundComponent object is created
for each subgroup.

• Step 4: Perform the Group action on each subgroup, which in our example is to move
the subgroups. The constituent parts of the subgroups, assigned in Step 2, are moved

Pre-Proceedings GT-VMT 2007 102/195

ECEASST

into the newly created CompoundComponent from Step 3. Note that the edge that did
exist between PC2 and PC3 is deleted due to the fact that those two pattern classes were
inserted into different subgroups.

5 Group Implementation

Using a Group in a transformation rule requires that the rule

1. specifies the Group and the elements it contains,

2. specifies the grouping criteria for the matches, and

3. specifies the action to be performed on the Group.

We have implemented Groups using the Set concept of GME [GME]. A Set is a universal
container that can hold any number of arbitrary elements. In this manner, a Group can contain
any type and number of pattern nodes and edges normally found in a transformation rule. The
visualization interface of GME allows the user to specify which pattern classes are part of the
Group without drawing any explicit edges or associations (see previous figure).

In addition to specifying which elements of a rule belong to the Group, one must also specify
the grouping criteria, which determine the subgroup into which each match should be placed.
These criteria are written as boolean expressions that evaluate to either true or false, and are
added as an attribute to the Group element. The expressions are used to compare each match
to matches that have already been placed into a subgroup; if the expressions evaluate to true,
then the current match is added to the subgroup against which the criteria were evaluated. If the
expressions evaluate to false for all existing subgroups, then the current match is inserted into
a newly created subgroup. The elements of two distinct matches are identified in the grouping
criteria by prefixing “the ” and “other ” to the class names of the elements. For instance, to place
all instances of ClassA that have the same InvoiceNumber into one Group, the expression would
be: the ClassA.InvoiceNumber() = other ClassA.InvoiceNumber().

It should be noted that the distinct pattern matches may share common elements, and it could
happen that the grouping criteria allow the insertion of the same element into two different sub-
groups. As this could lead to erroneous rule execution, we believe this is an error that should
result in raising exception. We are currently investigating how exception handling could be in-
corporated into the language.

Once the Group has been completely specified, the action for the Group can be set to Bind,
Move, Copy, or Delete by selecting the desired value for the GroupAction attribute. The effect
of these actions was described earlier in section 3.

Currently, Groups have been fully implemented in the GR-Engine [AKN+06], our interpreter
for performing model transformations, and we have a prototype implementation in our code gen-
erator. The previous version of the GR-Engine had an architecture as shown in Figure 6, except
without the Group Manager module. Because of the loose coupling between the Pattern Matcher
and the Effector, implementing Groups primarily consisted of inserting a ‘Group Manager’ mod-
ule between the two and defining the appropriate interfaces between the modules.

In the case that a rule contains a Group, the GR-Engine functions in the following manner:

Pre-Proceedings GT-VMT 2007 103/195

A Subgraph Operator for Graph Transformation Languages

Figure 6: Modified GR-Engine Architecture

• The Pattern Matcher functions exactly as before, finding all valid matches. After all
matches are found, they are passed to the Group Manager.

• Using the grouping criteria given by the user, the Group Manager forms the set of sub-
groups. After all subgroups are formed, they are passed to the Effector using a newly
defined interface created to handle subgroups.

• For each subgroup, the Effector first performs the regular rule action and then performs
the Group action (as previously described).

6 Related Work

Transformations on hierarchical subgraphs have been approached previously by Hoffman and
then Janssens. Hoffman [DHP02] introduced transformations on subgraphs by delimiting the
subgraphs with frames in which edges do not cross between frame boundaries. The copying
of subgraphs within this context permits copying only the nodes and edges contained within a
frame. The Group operator uses a similar idea for specifying membership; however, it allows for
restricting node membership in a Group by having the user select specific nodes and associations
within the subgraph using the set utility of GME. Only those selected nodes and associations
(between the selected nodes) will have the Group action (bind, move, copy, or delete) performed
on them.

Janssens [GSJ06] further generalized the copying of subgraphs by introducing two concepts
known as “copy” and “oncopy” within the MotMot project [SG05]. MotMot generates code for
templatized graph transformation rules created in the UML profile for Story Driven Modeling
(SDM) [SGJ05]. The “copy” and “onCopy” constructs allow for copying specific nodes and

Pre-Proceedings GT-VMT 2007 104/195

ECEASST

edges in the same way the Group operator does; however, we believe, the Group operator’s
membership criteria allow for more selectivity in the GReAT implementation than in MotMot.

It is also worthwhile to mention the concept of amalgamated graph transformations presented
by Ehrig et al. in [BFH87] and utilized in the Algebraic Graph Grammar system (AGG) [TB93].
Amalgamated graph transformations decompose transformations into simpler graph productions
that can be performed in parallel and the results combined synchronously. The synchronous
combination restriction follows from the sharing of graph objects between the productions, i.e.,
actions performed on the results must be done such that conflicting or duplicate actions are not
performed on the same object. Currently, our Group operator does not automatically detect
whether or not a single element is part of two different subgroups. In the case that an element
does belong to two distinct subgroups, then the transformation is non-deterministic if the sub-
groups are moved to different containers. Otherwise, in the case that the subgroups are simply
copied, deleted, or bound, the result is deterministic. Ensuring that the subgroups do not contain
common elements is an area in which we are currently working.

Concerning the capabilities of other transformation tools, it seems those that use textual frame-
works as part of their back-end have more ease and expressive power for implementing complex
transformations in their pattern/rule specifications. Most likely, tools such as ATL [ATL] or
VIATRA2 [VIA] could implement a feature similar to our Group operator more easily with
their textual transformation languages instead of implementing a graphical artifact interpreted
by transformation engines.

7 Summary and Future Work

We have introduced a technique for specifying arbitrary subgraphs in graph transformation rules
that allows the handling of such subgraphs as a unit to be moved, copied, and deleted. We have
implemented this new extension in the GReAT language and have tested it on several examples.
The current implementation is available only in the interpreted mode, but we started working on
the code generator that compiles such rules into executable code. We believe the technique is
fairly efficient and allows the compact description of complex graph operations.

There are several potential interesting research topics that arise from the initial idea. One is
related to code generation: how to generate efficient code that computes the Groups and performs
the necessary graph operations on the subgraph? Another direction is related to treating the
Groups as ”the” result of pattern matching and passing it to subsequent rules (note that Groups
essentially combine results from multiple matches). A third direction could be a more compact
specification of the Groups with node and edge types that are ‘generic’ (i.e. not of a specific
node or edge type). We plan to investigate these directions in the near future.

Acknowledgements: The research described in this paper has been supported by a grant from
NSF/CSR-EHS, titled ”Software Composition for Embedded Systems using Graph Transfor-
mations”, award number CNS-0509098, and by NSF/ITR, titled ”Foundations of Hybrid and
Embedded Software Systems”, award number CCR-0225610.

Pre-Proceedings GT-VMT 2007 105/195

A Subgraph Operator for Graph Transformation Languages

Bibliography

[AKN+06] A. Agrawal, G. Karsai, S. Neema, F. Shi, A. Vizhanyo. The Design of a Language
for Model Transformations. Journal on Software and System Modeling 5(3), Sept.
2006.

[ATL] ATL Project. An ECLIPSE GMT Subproject.
http://www.eclipse.org/m2m/atl/

[BFH87] P. Boehm, H.-R. Fonio, A. Habel. Amalgamation of graph transformations: a syn-
chronization mechanism. J. Comput. Syst. Sci. 34(2-3):377–408, 1987.

[DHP02] F. Drewes, B. Hoffmann, D. Plump. Hierarchical Graph Transformation. Journal of
Computer and System Sciences 64:249–283, 2002.

[GME] GME 6 User’s Manual.
http://www.isis.vanderbilt.edu/Projects/gme/

[GSJ06] P. V. Gorp, H. Schippers, D. Jannsens. Copying Subgraphs within Model Reposito-
ries. In 5th International Workshop on Graph Transformation and Visual Modeling
Techniques (GT-VMT). Vienna, Austria., 2006.

[Roz97] G. Rozenburg. Handbook of Graph Grammars and Computing by Graph Transfor-
mation. World Scientific, 1997.

[SG05] O. M. H. Schippers, P. V. Gorp. Model Driven, Template Based, Model Transformer
(MoTMoT). 2005.
http://motmot.sourceforge.net/

[SGJ05] H. Schippers, P. V. Gorp, D. Janssens. Leveraging UML Profiles to Generate Plugins
From Visual Model Transformations. Electr. Notes Theor. Comput. Sci. 127(3):5–16,
2005.

[TB93] G. Taentzer, M. Beyer. Amalgamated Graph Transformations and Their Use for
Specifying AGG - an Algebraic Graph Grammar System. In Dagstuhl Seminar on
Graph Transformations in Computer Science. Pp. 380–394. 1993.

[VIA] VIATRA2 Framework. An ECLIPSE GMT Subproject.
http://www.eclsipse.org/gmt

Pre-Proceedings GT-VMT 2007 106/195

http://www.eclipse.org/m2m/atl/
http://www.isis.vanderbilt.edu/Projects/gme/
http://motmot.sourceforge.net/
http://www.eclsipse.org/gmt

ECEASST

Adding Recursion to Graph Transformation.

Esther Guerra1, Juan de Lara2

1 eguerra@inf.uc3m.es
Dep. Ingenieŕıa Informática

Universidad Carlos III de Madrid (Spain)
2 jdelara@uam.es

Escuela Polit́ecnica Superior
Universidad Aut́onoma de Madrid (Spain)

Abstract: In this paper we define recursive rules in the double pushout approach
(DPO) to graph transformation. Classical DPO rules are extended with abase case
conditionand arecursion condition. Mechanisms are provided to pass the match
from both conditions to the rule’s left hand side, and also between two consecutive
steps in the recursion. The approach is useful when recursive structures (such as in-
heritance hierarchies, nested component hierarchies, networks of functional blocks,
etc.) have to be processed. Although we present the recursion for DPO, it can
also be adapted to other approaches to graph and model transformation. We present
examples for model transformation, model simulation and model optimization in
different application domains.

Keywords: Graph Transformation, Double Pushout, Recursion.

1 Introduction

Graph transformation [Roz97] is becoming increasingly popular to express computations on
graphs due to its formal, declarative and graphical nature. One of the most popular formal-
izations of graph transformation is the double pushout approach (DPO) [EEPT06], which uses
category theory to model rules and derivations. Graph transformation has been used in many
application areas, such as modelling with visual languages [Min02], visual simulation [LV04],
model transformation [EGL+05] and refactoring [EJ04]. The manipulation of structures with
nested, iterated or recursive elements is common in many of these areas.

The formal nature of DPO graph transformation allows interesting analysis techniques, for
example to investigate confluence, termination and rule independence [EEPT06]. Moreover,
the categorical framework has lifted the results from graphs to any (weak) adhesive HLR cate-
gory [LS04, EEPT06] (short AHLR category). However, compared to other approaches [BV06,
KASS03, SWZ99, NNZ00], it lacks expressivity when handling complex structures involving
recursion, iteration or nesting. Processing such structures usually implies performing a certain
action in their different parts (e.g. copying all the attributes of a class to its children). Moreover,
sometimes the structure has to be traversed in a certain order (e.g. when propagating a change
in a network of logical gates). Having high-level constructs to process these kinds of structures
is interesting for model transformation, but as we show, it is also useful for other manipulations
such as optimization and simulation.

Pre-Proceedings GT-VMT 2007 107/195

mailto:eguerra@inf.uc3m.es�
mailto:jdelara@uam.es�

Recursion in Graph Transformation

Usually, there are two options when processing a recursive structure with DPO rules. As each
element has to be consecutively processed, a solution is encoding helper control elements in the
graph, which guide the application of the rules. However, this is sometimes undesirable or im-
possible, as it implies modifying the meta-model (or type graph) of the model to be transformed.
Another possibility is toflatten the structure. For example, performing the transitive closure
(by addingancestoredges) can flatten an inheritance hierarchy. Again, this solution implies a
modification of the type graph as well as pre- and post- processing phases.

In this paper we proposerecursive rules, which enhance the expressive power of DPO rules
in order to make the recursive processing of structures easier. We extend classical DPO rules
with mechanisms for passing matching information between consecutive rule applications, and
to guide rule execution by traversing structures recursively, where the rule’s action is executed at
each step in the recursion. We present our approach in the AHLR framework, in such a way that
it becomes valid for any AHLR category. In particular, we show an instantiation for attributed
typed graphs. Our approach has several benefits. On the one hand, there is no need to add extra
elements to process the recursive structure. This usually leads to simpler and higher-level rules
as we abstract from “accidental details”, concentrating on the essence of the problem. On the
other hand, the execution of a recursive rule can be more efficient than several DPO simple rules,
as the matches are guided through the structure. Moreover, the framework can be adapted to
other graph and model-transformation approaches.

Paper organization. Section2 gives an overview of transformation formalisms that consider
the processing of recursive structures. Section3 introduces the DPO approach. Section4presents
our proposal for recursive rules. Section5 shows additional examples for model simulation and
transformation. Finally, section6 ends with the conclusions and future work.

2 Related Work

Some approaches to model transformation are found in the literature to handle recursive appli-
cations of a rule. Usually, they are based on the use of some control flow language that guides
the transformation execution. For example, GReAT [KASS03] provides hierarchical data flow
diagrams for control execution, where rules can be placed on blocks and participate in recursive
calls. Control flow in VIATRA [BV06] is specified by means of Abstract State Machine (ASM)
programs, while in Fujaba [NNZ00] it is done by means of story diagrams. In the OMG’s
QVT [OMG] specification, complex transformations can be implemented by using the Opera-
tional Mapping Language either in an imperative or in an hybrid approach.

Other model transformation languages embed control mechanisms in the rules. One example
is UMLX [Wil03], which provides rule encapsulation, thus allowing composition and some de-
gree of recursion. However, traversing a structure can be incomplete if a match of the rule is
not found in some recursion step. MOLA [KBC05] incorporates mainly loopings in the rules
as graphical control structure, and allows the transitive closure and the traversal of the recursive
structure in a single rule. However, the recursion semantics is not formally defined.

In addition to control languages, some approaches offer recursive mechanisms in the left hand
side (LHS) of the rules. These are conditions that can be recursively evaluated by traversing
certain structures in the graph. For example, PROGRES [SWZ99] and Fujaba provide path

Pre-Proceedings GT-VMT 2007 108/195

ECEASST

expressions. Thus, given an initial match, edges can be matched by testing their existence or
by traversing them. Another example is VIATRA, where queries on graphs can be expressed
by generalized (recursive) graph patterns, which may contain a nesting of positive and negative
patterns of arbitrary depth. However, neither path expressions nor recursive patterns can guide
the rule execution. That is, they are expanded by a recursive evaluation, but the rule that contains
them is applied once. Consecutive rule applications require the use of a control language and a
mechanism to pass the elements matched in previous executions to the next execution step.

With respect to approaches based on DPO, there are some attempts to increase the expressive-
ness of DPO rules for refactoring [EJ04]. However, these do not consider recursive application
of rules. In parallel graph transformation [Tae96], standard DPO rules are extended by allowing
certain parts of the rules to be instantiated an arbitrary number of times, and providing synchro-
nization mechanisms controlling the way the matching should occur. Thus, the approach is a
way to describe in a concise way a (possibly infinite) number of rules in which a certain part is
replicated. Again, this is a mechanism for rule expansion, where the rule is applied once.

3 The Double Pushout Approach

In this section we give a brief overview of the double pushout approach (DPO) to graph trans-
formation. See [EEPT06, Roz97] for a more extensive presentation.

Graph grammars are made of rules with a left and right hand side (LHS and RHS). When
a rule is applied to a graphG (the host graph), an occurrence of the LHS (a matching mor-
phism) has to be found inG, which can be then substituted by the rule’s RHS. DPO uses cate-
gory theory to model rules and derivations, and its theory has been lifted from graphs to (weak)
AHLR categories [LS04, EEPT06]. These categories are based on a distinguished classM of
monomorphisms. Examples of AHLR categories are graphs, typed graphs, P/T nets (indeed a
weak AHLR category) and attributed typed graphs. Thus, not only graphs, but also objects in
any (weak) AHLR category(C,M) can be rewritten using DPO rules.

DPO rules are modelled using three components:L, K andR. L contains the necessary ele-
ments to be found in the object to which the rule is applied.K (the gluing object) contains the
elements that are preserved andR those that should replace the identified part in the object being
rewritten. Roughly,L−K are the elements that should be deleted by the rule application, while
R−K are the elements that should be added. We present these two concepts in the following
definitions, taken from [EEPT06].

Definition1 (DPO rule) Given a (weak) AHLR category (C, M), a DPOrule p= (L l←K
r→R)

consists of three objectsL, K and R called left hand side, gluing object and right hand side
respectively, and morphismsl : K → L, r : K → Rwith l , r ∈M .

Definition2 (DPO derivation) Given a DPO rulep = (L l← K
r→ R), an objectG, and a mor-

phismm: L→G called match. Adirect derivationG
p,m
=⇒H from G to an objectH is given by the

diagram to the left of Fig.1, where (1) and (2) are pushouts. A sequenceG0 ⇒ G1 ⇒ ...⇒ Gn

of direct derivations is called aderivationand is denoted asG0
∗⇒Gn.

Pre-Proceedings GT-VMT 2007 109/195

Recursion in Graph Transformation

L
m
²²

(1)

Kloo r //

d
²²

(2)

R
m∗
²²

X

/ ..

p

Lxoo

m
²²

(1)

Kloo r //

d
²²

(2)

R
m∗
²²

G Dl∗oo r∗ // H G Dl∗oo r∗ // H

Figure 1: DPO Direct Derivation (left). Direct Derivation by DPO Rule with NAC (right).

Sometimes, rules are equipped with application conditions [EEPT06] constraining their ap-
plicability. For simplicity, we only deal with negative application conditions (NACs). These
have the formNAC(x), wherex: L→ X is a morphism. Morphismm: L→ G satisfiesNAC(x)
if there is no morphismp: X → G in M ′ with p◦ x = m (see right of Fig.1). M ′ is an addi-
tional class of distinguished morphisms than can beM if the latter is the class of all monomor-
phisms [EEPT06]. Next, we define the concepts of AHLR system, grammar and language.

Definition 3 (AHLR system, grammar and language) AnAHLR systemAHS= (C,M ,P)
consists of a (weak) AHLR category (C, M) and a set of productionsP. An AHLR grammar
AHG= (AHS,S) is an AHLR system together with a distinguished start objectS. Thelanguage
L of an AHLR grammar is defined byL = {G | ∃S

∗⇒G}.

Example and Motivation. Fig. 2 shows some DPO rules in the category of typed graphs
GraphTG , where objects are tuples(G, typeG). The first element is a graph, and the second
one a typing functiontypeG : G→ TG from G to a distinguished graph called the type graph.
The type graph in the example is taken from a Role Based Access Control system. It models
hierarchies of roles (through relationparent), which can be granted permission (relationperm)
to execute certain functions. The rules present together in a single graph theL, K, R and X
components. Elements inL−K are marked as “del”, elements inR−K as “new” and elements
in X−L as “NAC”. We follow a UML-like notation, where the types are shown after a colon.

Rules in the example are used to eliminate redundant permissions in role hierarchies. A per-
mission is redundant for a role if an ancestor already defines it. The rules first calculate the tran-
sitive closure of relation parent by adding helper edges of typeanc. RulecreateDirectAncestor
creates such edge to a direct parent. The iterated execution of rulecreateAncestorperforms the
transitive closure. RuleremoveRedundantPermissionremoves relationperm from a role if an
ancestor already has the same permission. We use an execution control structure for rules based
on layers. The three previous rules are assigned the layer one and are applied as long as possible.
Once no rule in this layer can be applied, the next layer is executed. The second layer contains
ruledeleteAncestor, which deletes the helperancedges (i.e. a post-processing step).

: perm

: anc

: perm

: Function

{del}

Layer 1
removeReduntantPerm

: Role

: Role

: anc
{del}

Layer 2
deleteAncestor

: Role

: Role

: Role

Layer 1
createAncestor

:parent

: anc: anc : anc

{NAC} {new}

Role

Function

parentanc

Type Graph

perm

: Role

: Role

: parent
: anc: anc

createDirectAncestor
Layer 1

{new}{NAC}
: Role

: Role

Figure 2: Example DPO Rules.

Pre-Proceedings GT-VMT 2007 110/195

ECEASST

Note how, in order to detect redundant permissions, we need to addanc helper edges from
each role to all its ancestors. This is done because we do not know how long is the path of
parent edges starting from a given role. Without the helper edges one could build different rules
(similar to removeRedundantPermission) to eliminate the redundant permission when there is
a direct connection between two roles, when they are separated by a path of two, of three and
so forth. However, for arbitrary structures, this does not work as we may need arbitrarily many
rules. In addition, DPO simple rules only have information of nodes and edges matched by its
LHS. There is no control mechanism that allows moving through a given structure and pass the
matching information between consecutive derivations. Hence, control information has to be
encoded in the data or, as in this case, the recursive structure has to be flattened.

The solution of adding helper edges (anc in the example) is not optimal. First, we have to
modify the type graph (see Fig.2). This is undesirable or even impossible in real applications,
if the type graph is a standard meta-model of some modelling language (such as UML), and is
being used by other users and tools. Moreover, if several computations have to be performed, it
is not feasible that each one of them adds different helper structures to the type graph. Second,
there is a pre-processing phase in which helper edges are explicitly added, and a post-processing
phase in which the edges have to be removed. These two phases produce a computation overload.
In the next section we propose a solution to alleviate these problems.

4 DPO Recursive Rules

In this section we extend DPO rules with several artefacts to modelconditionsfor the base and
recursive cases, as well as a mechanism to pass part of the match between the base and recursive
cases, and between two consecutive steps in the recursion.

Definition 4 (DPO recursive rule) A DPO recursive rulepr = (L l←− K
r−→ R, Ib, I r ,(I j i j←−

P j p j

−→ L) j∈{b,r},(I j i jr←− P jr p jr

−→ I r) j∈{b,r}) is made of:

• A DPO ruleL
l←− K

r−→ R, a base conditionIb and a recursion conditionI r .

• The relations between the base (j = b) and recursion (j = r) conditions andL by means of

their common elements (objectP j), (I j i j←− P j p j

−→ L) j∈{b,r}, with i j , p j ∈M .

• The relation between the base and the recursion conditions by means of their common

elements (objectPbr), Ib ibr←− Pbr pbr

−→ I r , with ibr, pbr ∈M .

• The relation between the recursion condition for two consecutive steps in the recursion by

means of their common elements (objectPrr), I r irr←− Prr prr

−→ I r , with irr , prr ∈M .

with the constraint thatPb andPr have to be preserved by the DPO rule application, that is, there
are morphismsa: Pb → K, b: Pr → K s.t. l ◦a = pb andl ◦b = pr , i.e. triangles (1) and (2) in
Fig. 3 commute.

Pre-Proceedings GT-VMT 2007 111/195

Recursion in Graph Transformation

Ib Pbiboo

pb
>>

ÂÂ>
>

a

¼¼
(1)

Pbr

ibr
{{

=={{

pbr
DD

!!DD

L K
loo r // R

I r Priroo

pr
ÄÄ

??ÄÄ

b

DD
(2)

Prr

irr
??

prr

__

Figure 3: Formalization of a DPO Recursive Rule.

Fig. 4 shows a recursive rule that eliminates redundant permissions in role hierarchies, equiv-
alent to the set of standard DPO rules in Fig.2. To the left, the rule is shown according to the
theory, to the right using a more compact and intuitive notation that will be used throughout the
paper.

: Role : Function

{del}: Roler2: Role
2

r1: Role
1

: Role
2

: Role
1

: Role
2

: Role
1

rb: Rolera: Role

rc: Role
2

P
r

: Role
2

: Role
1

P
rr

: Role
2

: Role
1

P
br

I
r

I
b

P
b

: perm

: perm

1

2
: parent

DPO Rule

: parent

1 3

(1, 1)
(2, 2)

(1, 1)
(2, 2)

(1, 1)
(2, 2)

(1, 1)
(2, 2)

(1, 1)

(2, 2)

(1, 1)
(2, 2)

(1, 1)
(2, 2)

(2, 3)
(1, 1)

removeRedundantPermissionRecursive

(a)

r2: Role
2

Next:
Recursion(r1, r2)

rb: Rolera: Role

rc: Role
2

Next:
Recursion(ra, rc)

: Role : Function

{del}: Role

r1: Role
1

: parent : parent

1 : perm

: perm

1

2

Recursion(ra, rb: Role)Base DPO Rule
removeRedundantPermissionRecursive

(b)

Figure 4: A DPO Recursive Rule Example (a) Theoretical Notation. (b) Compact Notation.

The base conditionIb (labelled “Base” in the compact notation) identifies two roles related
through a parent relation. The DPO rule specifies that if both roles have permission to the same
function, then the permission of the child is deleted. The recursion conditionI r (labelled “Re-
cursion(...)” in the compact notation) goes down the role hierarchy, maintaining the match of the
highest role in the hierarchy identified by the base case. As we will see later, the DPO rule will
be applied for each step in the hierarchy identified by consecutive matchings ofI r . The following
shortcut is used in the compact notation for recursive rules: elementsPb andPr are hidden, but
can be calculated from the numeric labels. In this way,Pb (resp. Pr) is the intersection of the
numeric labels inIb (resp.I r) and the rule. Morphismspb andpr identify elements with the same
numbers. On the other hand, the relation betweenIb andI r (and between two recursive cases) in
the compact notation is given by means of the call after “Next:” in the base case. Thus,Pbr (and

Pre-Proceedings GT-VMT 2007 112/195

ECEASST

thereforeibr) is given by the actual parameters of the recursion call from the base case (that we
depict using the identities of nodes and edges, shown before the colon). Note also that morphism
pbr is given by the assignment of the formal parameters in the recursive condition (i.e.ra and
rb). In a similar way,Prr (and irr) is given by the actual parameters of the recursion call from
the recursive case andprr by the assignment of the formal parameters in the recursive condition
(i.e. ra andrb). Note how some formal parameters of the recursion may become unused by one
of the two recursive calls, and in this case they are just ignored.

4.1 Derivation by DPO Recursive Rule

A DPO recursive rule derivation is made of three steps, each composed by several sub-steps.
First step. The rule is executed for the base case (see Fig.5). A matcheb : Ib→G (calledbase

match) has to be found for thebase conditionIb, identifying the starting point in the recursive
structure to be processed. Then, arule matchmb

1 : L → G is sought forL, such thateb ◦ ib =
mb

1 ◦ pb, and which has to make(Pb, ib : Pb → Ib, pb : Pb → L) the pullback of(G,eb : Ib →
G,mb

1 : L → G), as square (1) in Fig.5 shows. Then, ruleL
l←− K

r−→ R is applied once inG,
yielding graphH1. As Proposition 1 shows, matcheb still exists inH1. If a matchmb

2 : L→ H1

is found such that square (2) in Fig.5 is pullback, we apply again the rule at that match. The
operation is repeated until no match fromL is found makingPb a pullback object. The output
of this step is the base matcheb, together with graphHn, obtained as a result of the repeated
applications of the DPO rule. The execution of the recursive rule finishes if@eb such that (1) is
pullback. The execution continues at step 2 even if the DPO rule is not applied.

Pb

ib
¢¢

¡¡¢¢
pb

;;

ÀÀ;;

(1)

Pb

(2)

ib
¢¢

¡¡¢¢
pb

<<

ÀÀ<<

Ib

eb
==

ÁÁ=
=

L
mb

1

££

¢¢££

K
loo r //

k1²²

R
r1

MMMMM

&&MMMM

Ib

eb
==

ÁÁ==

L
mb

2

££

¡¡££

K
r //loo

k2²²

R
r2
²²

· · ·

G D1
f1oo g1 // H1 D2

f2oo g2 // H2 · · ·Hn

Figure 5: Application of Recursive Rule. Step 1: Base Case.

Second step.The rule is executed for the first step in the recursion. Thus, a matcher
1 : I r →Hn

(calledrecursive match) is sought such that square (1) in Fig.6 commutes (i.e.eb◦ ibr = er
1◦ pbr)

and makesPbr a pullback object. As in the base case, a rule matchmr
1,1 : L → Hn is sought for

L such thater
1 ◦ ir = mr

1,1 ◦ pr and makesPr a pullback object, as square (2) shows. If match
mr

1,1 satisfies the constraints given by Proposition 2 (which guarantee the preservation ofeb),
the DPO rule is executed at that match yieldingHn+1. As Proposition 1 shows, matcher

1 still
exists inHn+1. If an additional matchmr

1,2 : L → Hn+1 is found such that square (3) in Fig.6
is pullback (and that satisfies Proposition 2), we apply the rule at that match. The operation is
repeated until no such rule match is found. In addition, the process is repeated for additional
recursive matchese′r1 commuting witheb and makingPbr a pullback object. This can be done as
eb is preserved by the DPO rule applications. The output of this step is a graphHm resulting from
the DPO rule executions, together with the set of recursive matches:{er

1,e
′r
1 , ...}. The execution

Pre-Proceedings GT-VMT 2007 113/195

Recursion in Graph Transformation

of the recursive rule stops if@er
1 such that (1) is pullback. Even if the DPO rule is not applied,

the recursive rule continues in step 3.

Pbr

ibr
¦¦

££¦¦
pbr
::

ÀÀ::

(1)

Pr

ir
§§

££§§
pr
55

½½5
5

(2)

Pr

(3)

ir
££

¡¡££
pr

;;

ÀÀ;
;

Ib

eb
LLLL

%%LLL
L

I r

er
1²²

L
mr

1,1
ttt

zzttt

K
loo r //

kr
1,1²²

R
r r
1,1

KKK

%%KKK
K

I r

er
1

<<

ÁÁ<<

L
mr

1,2
¤¤

¢¢¤¤

K
r //lroo

kr
1,2²²

R
r r
1,2²²

· · ·

Hn Dn+1
fn+1oo gn+1 // Hn+1 Dn+2

fn+2oo gn+2// Hn+2 · · ·Hm

Figure 6: Application of Recursive Rule. Step 2: First Recursive Call.

Third step. We execute the following steps in the recursion. The idea is similar to step 2,

but starting fromI r irr←− Prr prr

−→ I r instead ofIb ibr←− Pbr pbr

−→ I r . Recursive stepi +1 is applied
for each recursive match provided by previous recursive step,{er

i ,e
′r
i , ...}. Each DPO rule appli-

cation must preserve all these matches, thus each rule matchmr
i+1, j must satisfy the conditions

of Proposition 2 for each match provided by previous recursive step. The recursive steps are
executed as long as a matcher

j+1 is found for the next step in the recursion such that square (1)
in Fig. 7 is pullback.

Prr

irr
¥¥

££¥¥
prr
==

ÁÁ==

(1)

Pr

ir
¤¤

¢¢¤¤
pr
77

¾¾77

(2)

Pr

(3)

ir
ÄÄ

ÄÄÄÄ
pr

>>

ÂÂ>
>

I r

er
i

LLLL

%%LLL
L

I r

er
i+1²²

L
mr

i+1,1
ttt

yytt

K
loo r //

kr
i+1,1²²

R
r r
i+1,1

LLL

%%LL

I r

er
i+1

ÁÁ>
>>

L
mr

i+1,2
¢¢

¡¡¢¢

K
r //loo

kr
i+1,2²²

R
r r
i+1,2²²

· · ·

Hm Dm+1
fm+1oo gm+1 // Hm+1 Dm+2

fm+2oo gm+2// Hm+2 · · ·Hp

Figure 7: Application of Recursive Rule. Step 3: Successive Recursive Calls.

Definition 5 (DPO recursive rule derivation) Given a DPO recursive rulepr = (L l←− K
r−→

R, Ib, I r ,(I j i j←−P j p j

−→L) j∈{b,r},(I j i jr←−P jr p jr

−→ I r) j∈{b,r}), an objectG, and a morphismeb : Ib→
G. A DPO recursive rule derivationG

pr ,eb
+3 Hp is built as follows:

1. The first step is given by the diagram in Fig.5, yielding graphHn and base matcheb.

(written G
(eb,mb

1)+3 H1
∗ +3 Hn).

2. The second step is given by the diagram in Fig.6, yielding graphHm and (a possibly

empty) set of recursive matches{er
1,e

′r
1 , ...} (written Hn

(er
1,m

r
1,1)+3 Hn+1

∗ +3 · · ·Hk
(e′r1 ,m′r1,1)+3 · · ·Hm)

3. The third step is given by the diagram in Fig.7, for each recursive match coming from the
previous application{er

j ,e
′r
j , ...}, yielding graphHp and a (possibly empty) set of recursive

matches{er
j+1,e

′r
j+1, ...} (written Hm

(er
j ,m

r
j,1)+3 Hm+1

∗ +3 · · ·Hs
(e′rj ,m

′r
j,1)+3 · · ·Hp)

Pre-Proceedings GT-VMT 2007 114/195

ECEASST

This third step is repeated until the set of newly found recursive matches is empty.

Remarks: The recursive rule execution starts at a unique matcheb. However, in each recursive
step, the execution considers all morphismse′rn . In a recursive step, the match is passed between
Ib and I r , and betweenI r and I r . This is because we want to continue the traversal of the
structure, even if no rule match forL is found at some step. As the DPO rule is executed as long
as possible in every step, and as we seeker

i+1 morphisms as long as possible1, it is possible to

have non-terminating derivations, writtenG
pr ,eb

+3 ∞ . The DPO recursive rule is applied if the
DPO rule is applied at least once.

Definition3 is modified in a straightforward way, by allowing productions in setP to be either
standard DPO rules, or DPO recursive rules. In a derivation, each step can be given by a standard
derivation or a recursive one.

Next, we show that morphismeb can be extended to the resulting graph of applying the DPO
rule. The discussion for morphismer is similar, so we only present the case foreb.

Proposition 1 (Morphism Extension for Recursive Rule) Given the diagram in Fig.8(a) (with
(1) pullback, (3) and (4) pushouts,ib, pb, l andr ∈M), morphismeb can be extended toH1.

Pb

ib
ÄÄ

ÄÄÄÄ
pb

>>

ÂÂ>
> a

OOOOO

''OOO
OOO

(1)

Pbidoo

a
²²

(2)

Ib

eb
@@

ÂÂ@
@

e′b

;;

L
mb

1

ÄÄ

ÄÄÄÄ
(3)

K
(4)

loo r //

k1²²

R
r1
²²

G D1
f1oo g1 // H1

(a)

Pb

idkkkkk

uukkkkk u
HH

$$HH
a

²²
Pb

ib
GG

##GG
pb

²²

X
ckkk

uukkkkkkkk

d

²²
Ib

eb

²²

K
lkk

kk

uukkkkkkk k1

HH
$$

L
mb

1

HH

$$HH
D1

f1j
jjjj

uujjjjj
G

(b)

Pb

u

~~

ib

¢¢

k1◦a

||

Ib

eb

²²

Xcoo

d
²²

G D1f1oo

(c)

Figure 8: (a) Extension ofeb Morphism. (b) Showing that (3) is a van Kampen Square. (c)
Universal Pullback Property.

Proof: First, note that (2) is a pullback. In order to show the existence of a morphisme′b : Ib→
H1, we use the fact that pushout (3) is a van Kampen square. For that purpose, we build a
cube taking (3) at the bottom, and pullbacks (2) and (1) as back-left and front-left faces (see
Fig. 8(b)). We close the cube by calculating the pullback ofeb : Ib →G and f1 : D1 →G, given
by (X,c: X → Ib,d : X → D1). By the universal property of pullbacks (see Fig.8(c)), there is
a unique arrowu: Pb → X (aseb ◦ ib = f1 ◦k1 ◦a). Pb is the pullback object ofk1 andd by the
pullback composition and decomposition lemma. The four lateral faces are pullbacks, and (3)
is a pushout alongM (l , f1 ∈M), and therefore a van Kampen square by definition of AHLR

1 Due to the possible presence of cycles in the graph to be traversed. This can be controlled with NACs in the
recursive condition, see the end of the section, and the last example in the paper.

Pre-Proceedings GT-VMT 2007 115/195

Recursion in Graph Transformation

category. Thus the top square is a pushout as well. In particularc: X → Ib is an isomorphism as
the oposite arrow is also an isomorphism. Therefore, we obtaine′b = g1◦d◦c−1 2

Note that in the first and successive recursive steps, the DPO rule can be applied as long as
possible. Moreover, after such rule applications, an additional matche′ri is sought in order to
repeat the rule applications. Therefore, a DPO rule application in the first recursive step has
to preserveeb (see Figure6). In a similar way, in recursive stepi + 1 a DPO rule application
has also to preserve matcher

i (see Figure6) as well as the set of matches output by previous
recursive step. The conditions for this preservation are stated in next proposition. We only show
the preservation of the base morphismeb in the first recursion step, as the other cases are similar.

Proposition 2 (Preservation of Base Match in First Recursive Step) Matcheb : Ib → Hn is
preserved after a standard rule application through matchmr

1,1 : L→ Hn (as Figure9(a) shows)

if ∃br : P→Pr where(P,bb : P→ Ib,bl : P→ L) is the pullback ofeb : Ib→Hn andmr
1,1 : L→Hn

(as Figure9(b) shows).

Pbr

ibr

¢¢££
££ pbr

ÁÁ>
>>

>>

(1)

Pr

ir
¤¤

¢¢¤¤
pr

88

¿¿88
(2)Ib

eb
NNNN

&&NNN
N

e′b

::

I r

er
1²²

L
(3)mr

1,1
rrr

yyrrr

K
loo r //

kr
1,1²²

R
r r
1,1
²²

Hn Dn+1
fn+1oo gn+1// Hn+1

(a)

P
bb

­­

bl

¶¶

br
==

ÁÁ==

Pbr

ibr¢¢££
££ pbr

ÁÁ>
>>

>>

(1)

Pr

ir
¤¤

¢¢¤¤
pr

88

¿¿88
(2)

b

»»
Ib

eb
NNNN

&&NNN
N

I r

er
1²²

L
mr

1,1
rrr

yyrrr
(3)

K
loo

kr
1,1²²

Hn Dn+1
fn+1oo

(b)

Figure 9: (a) Extension ofeb in Recursive Step One. (b) Condition for Standard Rule Derivation.

Proof: Using the fact that (3) is a van Kampen square, by using the pullback square spawned
by P as front left face, takingb◦ br : P→ K, and then following the construction shown in
Proposition1. 2

Remarks: In the general caseP is not isomorphic to the pullback object ofpbr : Pbr → I r and
ir : Pr → I r . If the conditions stated in this proposition are not satisfied, then the DPO rule cannot
be applied.

Example. Fig.10shows a derivation of the DPO recursive rule shown in Fig.4. First, a match
of the base conditionIb is identified in G. The match is given by the elements labelled with the
same numbers as inIb, which in addition are coloured. Next, a match of the LHS is sought in G
through the elements identified byIb (i.e. the roles matched by the base condition are the ones
used in the math of the LHS). One match is found for which the rule is applied, yielding graph
H1. The rule deletes a permission for a role if its parent already defines it (as the base condition
identified). Since no other match of the LHS is found in the graph for the base condition, the
first recursive step starts. A match ofI r in the graph is found that maintains the match for the
role labelled as “1”, and identifies the role labelled as “2” with its direct child. Next, a match

Pre-Proceedings GT-VMT 2007 116/195

ECEASST

Application
DPO rule

Case I r
Recursive

Case I r
Recursive

Application
DPO rule

through I r

LHS
Match

Application
DPO rule

through I r

LHS
Match

: Function

: Role

: Role

: Role

: Role
: Function2

1

: perm

: perm

: perm

G

: parent

: parent

: parent

: perm : perm

: Role

: Role

: RoleMatchb
Base

: perm

: perm

: parent

: parent

: parent

2

H2

: perm

: Role : Function

: Role

: Role

: Role

: Function

1

: perm

: perm

: parent

: parent

: parent

2

H3

through I

LHS

Case I

: Role

: Function

: Function2

1
: perm

: parent

: parent

: parent

H1

: perm : perm

: perm

: Role

: Role

: Role

: Role

: Function

: Function2

1

: perm

: perm

: perm

G

: parent

: parent

: parent

: perm : perm

b

: Role

: Role

: Role

: Function

: Role

: Function

1

: perm

: perm

: parent

: parent

: parent

H1

2

: perm : perm

: Role : Function

: Role

: Role

: Role

: Function

1

: perm

: perm

: parent

: parent

: parent

H1
2

: perm : perm

: Role : Function

: Role

: Role

: Role

: Function

1

: perm

: parent

: parent

: parent

H1
2

: perm : perm

: perm

: Role : Function

: Role

: Role

: Role

: Function

1

: perm

: perm

: parent

: parent

: parent

2

H2

: perm

: Role : Function

: Role

: Role

: Role

: Function

1

Figure 10: A DPO Recursive Derivation.

of the LHS is sought on the graph through the roles newly labelled “1” and “2”, but none is
found. Thus, a new step in the recursion starts. A new match ofI r is searched in the graph that
maintains the match for role “1” and identifies role “2” with its direct child. Now, two matches
of the LHS are found (i.e. the parent role has two permissions which role “2” also defines). In a
first application of the DPO rule, one of the permissions is deleted yielding graph H2. A second
application of the DPO rule at the other match deletes the second redundant permission yielding
graph H3. Since neither matches of the LHS nor matches of the recursive condition are found,
the derivation concludes.

Application Conditions. Previous derivation has started in the top-most role in the hierarchy.
However, the initial matcheb could also have identified other roles as base condition. In order to
identify the top-most role, we need a NAC associated toIb, which forbids the match if the role
has some parent. We extend recursive rules with NACs forIb, I r and the DPO rule.

Definition6 (DPO recursive rule with NACs) A recursive rule with NACspr = (L l←− K
r−→

R,NACL, Ib,NACIb, I r ,NACI r ,(I j i j←− P j p j

−→ L) j∈{b,r},(I j i jr←− P jr p jr

−→ I r) j∈{b,r}) is made of a

a recursive rule(L l←− K
r−→ R, Ib, I r ,(I j i j←− P j p j

−→ L) j∈{b,r},(I j i jr←− P jr p jr

−→ I r) j∈{b,r}) and
three setsNACJ = {(XJ,xJ

i : J→ XJ
i)} (for J ∈ {L, Ib, I r}) of NACs forL, Ib andI r .

Previous definition modifies the concept of derivation in the following way. A valid match
eb : Ib →G has to satisfyNAC(xIb

j), ∀(XIb

j ,xIb

j) ∈ NACIb, and similar forI r andL.

Pre-Proceedings GT-VMT 2007 117/195

Recursion in Graph Transformation

5 Additional Examples

This section shows further examples in the category of attributed typed graphs [EEPT06] (also
an AHLR category). In this category, objects are typed graphs, with edge and node attribution.

Model Transformation. Transforming class diagrams into relational data base models is a
common case study when studying the expressivity of model transformation languages [EGL+05].
It requires handling complex structures such as inheritance hierarchies. This transformation im-
plies mapping each persistent class to a table, and all its attributes and associations to columns
in this table. However, only top-most classes in the inheritance hierarchy have to be mapped
into tables; additional attributes and associations of subclasses result in additional columns of
the top-most classes. For the present example, we only consider this excerpt of the problem and
restrict to transformation of attributes with a primitive data type.

: c2t

: Table

name = n

: parent

: c2t: Table

: Class

{new}

{NAC}

{NAC}

(non−recursive rule)Class2Table

t1: Table

c1: Class

1

2

: c2t

Next:
Recursion(t1, c1)

c2: Class

c: Class t: Table

1

2

: parent

Next:
Recursion(t, c2)

: Table

: Class

: Attribute

name = n

: Primitive

name = t

 DataType

{NAC}

2

: attrs
1

: type

: cols

: a2c

: Column

name = n
type = t {new}

: a2c

: Column

DPO RuleBase Recursion(t: Table, c: Class)

(recursive rule)PrimitiveDataTypeAttribute2Column

: Class

name = n
is_persistent = true

Figure 11: DPO Recursive Rules for Model Transformation.

Using standard DPO rules to perform the transformation would possibly imply the flattening
of the hierarchy (see the solutions proposed in [EGL+05]). This is not optimal as it requires
modifying the type graph (the meta-model), together with pre- and post-processing rules. We
can avoid this flattening by using a DPO recursive rule as the one shown in Fig.11. The first rule
in this figure is a DPO standard rule that creates a table for each top-most class in the hierarchy.
The second rule is recursive. The base condition identifies a top-most class in the hierarchy (the
one with an associated table). The DPO rule maps a column to each attribute of this class, if
such column has not been created before. The column is added to the table mapped to the class.
The recursive condition goes down the class hierarchy, maintaining the match of the table. In
this way, the application of the rule in the recursive steps creates a column in the table for each
attribute of the descendant classes of the base class.

Model Simulation. Fig. 12shows a recursive rule that updates a network of two-input logical
gates when one of the inputs changes. The network of gates can be seen as a recursive structure,
which must be traversed to update the output of the gates in each step. The type graph contains
a nodeBit, connected to aGateby relationsin andout. Bits have a self-loop to indicate that
their value has been changed externally, and an attributevalueof typebit. Gates have attribute
operation, an enumerate type with valuesor andand, indicating the operation it performs.

In the DPO recursive rule, the base condition looks for a bit that has been changed (i.e. it has
a self-loop). The DPO rule updates the output of the gate2. An application condition makes the
DPO rule applicable only if the value of the output bit has to be updated. We add this attribute

2 “value=[c, op(a,b)]” denotes that “value” changes from “c” to “op(a,b)” due to the DPO rule application.

Pre-Proceedings GT-VMT 2007 118/195

ECEASST

Recursion(bi: Bit)

: Gatebi: Bit
: Gate

operation = op
: Bit

value = b

value = a

bo: Bit

: Bit

value = c

CONDITION: c != op(a,b)

: out: in

: in
: in

: out

1

Next:
Recursion(bo)

b: Bit

1

Next:
Recursion(b)

Base

: Bit

value = a

: Bit

value = b

: Gate

operation = op

: Bit

value =
 [c, op(a,b)]

DPO Rule

CONDITION: c != op(a,b)

: in
: in

1

: out

propagateChange

Figure 12: DPO Recursive Rule for Model Simulation.

condition as we may have loops in the network, so the rule must not be applicable if a bit has
already the correct value. The recursive condition advances through the network of gates and has
a condition which prohibits finding a match if the output gate already has a correct value. Thus,
rule application ends when all the bits dependent on the changed bit are updated.

Solving this problem using DPO simple rules would probably imply encoding control ele-
ments in the graph to guide rule application. These control elements have to mark the bits to be
recalculated, and take care that this calculation occurs in the right order.

6 Conclusions and Future Work

We have presented a novel approach for modelling recursive rules in the DPO approach. The
main idea is to provide DPO rules with base and recursive conditions, together with mechanisms
to pass the matching between successive recursion steps. The execution mechanism performs a
width-first traversal of the recursive structure, while guaranteeing its preservation by the DPO
rule applications. We have shown the utility of the approach for structures that can be recursively
dealt with, such as inheritance hierarchies, networks of components, etc. We have presented
several examples in the areas of model simulation, model optimization and model transformation.
The solution of the presented problems using DPO simple rules would imply either theflattening
of the structure by adding helper edges, or encoding control elements in the host graph to guide
rule execution. As we showed, both solutions are not optimal as they imply modifying the type
graph and defining pre- and post-processing rules. We believe our DPO recursive rules are a
solution to this problem. Moreover, the presented techniques may serve as the basis for a formal
rule execution control language with parameter passing.

There are several useful extensions to this approach. The first one is having more than one
recursive condition (i.e. more than oneI r). This is useful if the structure to be traversed is not
uniform, but it is made of different edge types. The second one is having more than one DPO
rule in a recursive rule. This is useful if slightly different actions have to be performed at each
step in the recursion, and allows for indirect recursion. It is also worth studying termination
and conflicts of DPO recursive rules, as well as different execution policies. Moreover, given a
recursive rule, we are investigating the construction of a (possibly infinite) set of standard DPO
rules, such that the execution of one of them is equivalent to the execution of the recursive rule.

Acknowledgements: This work has been partially sponsored by the Spanish Ministry of Ed-
ucation and Science with projects MOSAIC (TSI2005-08225-C07-06) and MODUWEB (TIN

Pre-Proceedings GT-VMT 2007 119/195

Recursion in Graph Transformation

2006-09678). The authors gratefully thank the referees for their useful suggestions.

References

[BV06] A. Balogh, D. Varŕo. Advanced Model Transformation Language Constructs in the
VIATRA2 Framework. InProc. ACM SAC’06. Pp. 1280–1287. 2006.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer.Fundamentals of Algebraic Graph Trans-
formation. Springer, Berlin, Heidelberg, New York, 2006.

[EGL+05] K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovszky, U. Prange, G. Taentzer,
D. Varró, S. Varŕo-Gyapay. Model Transformation by Graph Transformation: A
Comparative Study. InMTiP 2005, (Satellite Event of MoDELS 2005). 2005.

[EJ04] N. V. Eetvelde, D. Janssens. Extending Graph Rewriting for Refactoring. InProc.
ICGT’04. LNCS 3256, pp. 399–415. Springer, 2004.

[KASS03] G. Karsai, A. Agrawal, F. Shi, J. Sprinkle. On the Use of Graph Transformation in
the Formal Specification of Model Interpreters.JUCS9(11):1296–1321, 2003.

[KBC05] A. Kalnins, J. Barzdins, E. Celms. Model Transformation Language MOLA: Ex-
tended Patterns. InProc. DB&IS’2004. Volume 118, pp. 169–184. IOS Press, 2005.

[LS04] S. Lack, P. Sobocinski. Adhesive Categories. In Walukiewicz (ed.),FoSSaCS.
LNCS 2987, pp. 273–288. Springer, 2004.

[LV04] J. de Lara, H. Vangheluwe. Defining visual notations and their manipulation through
meta-modelling and graph transformation.JVLC15(3-4):309–330, 2004.

[Min02] M. Minas. Concepts and realization of a diagram editor generator based on hyper-
graph transformation.Sci. Comput. Program.44(2):157–180, 2002.

[NNZ00] U. Nickel, J. Niere, A. Z̈undorf. The FUJABA environment. InProc. ICSE ’00.
Pp. 742–745. ACM Press, 2000.

[OMG] OMG. QVT Specification at:http://www.omg.org/docs/ptc/05-11-01.pdf.

[Roz97] G. Rozenberg (ed.).Handbook of graph grammars and computing by graph trans-
formation: volume I. foundations. World Scientific Publishing Co., Inc., 1997.

[SWZ99] A. Scḧurr, A. J. Winter, A. Z̈undorf.The PROGRES approach: language and envi-
ronment. World Scientific Publishing Co., Inc., 1999.

[Tae96] G. Taentzer. Parallel and Distributed Graph Transformation. Formal Description and
Application to Communication-Based Systems. Shaker Verlag, 1996.

[Wil03] E. D. Willink. A concrete UML-based graphical transformation syntax: The UML to
RDBMS example in UMLX. Metamodelling for MDA, York, England, 2003.

Pre-Proceedings GT-VMT 2007 120/195

ECEASST

Visual Programming with Recursion Patterns in Interaction Nets

Ian Mackie1,2, Jorge Sousa Pinto3 and Miguel Vilaça3

1 LIX, CNRS UMR 7161, École Polytechnique, 91128 Palaiseau Cedex, France
2 King’s College London, Department of Computer Science, Strand, London WC2R 2LS, U.K.

3 Departamento de Informática, Universidade do Minho , 4710 Braga, Portugal

Abstract: In this paper we propose to use Interaction Nets as a formalism for Vi-
sual Functional Programming. We consider the use of recursion patterns as a pro-
gramming idiom, and introduce a suitable archetype/instantiation mechanism for
interaction agents, which allows one to define agents whose behaviour is based on
recursion patterns.

Keywords: Interaction nets, recursion patterns

1 Introduction

This paper is about visual programming with Interaction Nets, a graph-rewriting formalism intro-
duced by Lafont [Laf90], inspired by Proof-nets for Multiplicative Linear Logic. In Interaction
Nets, a program consists of a number of interaction rules and an initial net that will be reduced
by repeated application of the rules. The formalism combines the usual advantages of visual
programming languages, but with the following additional features:

– Programs and data structures are represented in the same framework, which is useful for
tracing and debugging purposes;

– All aspects of computations, such as duplication and garbage-collection, are explicit.
Interaction Nets have been extensively used for functional programming as an efficient in-

termediate (or implementation) language. In particular, functional programs can be encoded in
Interaction Nets, using one of the many encodings of the λ -calculus. Section 3 reviews how a
functional language can be encoded in Interaction Nets following this approach, without enter-
ing the details of any particular encoding of β -reduction. The focus of this paper will be the
adequate treatment of inductive datatypes, pattern-matching, and recursive function definitions.

The remaining sections of the paper introduce and systematise the use of a functional style
for programming with Interaction Nets with recursion patterns, and introduce a new construct
(the archetype, Section 4) which captures the behaviour of recursion patterns. We claim that this
style is a good choice for defining and executing visual functional programs.

The style of programming we refer to is widely used by functional programmers: it is based on
programs that perform iteration on their arguments, usually known in the field as folds, and (the
dual notion) programs that construct results by co-iteration, unfolds. Among other advantages of
using folds and unfolds for programming, they can be composed to construct complex recursive
programs, and they are particularly adequate for equational reasoning: proofs of equality can be
done using a fusion law instead of recursion.

The body of theoretical work on recursion patterns comes from the field of datatype-generic
programming (see [Gib02] for an introduction), which studies these patterns in a datatype-

Pre-Proceedings GT-VMT 2007 121/195

Visual Programming with Recursion Patterns in Interaction Nets

parameterized way. The examples in the paper use lists, but it is straightforward to generalize
the ideas to arbitrary regular datatypes.

Section 5 introduces interaction net programming with recursion patterns; Section 6 and Sec-
tion 7 then present archetypes for folds and unfolds respectively. Section 8 concludes and dis-
cusses future work.

2 Background

Recursion Patterns. The ideas developed in this paper for Interaction Nets are very much
inspired by Functional Programming. One fundamental aspect that we will use extensively is the
ability to use a set of recursion patterns for each datatype. For instance few Haskell programmers
would write a list sum program with explicit recursion as

sum [] = 0
sum (x:xs) = x + (sum xs)

Most would define sum = foldr (+) 0, where foldr is a recursion pattern encoded as
the following higher-order function:

foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

A function like sum is often called a fold. The use of recursion patterns has the advantage
of being appropriate for program transformation and reasoning using the so-called calculation-
based style [Bir84]. To see how less obvious folds can be defined, consider the list append
function:

app :: [a] -> [a] -> [a]
app [] l = l
app (x:xs) l = x:(app xs l)

This is a higher-order fold that iterates over its first argument to produce a function (id is the
identity function): app = foldr (\x r l -> x:(r l)) id.

The dual notion of fold is the co-recursive unfold that allows one to produce lists whose tails
are constructed recursively by the function being defined. For instance the Haskell function

downfrom 0 = []
downfrom (n+1) = (n+1):(downfrom n)

can be written alternatively as downfrom = unfold (==0) id pred where pred is the prede-
cessor function, and unfold is defined as follows

unfold :: (t -> Bool) -> (t -> a) -> (t -> t) -> t -> [a]
unfold p f g x = if p x then [] else f x : unfold p f g (g x)

One of the reasons why unfolds are important [GJ99] is that together with folds they give us back
the power of arbitrary recursion: the composition of a fold with an unfold is a function (known
as a hylomorphism [MFP91]) whose recursion tree is the intermediate structure constructed by
the unfold. In a language with a sufficiently rich type system, most useful recursive functions
can be defined in this way.

Pre-Proceedings GT-VMT 2007 122/195

ECEASST

Interaction Nets. An interaction net system [Laf90] is specified by giving a set Σ of symbols,
and a set R of interaction rules. Each symbol α ∈ Σ has an associated (fixed) arity. An occur-
rence of a symbol α ∈ Σ will be called an agent. If the arity of α is n, then the agent has n + 1
ports: a distinguished one called the principal port, and n auxiliary ports labelled x1, . . . ,xn.

A net built on Σ is a graph (not necessarily connected) where the nodes are agents. The edges
between nodes of the graph are connected to ports in the agents, such that there is at most one
edge connected to every port in the net. Edges may be connected to two ports of the same
agent. Principal ports of agents are depicted by an arrow. The ports of agents that have no edge
connected are called the free ports of the net. The set of free ports define the interface of the net.

The dynamics of Interaction Nets are based on the notion of active pair: any pair of agents
(α,β) in a net, with an edge connecting together their principal ports. An interaction rule
((α,β) =⇒ N) ∈ R replaces an occurrence of the active pair (α,β) by the net N. Rules must
satisfy two conditions: the interfaces of the left-hand side and right-hand side are equal (this
implies that the free ports are preserved during reduction), and there is at most one rule for each
pair of agents, so there is no ambiguity regarding which rule to apply.

If a net does not contain any active pairs then we say that it is in normal form. We use the
notation =⇒ for one-step reduction and =⇒∗ for its transitive reflexive closure. Additionally,
we write N ⇓ N′ if there is a sequence of interaction steps N =⇒∗ N′, such that N′ is a net in
normal form. The strong constraints on the definition of interaction rules imply that reduction
is strongly commutative (the one-step diamond property holds), and thus confluence is easily
obtained. Consequently, any normalizing interaction net is strongly normalizing.

As an example, we show a system for representing lists of numbers. Lists are inductively
defined by an agent Nil of arity 0 representing the empty list, and an agent Cons of arity 2
representing a cell in the list, containing an element and a tail list. Lists are constructed such that
the principal port of each Cons agent corresponds to the root of the list.

To implement, for instance, list concatenation, we need an additional binary agent app. Con-
catenation is defined recursively on one of the argument lists, as expected. As such, the principal
port of the agent must be used for interacting with this argument. The necessary interaction rules
are given in Figure 1, together with an example net, representing the concatenation of lists [1,2]
and [3,4].

app

Nil

app

Cons app

Cons

app

Cons Cons

1 3Cons

2 Nil

Cons

4 Nil

Figure 1: Interaction rules of agent app and an example net

Thus, an implementation of list concatenation can be obtained by Σ containing {Nil,Cons,app},
with arity 0, 2, 2 respectively, and R consisting of the rules in Figure 1.

Pre-Proceedings GT-VMT 2007 123/195

Visual Programming with Recursion Patterns in Interaction Nets

Related Work: Visual Functional Programming. Work in this area has addressed different
aspects of visual programming. The Pivotal project [Han02] offers a visual notation (and Haskell
programming environment) for data structures, not programs. Reekie’s Visual Haskell [Ree95]
more or less stands at the opposite side of the spectrum of possibilities: this is a dataflow-style
visual notation for Haskell programs, which allows programmers to define their programs visu-
ally (with the assistance of a tool) and then have them translated automatically to Haskell code.
Kelso’s VFP system [Kel02] is a complete environment that allows one to define functional pro-
grams visually and then reduce them step by step. Finally, VisualLambda [DV96] is a formalism
based on graph-rewriting: programs are defined as graphs whose reduction mimics the execution
of a functional program. As far as we know none of these systems is widely used.

Visual Haskell and VisualLambda have in common that functions are represented as boxes
with input ports for the arguments and an output port for the result; the contents of the box
correspond to the body of the function. They differ in that Visual Haskell uses variables to refer
to function arguments, while VisualLambda uses a purely graphical notation based on arrows.

Kelso’s VFP uses a notation without boxes, more inspired by the traditional representations
of functional programs used in implementation-oriented abstract machines (see Section 5). In
particular, it allows for named functions but also for λ -abstractions, and an explicit application
node exists. Variables are used for arguments, as in Visual Haskell.

Higher-order programming is a fundamental feature of functional programming. A function
f can take function g as an argument and g can then applied within the body of f . Expressing
this feature is easy if variables are used as in Visual Haskell and VFP; in VisualLambda a special
box would be used as a placeholder for g (in the body of f) to be instantiated later, and an arrow
would link an input port in the box of f to the box of g.

The work presented in the present paper uses a pure visual representation of programs, without
variables. In this aspect it resembles VisualLambda, however our work differs significantly from
this in that no boxes are used, and all the graph-rewriting operations are local in the sense that
only two nodes of the graph are involved in each step.

A second difficulty arising from the higher-order nature of programs is that a (curried) function
of two arguments may receive only its first argument and return as result a function. In a box-
based representation this means that it must be possible for a box to lose its input ports one by
one—a complicated process. Interaction nets treat this problem naturally as will become clear.
Moreover in this paper we introduce a new notion (the archetype), which captures precisely the
behaviour of many typical curried functions.

3 Visual Functional Programming with Interaction Nets Using Ex-
plicit Abstraction and Application Nodes

In this section we explain how a very simple functional programming language can be encoded in
Interaction Nets. The language has inductive types, pattern-matching on these types, and explicit
recursion.

We first review the basic principle shared by most well-known encodings [Mac04, Mac98,
Sin06] of the λ -calculus into Interaction Nets, and show how this basic language can easily be
extended to cover other features of functional languages.

Pre-Proceedings GT-VMT 2007 124/195

ECEASST

The usual way of representing functional programs with interaction nets is based on a pair
of symbols λ , @ of arity 2, such that a β -reduction step corresponds to an interaction between
an agent λ and an agent @. These representations are based on an explicit depiction of the
λ -abstractions in the program, as well as applications of functions to arguments.

While this may be visually more complicated than the boxes used by some of the systems
reviewed in Section 2, it certainly solves the “higher-order” problem in a natural way, since
function arguments are treated like any other arguments. The definition of the application func-
tion ap f x = f x in Figure 2 (left) illustrates this point.

λ

λ

@

λ

@

Figure 2: App definition (left) and β rule (right)

We only discuss the features of the linear λ -calculus here, which is shared by all encodings.
It is beyond the scope of this paper to include the details of the non-linear aspects, but refer the
reader to [Mac98, Mac04] for the encodings of the full λ -calculus.

Consider an interaction system containing the symbols {@,λ} as explained above, as well as
the β interaction rule of Figure 2 (right). This system defines the visual programming language
for the linear λ -calculus. A visual functional program consists of this interaction system, to-
gether with a closed functional expression to be evaluated, represented by a net with a single free
port. We now outline how other features can be introduced in the interaction system to enrich
this core language.

The next feature is Inductive Types and Pattern-matching. Consider a datatype T with con-
structors C1 . . .Cn, with arities a1 . . .an . This can be modelled in a straightforward way by an
interaction system containing n agents labelled Ci with arity ai, i = 1 . . .n ; values of type T
correspond to closed trees built exclusively from these agents (in a tree all principal ports are
oriented in the same direction). In a constructor agent, auxiliary ports are input ports, and the
principal port is an output port. An example of this is the datatype of lists with constructors Nil
and Cons, as in Figure 1.

Pattern-matching over an inductive type T can be implemented by a special agent Tcase. For
instance, the ListCase agent has arity 5, and its behaviour is defined by the two rules:

List
Case

Nil

ε ε ε
List
Case

Cons

ε

Here two different nets are connected to the ListCase agent. One is a net to be returned when
the argument list is empty, and the other is a net with three ports, used to combine the head and

Pre-Proceedings GT-VMT 2007 125/195

Visual Programming with Recursion Patterns in Interaction Nets

tail of a non-empty list. Observe that one of these nets is not used in each rule, and must be
erased with ε agents. The interaction of an ε agent with any other agent erases the latter and
propagates new ε agents along its auxiliary ports.

The approach outlined above allows for unnamed functions only. In a visual language one
would like to have the possibility of defining named functions, which would most naturally
correspond to agents in the interaction system. A special agent def can be used for unfolding
named function definitions. For instance a function isEmpty can be defined by the following
interaction rule for the agent def:

List
Case

True

def

is
Empty

λ

Falseεε

The following figure shows the reduction of the visual program corresponding to the application
of isEmpty to the list [1,2].

List
Case

True

def

is
Empty

λ

Falseεε

Cons

1 Cons

2 Nil

@

Cons

1 Cons

2 Nil

@ List
Case

True

Falseεε
Cons

1 Cons

2 Nil

True

False

εε

1 Cons

2 Nil

ε

This agent also allows for a visually appealing treatment of recursion: it suffices that the right-
hand side of interaction rules involving def reintroduces an active pair (the left-hand side of the
rule) as a sub-net.

To sum up, Interaction Nets allow to visually represent functional programs and data struc-
tures in the same very simple formalism; moreover higher-order features, which are a typical
difficulty in the visual setting, are treated in a natural way, and the execution of the program can
be efficiently implemented within the formalism.

4 Agent Archetypes

Although no standard programming language exists as a front-end for programming with Inter-
action Nets, it is generally well accepted that any such language should contain some form of
support for modularity and reusability. In particular, a mechanism should exist to facilitate the
definition of interaction rules that follow identical patterns.

To illustrate, consider again the app agent of Figure 1. It is defined by case analysis on the
structure of the argument, and in fact any other agent defined in this way must have two inter-
action rules with a similar structure to those in Figure 1. We now introduce a concept designed
precisely to isolate this structure, which we designate archetype. The ListCase archetype given
below should be interpreted as follows: any agent f that fits this archetype interacts with both

Pre-Proceedings GT-VMT 2007 126/195

ECEASST

Nil and Cons, and the right hand sides of the corresponding rules are nets to be instantiated, that
will be called respectively N f ,Nil and N f ,Cons.

Archetype ListCase f

f

Nil

Nf,Nil

f

Cons

Nf,Cons

To define a new agent following the archetype, an instance is created, by simply providing the
nets in the right-hand side of the interaction rules. This implicitly includes the agent declaration,
as well as the instantiated interaction rules for this agent, in the interaction system being defined.
As an example, the isEmpty agent (and its behaviour) is defined as an instance of the ListCase
archetype. ε agents are used to explicitly erase the head and tail of the list, which are not used
in the result.

Instance ListCase isEmpty

NisZero,
Nil

NisZero,
 Cons

= True =
False

ε ε

For a second example, take the agent def used in Section 5 for function definitions. We create
an archetype for defined functions, whose only mandatory rule is for interaction with def, with
the right-hand side to be instantiated.

Recursive archetypes are most interesting, and will be very useful in the rest of the paper
(in Section 6 a recursive archetype will be given for the app agent). Although archetypes can
be useful for programming with interaction nets in general, our examples of using them here
concern features of functional programming languages.

The ListCase example shows that archetypes allow for a natural treatment of higher-order
concepts: ListCase can be seen as a function that takes certain arguments (the instantiated nets)
and returns another function (an agent with its own rules) as result.

5 Interaction Net Programming with Recursion Patterns

Section 3 was about using Interaction Nets for encoding functional programs, with the practical
goal of producing efficient functional compilers. From the point of view of visual program-
ming, the drawbacks of this approach are that the introduction of explicit abstraction and ap-
plication nodes complicates the visual representation of programs (the same is true of explicit
case constructs), and also raises the matching duplicators problem. Solving this problem implies
introducing in the system machinery that destroys the clean visual representation of terms.

Our goal in this paper is to propose a number of principles and extensions for direct visual pro-
gramming with Interaction Nets, in a functional style. To see what we mean by direct, consider

Pre-Proceedings GT-VMT 2007 127/195

Visual Programming with Recursion Patterns in Interaction Nets

again the interaction rules given in Figure 1 . It is easy to see that both define a behaviour for the
agent app similar to the standard list concatenation function, which can be written in Haskell as
shown in Section 2.

In both cases, a program consists of a collection of function definitions encoded directly as
interaction rules in a particular interaction system, together with a closed functional expression
to be evaluated in the context of those definitions, represented by a net with a single free port.
While in the second approach a function definition corresponds to interaction rules for a special
agent def, in Figure 1 there is a direct correspondence between the clauses in the definition of
a function f and the interaction rules defining the behaviour of the agent f . A comparison of
both definitions reveals that the first approach is visually simpler, and thus more appropriate for
representing programs, than the second, standard approach.

Naturally, there are important limitations to the class of programs with which the simplified
representation can be used. The example above takes advantage of a fundamental aspect of
Interaction Nets, which is that pattern-matching on the outermost constructor is built-in through
the rule selection mechanism (in the definition of app in Figure 1, only the outermost constructor
is matched). Matching deeper constructors, or matching more than one argument in the same
clause, would force us to use an explicit case agent.

For a certain class of patterns (match-sequential systems [Tha87]) there are known transfor-
mations which result in a system which examines arguments one at a time. We can use this
transformation to obtain an explicit system. We refer the reader to [Ken90] for a detailed presen-
tation of one such transformation.

It will now be shown that the use of a programming style based on recursion patterns allows
precisely for the direct representation to be used, since these operators perform pattern-matching
on a single top-level constructor.

Iteration: Fold Agents. The simplest form of recursion is iteration, which substitutes the
datatype constructors by some given functions. Taking lists as an example, a fold is a function
that combines the head of the list with the result of recursively applying the function to the tail
of the list, to produce the result (a given value is returned at the end of the list).

Since this requires matching on the outermost constructor only, iteration neatly fits the inter-
action paradigm. The following is the definition of the product fold, which computes the product
of all the numbers in a list (it uses an agent ∗ for multiplication of numbers; we assume the
arithmetics to be correctly implemented in the current interaction system).

prod

Nil

prod

Cons prod

*S

0

It is easy to see that other, more powerful recursion patterns on an inductive type can be captured
in the same way. For instance, primitive recursion on a list would allow for the tail of the list
itself to be used as well.

Co-recursion Patterns: Unfold Agents. Co-recursive functions provide structured ways to
construct values of recursive types. Taking lists as an example again, the unfold co-recursion

Pre-Proceedings GT-VMT 2007 128/195

ECEASST

pattern, which is the dual of fold, corresponds to functions that construct lists by giving an
element to be placed at the head position, together with a seed used as an argument to recursively
construct the tail of the list. This is the simplest form of co-recursion.

Let us consider an unfold agent downfrom (df) which interacts with a natural number n to
construct the list containing all the numbers from n down to 1, in this order. Its rules are the
following (where ∂ returns two copies of the given argument):

df df Cons

Nil* df*

0 S

S

∂

6 Fold Archetypes

The rules that characterize the behaviour of a fold agent (on a particular inductive type) can
be described by a recursive archetype, in the sense that the parameterized agent occurs in the
right-hand side of one of the rules.

Taking the case of lists, interaction rules must be defined for f to interact with both Nil and
Cons. The archetype is:

Archetype foldr f

f

Nil

Nf,Nil

f

Cons

Nf,Cons

f

where interaction with Nil results in an arbitrary net, and interaction with Cons sends an f agent
along the tail of the argument list, and a net N f ,Cons then combines the head of the list with the
recursive result. As an example, the agent prod can be alternatively defined as the following
instance:

Instance foldr prod

Nprod,
 Nil

Nprod,
 Cons

=

0

= *
S

The principles developed above can be applied to folds over any regular inductive type.

Higher-order Folds. Our current definition of a fold agent is still not satisfactory, and will
now be generalized. Consider again the list append function. As seen in Section 2, this is a
higher-order function of two arguments, defined by recursion on its first argument. This fold can

Pre-Proceedings GT-VMT 2007 129/195

Visual Programming with Recursion Patterns in Interaction Nets

be defined with Interaction Nets as a binary agent (see Figure 1), which clearly does not match
our current definition of the fold archetype.

Functions of more than one argument defined as folds over one of the arguments lead us to the
generalization of the foldr archetype, as shown in the following figure. This is parameterized by
the number of extra arguments of the fold agent; our previous definition is of course a particular
case of this where k = 0.

Archetype foldr f (k)

f

Nil

Nf,Nil

f

Cons

Nf,Cons

fk k
k

k
khead tail

args

head

rec. result

args
args'

argsargs

The definition of append as an instance of this archetype, for k = 1, can be seen below. The
open wire in the net Napp,Cons corresponds to the fact that the second argument of the fold is
preserved in the recursive call.

Instance foldr app(1)

Napp,
 Nil

Napp,
 Cons

= = Cons

head rec. result

y

y'

y

y'

head rec. resulty y

7 Unfold Archetypes

It is less obvious to define an archetype for unfolds. Consider again the case of lists; it is clear
that there must be two rules (to produce empty and non-empty lists respectively); the contents
of the right-hand side of each interaction rule is also clear (with a parameter net appearing in
the second rule). However, since the arguments of an unfold are arbitrary, the two rules cannot
correspond to interactions between the unfold and its arguments. Instead, we will consider two
special agents that interact with the unfold.

Archetype unfold u

u u

Nu

Cons

c1 c2

uNil

Instance unfold dfu

Ndfu = g

Now observe that an instance of this archetype does not immediately behave as an unfold; it
must be connected to the net Nu. To take downfrom as an example again, this net is in this case

Pre-Proceedings GT-VMT 2007 130/195

ECEASST

simply an agent (see right of previous figure) whose behaviour is given by the rules on the left in
the following figure. Then the following macro (on the right) can be defined:

S

∂

c2g

0

c1

g

S df'
dfu

g

=

8 Conclusions and Future Work

One of our long-term goals is to develop a full environment for interaction net programming—
a tool is currently being developed. We are currently working on the archetype definition and
instantiation mechanism. Subsequently, we plan to incorporate in the programming environment
a mechanism that generates the appropriate archetype for a given user-defined inductive type.

This paper opens a number of other research questions at the theoretical level. One of the
main reasons for using recursion patterns and datatype-generic programming is that this style of
programming is good for reasoning about programs equationally. The work in this paper allows
us to reason about functional programs visually. In [MPV05] we derive a fusion law for the
fold archetype, that already makes it possible to transpose to the visual setting classic program
transformation techniques such as the introduction of accumulators or tupling.

A different approach that we intend to explore is to establish a formal correspondence between
a core functional language with recursion patterns and an interaction system for that language.
This will allows us to be more precise in the study of the calculation laws for visual programs.

At the level of the programming environment, the graphical notation then becomes an alter-
native to writing functional programs textually. The environment should be able to translate
between visual programs and textual programs, and all operations performed on programs at the
visual level correspond closely to the same operations at the expression level.

Acknowledgements: The work of the third author is financed by FCT (SFRH/BD/18874/2004).
This work is partially supported by the British Council Treaty of Windsor Grant: “Visual Pro-
gramming”.

Bibliography

[Bir84] R. S. Bird. The Promotion and Accumulation Strategies in Transformational Program-
ming. ACM Transactions on Programming Languages and Systems 6(4):487–504,
Oct. 1984.
http://dx.doi.org/10.1145/1780.1781

[DV96] L. Dami, D. Vallet. Higher-Order Functional Composition in Visual Form. Technical
report, University of Geneva, 1996.
citeseer.ist.psu.edu/dami96higherorder.html

Pre-Proceedings GT-VMT 2007 131/195

http://dx.doi.org/10.1145/1780.1781
citeseer.ist.psu.edu/dami96higherorder.html

Visual Programming with Recursion Patterns in Interaction Nets

[Fer98] M. Fernández. Type Assignment and Termination of Interaction Nets. Mathematical
Structures in Computer Science 8(6):593–636, 1998.

[FM98] M. Fernández, I. Mackie. Coinductive Techniques for Operational Equivalence of
Interaction Nets. In LICS. Pp. 321–332. 1998.

[Gib02] J. Gibbons. Calculating Functional Programs. In Backhouse et al. (eds.), Algebraic
and Coalgebraic Methods in the Mathematics of Program Construction. LNCS 2297,
chapter 5, pp. 148–203. Springer-Verlag, 2002.

[GJ99] J. Gibbons, G. Jones. The Under-Appreciated Unfold. In Proceedings of the ACM
SIGPLAN International Conference on Functional Programming (ICFP ’98). SIG-
PLAN 34(1), pp. 273–279. June 1999.

[Han02] K. Hanna. Interactive Visual Functional Programming. In Jones (ed.), Proc. Intnl
Conf. on Functional Programming. Pp. 100–112. ACM, October 2002.
http://www.cs.ukc.ac.uk/pubs/2002/1516

[Kel02] J. Kelso. A Visual Programming Environment for Functional Languages. PhD thesis,
Murdoch University, 2002.

[Ken90] J. Kennaway. Implementing term rewrite languages in DACTL. Theoretical Computer
Science 72:225–249, 1990.

[Laf90] Y. Lafont. Interaction Nets. In Conference Record of the Seventeenth Annual ACM
Symposium on Principles of Programming Languages. Pp. 95–108. ACM, Jan. 1990.

[Mac98] I. Mackie. YALE: Yet Another Lambda Evaluator Based on Interaction Nets. In ICFP.
Pp. 117–128. 1998.

[Mac04] I. Mackie. Efficient λ -evaluation with Interaction Nets. In Oostrom (ed.), Rewrit-
ing Techniques and Applications, 15th International Conference (RTA 2004). Lecture
Notes in Computer Science 3091. Springer, June 2004.

[MFP91] E. Meijer, M. Fokkinga, R. Paterson. Functional Programming with Bananas, Lenses,
Envelopes and Barbed Wire. In Hughes (ed.), Proceedings of the 5th ACM Confer-
ence on Functional Programming Languages and Computer Architecture (FPCA’91).
LNCS 523. Springer-Verlag, 1991.

[MPV05] I. Mackie, J. S. Pinto, M. Vilaça. Functional Programming and Program Transforma-
tion with Interaction Nets. Technical report 05.05.02, Universidade do Minho, 2005.

[Ree95] H. J. Reekie. Realtime Signal Processing – Dataflow, Visual, and Functional Pro-
gramming. PhD thesis, University of Technology at Sydney, 1995.

[Sin06] F.-R. Sinot. Token-Passing Nets: Call-by-Need for Free. Electr. Notes Theor. Comput.
Sci. 135(3):129–139, 2006.

[Tha87] S. Thatte. A Refinement of Strong Sequentiality for Term Rewriting systems with
Constructors. Information and Computation 72:46–65, 1987.

Pre-Proceedings GT-VMT 2007 132/195

http://www.cs.ukc.ac.uk/pubs/2002/1516

ECEASST

Simulating Multigraph Transformations Using Simple Graphs

Iovka Boneva1, Frank Hermann2, Harmen Kastenberg1, and Arend Rensink1

1 bonevai, h.kastenberg, rensink [at] cs.utwente.nl
Department of Computer Science, University of Twente
P.O. Box 217, NL-7500 AE Enschede, The Netherlands

2frank [at] cs.tu-berlin.de
Department of Electrical Engineering and Computer Science

Technical University of Berlin, D-10587 Berlin, Germany

Abstract: Application of graph transformations for software verification and model
transformation is an emergent field of research. In particular, graph transformation
approaches provide a natural way of modelling object oriented systems and seman-
tics of object-oriented languages.

There exist a number of tools for graph transformations thatare often specialised in
a particular kind of graphs and/or graph transformation approaches, depending on
the desired application domain. The main drawback of this diversity is the lack of
interoperability.

In this paper we show how (typed) multigraph production systems can be translated
into (typed) simple-graph production systems. The presented construction enables
the use of multigraphs with DPO transformation approach in tools that only support
simple graphs with SPO transformation approach, e.g. the GROOVE tool.

Keywords: graph transformations, graph transformation tools, tool interoperability,
multigraphs, simple graphs

1 Introduction

Application of graph transformations for software verification and model transformation is an
emergent field of research. In particular, graph transformation approaches provide a natural way
of modelling object oriented systems and semantics of object-oriented languages [KKR06] or
graphical modelling languages such as the UML [OMG05], see for instance [Hau06].

For performing the actual graph transformations, different approaches are around ranging from
hyperedge replacement approach (see e.g. [DKH97]), logic based approach (see e.g. [Cou97])
to different algebraic approaches such as Single Pushout (SPO) [EHK+97] and Double Pushout
(DPO) [CMR+97] approach. These different approaches all have specific application areas in
which their features are used in an optimal fashion.

Another difference is the use of either multigraphs or simple graphs for modelling the appli-
cation domain. Whereas the former is more general, the latter suites better when using graphs
for representing relations between object in order to reason about these objects using (first-order)
logical formulae [Ren04b]. While SPOcan be applied for both multigraphs and simple graphs,
DPO is not defined for simple graphs in general.

Pre-Proceedings GT-VMT 2007 133/195

mailto:bonevai, h.kastenberg, rensink [at] cs.utwente.nl
mailto:frank [at] cs.tu-berlin.de

Simulating Multigraph Transformations

For most tools performing graph transformations the graph representation formalism and the
transformation approach are determined by the targeted application domain. For instance, the
GROOVE tool [Ren04a] is designed for modelling dynamic systems by generating all possi-
ble system configurations and verifying properties about their behaviour. GROOVE uses sim-
ple graphs and performsSPO based graph transformations. Another example is the AGG tool
[TER99] which handles multigraphs withSPOand is used e.g. for independence and termination
analysis on graph grammars.

The main drawback of this diversity in tools is their poor interoperability. One attempt to
bridge this gap is the introduction of a common language usedfor exchanging models among
tools, called the Graph eXchange Language (orGXL for short) [SSHW]. In order to extend this
work for also exchanging the transformation specifications, GTXL [Tae01] has been proposed.
However, since every implementation of a specific approach is not aware of details of other
approaches it is very difficult to include all the features inone common standard and thereby
enable tools to perform semantically equivalent transformations.

In a previous work [HKM06] we have proposed translations of graph production systems
between GROOVE and AGG, but these translations were too specific to be applicable in a more
general context. Moreover, these translations were not invertible.

In the current paper, we generalise this translation to a context that is tool independent. We
show how one can encode typed multigraph production systemsinto simple-graph production
systems and simulateDPO transformations of multigraphs withDPO transformations on simple
graphs. Then we shortly discuss howDPO transformations for simple graphs can be handled by
a tool supporting onlySPOon simple graphs. These results should allow, for instance,to use the
GROOVE tool (or any other tool using simple graphs) with multigraphs. As a further extension,
we believe that it would be possible to apply the theory of Subobject Transformation Systems
[CHS06] in GROOVE.

Running Example. Throughout this paper we will clarify our ideas and results using a simple
example. In the example we model the dynamic behaviour ofLists andObjects that can be
elements of some specificLists. OneObject may occur in aList several times. We assume that
Objects can be created instantly by the environment (which we do notmodel in this example).
OnceObjects are around, different actions can be performed onLists andObjects like adding
Objects toLists and moving, removing or copyingObjects.

Fig. 1 depicts a possible configuration with twoLists: one containing a singleObject and
another having two entries referring to the sameObject. In each configuration we assume that
all List- andObject-instances have their own identity, although we do not show these identities.

entryentry

Object Object

entry

List List

Figure 1: Example configuration ofLists andObjects.

Pre-Proceedings GT-VMT 2007 134/195

ECEASST

Organisation of the Paper. The remaining of the paper is structured as follows. In Section 2
we provide a formal basis for the rest of the paper. In Section3 we define our translation of
multigraphs to simple graphs and prove the equivalence ofDPO transformations on multigraphs
on the one hand, andSPO transformations on (special) simple graphs on the other hand. In
Section4 we describe how this equivalence can be extended to typed/labelled graphs. Then, in
Section5 we describe howDPO transformations on (special) simple graphs can be handled by
tools implementing theSPO transformation approach, such as the GROOVE tool. Finally,in
Section6 concludes and gives some hints on the way we would like to use the results of this
work for improving state space exploration in GROOVE.

2 Background

2.1 Graphs and Graph Morphisms

Graphs are a very powerful means of modelling systems and their behaviour. As will become
clear in this paper, in some cases it is very important which notion of graphs are used, since the
theory applied may depend on this choice quite heavily.

Thegraph concept is differently interpreted by people working in different domains or even
in the same domain. Graphs can e.g. be said to bedeterministic, directedor labelled. In this
paper we will explicitly distinguish between what we callmultigraphsandsimple graphs.

Definition 1 (multigraph, multigraph morphism) Amultigraphis a tupleG= 〈VG,EG,srcG,tgtG〉
where:

• VG is a set ofnodes(or vertices);

• EG is a set ofedges;

• srcG,tgtG : EG→VG aresourceandtarget functions.

A multigraph morphism f: G→H is a pair〈 fV , fE〉, where fV : VG→VH and fE : EG→EH

are functions compatible withsrc andtgt functions, i.e.

• fV ◦ srcG = srcH ◦ fE;

• fV ◦ tgtG = tgtH ◦ fE.

Definition 2 (simple graph, simple graph morphism) LetLab be a finite set of labels. Asimple
graph labelled overLab is a tupleG = 〈VG,EG〉 where

• VG is a set ofnodes(or vertices);

• EG⊆VG×Lab×VG is a set ofedges.

The source and target functionssrcG,tgtG : EG→VG are defined for any edgee= (v, l ,v′) ∈ EG

by srcG(e) = v andtgtG(e) = v′.
A simple graph morphism f: G→H is a pair〈 fV , fE〉, where fV : VG→VH and fE : EG→EH

are functions compatible withsrc andtgt functions and with labelling, i.e. for any edge(v, l ,v′)∈
EG, fE((v, l ,v′)) = (fV(v), l , fV(v′)).

Pre-Proceedings GT-VMT 2007 135/195

Simulating Multigraph Transformations

In the sequel we will call a graph morphismf : G→H total if its componentsfV and fE
are total functions, andpartial if its components are total functions fromG′ to H, whereG′ is
some subgraph ofG. An injectivemorphism is a morphism induced by injective functions. We
will denote the set of multigraphs asMG and the set of simple graphs overLab asS G (Lab).
Hereafter, we will writegraphwhen something holds for both multigraphs and simple graphs.

In our formal definitions we use unlabelled multigraphs and labelled simple graphs. We start
with unlabelled multigraphs in order to keep proofs simple.However, all results of the paper can
be extended to labelled graphs, as it will be discussed in Section 4. Therefore, our examples will
already freely use labels on both nodes and edges.

2.2 Graph Transformations

When modelling system states as graphs, the dynamics of the system can be specified by graph
transformations. The changes of states are then described by graph productions, also called
graph transformation rules.

Definition 3 (graph production) Agraph production pconsists of two graphsL andR, being
its left-hand-sideandright-hand-side, respectively, together with a partial graph morphism from
L to R, called therule morphism.

We often denote a graph productionp as p: L→R, also usingp when referring to the rule
morphism. When combining a graphG with a setP of graph productions, we get agraph
production system GPS= 〈G,P〉. In a graph production system,G is called thestart graph.
By applyinggraph productions toG we canderiveother graphs. The applications of graph pro-
ductions are defined on categories in which the objects are a suitable class of graphs and the
arrows are the corresponding graph morphisms. For an introduction to category theory, see e.g.
[BW95]. Whether a rule is applicable and to what resulting graph a derivation leads, depends on
the particular graph transformation approach being applied. In this paper we distinguish between
the Single Pushout (SPO) [EHK+97] and Double Pushout (DPO) [CMR+97] approach. For ap-
plying a production in theSPOapproach, we only need an occurrence of the left-hand-side of the
graph production. When the application of a graph production would delete a node but not all
of its adjacent edges, thosedangling edgeswill also be removed. Furthermore, if the application
prescribes one node (or edge) to be both deleted and preserved, this conflict is solved in favour
of deletion. These conflicts are resolved in theDPO approach by forbidding such applications of
productions, i.e. theDPO approach requires additional conditions on the applications which are
called thedangling edge conditionand theidentification condition(together referred to as the
gluing condition).

In the DPO approach, a graph productionp: L→R is depicted as a spanL
l
← K

r
→ R of total

graph morphisms, such thatK = L∩R, l : dom(p)→L, andr : dom(p)→R. To be deterministic,
it is necessary that either rule morphisms or matchings are injective. We will now define how
applications of graph productions and the corresponding derivations for bothSPOandDPO.

Definition 4 (application, derivation) Theapplication of a graph productionp: L→R to a
graphG is given by a total graph morphismm: L→G, also called amatching. The direct

Pre-Proceedings GT-VMT 2007 136/195

ECEASST

derivation from a graphG to a graphH through an application of productionp via a matching
m, denotedG =

p,m
=⇒ H, is constructed

(SPO) as the pushout ofp andm in the considered category of graphs (see Fig.2(a));
(DPO) by first taking the pushout complementD (with k: K→D andl∗ : D→G) of l andm, if
it exists (ensured by the gluing condition), and then takingthe pushout ofr andk (see Fig.2(b)).

L
p

/

m
��

R

m∗
��

G p∗
/ H

(a) SPO

L

m
��

K
loo r //

k
��

R

m∗
��

G D
l∗

oo
r∗

// H

(b) DPO

Figure 2: GraphH as the result of anSPOand aDPO derivation.

Intuitively, applying a graph productionp to a graphG can be seen as a sequence of two
actions:find an occurrence ofL in G and thenreplacethat occurrence byR. This then results in
the graphH. An example direct derivation is shown in Fig.4.

Another important difference betweenSPO and DPO is the fact thatDPO does not work on
simple graphs with arbitrary matchings, because in some cases the required pushout construction
is not unique or does not exist. In this paper we do applyDPO on simple graphs, but then ensure
that we restrict to a special class of matchings and/or morphisms. This issue will discussed in
Section3.

2.3 Back to the Example

Now that we have introduced the notion of graphs and the graphtransformation technique, we
can recall the example and give a formal description of the actions. In Fig.3 we specify some of
the actions from the example as graph transformation rules by showing their left-hand-side and
right-hand-side graph. The rule morphisms in Fig.3 are defined by the placing of the elements.

entry

ListList

R

Object

p

L

Object

(a)add

p

L

Object

List

entry

List

R

Object

entry

List

entry

List

(b) copy

Figure 3: Graph transformation rules for some of the actionsin the example.

In Fig. 4 we show a single rule application in which we apply thecopy-rule (Fig.3(b)) on a
graphG consisting of twoLists each containing oneObject, also showing the resulting graphH.

Pre-Proceedings GT-VMT 2007 137/195

Simulating Multigraph Transformations

List

entry

List

entry

List

entry

List

entry

List

entry

List

Object

List

entry entry

m

p*

m*

p

G H

RL

entry

Object Object ObjectObject

Object

List

Figure 4: An example direct derivation.

3 From Multigraphs to Simple Graphs and back again

In this section we describe our translation between multigraphs and simple graphs. At a categor-
ical level we will show that these translations are functorswhich are isomorphisms, moreover
being each others inverse.

3.1 From Multigraphs to Simple Graphs

Consider the set of labelsLMG = {s,t}. The functionSim maps multigraphs fromMG into
simple graphs inS G (LMG) as follows: every edgee in the multigraph with source nodevs

and target nodevt is replaced by a special nodeve (this we call theproxy node) and two edges
(ve,s,vs) and(ve,t,vt). Fig.5 shows an example applying theSim function.

Let G = 〈VG,EG,srcG,tgtG〉. ThenSim(G) is the graphH = 〈VH ,EH〉 with

• VH = VG∪EG;

• EH =
⋃

ve∈EG
{(ve,s,srcG(ve)),(ve,t,tgtG(ve))}.

TheSim function can be extended on graph morphisms. That is, ifG andH are multigraphs
andm: G→H is a morphism, thenSim(m) : Sim(G)→Sim(H) is the morphism defined by:

• for anyv in VG∪EG (i.e. v∈VSim(G)), (Sim(m))(v) = m(v);

• for any(v, l ,v′) in ESim(G), (Sim(m))((v, l ,v′)) = (m(v), l ,m(v′)).

Note that the definition ofSim(m) on edges ofSim(G) ensures thatSim(m) is indeed a simple
graph morphism.

3.2 From Simple Graphs to Multigraphs

Let S G M G be the set of bipartite simple graphs overLMG satisfying the following conditions:
G = (V,E) ∈S G M G if

Pre-Proceedings GT-VMT 2007 138/195

ECEASST

t

s

s

t

Figure 5: Encoding of a multigraph (on the left) into simple graphs with proxy nodes (on the
right) by theSim function.

1. V = Vn∪Ve whereVn andVe are two disjoint sets;

2. E = Es∪Et whereEs andEt are disjoint sets andEs⊆Ve×{s}×Vn, andEt⊆Ve×{t}×Vn.

3. any nodeve in Ve has exactly two adjacent edges(ve,s,v′n) ∈ Es and (v,t,v′′n) for some
v′n,v

′′
n ∈Vn.

We now define the functionSim−1 : S G M G →MG as follows: ifG = 〈Vn∪Ve,EG〉 where
Vn andVe are as in the description ofS G M G stated above, thenH = Sim−1(G) is the graph
〈V,E,src,tgt〉 such thatV = Vn, E = Ve, and for anye∈ EH , src(e) = vs andtgt(e) = vt, where
vs,vt ∈Vn are the nodes such that(e,s,vs),(e,t,vt)∈EG. We know by condition3of the definition
of the set of graphsS G M G that the nodesvs andvt exist and are unique.

TheSim−1 function can also be extended on graph morphisms. Ifm: G→H is a simple graph
morphism, thenSim−1(m) : Sim−1(G)→Sim−1(H) is the multigraph morphism such that for
any x in VG∪EG, (Sim−1(m))(x) = m(x). We now show thatSim−1(m) defined this way is
indeed a multigraph morphism.

Let G′ = Sim−1(G), H ′ = Sim−1(H) andm′ = Sim−1(m). Then for any edgee∈ EG′, (m′ ◦
srcG′)(e) = m(vs) wherevs is the unique node inG such that(e,s,vs) is an edge ofG. As m is
a simple graph morphism,(m(e),s,m(vs)) is an edge inH. On the other hand,(srcH′ ◦m′)(e) =
srcH′(m(e)) is the unique nodev′s in H such that(m(e),s,v′s) is a edge inH. We deduce then that
both(m(e),s,v′s) and(m(e),s,m(vs)) are edges inH. By uniqueness ofv′s, necessarilyv′s = m(vs),
som′ ◦ srcG′ = srcH′ ◦m′. On a similar way we can see thatm′ ◦ tgtG′ = tgtH′ ◦m′.

It is not very hard to see thatS G M G is exactly the set of simple graphs that are images of
multigraphs by theSim function, and that the functionSim−1 is the inverse of the functionSim.
This will be formally stated in the following section.

3.3 Categories for Multigraphs and Simple Graphs

In this section we define the categoriesMG and SGMG (LMG) on which DPO transformation
is defined for multigraphs and for simple graphs that are encodings of multigraphs. We show
also that the functionsSim andSim−1 define free functors fromMG to SGMG (LMG) and from
SGMG (LMG) to MG respectively. This will guarantee that performingDPO transformations on
multigraphs can be simulated byDPO transformations on simple graphs that belong toS G M G ,
as stated in Theorem1. The reader who is not familiar with category theory will probably only
be interested in the result of this theorem.

Pre-Proceedings GT-VMT 2007 139/195

Simulating Multigraph Transformations

Definition 5 (categoriesMG , SG(L), andSGMG(LMG)) MG is the category whose objects are
elements ofMG and whose arrows are multigraph morphisms.SG(L) is the category whose
objects are simple graphs over the set of labelsL and whose arrows are simple graph morphisms.
Finally, SGMG(LMG) is the category whose objects are elements ofS G M G and whose arrows
are simple graph morphisms.

Note thatSGMG (LMG) can be equivalently defined as the full subcategory ofSG(LMG) in-
duced byS G M G .

Recall that a functorf = 〈 fo, fm〉 from a categoryC to a categoryD is a function withfo (resp.
fm) associating objects (resp. morphisms) ofD with objects (resp. morphisms) ofC and such
that f preserves morphisms, identities and composition.

The following lemma easily follows from the definitions.

Lemma 1 It holds that

1. Sim is a functor fromMG to SGMG (LMG) and

2. Sim−1 is a functor fromSGMG(LMG) to MG ;

3. the functorsSim andSim−1 are isomorphisms:

Sim◦Sim−1 = IDSGMG (LMG) and Sim−1◦Sim = IDMG .

Graph morphisms are called edge reflecting, if edges are reflected along their boundary, i.e.
such a morphismf must not map two nodes, if the image nodes are connected by an edge, which
is not reached byf .

Lemma 2 All morphisms f: G→ H in SGMG (LMG) are edge reflecting, i.e.

if (f (x), l , f (y)) ∈ EH then (x, l ,y) ∈ EG.

Proof. It is enough to show thatSim translates to edge reflecting morphisms, because the cat-
egories are isomorphic. By definition,Sim translates edges to special nodes with two outgoing
edges to other nodes. Nodes inMG are connected via structured edges inSGMG (LMG), thus
edges connect an original node with a proxy node. Letf be a graph morphism inMG . If Sim(f)
reaches a proxy node,f has to map to the original edge. Therefore, also the adjacentedges are
reached bySim(f) and thus,Sim(f) is edge reflecting.

3.4 Multigraph versus Simple Graph transformations

In the sequel we combine the graph categoriesMG , SGMG(LMG) andSG(LMG) with the trans-
formation approachesSPOandDPO. We will denote such combinations withMG+DPOetc. The
aim of this paper is to translateMG+DPO into SG(LMG)+SPO. This is achieved in two steps:

MG+DPO → SGMG (LMG)+DPO → SG(LMG)+SPO

The first step consists in encoding multigraphs and production rules using theSim function, thus
obtaining simple graphs inS G M G and simple graph morphisms. The second step consists in

Pre-Proceedings GT-VMT 2007 140/195

ECEASST

encoding theDPO rules intoSPO rules. In [HHT96] (Proposition 3.5) it has been shown that
it is possible to translate the application conditions of aDPO derivation (i.e. dangling edge
and identification condition) inMG to equivalent negative application conditions (NACs) for
performingSPOderivations inMG . In Theorem1 we show that the initialDPO transformations
in MG can be simulated by the translatedSPOtransformation inSG(LMG).

Remark1 (Uniqueness of derivations)DPO derivations need the uniqueness of pushout com-
plements to be deterministic to a given rule and match. In adhesive categories this is the case
if the rule morphisms are or the match is monomorphic (see Lemma 15 in [LS04]), meaning
injective in the categoryGraph. In our setting the categoryMG is adhesive and therefore also
SGMG (LMG) is, because it is isomorphic. The monomorphisms in the latter one are also euqal-
izers by their property of being edge reflecting and thus, they are regular monomorphisms.

Given a DPO rulep = L
l
← K

r
→ R, we useSim(p) to denoteSim(L)

Sim(l)
← Sim(K)

Sim(r)
→

Sim(R), and we denote bySim∗(p) the translated rule equipped with additionalNACs, as de-
scribed in [HHT96]. For the following lemma we interpret graphs ofSGMG (LMG) as graphs in
MG by forgetting all labels. This allows us to show that pushouts are not only translated to those
in a different category, but also remain pushouts in the original category of multigraphs, after
applyingSim. An extension ofMG with lables is direct and only adds information, which does
not interfere with the pushout construction.

Lemma 3
A //

��

(PO)

B

��

C // D

in MG implies

Sim(A) //

��

(PO)

Sim(B)

��

Sim(C) // Sim(D)

in MG up to label information.

Proof. (sketch) Pushouts inMG are constructed componentwise for the sets of edges and nodes
by building the disjoint union and factorizing along the equivalence generated by the span of
morphisms. The definition ofSim is compatible with the standard pushout construction, i.e.
Sim(D) = Sim(B+AC)∼= Sim(B)+Sim(A) Sim(C).

Theorem 1(simulation) Given a rule p= L
l
← K

r
→ R and a match m: L→G in MG , where

l is injective, the following three are equivalent:

1. G=
p,m
=⇒DPO G′ in MG ;

2. Sim(G) =
Sim(p),Sim(m)
========⇒DPO Sim(G′) in SGMG (LMG);

3. Sim(G) =
Sim∗(p),Sim(m)
=========⇒SPOH in SG(LMG).

Furthermore, if the derivationSim(G)=
Sim∗(p),Sim(m)
=========⇒SPOH exists inSG(LMG), then H∼= Sim(G′).

Proof. 1⇔ 2 SimandSim−1 are isomorphisms by Lemma1and hence, they preserve all Limits
and Colimits. Sincel or m, respectively, is injective theDPO-derivations are unique up to
isomorphism.

Pre-Proceedings GT-VMT 2007 141/195

Simulating Multigraph Transformations

2⇒ 3 The derivation in 2 can be considered as a derivation inMG up to labels, according to
Lemma3. Then using [HHT96], it is equivalent to anSPOderivation with NACs inMG
with resultSim(G′), that is,Sim(G′) is the pushout ofp andm in MG . But, asSim(G′) is
a simple graph, it is also the pushout ofp andm in SG(LMG), up to labels. Because of the
strict relation between the labels in graphs inS G M G and their structure, it is not difficult
to see thatSim(G′) is also the pushout ofp andm in SG(LMG) without ignoring the labels.

3⇒ 2 Let H ′ be the result of the derivation(a) Sim(G) =
Sim∗(p),Sim(m)
=========⇒SPO H ′ in MG . By

[HHT96] we know that then(b) Sim(G) =
Sim(p),Sim(m)
========⇒DPO H ′ is a derivation inMG . Since

Sim(p), Sim(m) are morphisms inSGMG (LMG), by Lemma2 we know that they are edge
reflecting, and this allows to deduce that the graphH ′ is a simple graph, that is, an object
of SG(LMG). Now, asSG(LMG) is a full subcategory ofMG and by(a), we have thatH ′ is
the pushout ofSim∗(p) andSim(m) in SG(LMG). By uniqueness of this pushout and the
derivation in point3 we deduce thatH ′ = H, thus(b) is a derivation inSG(LMG). Finally,
one can see thatH ′ and the context graph in(b) are also objects ofSGMG (LMG) because
the translated rule will only produce and delete complete structured edges by definition of
Sim. Hence, no garbage (i.e. proxy nodes with either an outgoings-edge or at-edge, but
not both) will occur. Thus,(b) is also a derivation inSGMG(LMG).

Result H ∼= Sim(G′) is a direct consequence of the last part of the proof for the previous item.

4 Extensions

Theorem1 immediately extends to rules with negative application conditions, because they con-
tain just additional graphs and morphisms of the same kind. Thus, we will not describe this
aspect in more detail.

We are also confident that the results from this paper can be extended in a straightforward
manner to hypergraphs [Kön02], which differ from multigraphs in not having source and target
functions, but rather a single functionends : EG→V∗G that associates with every edge astring
of nodes. Hypergraphs can be translated to simple graphs using precisely the same technique of
encoding edges as proxy nodes, with in this case as many auxiliary edges (to nodes) as there are
elements inends(e).

Up to now we have only considered unlabelled and untyped multigraphs, but all the results that
we have shown can be easily extended to typed multigraphs, and hence to labelled ones, since
labelling can be insured by typing; see, e.g., [EEPT06]. Fig. 6 shows how one of our example
labelled multigraphs would be encoded into a simple graph.

A typed graph〈G,m〉 is a graphG together with a morphismm : G→ TG to some graphTG
called the type graph. A typed graph morphismf : 〈G,m〉 → 〈G′,m′〉 is a morphism for which
m= m′ ◦ f . Transformations of typed graphs should involve only typedgraph morphisms. It is
equivalent to consider transformations in aslice category. That is, typed transformations inC
w.r.t. the type graphTG are equivalent to transformations in the slice categoryC ↓ TG, whereC
is eitherMG or SGMG (LMG) andTG is a multigraph or simple graph, respectively. Now, asMG

Pre-Proceedings GT-VMT 2007 142/195

ECEASST

entry t

s tentry

s
List Object

entry

entry
List Object

Figure 6: Encoding of a labelled multigraph.

andSGMG (LMG) are isomorphic withSim as isomorphism functor, it is trivial to see that the
slice categories are also isomorphic. Thus, there is a pushout in MG ↓ TG if and only if there is
a pushout inSGMG(LMG) ↓ Sim(TG). Then the simulation result stated in Theorem1 also holds
for a typed transformation.

However, in this case an additional translation step is still required to translate to untyped sim-
ple graphs. In this case we have to extend the labels to encodethe typing; hence, the translation is
from [SGMG (LMG) ↓ Sim(TG)]+SPO to [SGMG (LMG× (VTG∪ETG))]+SPO. We are convinced
that this translation is straightforward, but we have not given the proof.

5 Simulation in SPO Tools

Tools performing graph transformations often implementSPOsince this requires only one pushout
construction where forDPOan additional pushout complement construction is needed. Problems
arise when performing rule applications usingSPO that do not satisfy the gluing conditions. In
the running example such a situation would occur when applying thedelete rule on anObject

that is e.g. contained in more than oneList.
In order still to be able to performDPO transformation, there are basically two alternatives:

1. restrict rule applications by checking the gluing conditions after searching for matchings;

2. encode the gluing conditions using additional negative application conditions in the trans-
formation rules.

Choosing the first alternative requires that the tool performs an additional gluing check on
the found matches. This gluing check means that for all identifications in the matching and
for all node deletions we need to ensure that there is no preserve-delete conflict (identification
condition) and that the node-deletions do not cause dangling edges (dangling condition), respec-
tively. The AGG tool’s kernel implementsSPOand uses a similar mechanism for handlingDPO

transformations.
The second alternative is based on Theorem1, in which we show that it is possible to sim-

ulateDPO on our special simple graphs by adding additional negative application conditions as
described in [HHT96].

Let us now briefly describe how one can use the GROOVE tool (or some other tool support-
ing simple graph transformations withSPO) for performingDPO transformations on multigraphs.
Given a (multigraph) graph production system (GPS)T = 〈G,P〉, one first has to create a pro-
duction systemSim(T) by encoding the graphG and all graphs and morphisms that are parts

Pre-Proceedings GT-VMT 2007 143/195

Simulating Multigraph Transformations

of the productions inP in the manner described in Section3. Note that if some productions
include negative application conditions, these conditions together with the morphisms that relate
them to the corresponding production are encoded just as normal graphs and morphisms. Now,
if the tool offers the possibility to check for the gluing condition (choice1 above), then the GPS
Sim(T) can be submitted to the tool, specifying that the check for the gluing condition has to
be performed. Otherwise (choice2 above), one has to construct the production systemSim∗(T)
by augmentingSim(T) with additionalNACs for encoding the gluing condition inSim(T). The
GPSSim∗(T) is then submitted to the tool as a normal (simple) graph production system. Any
derivation results obtained by the tool (e.g. graphs that can be derived from the start graph or the
actual rule applications) can be transformed back to multigraphs using theSim−1 mapping. This
forth and back translation can be used, for instance, for exchanging results between different
graph transformation tools.

6 Conclusion and Future Work

We have proposed a method for performingDPO multigraph transformations using tools han-
dling SPOsimple graph transformations. Compared to previous work [HKM06], this method is
generic, i.e. has been proved correct on categorical level and does not depend on the tools to be
used.

Pushing theory to work in practice. Tool interoperability is one major motivating point to
translate graph transformation systems using multigraphsand DPO to equivalent systems with
simple graphs andSPO derivations. On the more fundamental level it is even more interest-
ing to have the possibilities of applying a wide range of theoretical results and implementing
them in the tool of favour. During the last three decades a lotof theory was developed using
DPO and multigraphs. One special new technique is the analysis of derivations using Subobject
Transformation Systems (STS) presented in [CHS06]. Since the GROOVE tool performs graph
derivations to verify systems, there could be the possibility of combining the power of both. And
indeed, this idea already has a concrete structure: basically one can exploit the possible results of
dependencies using a translation toSTSs and furthermore, the branching derivations of the state
space can be folded into one summary object. Thus, only a small number of derivation steps will
have to be performed to construct an abstraction of a much bigger state space. The idea is then
to use the abstraction equipped with anSTS to deliver only effective states and perform model
checking on these states and their concrete successors.

Acknowledgements. The first and third authors are employed in the GROOVE projectfunded
by the Dutch NWO (project number 612.000.314).

Bibliography

[BW95] M. Barr, C. Wells.Category Theroy for Computing Science. Prentice Hall, 1995.

Pre-Proceedings GT-VMT 2007 144/195

ECEASST

[CHS06] A. Corradini, F. Hermann, P. Sobociński. Subobject Transformation Systems.Ap-
plied Categorical Structures, 2006. To appear.

[CMR+97] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, M. Löwe. Algebraic
Approaches to Graph Transformation, Part I: Basic Conceptsand Double Pushout
Approach. Pp. 163–246 in [Roz97].

[Cou97] B. Courcelle. The Expression of Graph Properties and Graph Transformations in
Monadic Second-Order Logic. Pp. 313–400 in [Roz97].

[DKH97] F. Drewes, H.-J. Kreowski, A. Habel. Hyperedge Replacement Graph Grammars.
Pp. 95–162 in [Roz97].

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer.Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in TCS. Springer Verlag, 2006.

[EHK+97] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, A. Corradini.
Algebraic Approaches to Graph Transformation, Part II: Single Pushout Approach
and Comparison with Double Pushout Approach. Pp. 247–312 in[Roz97].

[Hau06] J. H. Hausmann.Dynamic Meta Modeling: A Semantics Description Technique for
Visual Modeling Techniques. PhD thesis, Universität Paderborn, 2006.

[HHT96] A. Habel, R. Heckel, G. Taentzer. Graph Grammars with Negative Application Con-
ditions.Special issue of Fundamenta Informaticae26(3,4):287–313, 1996.

[HKM06] F. Hermann, H. Kastenberg, T. Modica. Towards Translating Graph Transformation
Approaches by Model Transformation. InProc. of the Int. Workshop on Graph and
Model Transformation (GraMoT’06). 2006.

[KKR06] H. Kastenberg, A. Kleppe, A. Rensink. Defining Object-Oriented Execution Seman-
tics Using Graph Transformations. In Gorrieri and Wehrheim(eds.),Proc. of the
8th IFIP Int. Conf. on Formal Methods for Open Object-Based Distributed Systems
(FMOODS’06). LNCS 4037, pp. 186–201. Springer Verlag, 2006.

[Kön02] B. König. Hypergraph Construction and its Application to the Static Analysis of
Concurrent Systems.Mathematical Structures in Computer Science12(2):149–175,
2002.

[LS04] S. Lack, P. Sobociński. Adhesive Categories. In Walukiewicz (ed.),Proc. of the 7th
Int. Conf. on Foundations of Software Science and Computation Structures (FOS-
SACS’04). LNCS 2987, pp. 273–288. Springer Verlag, 2004.

[LS05] S. Lack, P. Sobociński. Adhesive and QuasiadhesiveCategories.Theoretical Infor-
matics and Applications39(2):511–546, 2005.

[OMG05] OMG. Unified Modeling Language Specification. 2005.http://www.omg.org/.

Pre-Proceedings GT-VMT 2007 145/195

http://www.omg.org/technology/documents/formal/uml.htm

Simulating Multigraph Transformations

[Ren04a] A. Rensink. The GROOVE Simulator: A Tool for State Space Generation. In Pfaltz
et al. (eds.),Applications of Graph Transformations with Industrial Relevance (AG-
TIVE’03). LNCS 3062, pp. 479–485. Springer Verlag, 2004.

[Ren04b] A. Rensink. Representing First-Order Logic usingGraphs. In Ehrig et al. (eds.),
Proc. of the 2nd Int. Conf. on Graph Transformations (ICGT’04). LNCS 3256,
pp. 319–335. Springer Verlag, 2004.

[Roz97] G. Rozenberg (ed.).Handbook of Graph Grammars and Computing by Graph
Transformation. Volume I: Foundations. World Scientific, 1997.

[SSHW] A. Schürr, S. E. Sim, R. Holt, A. Winter. The GXL GrapheXchange Language.
http://www.gupro.de/GXL.

[Tae01] G. Taentzer. Towards Common Exchange Formats for Graphs and Graph Transfor-
mation Systems. In Padberg (ed.),Proc. of the Workshop on Uniform Approaches to
Graphical Process Specification Techniques (UNIGRA’01). ENTCS 44. 2001.

[TER99] G. Taentzer, C. Ermel, M. Rudolf. The AGG Approach: Language and Tool Envi-
ronment. In Ehrig et al. (eds.),Handbook of Graph Grammars and Computing by
Graph Transformations. Volume II: Applications, Languages and Tools, pp. 163–
246. World Scientific, 1999.

Pre-Proceedings GT-VMT 2007 146/195

ECEASST

Evaluating Workflow Definition Language Revisions with
Graph-Based Tools

René Wörzberger, Markus Heller, Frank Häßler

(rwoerz|heller|haessler)@i3.informatik.rwth-aachen.de
Lehrstuhl für Informatik 3 (Softwaretechnik)

RWTH Aachen, Germany

Abstract: In industry, there are many workflow management systems (wfms)
which have been incrementally developed over a long time. The workflow definition
languages that come along with these wfms are mostly graph oriented. These incre-
mentally developed definition languages sometimes lack important modeling con-
structs as well as a clear conceptual foundation. Any workflow definition language
revision has to be evaluated against end user’s acceptance before implementation in
the respective wfms.

In this paper, we report about an industrial application of graph-based techniques
in the workflow domain. We present an evaluation environment which has been
developed in a graph-based rapid prototyping approach. The evaluation environment
comprises editing support for workflow definitions conforming to the language’s
revision. Furthermore, it provides a translator that maps definitions from the revised
to the original language. Thus, the wfms can be used to enact definitions of the
revised language without modifying its implementation.

Keywords: workflow, graph transformation

1 Introduction

Workflow Management Systems (wfms) are software systems that target at the support for collab-
orative processes. They usually provide a graphical language for workflow definitions wherein
nodes represent the activities that constitute a process type and edges determine the possible
activity execution sequences. A workflow definition can be instantiated in a wfms in order to
support one single process of a certain type. In a workflow instance, activities are executed in
one of the possible sequences by humans or software services which thereby produce instance
specific data.

In this paper, we report about an industrial application of graph-based methods in the work-
flow modeling domain. Our industrial partner develops a commercial workflow management
system (WfMS) which is embedded in a large enterprise resource planning system (ERP). The
ERP and WfMS are continuously developed. It is particularly difficult to completely antici-
pate all requirements for the workflow definition language of the WfMS. Our industrial partner
wanted to improve their workflow modeling language to reflect new requirements gathered by
their modeling consultants in recent years while adapting the WfMS to customers’ needs.

Pre-Proceedings GT-VMT 2007 147/195

mailto:(rwoerz$|$heller$|$haessler)@i3.informatik.rwth-aachen.de

Evaluating Workflow Definition Language Revisions with Graph-Based Tools

Despite its current shortcomings, longtime customers are used to the workflow definition lan-
guage to some degree. Hence, not only replacing the language by some standard language (e.g.
UML, BMPN) is not an option for our partner. Furthermore, changes in the definition language
have to be introduced with extreme care. Together with our industrial partner, we have revised
the workflow definition language of the WfMS and developed an Evaluation Environment (EE)
with the benefit, that modeling experts can use the EE to extend their modeling language in
a try-and-test manner. They can model workflow definitions in the revised workflow model-
ing language with the WDE and can discuss their suggestions with consultants or customers by
using realistic examples. Using this approach, cost and time consuming modifications of the
WfMS’ implementation for evaluation purposes can be reduced. The Evaluation Environment
described in this paper is based on the graph-based rapid prototyping approach (PROGRES, UP-
GRADE, GRAS) developed at our department.

The paper is structured as follows: Section 2 describes the original workflow definition lan-
guage of the WfMS and points out some of its current deficiencies and possible improvements in
a revised language. Section 3 describes the design of the evaluation environment which provides
editing support for workflow definition in the revised language and a translator that converts
workflow definitions in the revised language to definitions in the original language. Section 4
sketches similar approaches of other research groups. The paper concludes with Section 5.

2 Problem Description

This section briefly describes the workflow definition language of the WfMS (original language)
thereby pointing out some language features whose modification in the revised language is also
depicted.

2.1 Original Workflow Definition Language

The WfMS provides a language that allows for modeling of workflow definitions as typed and
directed graphs. The language is separated in two modeling-layers with two different types of
workflow definitions.

People to application (P2A) workflow definitions. A P2A workflow definition normally mod-
els a rather short-running interaction between a single human workflow participant and technical
resources, i.e. other software modules of the ERP. Usually, these definitions are used to model
possible sequences of GUI-dialogs which constitute the interface between a workflow participant
and technical resources.

Figure 1 depicts an example of a telephone marketing process modeled as a P2A workflow
definition. It contains all existing model elements that can be used in P2A workflow definitions.

• A P2A start activity (big octagon) marks the unique start of a P2A workflow and has no in-
coming transitions. Phone marketing in Figure 1 is an example for a P2A start activity. At
runtime, this activity is invoked at first when the P2A workflow definition is instantiated.
It has no other effect but to invoke its successor activities.

Pre-Proceedings GT-VMT 2007 148/195

ECEASST

1
phone

marketing

2
inter-
ested

3
interested:

yes

4
interested:

no

7
notify
field

service

5
make

appointment

6
not

interested

8
customer
consult.

Figure 1: Example of a P2A workflow definition

• A P2A call activity (triangle) represents the runtime invocation of a hard coded subprogram
in a software module of the ERP. A subprogram can run either with or without workflow
participant interaction. In the former case the workflow participant can enter data via
activity specific GUI forms.

• A P2A XOR-decision (rhomb) models a branching between two or more alternative paths
of P2A activities. The example in Figure 1 shows the P2A XOR-decision interested which
reflects the decision whether the phoned customer is interested in further information or
not. Every P2A workflow instance can only follow exactly one of these alternative paths.
The decision is made at runtime by a workflow participant with a standard GUI that lists
the alternatives. In the workflow definition, each selectable alternative is represented by
a P2A alternative (box) which is also the start of each alternative path. Therefore, P2A
XOR-decisions can only be succeeded by P2A alternatives. In the example, there are just
two P2A alternatives: yes and no.

• A P2A reference (small octagon) represents the instantiation of another P2A workflow
definition. The new P2A workflow instance is automatically assigned to the same work-
flow participant that interacts with the referencing P2A workflow instance. Paths of P2A
activities can either end in a P2A call activity like not interested in the example or in a
P2A reference. In the former case the P2A workflow instance terminates after termination
of the last P2P call activity. In the latter case the P2A workflow instance with the reference
is suspended but does not terminate.

The listed model elements can be connected with directed transitions (arrows) which specify the
order of invocation and associate a P2A XOR-decision with its P2A alternatives, respectively.

People to people (P2P) workflow definitions. P2P workflow definitions model interactions
among human workflow participants. The only model elements on this layer are the transition
and the P2P activity (octagon).

Every P2P activity refers to one P2A start activity. Invoking a P2P activity in a P2P workflow
instance creates a new P2A workflow instance. The P2A workflow definition of this instance
is uniquely identified by the referenced P2A start activity. Termination of the P2A workflow
instance conversely terminates the referencing P2P activity.

P2P activities are assigned to one or more workflow participants. At runtime, workflow partic-
ipants receive a notification when one of their assigned P2P activity is invoked. P2P activities are

Pre-Proceedings GT-VMT 2007 149/195

Evaluating Workflow Definition Language Revisions with Graph-Based Tools

11
check
budget
(Nash)

12
check

inventory
(Bauer)

10
record
order

(Smith)

13
submit
order

(Carter)

Figure 2: Example of a P2P workflow definition

connected with directed transitions. A P2P activity is invoked when all preceding P2P activities
have terminated. A P2P activity signals its termination to all succeeding P2P activities.

Figure 2 shows an example of a P2P workflow definition. All P2P activities refer to P2A
workflow definitions which are not shown for brevity. Assigned workflow participants are written
in brackets under the name of each P2P activity. The termination of record order invokes both
check budget and check inventory. After termination of the latter two submit order is invoked.

2.2 Shortcomings of the Original Language

The WfMS has been repeatedly adapted to new requirements in recent years according to newly
risen customer needs. Therefore, its workflow definition language now has a less clear concep-
tual design compared to other workflow definition languages which have been developed from
scratch. In the following, we describe some of these shortcomings.

2.2.1 No Real Decomposition Hierarchy

The P2P layer and the P2A layer beneath it have a decomposition relationship inasmuch that a
P2A workflow definition can be considered as a refinement of the corresponding P2P activity.
Furthermore, P2A workflow definitions can be refined by using P2A references to some degree.
However, there is no way to model decompositions within the P2P layer, i.e. to refine a complex
P2P activity by another P2P workflow definition.

2.2.2 XOR in the P2P Workflow Definitions

Alternative paths in P2A workflow definitions can be modeled via P2A XOR-decisions. Cur-
rently, there is no equivalent model element for P2P workflow definitions. Instead, decisions
between alternative P2P activity paths have to be modeled by a pattern of several P2P and P2A
modeling elements.

2.2.3 No Explicit Start and End Elements

In contrast to other workflow definition languages, workflow definitions of the WfMS have no
dedicated model elements that mark the origin and end of the control flow. This is particularly
disadvantageous in P2P workflow definitions where those P2P activities are determined to be

Pre-Proceedings GT-VMT 2007 150/195

ECEASST

A

B

C

aB

aC

A B_or_C

tB

tC

B

C

B_or_C
aB

aC

tB

tC

end
_tB

b_or_c

original language

P2
P

P2
A

revised language

P2P workflow definition
with P2P XOR-decision

P2P workflow definition
with pattern for XOR

P2A workflow definition with P2A XOR-decision

P2A workflow definition called from activity tB
(analogously for tC)

b_or_c

tB

arbitrary P2A workflow definitions
for A, B and C
(not depicted)

(d1)

(d2)

(d3)

(d4)

Figure 3: Modeling XOR-decisions in P2P workflow definitions

start (end) activities that have only outgoing (incoming) edges but do not further differ from
other P2P activities.

Figure 3 shows how XOR-decisions in P2P workflow definitions are modeled in the original
(left hand side) and the revised workflow definition language (right hand side). The P2P work-
flow definition (d1) contains a P2P activity B or C with two outgoing transitions to alternative
paths. The P2P activity B or C invokes a P2A workflow definition (d2) which contains a P2A
XOR-decision b or c. Each alternative path ends in a P2A reference (e.g. tB) which instantiates
a P2A workflow definition exemplified by (d3). This P2A workflow instance is assigned to the
same workflow participant as the instance of (d2). It just prompts the workflow participant for
termination via P2A activity end tB.

Termination of the instance of (d3) leaves the instance of (d2) in a suspended state. Conse-
quently, the corresponding P2P activity B or C in the instance of (d1) is left suspended and does
not invoke any successor P2P activities. Furthermore, the P2P activity tB in (d1) terminates due
to the termination of the instance of (d3) and invokes its successors, B in this case, which can be
assigned to a different workflow participant.

2.3 Revised Workflow Definition Language

In Subsection 2.2 we described some of the shortcomings of the original workflow definition
language. These shortcomings were subject of a revision of the workflow definition language
[Häß05] with two major goals: (1) to eliminate the deficiencies described above and (2) to keep

Pre-Proceedings GT-VMT 2007 151/195

Evaluating Workflow Definition Language Revisions with Graph-Based Tools

most model elements and language properties, particularly the graph oriented paradigm and the
distinction between P2P and P2A workflow definitions. The second goal is due to the require-
ment that users which are familiar to the original language should be able to quickly adapt to the
revised one. Furthermore, we have to assure that workflow definitions in the revised language
can be automatically translated into the original language (s. Subsection 3.4). The first goal is
addressed as follows:

• Decompositions can be modeled in the revised language by means of a new model element
named P2P subflow call.

• In addition, the revised language provides dedicated model elements for both language
layers that are used to explicitly indicate the start and end of the control flow within a
workflow instance.

• Furthermore, the revised language allows for expressing decisions in P2P workflow defi-
nitions, too.

The right hand side of Figure 3 depicts a P2P workflow definition (d4) in the revised language
which is equivalent to the pattern in the original language on the left hand side. The workflow
definition (d4) has a P2P XOR-decision b or c which is incident to two P2P XOR-transitions.
Each of the P2P XOR-transition carries an attribute (aB, aC) that represents the respective alter-
native.

A comparison of both sides in Figure 3 clearly shows that the new model element types help
reducing the complexity of workflow definitions if a decision on the P2P layer has to be modeled.

The revised workflow definition language represents just one among many possible language
derivatives. To evaluate each alternative by implementing a dedicated variant of the WfMS
cannot be afforded. In the sequel, we present an alternative approach that leaves the WfMS as it
is but provides support for the revised workflow definition language.

3 Evaluation Environment (EE)

In order to evaluate the revised workflow definition language without changing the implemen-
tation of the WfMS, we have developed an Evaluation Environment (EE) which provides (a) a
workflow definition editor (WDE) to model workflow definitions according to the revised lan-
guage and (b) a workflow definition translator (WDT) to translate workflow definitions from the
revised to the original language.

3.1 Graph-Based Rapid Prototyping Support

Both the WDT and the WDE have been developed using a rapid prototyping approach which is
developed at our department for several years now. The approach facilitates the specification of
graph-grammar specifications in PROGRES [SWZ99] as well as the rapid construction of proto-
typical applications based on the specification. Briefly, a PROGRES specification comprises
the following parts: (1) A graph schema that defines a set of valid graphs. This is done by the
declaration of node and edge types and the definition of valid combinations of their respective

Pre-Proceedings GT-VMT 2007 152/195

ECEASST

name

legend

package

uses

ba
se

la
ye

r
la

ng
ua

ge
la

ye
r

tr
an

sl
at

io
n

la
ye

r
in

te
rf

ac
e

la
ye

r

Translator

RevisedLanguage

Base

OriginalLanguage

ExportInterface

OL_Schema OL_TF RL_Schema RL_TF

B_Schema B_TF

T_Schema

T_P2P_TF

T_P2A_TF

EI_TF EI_P2P EI_P2A

Figure 4: Package structure of the PROGRES specification

instances, (2) a set of graph transformations that transform a valid graph into another, and (3) a
set of graph queries that test a graph for certain properties.

PROGRES can generate executable C-code from a PROGRES specification. The C-code
is embedded into the rapid prototyping framework UPGRADE [BJSW02] resulting in an ex-
ecutable UPGRADE prototype. The prototype allows for displaying multiple views of a graph
instance (host graph) stored in a graph database and manipulating this host graph by invoking
transformations of the application logic resp. PROGRES specification.

The described graph-based prototyping framework has been successfully applied in a number
of research projects at our department, for example, to develop an advanced workflow manage-
ment system for dynamically evolving development processes for different application domains
(e.g.software engineering, chemical engineering) ([HJS+04]).

The application logic of both the WDT and the WDE is fully specified in a single PROGRES
specification. Based on this specification, the Evaluation Environment is realized as an UP-
GRADE prototype.

3.2 Architecture

Figure 4 presents the coarse architecture of the PROGRES specification for the Evaluation En-
vironment (EE). The parts of the PROGRES specification are organized in packages modeled as
sections and subpackages which are associated with architectural layers. The use-relationship
indicates which parts of a package are used in which other package.

The package Base contains two subpackages. B Schema just comprises the declaration of the
node class ELEMENT (a node class is a type that is not instantiatable). The class ELEMENT serves
as the root of a class hierarchy for all model elements of workflow definitions in the original as
well as the revised language and declares common attributes like name storing the name of a

Pre-Proceedings GT-VMT 2007 153/195

Evaluating Workflow Definition Language Revisions with Graph-Based Tools

model element. B TF contains very basic graph transformations, like SetElementNamewhich
sets the name of a given element.

Package RevisedLanguage includes the schema part for model elements in the revised lan-
guages (RL Schema) and transformations that a can be applied to workflow definitions in the
host graph (RL TF). The package OriginalLanguage is build up analogously.

Translator is the package that encompasses all transformations which constitute the translation
algorithm. Only one edge type transformed to is declared in T Schema which is used for
embedding transformed edges in the workflow definitions of the original language. Transfor-
mations for translating P2P and P2A workflow definitions are located in dedicated subpackages
T P2P TF and T P2A TF, respectively.

The package ExportInterface covers all transformations that are accessible from the UPGRADE
prototype. Edit operations concerning P2P workflow definitions in the revised language are lo-
cated in the subpackage EI P2P whereas transformations for P2A workflow definitions are in
subpackage EI P2A. EI TF only contains a single transformation that starts a translation run.

It is the main goal of the architecture to accommodate future changes of the revised languages
in the PROGRES specification with local modifications only. Such changes ideally imply mod-
ifications in RevisedLanguage and Translator only (whereas OriginalLanguage and Base can
remain unchanged). In the same manner, the package ExportInterface needs to be modified when
extending the revised language with new workflow edit operations.

3.3 Workflow Definition Editor (WDE)

The PROGRES specification contains several graph transformations which constitute the inter-
face of the workflow definition editor (WDE). Each graph transformation represents an edit oper-
ation on the host graph that contains all workflow definitions in the revised language. Figure 5(a)
is a screenshot of the WDE captured during modeling of the P2P workflow definition (d1) of
Figure 3. The WDE provides toolbars with buttons each of which executes a transformation, e.g.
insertion of a P2P activity in a P2P workflow definition.

At every point in time, a workflow definition modeled with the WDE complies with certain
conformance rules which can be subdivided in two sets:

• Strong conformance rules (SCR) are rules which every workflow definition of the revised
language has to comply with at any time. For instance, this rule set includes a rather
common rule “Every transition has a source and a target”, but also a rule “The outgoing
transitions of a P2P XOR-decision can be only P2P XOR-transitions” which is specific to
the revised language. The violation of SCR is immediately signaled to the WDE’s user by
means of a message box.

• Weak conformance rules (WCR) are rules which every workflow definition has to comply
with in order to be a valid expression of the revised language, but which can be vio-
lated temporarily. The rule “A P2P XOR-decision has at least two outgoing P2P XOR-
transitions” is a weak conformance rule. Even though supporting the user to model valid
workflow definitions in the revised language is clearly a goal of the WDE, the permis-
sion of temporary violations of WCR eases the modeling task. In the mentioned example
the user would be forced to create the context of a P2P XOR-decision before creation of

Pre-Proceedings GT-VMT 2007 154/195

ECEASST

(a) Workflow Definition Editor (b) Result of a Workflow Definition Translator run

Figure 5: UPGRADE Prototype

the P2P XOR-decision could take place. Such restrictions might unnecessarily contradict
user’s modeling preferences. Hence, violations of WCR are not signaled to the user before
the workflow definitions are translated (s. Subsection 3.4).

The distinction between SRC and WCR is not specific to our EE but likely to be applicable
for similar cases, i.e. WDEs for revisions of other workflow definitions languages.

3.4 Workflow Definition Translator (WDT)

The host graph of the Evaluation Environment maintains graph structures for workflow defini-
tions according to the revised modeling language and graph structures for workflow definitions
in the old modeling language. The workflow definition translator (WDT) translates workflow
definitions form the revised language into workflow definitions in the old language. These newly
generated workflow definitions can then be imported and executed in the CBS-WFMS. The trans-
lation algorithm is specified as a set of graph transformations (in package Translator in Figure 4).
A translation run can be initiated from within the WDE prototype as an automated batch run
without any user interaction. The translation algorithm of the WDT comprises several steps:

1. Check conformance of all workflow definitions against WCR. Stop if there is a non-
conforming workflow definition.

2. For each P2A workflow do

(a) Transform all P2A call activities

Pre-Proceedings GT-VMT 2007 155/195

Evaluating Workflow Definition Language Revisions with Graph-Based Tools

(b) Transform all P2A references

(c) Transform all P2A XOR-decisions

(d) Transform all P2A transitions

3. For each P2P workflow do

(a) Transform all P2P activities

(b) Transform all P2P XOR-decisions

(c) Transform all P2P transitions

Some characteristics of the WDT concerning the sequence of translation steps are described in
the following:

1. Language layers and coarse grained relationships. The WDT works bottom up inasmuch
it first transforms the P2A and afterwards the P2P workflow definitions (step 2 and 3).
This sequence is crucial since P2A workflow definitions are referenced by P2P workflow
definitions. Generally speaking, the sequence is aligned to coarse grained reference rela-
tionships between language layers.

2. Nodes and edges. Both the revised and the original workflow definition language are
graph oriented. Therefore, model elements can be specified as node elements and edge
elements. During translation a directed edge has to be embedded between a source and
a target node at any time whereas a node might exists at least temporarily without any
incident edges. Thus, it is necessary to transform model elements classified as nodes (e.g.
P2A call activities in step 2a) before those model elements classified as edges (e.g. P2A
transition in step 2d).

3. Model element types. Each coarse grained translation step is decomposed into fine grained
steps (2a to 2d and 3a to 3c). Every fine grained translation step transforms model elements
of only one type. This is a consequence of the fact that mainly the type of a model element
(e.g. P2P XOR-decision) determines the static specification of its translation while other
model element properties (e.g. number of incident activities) just affect the execution
dynamics (e.g. actual loop iterations).

The described criteria can also be applied in the specification of the EE for revisions of other
workflow definition languages. Therefore, the coarse design of the algorithm can be reused in
other cases.

The result of a WDT run is a set of workflow definitions in the original language which are also
constructed as graph structures in the host graph during the transformator run. The UPGRADE
prototype provides an export function that serializes these generated workflow definitions into a
file according to a proprietary file format readable by the WfMS. This export function has been
implemented in Java and is independent of the specification of the revised language. Thus, future
revisions of the revised language will surely lead to changes in the PROGRES specification but
not in the export function.

Pre-Proceedings GT-VMT 2007 156/195

ECEASST

4 Related Work

The WDE presented in this paper allows for editing workflow definitions whose validity is partly
checked during editing and fully checked before translation against certain conformance rules
specified within the PROGRES specification. We shortly discuss important related work with
the focus on the workflow domain.

In the workflow area, there are various groups working on translators between different work-
flow definitions languages. The following approaches do not use graph-based techniques. Van
d. Aalst et al. [ODHA06] describe an algorithm that translates workflow definitions from the
graph oriented Business Process Modeling Notation (BPMN) used for notation of workflow def-
initions to the block-structured Business Process Execution Language (BPEL) which specifies
workflow implementations on top of web services. Guelfi and Mammar [GM06] provide a set of
formal transformation rules for mapping UML activity diagrams to workflow definitions in the
workflow definition exchange format XPDL. [Sch02] describes an UPGRADE prototype spec-
ified in PROGRES for editing dynamic task nets together with the transformation of workflow
definitions modeled as UML class diagrams and collaboration diagrams into PROGRES code.

The proposed approach with the WDT unidirectionally translates between different versions of
one graph oriented workflow definition language without user interaction based on a graph-based
approach.

The focus of this paper was on reporting about an application of graph-based techniques
in industrial application domains and not on the development of new general transformation
approaches. Therefore, the workflow definition translator (WDT) of the presented approach
works in a rather straightforward manner in a automated batch mode without user interaction. For
more advanced incremental bidirectional and interactive integration frameworks see [BHW05,
KS06].

5 Conclusion and Impact

In this paper we have reported about an industrial application of graph-based methods in the
domain of workflow modeling. Our industrial partner wanted to revise the workflow defini-
tion language of their commercial workflow management system (WfMS) according to addi-
tional requirements. Using our graph-based tools for rapid prototyping (PROGRES, UPGRADE
and GRAS), we have developed an Evaluation Environment which offers an editor (WDE) for
workflow definitions in the revised language. Furthermore, it provides a translator (WDT) that
translates these definitions back to definitions in the original language for enactment within the
unmodified WfMS. This approachs helps reducing costly experimental reimplementation cycles
for the WfMS.

The modeling experts and development teams for the WFMS have used the Evaluation Envi-
ronment to model sample workflows in the described manner. Within the EE, the improvements
contained in the revised language were evaluated and, by the time of writing, some of them have
already been adapted in the implementation of the commercial WfMS.

Using PROGRES and UPGRADE as technical foundation for the Evaluation Environment has
proven to be a good decision due to the facts that the WDE as well as the WDT could be rapidly

Pre-Proceedings GT-VMT 2007 157/195

Evaluating Workflow Definition Language Revisions with Graph-Based Tools

developed in a relatively short time-span. In the future, the investigation of workflow definition
language translation as described in this paper serves as preliminary work for the development
of a dynamic workflow management systems based on existing static wfms [HNW07].

Bibliography

[BHW05] S. M. Becker, T. Haase, B. Westfechtel. Model-based a-posteriori integration of en-
gineering tools for incremental development processes. Software and Systems Mod-
eling 4:2, 2005.

[BJSW02] B. Böhlen, D. Jäger, A. Schleicher, B. Westfechtel. UPGRADE: A Framework for
Building Graph-Based Interactive Tools. Electronic Notes in Theoretical Computer
Science 72:2, 2002.

[GM06] N. Guelfi, A. Mammar. A formal framework to generate XPDL specifications from
UML activity diagrams. In SAC ’06: Proceedings of the 2006 ACM symposium on
Applied computing. 2006.

[Häß05] F. W. Häßler. Analyse und Erweiterung einer bestehenden Workflow-
Modellierungssprache. Master’s thesis, RWTH Aachen University, 2005.

[HJS+04] M. Heller, D. Jäger, M. Schlüter, R. Schneider, B. Westfechtel. A Management
System for Dynamic and Interorganizational Design Processes in Chemical Engi-
neering. Computers & Chemical Engineering 29:1, 2004.

[HNW07] M. Heller, M. Nagl, R. Wörzberger. Dynamic Process Management Based Upon
Existing Systems. In Collaborative and Distributed Chemical Engineering Design
Processes: From Understanding to Substantial Support. LNCS. Springer, 2007. (to
appear).

[KS06] A. Königs, A. Schürr. MDI - a Rule-Based Multi-Document and Tool Integration
Approach. Special Section on Model-based Tool Integration in Journal of Software
and System Modeling, 2006.

[ODHA06] C. Ouyang, M. Dumas, A. H. M. ter Hofstede, W. M. P. van der Aalst. From BPMN
Process Models to BPEL Web Services. In ICWS ’06: Proceedings of the IEEE
International Conference on Web Services (ICWS’06). 2006.

[Sch02] A. Schleicher. Management of Software Development Processes: An Evolutionary
Approach. PhD thesis, RWTH Aachen University, 2002.

[SWZ99] A. Schürr, A. Winter, A. Zündorf. The PROGRES Approach: Language and Envi-
ronment. In Handbook on Graph Grammars and Computing by Graph Transforma-
tion – Volume 2: Applications, Languages, and Tools. World Scientific, 1999.

Pre-Proceedings GT-VMT 2007 158/195

ECEASST

Graph-Based Engineering Systems
A Family of Software Applications and their Underlying Framework

Gregor Wrobel, Ralf-Erik Ebert, Matthias Pleßow

{wrobel,ebert,plessow}@gfai.de
R&D Department of Graph-Based Engineering Systems
Society for the Promotion of Applied Computer Science

Berlin, Germany

Abstract: In various engineering disciplines visual modeling techniques are used
for the definition as well as representation of complex systems. Besides the pictorial
illustration, the included structural information is often used for application-specific
procedures. This paper presents a few engineering systems for quite different ap-
plication fields, but they use a common graph-based model. This model is part of
a framework that underlies these applications. Various kinds of applications can be
developed on the basis of this framework by means of configurations and exten-
sions. The development of new applications is supported by convenient assemblies
of suitable system functions and layout methods as well as by integration of appli-
cation functionalities. The introduced framework is the basis for a product line of
graph-based engineering systems.

Keywords: visual modeling techniques in engineering, software architectures and
frameworks, software product line, tool support

1 Introduction

In the early 1980s, the use of computers for the design and documentation of schematic dia-
grams increased in response to both the new possibilities of computers and the growing use of IT
in engineering. In many engineering disciplines, apart from computer-aided design, computers
are important for the production of logic models. In line with human thought and decision pro-
cesses, these models are complex, frequently have a net-like structure, and represent hierarchical
phenomena [PP98].
Independently of that, extensive research was conducted in a completely different field: the gen-
eration of graph layouts (graph drawing [DETT99]). In graph drawing a key role is played by the
automatic generation of such layouts and for that purpose, numerous software tools have been
developed [JM03]. However, the modeling of engineering systems requires graphic editors.
This paper presents a framework that combines computer aided modeling with schematic draw-
ing, based on a structural model. It includes graph drawing techniques. As the result it constitutes
the basis of a product line. The domain of this product line is referred to as graph-based engi-
neering systems and its main elements are presented here. Finally, a number of applications are
introduced.

Pre-Proceedings GT-VMT 2007 159/195

Graph-Based Engineering Systems

2 System Architecture

Based on engineering applications developed [PP98][BPPS01] and former research activities in
drawing schematics [PS89], we performed a domain engineering process to detect common fea-
tures of what we call graph-based engineering systems. In order to create such systems in an effi-
cient way, a system architecture has been developed whose main element is a domain framework
so-called CASTool (Computer Aided Schematics ToolBox). A core software component of this
framework is a meta data model. Based on this model, several framework software components
for domain functionalities are implemented. Hence, by using this framework, the development of
a concrete system should be restricted to implement specific application knowledge. In order to
achieve this goal the following implementation strategies are used: configuration management,
component orientation, common and extendable meta model and generic programming.
Figure 1 shows the system architecture. The main elements and some implementation techniques
to create CASTool-based applications are outlined below.

a

CASTool

I/O Engine ELADO
Configuration

Engine

Registry

Engine

Command

Factory

Presentation

Engine

a

undo

redo

log

...

System Layout Application

Application Subsystem

Configuration Files / Scripts (GUI, Behavior, Interactors, Layout, ...)

command 2

command 1

command 2

command 1

command 2

command 1

Application

Model

Application

Functions

Model Configuration

Structure

Parameters

Command Queue

graph-based engineering system

File Edit View Insert

ABC

XML

...

...

...

Figure 1: System architecture

2.1 Data Model

One common characteristic of graph based engineering systems is the usage of an extended graph
model. ELADO (Extended Layout Data Model) represents such structure and is comprised of
three main sections: a structure model, an application model and a visualization model.
The structure model represents what we call networks (Figure 2 shows the core elements).
Networks are structured similarly to mathematical graphs and substantially made up of com-
ponents, nets and connection points (called as pins). To extend the graphs, components (which
correspond to graph vertices) can also contain networks of their own. This means that hierarchi-
cally structured models can easily be represented. Such hierarchical component can be a node

Pre-Proceedings GT-VMT 2007 160/195

ECEASST

ELADO

0..1

0..2

2..*
0..*0..*

structure modelapplication model

0..*

visualization model

0..1

0..*

0..1

0..*

0..1

0..1

0..1

0..1

NetworkElement

Pin Net

PropertyPackage

Property

BaseValue

RepresentationPackage

LayoutPackage

BehaviorPackage

GraphicPackage

Component

Figure 2: ELADO model parts (extract)

in a scheme or a simple project node (e.g. a folder). The latter is used for project structuring.
Apart from the hierarchical structure, networks differ from graphs in that components have pins.

Figure 3: ELADO structure

Pins are the connection points for nets. Figure 3 shows a sim-
ple network. A outer component contains three components.
These components are connected by a net. This net is owned
by the upper component and associated with pins of the in-
ner components. Additional, Figure 3 denotes other elements
of the ELADO structure model. In the mathematical sense,
the net between the inner components is a hyper edge. The
three parts of the net (called as segments) are ending in a com-
mon branch point (shown as smal black rectangle in Figure 3).
Further, each segment is modeled by segment parts which are
delimited by bend points (shown as smal black cicles in Fig-
ure 3). Apart from the model elements featured above, other
classes exist for group representation, annotations and special
structure elements.
Besides the structure model, ELADO consists of a visualization model. This part of ELADO is
used to store information about the geometry of a network element, its shape as well as layout-
specific behaviors. This means for instance, that standardized symbols from various fields of
applications can be simply represented. For example in Figure 4, the net’s segment representing
a bus is drawn by a double line and in Figure 3 the component’s pins are located on fixed po-
sitions on the component’s shape and all connected pins are colored different. The latter could
be a special layout behavior. In addition, each component can contain simple graphics (pictures,
lines, text, etc.) as well as store its own layout information such as connection rules and routing
behaviors. Therefore, in one application various visual languages could be embedded.
In order to be able to develop different applications and in particular to store their application-
specific data (e.g. technology data, business data), ELADO has been augmented with a third
model part, the application model. In contrast to the structure model, in which each relevant ele-

Pre-Proceedings GT-VMT 2007 161/195

Graph-Based Engineering Systems

ment is modeled by a class, the application model is an abstract data structure. The data is stored
in an associative property tree. Each node in the tree can be identified by a key and owns a value
object and a subtree. As indicated in Figure 2, diverse types of basic values such as numbers,
intervals and time series are implemented in ELADO as derived classes.
In conclusion, ELADO satisfies the requirement of an extendable meta model. The use of the
same model for networks as well as for project structure modeling and the appropriate applica-
tion data management makes CASTool different from standard drawing tools. As a matter of
principle, all applications we develop underlie this model approach. Hence, we call such appli-
cations graph-base engineering applications. ELADO consists of approx. 65 classes. Based on
ELADO, CASTool provides a few class libraries to develop graph-based engineering systems in
an efficient way. Some of these are described below.

2.2 Extensibility and Configurability

In order to be able to develop diverse engineering solutions, the system architecture must be
designed such that new functionality can be added and existing functionality extended or modi-
fied. For this purpose, the framework can be augmented by application-specific services such as
special layout methods and engineering components like simulators etc.
Figure 1 shows the extension mechanism embedded into the system architecture. Additional
software components can be added dynamically at run time via a defined mechanism. On prin-
ciple, every user-controlled communication between components is based on the execution of
commands. The use of such a command is based on the fabric pattern [GHJV95] whereas the
creation is embedded in the command itself.
Due the abstract application data model (see Section 2.1), the handling of special data is more
complicated and not high-performing. Therefore, every ELADO object (more precisely every
CASTool object) can be decorated with interface objects. An interface object provides specific
functions for model data access and manipulation, but can not store data persistently. This is
not necessary, since all data can be stored in the application model. The registration of interface
objects works in the same way as for commands by registering an alias at runtime.
Beside the system’s extensibility, configuration mechanisms have been implemented within the
system (configuration engine in Figure 1), which are primarily used for the design of GUI and
layout management (in form of layout plans that formulate the calls of individual analysis, layout
and evaluation methods) of an application. This can be done by modifying initialization files or,
alternatively, by dynamic script interpretation at run time. Currently, interpreters for JavaScript,
Phyton, TCL and CSL are integrated. All interpreters are extended with special functions for
CASTool command calling, configuration access and model method invocation. For this pur-
pose, a navigation language for object data, which is according to XPath, is implemented.
To sum up: the framework offers a convenient way of system extension by commands and in-
terface objects integration as well as system configuration. This satisfies the implementation
strategies described as component orientation, generic programming and configuration manage-
ment above.

Pre-Proceedings GT-VMT 2007 162/195

ECEASST

2.3 Additional Framework Features

CASTool’s presentation module is responsible for outputting the model data corresponding to
the application. To visualize the ELADO structure model and interact with it, a software com-
ponent for drawing schematics is included (the presentation engine in Figure 1). To deal with
ELADO application data, generic dialogs and forms have been developed. For that purpose,
dialog elements for base data types are developed including optional GUI elements for addition
information (units, bounds, intervals). A dialog generator arranges sets of these line by line
on forms. Nodes of the application data tree rendered as tabs. Besides this features CASTool
provides data exchange routines (XML formats for data exchange, SVG and pixel formats for
schematics) as well as client-server components to run the framework in intranet/internet envi-
ronments without visualization, in which case CASTool acts as a layout server.

3 Layout Methods

The framework includes a couple of basic layout methods such as the usual procedures for align-
ing selected components and simple routing methods like rubber band. All these methods work
direct on ELADO. Furthermore, some special layout and placement methods (with special data
structures) are included. These methods also operate with structure as well as geometry infor-
mation and have been developed taking graph drawing techniques into account. Their purpose is
to emphasize the structural properties of networks, and they also have to be clear and aesthetical.
Moreover, layout methods need to be topologically and geometrically stable to prevent recogni-
tion problems during interactions on the part of the user [BP90]. Amongst others, the framework
includes the following layout methods:
Orthogonal routing: This aids the interactive graphic design of networks by locally adapting
the net routing whenever component positions are changed. As a special feature, this method
finds long continuous connection parts (buses) and draws them as horizontal or vertical lines.

Figure 4: Bus routing

This makes the schemes much easier to read because of the
representation of one main flow. This bus routing method
consists of three parts: pattern routing for two point connec-
tions, autonomous bus routing and post processing for bus
routing. The pattern routing draws two-point connections in
a sophisticated way by using a set of defined base patterns.
The bus routing handles hyper-edges and embeds them as
sub-optimal Steiner-Trees. While the autonomous bus rout-
ing disregards collisions, the post processing optimizes the
results by regarding collisions. Figure 6 shows the bus rout-
ing in an application.
Level layout: The framework also contains a so-called level layout that is suitable for diagrams
of logic networks and analogous control systems in which the components are arranged in verti-
cal levels. A channel router is used to draw nets between the component levels [GPS03]. Level
layout seams to be similar to the well known layer layout due to Sugiyama [STT81]. However,
the level layout does not change the order of components within the levels.

Pre-Proceedings GT-VMT 2007 163/195

Graph-Based Engineering Systems

Tree layout: This includes techniques that allow to draw networks with tree-like structures.
Various basic principles regarding the direction of growth, adjustment and the order of com-

(a) Bottom left tree

A

A

A

A A

A A

(b) Tree with star and buses

Figure 5: Various tree layouts

ponents can be selected in accordance with corresponding parameters. The tree layout follows
the principle of topological stability. For that purpose, the user can choose the root node of a tree
as well as the order of subtrees by graphical interactions. Additional, special network features
like stars and busses are supported.

4 Applications

In recent years, various different solutions have been developed on the basis of the domain frame-
work presented here. Some of them are briefly described below.

4.1 TOP-Energy - Toolkit for Optimization of Industrial Energy Systems

The main aim of TOP-Energy is to support energy consultants in analyzing and optimizing indus-
trial energy supply systems by providing modules for documentation, simulation and evaluation
of energy systems with respect to energetic, economic and environmental aspects.
TOP-Energy consists of two major parts: CASTool and a set of modules. The former supplies
the services of a modern GUI-application such as module-sensitive dialogs and presentations,
flow sheet editing and report generation. Figure 6 shows the flow sheet editor in TOP-Energy for
the modeling of energy supply systems. A flow sheet is TOP-Energy’s visual language to model
energy systems and can contain different kinds of energy components. Components represent
technical objects (e.g. chiller) as well as non-material objects (e.g. energy rates). The flow sheets
are used by a simulator module to calculate energy demands [AWKP04]. The visual language of
flow sheets includes some connection rules to connect only pins of the same medium as well as
rule definitions of hyper-nets and flow directions. Because of the marginal spatial comprehen-
siveness of these systems, a special placement procedure is not necessary. The included local
alignment operations and collision detections are adequate. However, strong internal linking
structures require an appropriate routing procedure.
Based on the first TOP-Energy application, the software was enhanced to a common CASTool-
based framework for software solutions on the field of energy systems [WHA07].

Pre-Proceedings GT-VMT 2007 164/195

ECEASST

Figure 6: Flow Sheet in TOP-Energy

4.2 VotAn - Requirements Engineering Tool for Software of Technical Systems

VotAn is a tool for requirements engineering of software solutions in technical engineering envi-
ronments, especially in the field of automation. It provides a model-based approach with focus
on a product model. VotAn includes a few well-defined term structures (thesaurus, taxonomy)
containing domain-based knowledge for some application areas. Besides product objects, this
structure includes terms for functional and non-functional requirements in form of templates, so-
called VotAn-Objects. In general, VotAn supports, among other things, the following activities:

• acquisition, specification, structuring, tracing and revision of requirements in a systematic
way by further using of standard (third party) software

• adaptable methodical guidance for the structuring of the requirement specification includ-
ing their documentation in different forms

• template creation for self-made reusable VotAn-objects

VotAn supports different schematic illustrations for the requirements modeling. Each VotAn-
Object can be represented in such a scheme. For that purpose, a VotAn-Object possess several
proxies and in fact, these proxies are assigned to a scheme. Besides representations to show
structural information (e.g. UML use case diagrams), there exist also schemes that control dialog
sequences (see Figure 7). The visual language for these sequences is designed according to UML
activity diagrams wherein a acitivity is a VotAn proxy that opens a form. This form shows data

Pre-Proceedings GT-VMT 2007 165/195

Graph-Based Engineering Systems

Figure 7: Activity Sequence Scheme in VotAn

of a VotAn-Object that the proxy belongs to, using the framework‘s generic dialogue generation.
The conditions in that diagrams are proxies, too. These control the sequence in dependence of a
value of a VotAn-Object’s parameter. Additional, some common diagram elements (e.g. message
dialogs in form of activities and user controlled branchings in form of conditions) are available.
As a result, the user can define wizard-like data administration sequences. Again, these can be
stored as templates and reused as domain-specific process model for different projects.

4.3 SwitchLay - Switch Cabinet Layout

Switching stations can be found in modern factories and buildings everywhere. They are utilized
as supervisory station to control and observe different technical processes. Electrical/ electrome-
chanical engineering systems (ECAD-systems) are often used to design switchboards. As design
result, circuit diagrams are mainly developed. But for the physical design of a switchboard they
offer no assistance [VSP04].
SwitchLay possesses two methods for layout on the mounting plates of switch cabinets: place-
ment and routing. These are quite different layout tasks as in the application descried before. In
SwitchLay, a physical layout is required, in which the components have to be full-scale placed,
and routing means wiring of cable in a physical environment.
The task of the placement technique is to accommodate a specified set of electrical devices on the
mounting plate. For this purpose, a pattern of a channel frame can be selected for the mounting
plate. The electrical devices must then be assigned to the individual facets between the channels.

Pre-Proceedings GT-VMT 2007 166/195

ECEASST

Figure 8: Switch Cabinet Layout

Any affinities or incompatibilities be-
tween the electrical devices must be taken
into account. Note that the pattern merely
describes the basic architecture of the
channel frame and the existence of cer-
tain rails. During placement, the channel
frame needs to be resized depending on
space requirements.
The key problem of routing is the decom-
position of hypernets. The clamps in-
volved in a hypernet must be connected
by a tree that branches out only at the
clamps. The clamps have limited va-
lences for technical reasons. For each hy-
pernet, the algorithm forms partial trees,
which are successively connected. An
extended form of Dijkstra’s algorithm is
used [VSP04].
SwitchLay seems to be quite different
to applications including logical net-like
structures, but de facto, all SwitchLay components could be modeled by ELADO (see Section
2.1). Consequently, SwitchLay was developed as a prototype based on CASTool to investigate
the layout methods and show the layout results. Currently, the routing method is included in a
third party ECAD-system.

5 Experiences

We use the described framework in application development since a couple of years. More
precisely, we have developed the framework from prototypes, which have been developed in re-
search projects. Hence, we used a reactive strategy to develop our framework as a product line
infrastructure. This way implicated some necessary redesign processes. As the result, we have
now a powerful software basis for application development in the field of graph-based engineer-
ing systems. The main approach, the same data model for all applications, has the advantage of
using common software components. Especially the GUI components for the ELADO structure
model and generic dialogs and forms for the ELADO application model make rapid prototyping
possible. Certainly for end products, special GUI elements especially for application data must
be implemented. Furthermore, the same date model comprised the data exchange between dif-
ferent applications in a native way.
Based on the exiting results, we changed our framework development recently to a proactive
strategy. We gain the same experience as [Dit04], that the implementation of a lot of functional-
ities in commands such as model manipulations makes the code difficult to read. Additional, by
calling sub commands in commands, dependencies increased and as consequence, side-effects
have a negative impact. Currently, in a re-design phase, we integrate some command stored

Pre-Proceedings GT-VMT 2007 167/195

Graph-Based Engineering Systems

common functionalities in framework libraries and modules.
The system configurability and extensibility necessitate the abstraction level described here. To-
gether with the abstract ELADO application data, the system’s complexity increases, which is
why particular attention had to be paid to system performance.
In order to cover areas of usage which are as large as possible, the system has been developed to
run on various system environments by means of platform-independent libraries. All framework
classes are written in C++ using open-source third party libraries such as wxWidgets [SHC05]
and Apache Xerces. So far, the framework, including layout methods, comprises about 850
classes and approx. 300,000 lines of code.

6 Related Works

With the increasing popularity of UML in the end of 1990s, the use of visual techniques and
graph-based tools increased. Therefore, a large number of (Meta)CASE tools have been devel-
oped. The main objective of these systems is to provide software modeling techniques as well
as tools for source code generating. Independently of that, many systems for modeling, pro-
gramming as well as simulating of technical applications with visual modeling techniques (e.g.
LabView and Matlab Simulink) are widely used. These systems are designed for non-application
specific languages and require special user knowledge.
In contrast, CASTool offers the development of software systems for engineering applications
with user-defined, domain-specific, visual languages and, therefore, provides the modeling of
technical systems in an easier way. This and the possibility to extend application-logic (e.g. sim-
ulators) enables the end-user to deal with complex issues in a domain-specific environment.
Besides many visual modeling tools [JM03], a few frameworks for such applications have been
built up to date. The Graphical Modeling Framework (GMF [N06]) is such a framework. GMF
is a bridge between the Eclipse Modeling Framework (EMF) and the Graphical Editing Frame-
work (GEF). Another framework for the development of graph-based applications is UPGRADE
[BJSW02] that is not only used to develop software engineering tools too. It provides many of
the framework features descried above (e.g customizability, extensibility as well as convenient
layout methods). GMF provides a number of visual editors for the application development pro-
cess. In contrast, CASTool contains only an editor for tree-structured configuration files and a
graphical editor to create component appearances. To describe connection rules, CASTool in-
cludes a declarative way in form of configuration files. This is rather weak compared to the visual
languages provided by GMF and PROGRES. A visual description language for design rules was
developed in [FPA05] and will be integrated in the framework by future works.
The main difference between the frameworks above and CASTool is that CASTool is focused on
engineering systems including net-like structures. For this purpose, CASTool’s abstraction level
is lower. Certainly, the GMF and UPGRADE are more general and powerful in the sense that
these can be used for the development of various applications. But for such engineering systems
which can be represented by ELADO and which need to store besides the structure information
a lot of application data, the described framework is more suitable.

Pre-Proceedings GT-VMT 2007 168/195

ECEASST

7 Conclusion

The framework described above enables custom-made engineering systems to be produced effi-
ciently. The chosen approach of using a lower abstract meta model enables the implementation
of many common functionalities for graph-based engineering systems in the software basis. The
simple adaptability of the system supports the supply of ergonomic user interfaces and enables
individual configurations. As a result, changing user requirements can easily be taken into ac-
count in the latter phases of application development and even after the system has been com-
pleted. The presented solutions demonstrate that the system approach can be used for application
development, rapid prototyping as well as basis for further frameworks.
One can easily imagine that CASTool can be used not only for engineering systems but also for
other similar systems (related to the data model and required system functionalities) of different
domains. In particular, the possibility of being able to generically add functionality to the system
and to integrate this functionality into the overall architecture opens up a broad sphere of appli-
cations for CASTool.
Future work will involve evolving research prototypes into products and developing other layout
methods as well as searching for new fields of application.

Acknowledgements: The authors are grateful to the Federal Ministry of Economics and Tech-
nology of Germany as well as the Federal Ministry of Educations and Research of Germany for
the financial support of several projects on this subject.

Bibliography

[AWKP04] E. Augenstein, G. Wrobel, I. Kuperjans, M. Pleßow. TOP-ENERGY - Computa-
tional Support for Energy System Engineering Processes. In Tsahalis (ed.), Proceed-
ings of the 1st International Conference ”From Scientific Computing to Computa-
tional Engineering”. Volume 3, pp. 1284–1291. Patras University Press, Athens,
Greece, September 2004.

[BJSW02] B. Böhler, B. Jäger, D. Schleicher, B. Westfechtel. UPGRADE: A Framework for
Building Graph-Based Interactive Tools. In Mens et al. (eds.), Proceedings Interna-
tional Workshop on Graph-Based Tools (GraBaTs 2002). Electronic Notes in Theo-
retical Computer Science 72(2). Elsevier, Barcelona, Spain, October 2002.

[BP90] K.-F. Böhring, F. N. Paulisch. Using Constraints to Achieve Stability in Automatic
Graph Layout Algorithms. In ACM SIGCHI Conference on Human Factors in Com-
puting Systems. ACM SIGCHI, pp. 43–51. Seattle, WA, April 1-5 1990.

[BPPS01] T. Bartsch, M. Pleßow, M. Pocher, H.-W. Schmidt. Ein universelles System für die
Projektierung von Prozeßleitsystemen. ZwF Zeitschrift für wirtschaftlichen Fabrik-
betrieb 4(96):205–211, 2001.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, I. G. Tollis. Graph Drawing - Algorithms for
the Visualization of Graphs. Prentice Hall, 1999.

Pre-Proceedings GT-VMT 2007 169/195

Graph-Based Engineering Systems

[Dit04] K. Dittert. Softwarearchitekturen: Mythen und Legenden. OBJELTspektrum 3:34–
39, Mai/Juni 2004.

[FPA05] R. Fröhling, M. Pocher, M. P. ans Alexej Lisounkin. Tools for Knowledge Acqui-
sition, Modeling and Visualization Applied to Process Supervision. In Krüger et al.
(eds.), Industrial Simulation Conference. Pp. 358 – 362. EUROSIS, June 2005.

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Addison-Wesley,
January 1995.

[GPS03] B. Goetze, M. Pleßow, P. Scheffler. Level-Layout für die Generierung grafischer
Dokumentationen in der Leittechnik. ZwF Zeitschrift für wirtschaftlichen Fabrik-
betrieb 3(98):97–101, 2003.

[JM03] M. Jünger, P. Mutzel. Graph Drawing Software. Mathematics and Visualization.
Springer, 2003.

[N06] N. N. The Eclipse Foundation - Graphical Modeling Framework.
http://www.eclipse.org/gmf/, 19.12.2006.

[PP98] M. Pleßow, M. Pocher. Intelligente Editoren - ein innovatives Konzept für die Erstel-
lung von schematischen Darstellungen. In Dassow and Kruse (eds.), Informatik ’98.
Pp. 141 – 150. Springer-Verlag, Magdeburg, Germany, September 1998.

[PS89] M. Pleßow, P. Simeonov. Netlike Schematics and their Structure Description.
In Menga and Kempe (eds.), Workshop on Informatics in Indusrial Automation.
Pp. 144–163. CICIP, Berlin, GDR, Nevember 1989.

[SHC05] J. Smart, K. Hock, S. Csomor. Cross-Platform GUI Programming with wxWidgets.
Bruce Peren’s Open Source Series. Prentice Hall, USA, 2005.

[STT81] K. Sugiyama, S. Tagawa, M. Toda. Methods for Visual Understanding of Hierarchi-
cal System Structures. IEEE Transactions on Systems, Man and Cybernetics SMC-
11(2):109–129, 1981.

[VSP04] W. Vigerske, B. Stube, M. Pleßow. Automatic Wiring in Switch Cabinets. In
Maropoulos and Schaefer (eds.), Proceedings of the 1st International Conference on
Electrical/Electromechanical Computer Aided Design and Engineering. Pp. 90–93.
The University of Durham, School of Engineering, Durham, UK, November 2004.

[WHA07] G. Wrobel, S. Herbergs, E. Augenstein. TOP-Energy - Ein Framework für Soft-
warelösungen in der Energietechnik. In 8. Internationale Tagung Wirtschaftsinfor-
matik. Karlsruhe, Germany, February/March 2007.

Pre-Proceedings GT-VMT 2007 170/195

Imposing Hierarchy on a Graph

Brendan Sheehan, Benoit Gaudin and Aaron Quigley

Systems Research Group1

University College Dublin, Belfield, Dublin 4, Ireland
First.Last@ucd.ie

Abstract: This paper investigates a way of imposing a hierarchy on a graph representing
data and their relationships with each other. The hierarchyis imposed by clustering. First a
tree structure is imposed on the initial graph, then ak-partite structure is imposed on each
previously obtained cluster. Imposing a tree exposes the hierarchical structure of the graph
as well as providing an abstraction of the data. In this study, three kinds of merge opera-
tions are considered and their composition is shown to yielda tree with a maximal number
of vertices in which vertices in the tree are associated withdisjoint connected subgraphs.
These subgraphs are subsequently transformed into k-partite graphs using similar merge
operations. These merges also ensure that the obtained treeis proper with respect to the
hierarchy imposed on the data.

A detailed example of the technique’s application in exposing the structure of protein inter-
action networks is described. The example focuses on the MAPK cell signalling pathway.
The merge operations help expose where signal regulation occurs within the pathway and
from other signalling pathways within the cell.

Keywords: Graph visualization, clustering technique, tree,k-partite graphs.

1 Introduction

Graphs representing data often possess a large number of vertices and edges. As a result standard graph
drawing techniques [2] cannot help the user in exploring the data and extracting useful information.
This study deals with transforming a graph into a better understood graph structure that forms the basis
by which it is more convenient to achieve these tasks. The main idea consists of computing a tree which
possesses less vertices than the initial graph but also introduces a tree structure on the data.

Clustering the vertices of a graph introduces abstraction and a node hierarchy. This technique reduces
the number of vertices rendering the graph more readable. The vertices can be clustered in different
ways, achieving certain goals. In [7] for example, the authors cluster vertices to obtain a planar abstrac-
tion of the initial graph. The resulting graph does not contain any cross-edges, improving the readability.
Planarity is a good criterion to impose, but some graphs are structured (like trees or grids), and this fea-
ture can be exploited to assist the user in understanding thestructure of the graph. In [10] for example,
the authors show that users prefer hierarchical layout whenexploring the data set. For this reason, ab-
stracting the graph as a tree is considered as a reasonable approach to graph exploration in this study.
Extracting a tree from a graph is usually done by means ofspanning tree computation techniques. But
spanning trees do not satisfy all our goals. The number of nodes of a spanning tree is the same as the
number of vertices of the graph. There have been attempts to visualize large networks using spanning
trees [12] but such layouts do not minimize the number of vertices thatthe user has to read.

There exist other methods to expose the tree-like structureof a graph such as tree-decomposition [6,
3]. However the mapping of vertices to clusters is not one to one. This means that it is hard for the user
to associate underlying vertices with such a decomposition.

1 This work is supported by the Irish Research Council for Science, Engineering and Technology: funded by the National
Development Plan in association with Microsoft Research

Pre-Proceedings GT-VMT 2007 171/195

Reducing the number of vertices of the graph is clearly interesting when dealing with large graphs.
Structuring the data set is also of great interest for the user to browse and select a relevant subset.
The hierarchical structure of a tree is particularly relevant for data that already possesses an implicit
hierarchy. Consider for instance a social network represented by a graph whose vertices model people
and whose edges model the contacts between them. It is interesting to pick one person and visualize
their degree of relatedness with others.In the case where there is no tree structure to exploit, if there is
for instance no legitimate root, then ak-partite graph structure offers a good way to display the hierarchy
of the data.

In this study, a tree is computed from the initial graph by means of operators called merges that
are inspired by tree-width techniques ([3]). Intuitively, a merge collapses some vertices of the initial
graph into clusters and updates the edges so that two clusters are connected if they share a common
edge. Three merges are considered in this paper. The first one, introduced in [4], yields a tree whose
number of vertices is maximal. This tree represents an abstraction of the initial graph, enabling the user
to browse the smaller graph. If one of the vertices of the treeappears to be of interest, then the user
may want to see the part of the initial graph to which it corresponds. Often it is desirable that clusters
of the graph are connected. Since this is not ensured by the merge previously mentioned, a second
merge operation is considered, which has to be applied together with the first merge operation (the two
merge operations have to be composed). Finally, the third merge introduced enables visualization of the
contents of clusters ask-partite graphs.

In section2 some notation and preliminaries are introduced. The first merge operation is presented in
Section3, the second merge operation in Section4 and the third merge is introduced in Section5. It is
shown in these sections that their composition yields a treewith maximal number of vertices. The nodes
of this tree are obtained by clustering and the contents of a cluster is itself cluster to result in ak-partite
graph. Finally, an example is provided based on protein-protein interaction data (see [1]) in Section6.

2 Preliminaries

A simple graphG is a couple(VG,EG) whereVG is the set of vertices ofG andEG is its set of edges,
such that{(x,x′) ∈V 2

G|x = x′} ⊆ EG ⊆V 2
G. A graphG is said to be empty ifVG = /0. Finally, G is said to

be undirected if for all(x,y) ∈ EG, it is also true that(y,x) ∈ EG. The set of undirected simple graphs is
denotedG. In what follows, only undirected graphs will be considered.

Given a non-empty graphG and two verticesx,y of G, if (x,y) ∈ EG then x and y are said to be
neighbors. Moreover, a pathp of G betweenx andy is a sequence of edges(xi,xi+1)1≤i≤k such that
x = x1, y = xk+1 and for alli ∈ {1, . . . ,k}, (xi,xi+1) ∈ EG. The empty path is denotedε and represents
the empty sequence of edges.

If p = (xi,xi+1)1≤i≤k is a path ofG, then any sub-sequence(xi,xi+1)k1≤i≤k2 with k1 ≥ 1 andk2 ≤ k is
called a sub-path ofp and is denotedpxk1 ,xk2

. For instance, ifp equals

(x1,x2),(x2,x3),(x3,x4),(x5,x6),(x6,x7),(x8,x9)

then px3,x6 equals(x3,x4),(x5,x6). If p and p′ are two paths andp (resp. p′) is empty, then the con-
catenation ofp and p′, denotedp.p′ , equalsp′ (resp. p). Now if neither p nor p′ is empty and
p = ((xi,xi+1))1≤i≤k andp′ = ((x′j,x

′
j+1))1≤ j≤k′ andxk+1 = x′1, thenp.p′ is the path

(x1,x2).(x2,x3) . . . (xk,xk+1).(x
′
1,x

′
2) . . . (x

′
k′ ,x

′
k′+1)

The length of a pathp, denoted|p|, is defined as the following:

|p| =






0 if p = ε
|p′| if p = (x,x′).p′ with x = x′

|p′|+1 if p = (x,x′).p′ with x 6= x′

Pre-Proceedings GT-VMT 2007 172/195

For instance, considering the pathp defined above,|p| = 6 and|(x1,x1).p| = 6 also.
Given a connected simple undirected graphG and a vertexr of G, the distance functiondG,r(·) is

defined for all verticesx of G by

dG,r(x) = min{|p| ∈ N| p is a path inG betweenr andx} (1)

As an example, for all verticesn of graphG given in Figure1, the value ofdG,r(n) is written down on
the left side of Figure1.

0 r

1 x y w

2 x′ y′ w’

3 z

Figure 1: A graphG.

A graph is said to bek-partite if it is possible to partition vertices intok subsets such that two vertices
belonging to the same partition are not neighbors. The goal of this study is to compute a tree andk-partite
graphs with maximal number of vertices, by transforming a graphG. The kind of transformations under
consideration are calledmerges:

Definition 1 A merge is an operator fromG to G which possesses the following properties: ifG′ ∈ G
is the result of a merge applied toG ∈ G, then

(a) VG′ is a partition ofVG (i.eVG′ ⊆ 2VG and
S

X∈VG′
X = VG and∀X ,Y ∈VG′ , X ∩Y = /0).

(b) for X ,Y ∈VG′ ,
(X ,Y) ∈ EG′ ⇐⇒∃x ∈ X ,y ∈ Y, s.t(x,y) ∈ EG

Thus a merge is an operator which collapses together severalvertices of a graph to obtain a new vertex.
The edges incident to the collapsed vertices then incident to the newly obtained vertex. Note that a
graph obtained by merging, using the first merge operation, is different from a graph minor. A merge
corresponds to the repeated applications of vertex-contractions, and a minor corresponds the repeated
applications of edge-contractions and edge-deletions.

Figure3(a) represents a graph obtained by merging from the graphG of Figure1. But Figure3(b)
represents a graph which cannot be obtained fromG by merging. There is no edge betweenw′ andz in
G, and there is one between{w′} and{z}.

Considering a particular vertexr of a graphG as well as the distance functiondG,r, a hierarchy is
explicitly introduced over the vertices ofG in order to facilitate the understanding of the data by the
user: r is the higher element in the hierarchy and the further fromr a vertex is the lower it is in the
hierarchy2. It is usually desirable that a merge applied toG preserves the hierarchy. Formally, M
preserves the hierarchy of G according tor if ∀x,y ∈VG,∀X ,Y ∈VM(G) s.tx ∈ X andy ∈ Y ,

dG,r(x) ≤ dG,r(y) ⇒ dM(G),R(X) ≤ dM(G),R(Y) (2)

2 Note that ifdG,r(x) is greater thandG,r(y) anddG,r(y) is greater thandG,r(x) thenx = y does not hold in general.

Pre-Proceedings GT-VMT 2007 173/195

{r}

{x ,y ,w }

{x′,y′} {w′}

{z}

(a) A graph obtained by
merging.

{r} = R

{x,y,w}

{x′,y′} {w′}

{z}

(b) A graph not ob-
tained by merging.

{r}

{x,y′,w}

{x′,y} {w′}

{z}

(c) A merge not preserving
the hierarchy.

{r}

{x,y,w,w′}

{x′,y′,z}

(d) The tree result-
ing from applying
M1 andM2.

Figure 2:

whereR is the vertex ofM(G) containingr. The graphG′ represented in Figure3(a) is obtained by a
merge preserving the hierarchy ofG (see Figure1) according tor. This is not the case for the merge
resulting in the graph of Figure3(c). If R denotes the vertex{r}, thendG′

,R({x,y′,w}) < dG′
,r({x′,y})

anddG,r(x′) < dG,r(y′). This means thatx′ is lower thany′ in the hierarchy involved byG′, although
it is the opposite inG. In the case of a social network for instance, a merge like theone yielded inG′

would then reverse the fact that the personx′ plays a more important role than the persony′. This seems
awkward in some situations. For this reason, merges avoiding this kind of reversion are considered in
this study.

Merging vertices of a graph represents an interesting way toprovide an abstraction. If this abstraction
is done in a reasonable way, merging could provide a basis by which to browse the graph. Indeed
one could browse the result of a merge and decide to enter intodetails by browsing the part of the
initial graph represented by a vertex obtained by merging. Such a part of the initial graph is called an
associated graph.

Definition 2 Let G be a graph andM be a merge. Given a vertexX of M(G), the graph associated to
X according toG, denotedG′(X) represents the sub-graphG′ of G defined by:

• VG′ = {x ∈VG|x ∈ X}

• EG′ = {(x,y) ∈ EG|x ∈ X ∧ y ∈ X}

Even if G is a connected graph, this property does not hold for any associated graph. But when con-
sidering entering into details of a vertex of a graph obtained by merging, it is often preferable that a
connected sub-graph ofG is associated with it. For this reason, we will consider in section 4 merges
which ensure that all associated sub-graphs are connected.In what follows, such a graph will be called
a deeply connected graph according toG.

Lemma1 is an interesting lemma showing that the existence of path ina graphG is preserved by
merging.

Lemma 1 Let G and G′ be two graphs such that G′ is obtained from G by applying a merge operator.
Let x,y ∈VG and X ,Y ∈VG′ such that x ∈ X and y ∈ Y . If there exists a path in G between x and y, then
there exists a path in G′ between X and Y .

Section3 aims at providing a means of imposing an optimal tree from anyundirected connected simple
and non empty graph. Section4 aims at providing an algorithm to be applied on the previous tree so that
a deeply connected one is obtained. Section5 deals with imposing ak-partite graph on the associated
graph of the previously obtained clusters.

Pre-Proceedings GT-VMT 2007 174/195

3 Imposing a Tree

In this section how using merges to impose a tree on a graph is considered. In [4] a merge yielding a
tree is introduced. We show in this section that this merge, denotedM1 in what follows, preserves the
hierarchy introduced by the distance function from a given vertex and yields a tree with maximal number
of vertices. M1 is actually defined from an equivalence relationR and is then shown to merge as few
vertices as possible to result in a tree (see theorem1).

If G is an undirected simple and non-empty graph andr is a vertex ofG, the relationR onVG according
to r is defined as the following:

xRy ⇐⇒ (d(x) = d(y))∧
(
∃z, p, p′, px,z = p (3)

∧p′y,z = p′∧∀x′ ∈ p,∀y′ ∈ p′, d(x) ≤ d(x′)∧d(y) ≤ d(y′)
)

Basically, two vertices are related according toR if there exists a path from each of them leading to the
same vertex by only traversing vertices that are further away from r. Considering thatr would be the
root of a tree, then the distance function fromr would represent the depth of each vertex in this tree.
Two vertices would then be related byR if there exists a vertex whose depth is greater and from which
there is a path to both of them. The idea is then to merge iteratively two such vertices together into a
single one to obtain a tree.

Note that the relationR is reflexive and symmetric. This implies that the transitiveclosureR+ of R
is an equivalence relation over the set of vertices ofG . By definition,xR+y if and only if there exists a
sequence(xi)1≤i≤k such thatxRx1, xkRy and for alli ∈ {1, . . . ,k−1}, xiRxi+1.

It is possible to compute the classes of equivalence associated toR+ by searching for pairs of vertices
related to each other byR. The idea would then be to merge all the vertices of a same class to obtain
a tree. Considering Figure1 with dG,r(r) = 0, dG,r(x) = dG,r(y) = dG,r(w) = 1, dG,r(x′) = dG,r(y′) =
dG,r(w′) = 2 anddG,r(z) = 3, the corresponding classes of equivalence are{x,y,w}, {x′,y′}, {w′} and
{z}. An algorithm implementing the mergeM1 can be found in [4].

Definition 3 Let G be a simple undirected non-empty graph and letr be a vertex ofG. M1(G,r)
denotes the merge defined by:

• VM1(G,r) = {classes of equivalence ofR+}

• EM1(G,r) = {(X ,Y) ∈V 2
M1(G,r)|∃x ∈ X ,y ∈ Y, (x,y) ∈ EG}

As an example, the graph of Figure3(a)representsM1(G,r) whereG is the graph of Figure1.
The operator defined by Definition3 is clearly a merge according to Definition1. Moreover,M1(G,r)
is a tree rooted in{r} since no path from two vertices at the same level can lead to a deeper vertex.
It is also worth noting that each vertex of the obtained treeM1(G,r) consists of a set of vertices ofG.
Moreover, givenX ∈VM1(G,r), if r ∈ R then

∀x ∈ X , dM1(G,r),R(X) = dG,r(x)

This equation implies in particular thatM1 preserves the hierarchy according tor.
Theorem1 is actually the main result of this section. It shows thatM1 is a merge which yield a

tree whose number of vertices is maximal, while preserving the hierarchy introduced by the distance
function.

Theorem 1 Let G be a undirected simple non-empty graph and r be a vertex of G. M1(G,r) is the
maximal (in the sense of the number of vertices) tree rooted in r, preserving the hierarchy, and obtained
from G by merging.

Pre-Proceedings GT-VMT 2007 175/195

Proof. (proof of Theorem1)
If M1(G,r) was not an optimal tree, then there exists an optimal mergeM such thatM(G) is a tree as
well as two different verticesX andY of M1(G,r) and two verticesx andy of G such thatxR∗y butx ∈ X
andy ∈ Y . Since the mergeM also preserves the hierarchy,dM(G),R(X) = dM(G),R(Y) holds. Now since
xR∗y, then it exists a path betweenx andy such that only vertices, whose depth is greater thandG,r(x),
are traversed. Now according to Lemma1, there exists such a path betweenX andY in M(G). In that
caseM(G) can not be a tree. This contradicts the assumptions and soM1(G,r) is not optimal.

4 On the Computation of a Deeply Connected Tree

The tree obtained after applying mergeM1 to a graph does not necessarily yield a tree whose vertices
abstract connected sub-graphs ofG. In this section a merge denotedM2 is then introduced to achieve
this goal. This merge is performed onM1(G,r). The idea is to merge couples of vertices for which the
associated sub-graphs are not connected in the initial graph.

Definition 4 Given a graphG and a treeT obtained applying a merging operatorM on G, M2 is the
maximal (in number of vertices) merging operator such that

∀X ∈VM2(T),∀x,y ∈VG,x,y ∈ X ⇒

∃ a pathp in G betweenx andy

The following algorithm gives a way to merge the vertices so that for each vertex of the obtained tree,
its associated sub-graph is connected.

Algorithm 1

• Input: a treeT obtained by applying mergeM1

• Output: a treeT ′ which the graph associated to any vertex is connected.

• Determine for each vertex ofT if the associated graph is connected (denoted 1-vertex) or not
(denoted 0-vertex).

• From the lower levels to the upper one,

(1) Merge the 0-vertices with its parent.

(2) performs action 1 till the obtained tree is deeply connected.

This principle relies on the fact that if two verticesx andx′ are merged to yield a vertex whose associated
graph is connected, thenx is the parent ofx′ or vice-versa. If it was not the case then any vertex ofn
would not be a neighbor of a vertex ofx′ in the initial graph. This implies that more merges should be
performed to obtain a connected graph associated to the vertex{x,x′}.

It is also worth noting that ifx is the parent ofx′ then the graph of the vertex{x,x′} resulting from their
merging is not necessarily connected. But this becomes trueif the graph associated tox is connected
(becausex is the parent ofx′ and then each vertex ofx′ is connected to a vertex ofx).

Theorem 2 Algorithm 1 implements Merge M2 and then yields a deeply connected tree with maximal
number of vertices, when applied to M1(G,r).

Pre-Proceedings GT-VMT 2007 176/195

Proof. First, note that Algorithm1 always terminates. This holds because the merging applied in action
1 provides a tree whose number of nodes is strictly lower thanthe initial tree. Moreover the tree, obtained
from G by merging and containing only one node, is deeply connected.

Note also that Algorithm1 always yields a tree. This is due to the fact that the merges performed in
action 1 correspond to edges-contraction and cannot then add cycles to the tree.

The optimality of the solution provided by Algorithm1 is ensured by two features:

• First, any 0-vertex has to be merged with an other node.

• Moreover, according to the Definition3, any vertexx of G is either a neighbor of vertices belong-
ing to the same vertexX of M1(G,r) asx, or belonging to a neighbor ofX . This means that any
0-vertex has to be merged with its parent or one of its children. If a 0-vertex is merge with one
of its children, then the obtained node will be a 1-node, but the number of 1-node will remain the
same as in the previous tree. If now a 0-vertex is merge with its parents:

– if the parent is a 1-vertex, the case is similar as the first one: the obtained vertex is a 1-node
and the number of 1-node remains the same.

– If the parent is a 0-node, it might happen that the resulting node is a 1-node and then the
number of 1-nodes would increase.

We can then deduce that merging a 0-node with its parent is more beneficial to obtain an optimal
solution.

Figure3(d) shows the resulting tree obtained by applying successivelymergesM1 andM2 to the graph
G given in Figure1, considering Vertexr as a root for the imposed tree. According to Theorem2, this
tree is the maximal deeply connected one and obtained by merging from G, consideringr as a root.
Moreover,M2 clearly preserves the hierarchy since only edge-contractions are performed.

5 Imposing ak-partite Graph on an Associated Graph

When applying the merges considered in section3 and4, the initial graph is clustered so that a tree is
obtained. This provides greater readability which is particularly relevant if the initial graph is dense
and possesses a large number of vertices. But it is also of great interest for the user to visualize what
is inside a cluster,i.e the associated graph. Since the initial graph can be dense and large, so may be
the associated graphs. It is then of interest to apply mergesto clusters and then offer a more readable
visualization of the associated graphs. However, imposinga tree on them which preserves the hierarchy
is not possible. There are indeed at least two nodes with minimal depth, in each cluster. There is then
no legitimate root to form the basis to impose a tree.

In this sectionk-partite graphs are considered to be imposed on the associated graphs. Indeed it can be
shown that it is possible to cluster each associated graph sothat ak-partite graph, with maximal number
of vertices and preserving the hierarchy, is obtained. Withthat aim, the mergeM3 is introduced.

Definition 5 Let G be a non empty connected undirected graph andr be a vertex ofG. Let us denote
G′ an associated graph ofM2(M1(G,r)). MergeM3 is defined such that

• VM3(G′) = {A ⊆VG| ∀x,y ∈ A, (x,y) ∈ EG anddG,r(x) = dG,r(y)}

• EM3(G′) = {(X ,Y) ∈V 2
M3(G′)| ∃x ∈ X andy ∈ Y with (x,y) ∈ EG}

Pre-Proceedings GT-VMT 2007 177/195

As shown by Theorem3, applying mergeM3 to each cluster ofM2(M1(G,r)) yields ak-partite graph
preserving the hierarchy according tor with maximal number of vertices.

Theorem 3 Let G be a non empty connected undirected graph and r be a vertex of G. Let us denote
G′ an associated graph of M2(M1(G,r)). M3(G′) is a k-partite preserving the hierarchy of G according
to r with maximal number of vertices.

Proof. First, let us introduce sets(Vi)i of vertices ofG′ such thatx andy are in the same setVi if and
only if dG,r(x) = dG,r(y). The only edges preventingG′ from being ak-partite graph according to sets
Vi are the ones between two edges of the same depth. But mergeM3 merges vertices so that these edges
are hidden in a cluster.M3 clearly preserves the hierarchy according tor since only vertices of the same
depth are merged. Plus the sets(Vi)i are defined such that they reflect this hierarchy, partitioning the
vertices according to their depth. MergeM3 is then optimal since only vertices linked to an other vertex
belonging to the same setVi are merged.

Theorem3 offers a way to impose ak-partite graph structure on each associated graph. Referring to
Figure1 and only considering the levels 1, 2 and 3, the resulting graph is not ak-partite graph sincex
andy are neighbors and on the same level. The merge operationM3 results in the same graph except that
x andy are merged.

The hierarchy introduced in Section2 to impose a tree is preserved. This ensures that users are not
confused when entering into details and reading the contents of a cluster. Since the clustered associated
graphs arek-partite, a layered layout can be applied so that two vertices of the same layer are not
neighbors. But the readability of the obtainedk-partite graphs is even better in this case than a typical
k-partite graph. If the chosen layering consists in gathering in the same layer the vertices with same
depth, then no edge crosses any layer. This property comes from the fact that the layers are defined
according to the depth of the vertices.

6 Example: Exploration of Intra-Cellular Signaling Cascades

The merge operations described in the previous sections arequite general in nature and so their primary
use is for the purpose of exploration with littlea priori knowledge about the general structure of the
graphical data set being investigated. A question that might be asked of such data is to what extent the
graphical data set adheres to a particular structure. In thecontext of the above merge operations it is
useful to ask to what extent a data set adheres to a hierarchical structure. Examples of such data sets are
protein-protein interaction networks that describe the observed interactions between proteins resulting
from biological experimental methods (e.g [8, 13]). In this section we will describe the properties of such
data sets, what sort of questions biologists may ask of such data sets and how imposing a hierarchical
structure as described in the previous sections on such datacan assist in understanding the underlying
structure of the data.

6.1 Properties of Protein-Protein Interaction Data

Molecular interactions play an important role in determining the behavior of cells. The involved molecules
can be proteins and the study of protein interactions helps to understand activities such as differentia-
tion, development and proliferation of cells. Protein-protein interaction (PPI) networks are graphical
data sets that describe the observed interactions between proteins and other molecules using particular
experimental methods. Proteins and other molecules (e.g.Ca2+) correspond to the nodes of the graph
while observed interactions correspond to edges. Proteinsinteract with each other typically to alter the
behaviour of another protein. Many of the interactions in these networks are well documented and have

Pre-Proceedings GT-VMT 2007 178/195

been confirmed repeatedly through various experiments. Some sequences of interactions are well known
and play a direct role in particular cell behaviors. These sequences are calledpathways. Examples of
such pathways include the MAPK (involved in the cell proliferation process) and JNK-c-JUN (respond-
ing to cell stress) pathways. However, other less well understood proteins are involved in controlling
these pathways. These proteins are known as regulatory or scaffolding proteins. An example of such
a protein is Ste5p [9] which is found in yeast (S.cerevisiae). The absence of Ste5p results in the yeast
cell becoming sterile. Regulatory proteins are also involved in coordinating activity between various
pathways.

It is important to know, given the current data, to what extent we can understand the behavior of these
networks. The development of new experimental methods to detect possible protein-protein interactions
has vastly increased the biologist’s understanding of how cells function. However thesehigh-throughput
techniques for detecting interactions can result in many false negatives and positives. While there is
an abundance of well organized and easily accessible interaction data sets [15, 14, 1] there is little
additional information associated with the interactions such as level of confidence, locus or dynamics
of reactions with which to judge the authenticity of such interactions. These experimental methods also
rarely reproduce the same results which results in data setsfrom each experiment having little overlap.
The ultimate goal of these experiments is to produce a mechanistic understanding of the activities in
these networks. As it stands however there is little scope toachieve such a result given the current data
sets and so it is best to focus on the structural properties ofsuch networks.

6.2 Possible Queries on PPI Data

Given that we are restricted to discussing structural properties of protein interaction networks, what sort
of questions can a biologist ask of such data? Often the questions are graph theoretic in nature. For
example, a set of proteins interacting with each other corresponds to a clique in the network. Existence
of such structures allows the investigator to abstract and simplify the network [5].The biologist may also
try to infer behaviour or roles from the structural evidence. An investigator may ask which interactions
are core to a particular pathway and which are regulatory or otherwise. Another common approach is to
apply understanding of the structure of one interaction network such as yeast to the structure of a less
well understood network such as the human cell [9].

Figure 3: The initial protein interaction network before imposing a tree

Pre-Proceedings GT-VMT 2007 179/195

6.3 Applying Hierarchy to PPI data

Our hierarchical merge operations can be applied to analyzethe structure of protein interaction net-
works.It is natural to assume in many cases that a hierarchical structure describes the sequence of inter-
actions in the cell. For example when the human growth hormone receptor (grbahuman) is activated on
the surface of the cell, many possible sequences of interactions are activated. Of interest is where the
tree assumption is violated, indicating the presence of regulatory proteins. One can imagine a tree-like
cascade of possible interactions with the activated human growth hormone receptor as the root. The first
merge operation,M1, can be used to induce such a structure on the data. It is a reasonable argument,
given the data, that the resulting unconnected clusters arenot meaningful protein interaction clusters.
To produce biologically more meaningful (connected) clusters the mergeM2 is performed. Finally if
the user wishes to investigate the structure inside a cluster with respect to the chosen root, mergeM3

produces a suitable abstraction.

6.4 Visualizing Protein Interaction Networks

We represent the protein-focused visualization using the standard node-link representation. Clusters are
either represented as:

• An ellipse whose size is proportional to the number of underlying vertices it contains if all vertices
are on the same level

• An ellipse containing a smaller radial drawing of the underlying graph whose underlying vertices
are clustered using the first merge operation

We use a radial tree layout [2] since it handles broad, shallow trees quite well. The user may focus
on visualizing the underlying graph within each cluster by either drawing the underlying graph using a
force-directed layout [2] if all vertices are on the same level of the underlying hierarchy or as a layered
Sugiyama style drawing [11] if the underlying vertices are found on multiple levels of the underlying
hierarchy in which connected vertices on the same level are clustered together to create a k-partite graph.

Figure 4: Imposing a tree on a protein interaction network

Pre-Proceedings GT-VMT 2007 180/195

6.5 Data Source

We retrieved the data from the CPath protein interaction database using the protein human growth factor
receptor-bound protein 10 as the focus protein. We constructed the underlying graph using vertices that
were at most three interactions away from the focus protein.Our queries to the CPath web service were
of the form:

http://cbio.mskcc.org/cpath/webservice.do?version=1.0&cmd=getby interactorid&
q=CPATH ID&format=psi mi&startIndex=0&organism=9606&maxHits=50

This resulted in a graph containing 875 vertices. The imposed tree algorithm was applied to the under-
lying graph resulting in a clustered graph containing 210 vertices. The resulting graph is displayed in
figure4.

6.6 Discussion

The user is presented with in interface to scroll, zoom and investigate clusters in the graph. There is also
a search facility to identify where a particular protein is in the visualization. Upon investigation it was
found that there is no regulatory protein interacting with all proteins of the ERK1 pathway (involving
the MAPK1 protein). Regulation of the ERK1 pathway, based onthe evidence provided, occurs higher
up the pathway. ERK1 is involved with cell proliferation. Itis known from the study of the yeast cell
that there exist what are known as scaffolding proteins, such as Ste5p, that interact with all parts of the
ERK1 pathway in yeast and help regulate it. Such a protein does not exist for the human ERK1 pathway.
So figure4 shows that the behavior of the human cell is different from the behavior of the yeast cell, at
least regarding proliferation.

In addition a significant number of proteins particularly onthe leaf nodes of level 2 in figure4 could
be identified as being potentially spurious if they interactwith only one other protein in the network
and their function is unclear. Other spurious interactionshave been absorbed into various clusters and
investigation inside clusters aids in the further refinement of the tree.

Figure 5: Inside a cluster

7 Conclusion

This study introduces a method to impose a tree on graph, by merging vertices. This method consists of
two steps. The first one provides a tree with maximal number ofvertices and preserves the hierarchy.
The second one is meant to be applied to the previous tree. It provides a new tree whose nodes are
associated to connected part of the initial graph. The composition of these two steps then yields a tree
with maximal number of nodes such that the associated graphsare connected. Moreover the contents of
each nodes of the tree, is itself clustered to result in ak-partite graph preserving the hierarchy introduced
by the imposed tree.

We applied our approach to visualize protein interactions in human cells. It has been shown that al-
though some proteins regulate all parts of the proliferation pathway of the yeast cell, there is no evidence
of such a protein playing a similar role in the human cell. In the process of applying graph transforma-
tions to this data we discovered that dealing with biological data poses significantly different challenges

Pre-Proceedings GT-VMT 2007 181/195

when compared to transforming software structure for example. The very fact that the data is inherently
uncertain requires that graph transformation techniques need to handle precision and certainty if they
are to be relevant to transforming such data.

As other future work, other structures to impose on the initial graph could be considered. Since a graph
that does not possess a significant hierarchical structure is likely to possess a grid like structure imposing
grids on a graph should be considered. Alternatively, we could consider extending the hierarchical notion
further by investigating imposing polytrees on the initialgraph. It would also make sense to look at how
other more established graph transformation techniques can be applied to this problem.

Bibliography

[1] Cancer pathway database: http://cbio.mskcc.org/cpath.

[2] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

[3] Hans L. Bodlaender. A tourist guide through treewidth.Acta Cybernetica, 11:1–21, 1993.

[4] F. Boutin and M.Hascot. Focus dependent multi-level graph clustering.Proceedings of the Con-
ference on Advanced Visual Interface, AVI04, 2004.

[5] D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang, S. Sun, L. Ling, L. Zhang, G. Li, and
R. Chen. Topological structure analysis of the protein-protein interaction network in budding yeast.
Nucleic Acids Research, 31(9):2443–50, May 2003.

[6] R. Diestel.Graph Theory. Springer-Verlag Heidelberg, 2005.

[7] Q. Feng.Algorithms for Drawing Clustered Graphs. PhD thesis, University of Newcastle, 1997.

[8] S. Fields and PL. Bartel. The two-hybrid system. a personal view. Methods Mol. Biol., 177:3–8,
2001.

[9] G.Pearson, F.Robinson, T.B.Gibson, Bing-E Xu, M.Karandikar, K.Berman, and M.H.Cobb.
Mitogen-activated protein (map) kinase pathways : Regulation and physiological functions.En-
docrine reviews (Endocr. rev.), 22, no2:153–183, 2001.

[10] W. Huang, S.H. Hong, and P.Eades. Layout effects on sociogram perception.Graph Drawing,
pages 262–273, 2005.

[11] S.Tagawa K.Sugiyama and M.toda. Methods for visual understandins of hierarchical system struc-
tures.IEEE Transactions on Systems, Man. and Cybernetics, SMC-11(2), pages 109–125, 1981.

[12] K.A. Lehmann, S. Kottler, and M. Kaufmann. Visualizinglarge and clustered networks.Graph
Drawing 06, Septembre 2006.

[13] M. Mann, RC. Hendrickson, and A. Pandey. Analysis of proteins and proteomes by mass spec-
trometry. Ann. rev. Biochem., 70:437–473, 2001.

[14] H. W. Mewes, C. Amid, R. Arnold, D. Frishman, U. Gldener,G. Mannhaupt, M. Mnsterktter,
P. Pagel, N. Strack, V. Stmpflen, J. Warfsmann, and A. Ruepp. Mips: analysis and annotation of
proteins from whole genomes.Nucleic Acids Res, 32 Database issue, January 2004.

[15] A. Zanzoni, Montecchi L. Palazzi, M. Quondam, G. Ausiello, Helmer M. Citterich, and G. Ce-
sareni. Mint: a molecular interaction database.FEBS Lett, 513(1):135–140, February 2002.

Pre-Proceedings GT-VMT 2007 182/195

ECEASST

The Jury is still out:
A Comparison of AGG, Fujaba, and PROGRES

Christian Fuss, Christof Mosler, Ulrike Ranger, and Erhard Schultchen

[fuss|mosler|ranger|schultchen]@i3.informatik.rwth-aachen.de
http://www-i3.informatik.rwth-aachen.de

Department of Computer Science 3 (Software Engineering)
RWTH Aachen University, Germany

Abstract: Graph transformation languages offer a declarative and visual program-
ming method for software systems with complex data structures. Some of these
languages have reached a level of maturity that allows not only conceptual but also
practical use. This paper compares the three widespread graph transformation lan-
guages AGG, Fujaba, and PROGRES, considering their latest developments. The
comparison is three-fold and regards conceptual aspects, language properties, and
infrastructure features. Because of the different relevance of these aspects, we do
not determine a clear winner but leave it to the reader.

Keywords: Graph Transformation Languages, AGG, Fujaba, PROGRES

1 Introduction

Graph transformation languages are one branch of visual programming languages, which provide
good concepts for developing software tools. Some languages reached a level of maturity that
allows utilization in practice.

In this paper, we compare the three widespread languages AGG, Fujaba, and PROGRES. Our
goal is to point out main differences in conceptual aspects, language properties, and infrastruc-
ture features. There exist some comparisons of graph transformation languages dating back
several years, e.g. [BTMS99, FNT98]. Comparisons that are more recent focus only on par-
ticular application areas, e.g. [Agr04] focuses on model integration aspects. In [VSV05], the
runtime efficiency of the generated applications is examined. We do not only want to update
the older comparisons, considering recent developments, but also lay focus on practical aspects.
This paper shall support users when deciding, which language is most appropriate for his or her
application.

This paper is structured as follows: In Section 2, we describe the aspects of the graph transfor-
mation languages that we examine and introduce a running application example. In the following
sections, we study how each of the languages AGG, Fujaba, and PROGRES meets the stated re-
quirements and describe specific aspects. Finally, Section 6, summarizes our comparison and
points out strengths and weaknesses of each language.

Pre-Proceedings GT-VMT 2007 183/195

mailto:[fuss$|$mosler$|$ranger$|$schultchen]@i3.informatik.rwth-aachen.de
http://www-i3.informatik.rwth-aachen.de

Comparison of AGG, Fujaba, and PROGRES

2 Compared Aspects

The graph transformation languages are compared by different aspects, which are introduced
in this section. We compare the theoretical concepts building each language’s background, the
language features when specifying a graph transformation system, and the infrastructure offered
to edit and run these systems.

2.1 Theoretical Concepts

Graphs are clear and intuitive data structures, whose fundamentals are mathematically founded.
Since the late 1960s, different approaches to graph grammars have been developed, which dif-
fer e.g. in their graph model, the expressiveness of transformation rules, and the definition of
semantics. Basically, two main approaches can be distinguished, which are briefly described in
the following.

The algebraic approach considers a graph as a 2-sorted algebra, where nodes and edges are
typed, attributed, and identified. The derivation of a graph by applying a graph transformation
rule is defined by pushouts known from category theory. The approach allows formal and easy to
understand proofs of properties on graphs and on graph transformation rules, e.g. the amalgama-
tion of graph transformation rules. Two different branches concerning the derivation have been
evolved within the algebraic approach, namely the double pushout approach (DPO) [CEH+97]
and the single pushout approach (SPO) [EHK+97]. In DPO, a derivation is constructed by two
pushouts using a gluing graph between the left-hand side and the right-hand side of a transfor-
mation rule, which enables to reverse transformations. A graph transformation rule can only
be applied if all edges incident to its match in the working graph and to the context graph are
specified within the transformation rule, which leads to complex specifications. For this reason,
SPO has been developed, which overcomes this restriction and constructs only one pushout for a
derivation. Thus, the graph transformation rules are easier, but the theoretical properties of SPO
are limited.

The set-theoretic approach [Nag79] offers an intuitive understanding of graph transformation
systems, but does not provide a theoretical foundation that is as powerful as in the algebraic
approach. Graphs are described as sets of nodes and edges and the effect of applying a graph
transformation rule is defined by set-theoretic operations. In contrast to the algebraic approach,
edges are considered as relations between nodes and thus are neither identified nor attributed.
The approach allows more expressiveness within graph transformation rules, e.g. embedding
rules, which enable user-defined embedding of a rewritten sub-graph in its context graph. Fur-
thermore, the application of graph transformation rules can be managed by control structures
offering a backtracking mechanism for determining matches of transformation rules. The ap-
proach does not provide any means for describing static and derived graph properties. These
aspects are integrated in the logic-oriented approach [Sch91], which is an enhancement of the
set-theoretic approach. The approach allows to define an explicit graph schema and uses predi-
cate logic formulas for defining graphs and graph transformation rules.

Besides the fundamental approach, a graph language may be based on different programming
paradigms. As all presented graph languages offer means for typing graph elements, we will
analyze in how far they support the object-oriented paradigm. This includes providing type-
specific attributes and methods, inheritance relations between types, and polymorphism.

Pre-Proceedings GT-VMT 2007 184/195

ECEASST

2.2 Language Properties

In this subsection, we examine properties of graph transformation languages, concerning the
graph model and graph transformations, in general. Some of the properties are similar to those
compared in [BTMS99], some are owed to new developments in AGG, Fujaba, and PROGRES.
Table 1 shows a feature matrix listing all properties. The sections on AGG, Fujaba, and PRO-
GRES describe properties implemented for each language in detail.

Table 1: Feature matrix with language properties

Property AGG Fujaba PROGRES
kind directed, attributed, labeled directed, attributed, labeled directed, attributed, labeled
graph schema unchecked type graph UML class diagram graph schema with static rule-check graphs
integrity constraints global event-condition rules with

manual application  global and node-local ECA rules,
schema constraints

kind typed, attributed, identified typed, attributed, identified typed, attributed, identified
nodes

derived node types multiple inheritance [multiple] inheritance multiple inheritance

kind labeled, attributed, identified,
directed, binary, between nodes

labeled, directed, binary,
between nodes labeled, directed, binary, between nodes

derived edge types  paths (textual) paths (materializable) edges

constraints  ordered 

value types Java objects/standard types Java objects/standard types,
node types

internal standard types, C types, node
types, sets

expressions parsed Java expressions unparsed Java expressions parsed C or PROGRES expressions
derived attributes  simulated using methods directed equations

G
raph M

odel

attributes

meta attributes  const, static const, static

homo-/isomorphic global option explicit folding per rule element explicit folding per rule element
matching

multiple matches [amalgamated subrules] set nodes, for-each patterns set nodes, star rules

subgraphs nodes, edges nodes, optional nodes, set nodes,
edges, paths, constraints

nodes, optional nodes, set nodes,
edges, paths, restrictions, constraints

NACs neg. subgraphs neg. nodes, neg. edges,
neg. constraints

neg. nodes, neg. edges, neg. paths,
neg. constraints

conditions

attribute conditions yes yes yes
gluing/embedding gluing  embedding
signature in parameters in parameters, return value in/out parameters

mechanisms iteration over layers conditional, iteration, sequence,
collaboration stmts, method calls

conditional, iteration, sequence, non-
deterministic choice, transformation calls

transactions   yes
Transform

ations
control
programming

backtracking   yes

Graph Model

Graphs. The working graphs of all discussed languages are directed, attributed, node- and edge-
labeled. The structure of the working graphs is constrained by graph schemas that define node
and edge types and their relations. Transformation rules should be checked against the schema
to avoid syntactical errors at specification time. Integrity constraints are used to prohibit certain
patterns in the working graph. They are checked at runtime. Transformations of hierarchical
graphs can be found in literature but are not implemented in any of the languages.

Nodes. In the three languages, nodes are generally typed, attributed, and identified elements.
Node types can be derived from other types by inheritance.

Edges. Edges are typed, directed and connect two nodes in all three languages. Edges might
be identifiable graph objects or represent an unidentified relation of graph objects. Further prop-
erties of edges are attribution and constraints (e.g. ordered or sorted edges). Derived edges in
the form of paths can be used to simplify otherwise very complex rules. Edges between edges,
inheritance of edges, and n-ary edges are supported in neither language.

Pre-Proceedings GT-VMT 2007 185/195

Comparison of AGG, Fujaba, and PROGRES

Attributes. Besides the type label, graph elements might carry attributes, which are defined
by the element type. Value types can be standard types, often borrowed from host languages
like Java or C (evaluation of expressions might also be borrowed). Derived attributes are not
set directly, but evaluated according to an equation that might reference other graph elements.
Additionally, sets and graph elements are useful attribute values.

Graph Transformation Rules
Graph transformation rules describe possible transformations of the working graph. They can
be divided into compound rules, combining other rules by control structures and simple rules.
Simple rules have a left-hand side (LHS) and a right-hand side (RHS). If the LHS is found in the
working graph (i.e. it can be matched), the match is replaced by the RHS.

Matching. A rule match is a morphism that maps a rule’s LHS elements to elements from the
working graph. If LHS elements are mapped to only one working graph element, the morphism is
a homomorphism. Non-homomorphic constructs are e.g. set nodes, amalgamated rules (AGG),
star-rules (PROGRES). If each LHS element is mapped to a different element from the working
graph, the morphism is injective (default). Whether the matching is non-injective (i.e. one
working graph element can play multiple transformation roles) might be determined per graph
grammar, per rule, or per rule element.

Conditions. Conditions define constraints for rule applications. Structural conditions are found
in the LHS of a rule and include nodes, optional nodes, set nodes, paths, and restriction ex-
pressions. Restrictions constrain the match of a rule node by attribute or structure conditions.
Attribute conditions are defined by expressions referring to element attributes. Negative applica-
tion conditions (NACs) [HHT96] define structures that must not be found in the working graph,
if a rule is applied; these might be integrated into the LHS or separated and range from simple
negative nodes and edges to negative paths and complete negative partial graphs.

Gluing/Embedding. Gluing means the merging of two nodes into one, which owns all incident
edges and all non-conflicting attributes of both. Embedding is somehow similar: it allows the
redirection of incident edges from one node to another.

Signature. Procedure-like signatures support the use of graph transformation rules in a way
known from imperative programming. Input parameters allow the parameterization of rules,
while output parameters let transformation results influence following rules.

Control Structures. With control structures, the definition of compound rules is possible by
combination through conditional, iteration, and chaining statements. Statements with non-deter-
ministic behavior and backtracking allow the convenient specification of many graph algorithms.
The chaining of rules should be accompanied by transactions, in order to rollback a chain of rules
if one fails.

2.3 Infrastructure

Besides concepts and language properties, the infrastructure, offered to edit, analyze, and run
the graph transformation system is crucial to its applicability. A graph language environment
should provide a visual and textual editor for specifications. It should allow free-hand as well

Pre-Proceedings GT-VMT 2007 186/195

ECEASST

as syntax-directed editing. At least some analyzing functions, e.g. a sophisticated type checker,
should be integrated to detect and explain inconsistencies with respect to the language’s static
semantics. Basic layout algorithms for the rules should be available in the editor.

For testing a specification, the language environment should provide an interpreter. During an
interpreter session, the environment performs a sequence of graph transformations and visualizes
the working graph. Different application strategies for transformation rules should be possible,
e.g. a debugging mode allowing step-by-step execution. Additionally, a code generator should
produce compilable source code for a general programming language to support the development
of stand-alone applications. The generator’s backend should be sufficiently flexible to allow the
extension to further programming languages. A graphical framework providing access to the
specified graph transformation rules should be available to obtain an executable application.

To store large graphs and support efficient manipulation of graph structures, a database should
be provided. It should also support undo/redo of transformation rules and provide persistence
for the working graph. Another requirement concerns the extensibility of the language environ-
ments. Monolithic architectures are hard to extend, while plug-in structures are more flexible.

Sometimes the user is confronted with limited choices concerning the platform for installation
of the language environment. Therefore, the language environments should be available for
at least the most common operating systems, and offer an easy and fast installation. Ideally,
the environment should be implemented in a platform independent language like Java and be
freely available. As all presented languages are distributed under the terms of the GNU (Lesser)
General Public License.

2.4 Example

To explain the different aspects of each graph transformation system in the next sections, we
introduce a simple example of a Shipping Company. The Shipping Company resembles the
example used in [ERT99]. Its graph schema is illustrated in Figure 1 as a class diagram. In the
example, Pallets of different weights are kept in Stores. Every Pallet has to be brought to a certain
City by a Truck, which is modeled by a toDestination-edge storing also the due date. A Truck has a
maximum loading weight (maxLoad) and stores its current weight (load). The order of a Truck’s
target cities is determined by a route, which is modeled by ordered onRoute-edges. The Truck is
drivenBy an Employee of a Store. The boolean attribute onDuty indicates whether the Employee is
at work.

Figure 2 shows the sample graph transformation rule loadUrgentPallet, which is used for loading

StoreEmployee
onDuty : Boolean ;

drivenBy

employedBy

dockedAt

in

onRoute
{ordered}

Truck
load : Integer ;
maxLoad : Integer ;

on

Pallet
weight : Integer ;1*

*

0..1

0..1 0..1

*0..1

*

0..1
**

0..1

*

City
name : String ;

toDestination
due : Date ;

Figure 1: Graph schema of the Shipping Company

Pre-Proceedings GT-VMT 2007 187/195

Comparison of AGG, Fujaba, and PROGRES

dest : City

e : Employee
onDuty == true ;

s : Store

eB : employedBy

folding

dB : drivenBy

dA : dockedAt

i : in

oR1 : onRoute

c : Cityc : City

before tD : toDestination

dest

d

e s
eB

dB

dA

oR2 tD

o : on
d : Employee

::=

loadUrgentPallet (in Pallet p, out Truck) =

return t ;

p p

due == tomorrow

t : Truck
maxLoad >=
load + p.weight ;

oR2 : onRoute t
load += p.weight;

Figure 2: Graph transformation loadUrgentPallet

a given Pallet p in a suitable Truck t. The match for loadUrgentPallet is determined by the following
constraints: The working graph is searched for the destination City dest and the current Store s of
the given Pallet p, which is due tomorrow. Additionally, a Truck t dockedAt Store s has to be found,
whose first target City is equal to the destination dest of Pallet p. This is modeled by the negative
node City c, i.e. there exists no City c, which is before City dest on the route of Truck t. Furthermore,
the maximum load of Truck t must not be exceeded by the weight of Pallet p. To load Pallet p on
Truck t, an Employee is needed, which is onDuty. As even the driver d of Truck t may help to load
Pallet p, if he is employed by Store s, Employees d and e are connected by a folding-construct. This
enables the non-injective matching of the driver and the store employee in the working graph. A
match found for the LHS is transformed according to the RHS: The in-edge incident to Pallet p is
deleted and a new on-edge is created connecting Pallet p and Truck t. The load-attribute of Truck t
is updated and t is returned.

3 AGG

Conceptually, AGG (Attributed Graph Grammar) [ERT99] follows the algebraic approach to
graph transformation and implements single-pushout behavior. The implementation is based on
the Colimit library [Wol98], which provides colimit construction for category theory of signa-
tures and graph structures. Colimit could easily be used for the transformation of hierarchical
graphs, but AGG does not support this.

An AGG graph grammar consists of a type graph, a start graph, and simple rules. Figure 3
shows a graph grammar for the Shipping Company example from Subsection 2.4.

The type graph contains an object-oriented description of node types, edge types, and their
relations. Node types can be derived from other node types by multiple inheritance. Attributes
can be defined for node and edge types. All constraints (attribute types, edges’ source and
target types and multiplicities) have to be checked manually within the rules. AGG does neither
support derived edges (e.g. paths), derived attributes, nor meta attributes (e.g. constant or static).
Although the Colimit library would allow complex edges, the language only supports binary
edges between nodes. Edge constraints like ordering or sorting are not supported either, thus the
ordered onRoute-edge has to be modeled as edge-node-edge construct with an ordering before-
edge in the example’s type graph (see Figure 3, top left). The AGG feature of graph constraints
is not used in the example, with it one can define graph patterns and their conclusion to check

Pre-Proceedings GT-VMT 2007 188/195

ECEASST

Figure 3: A simple AGG graph grammar for the Shipping Company example

structural properties of the working graph.
The start graph defines an initial working graph. All nodes and edges in a working graph are

typed, identifiable, and might be attributed. Figure 3 (top right) shows a simple start graph for
the example, with a small 3.5t Truck having two cities on his route (Berlin before Hamburg) and
a driver, who is an Employee of the Store. Two Pallets with different weights are stored in the store,
with destinations Berlin and Hamburg. They have to arrive on December 1st resp. 6th.

AGG only supports simple rules. The LHS consists only of nodes and edges (no other ele-
ments are available). Injective matching can be switched on and off globally1. With non-injective
matching, the employee node from the working graph can be matched for the depicted rule in
Figure 3 as node 6 (driver) and node 3 (store worker). NACs are subgraphs defined outside the
LHS that must not be fulfilled. Here there must not be another OnRoute node before node 9. At-
tribute conditions, e.g. d.before(tomorrow)2, are defined in a special attribute editor (not depicted)
and can contain arbitrary Java expressions. The match is determined by the LHS, NACs, and
attribute conditions. One feature not shown in the example is gluing, i.e. two nodes are merged
into one node. The resulting node owns all non-conflicting attributes and edges. Conflicts have
to be solved interactively by the user.

The execution of rules can be programmed slightly, by defining layers for the rules. Then the
execution loops over the sequence of all rules on one layer, until none is executable anymore,
then the loop is executed on the next layer until the last. Additionally, single rules can be selected
for execution manually.

The editing of graph grammars is done by a graphical editor, which is completely built in Java
and easily installed on different platforms. The editor has a GUI that is intuitive, but does not
offer much support for syntax-directed editing. Positive is the good integration of the interpreter

1 Non-homomorphic matching, i.e. multiple matches for one rule element, can be obtained in AGG with amalga-
mated subrules [TB94], which is an extension not yet publicly available.
2 d is of type java.util.Date and the Java method before compares this date with another date (tomorrow).

Pre-Proceedings GT-VMT 2007 189/195

Comparison of AGG, Fujaba, and PROGRES

into the AGG editor. The generation of executable code from the graph grammar is not possible
but grammar specifications can be exported to XML files.

The TIGER framework [EEHT05] allows the generation of visual editors for an AGG graph
grammar. For that, the graph grammar has to be decorated by a visual concrete syntax for all
elements. The generated editors are GEF-based Eclipse-plugins, where the user can pick single
rules for execution. The editors use AGG’s Java API to interpret the graph grammar.

AGG is based on a very sound theory and the editor is simple to use and install. This allows
easy testing of prototypical specifications. [MTR06] gives a good example of a small prototyp-
ical reengineering editor specified with AGG, relying on the notion of critical pair analysis. For
an application in larger projects, code generation and control structures are missing.

4 Fujaba

Originally, the focus of Fujaba (From UML to Java And Back Again) was to provide a visual
modeling tool based on UML diagrams and to generate Java code from these models. Mean-
while, Fujaba has been adapted to other metamodels like the Meta-Object-Facility (MOF) and
other output formats like the EMF.

In Fujaba, graph schemas are modeled using simplified UML class diagrams, resembling the
one shown in Figure 1. Classes can be attributed and any Java class or ordinal type is sup-
ported as attribute type. Derived attributes are not directly offered, but can be simulated by a
method replacing the getter-method generated for the attribute. We therefore model the getLoad
method to derive the truck’s load. Thus, this attribute does not require manual update when pal-
lets are loaded on the truck. Inheritance of classes is supported, although multiple inheritance
is restricted to interfaces. Overloading of methods and polymorphism is handled by the Java
environment at runtime. Attributed associations, inheritance on associations or n-ary relations
are not supported. Fujaba provides ordered associations, which impose a total ordering on the
link instances during runtime. This feature is well-suited to model the onRoute association.

The behavior of applications is modeled using so-called Story Diagrams [FNTZ98] which
combine UML-collaboration with activity diagrams. From each Story Diagram, Fujaba gener-
ates a Java method operating according to the modeled transformation rule. Story Diagrams
consist of one start and at least one stop activity, and an arbitrary number of Story Patterns op-
erating on the runtime graph. These elements are connected through transitions. Story Patterns
correspond to rules in AGG, but incorporate LHS and RHS into one diagram using the stereo-

Figure 4: Fujaba Story Diagram loadUrgentPallet

Pre-Proceedings GT-VMT 2007 190/195

ECEASST

types «create» and «destroy». For pattern matching, Fujaba offers obligatory, optional, set and
negative node variables. By default, Fujaba creates injective morphisms from variables to ob-
jects, so that two variables are never bound to the same object. This behavior can be disabled per
pair of variables. Attribute assertions may constrain the matched objects by an unparsed (thus
arbitrary) Java expression. Furthermore, Fujaba supports obligatory, optional and negative edges
between variables and textual path expressions. For ordered associations, additional constraints
can be specified for the matching. Every pattern requires at least one bound variable e.g. pro-
vided by a parameter of the Story Diagram, the this object the method is invoked on, or variables
bound in preceding patterns. From these bound variables, the other variables of the pattern are
bound to objects from the runtime graph by traversing links of given type. Transformation rules
are conducted after the complete pattern has been matched, and may create and delete elements,
set attributes and call methods on matched objects.

Figure 4 shows a Story Diagram implementing the loadUrgentPallet transformation rule. The
required bound variable is provided by the method parameter p, from which the other variables
are bound. Attribute assertions are used to check if the Truck t is not overloaded and the given
Pallet p needs urgent delivery (due attribute denotes tomorrow). Injective matching is disabled
for variables d and e by adding the {maybe d==e} constraint. For the ordered onRoute association,
{first} retrieves the first link from t to a City. If pattern matching succeeds, the runtime graph is
transformed by removing the Pallet’s in edge to the Store and creating an on edge to the Truck.

To model the control flow, Story Patterns may hold transitions to multiple successors. In the
depicted example, two stop activities exist. By the transition guard [success], the left one is called
when the transformation rule succeeds and returns the matched truck as return value. Otherwise,
the right stop activity returns null. Transitions may form loops, causing repeated execution of
Story Patterns. Also, for-each-patterns allow to process every match of a Story Pattern instead
of only one match.

The formal background of Story Patterns is obtained from the logic-oriented approach de-
scribed in Subsection 2.1. However, some of their semantic aspects are only incompletely de-
fined (cf. [TMG06]). The Fujaba environment also performs very limited checks on the modeled
diagrams, so the specifier is often not warned about erroneous specifications.

The generated source code can easily be integrated into existing projects or used in rapid-
prototyping frameworks. eDOBS is a plugin for the Eclipse IDE which visualizes the runtime
graph of a Fujaba-generated application. With the help of the CoObRA framework, generated ap-
plications are able to store their runtime states persistently. Recently, the graph-oriented database
DRAGOS and the related UPGRADE framework were adapted to support Fujaba. Being entirely
written in Java, Fujaba works on multiple platforms and is easy to set up. Besides the regular
stand-alone application, an Eclipse-plugin embedding Fujaba into the IDE is under development.

Fujaba’s advantage is its extensible architecture and the use of the well-known UML. For
example, Fujaba has been applied in [BGS05] to model real-time systems, including appropriate
extensions of the modeling language. Major disadvantages are the lack of a complete semantic
definition and the rare validity checks.

Pre-Proceedings GT-VMT 2007 191/195

Comparison of AGG, Fujaba, and PROGRES

5 PROGRES

PROGRES (PROgrammed GRaph REwriting System) [SWZ99] is the eldest of the presented
graph languages and environments. The logic-oriented approach [Sch91] forms the basis of
PROGRES, which offers a proprietary language allowing the specification of a graph schema
and consistent graph transformation rules.

PROGRES provides various constructs for defining a graph schema of a specification. For
node types, three different types of attributes can be defined: Intrinsic attributes, whose values are
assigned directly, meta attributes, which constitute class attributes and thus have the same value
for every instance, and derived attributes. Values of derived attributes are computed dependent
on attribute values of other nodes and are automatically updated when their values are invalid.
For example, the node type Truck shown in Figure 5 owns a derived load-attribute, whose value
is the sum of all loaded Pallet weights. The Pallet weights are obtained by traversing the incoming
on-edges of the Truck. PROGRES supports the object-oriented paradigm regarding node types,
which includes inheritance relations between node types, polymorphism, type-specific attributes
and methods. Edge types define the type name, the source and target node types, and their
cardinalities. Paths may be modeled allowing complex navigations through the working graph,
traversing arbitrary edges of different types. PROGRES also enables the specification of graph
constraints, e.g. there are at most n instances of a certain node type within the working graph.
If such a constraint is violated, an appropriate repair action can be executed. Based on the
schema, incremental analyzes check the specification for inconsistencies and show appropriate
error messages.

Besides the graph schema, PROGRES offers modeling of graph queries and graph transforma-
tion rules, which may have several input and output parameters. A graph query defines a test for
the existence of a graph pattern in the working graph. A graph transformation rule modifies the
working graph. For their execution, the underlying graph database DRAGOS [Böh04] provides
transactions for graph operations (ensuring ACID-properties). For every transformation rule,
pre- and postconditions may be specified, which imply constraints on the working graph before

::=`4 : Destination

`3 : City

`5 : Store

before
`8 : OnRoute

`6 : Employee

`9 : Employee `1 = p

`2 : Truck

toCity
`7 : OnRoute

toDestCity

toDestination
inStoreemployedBy

toRoutetoRoute

drivenBy
`4 : Destination

`3 : City

`5 : Store

`6 : Employee

`9 : Employee `1 = p

`2 : Truck

toCity
`7 : OnRoute

toDestCity

toDestination
employedBy

toRoute

drivenBy

node_type Truck : ITEM
intrinsic

maxLoad : integer ;
derived

load : integer = 0 + all self.<-on-.weight ;
end ;

folding { `6 , `9 } ;
condition `2.maxLoad > `2.load + `1.weight ; `4.due = tomorrow ; `9.onDuty = true ;
return t := 2´ ;

end ;

transformation loadUrgentPalett (p : Palett , out t : Truck) =

on
dockedAt dockedAt

Figure 5: PROGRES transformation rule loadUrgentPallet

Pre-Proceedings GT-VMT 2007 192/195

ECEASST

resp. after the execution of the rule. Furthermore, a qualifier determines if a transformation rule
should be applied to one match or to all possible matches in parallel. Graph transformation rules
are classified as production (simple rule) or transaction (compound rule).

Productions are similar to AGG rules and Story Patterns in Fujaba. They are visually specified
and allow to create and delete nodes and edges. They are described by a LHS and a RHS, which
may contain obligatory nodes and edges, paths, optional nodes, set nodes, and restrictions on
nodes. NACs are modeled by negative nodes, edges, paths, and restrictions. Additionally, a
production may have a condition- and a transfer-part to imply conditions on attribute values
resp. to change the value of node attributes. PROGRES allows the specification of embedding
rules for redirecting edges incident to deleted nodes and embedding new nodes into the working
graph. The folding-statement enables the non-injective mapping of two nodes in the production
to the same node in the working graph.

Figure 5 shows the PROGRES production loadUrgentPallet introduced in Subsection 2.4. The
production uses two edge-node-edge constructs for the ordered onRoute-edge and the attributed
toDestination-edge, as these sorts of edges are not supported by PROGRES. The folding-construct,
the attribute conditions and the return-statement are represented as textual statements. As the
load-attribute of Truck t is defined as derived attribute, its value is not assigned explicitly.

In contrast to productions, transactions contain control structures for combining transforma-
tion rules and queries. This includes to sequence transformation rules and to execute one of a set
of rules non-deterministically. Furthermore, loop- and condition-statements may be used.

PROGRES is the most expressive graph language of the three presented languages and offers
extensive support for modeling big software systems. But the proprietary language is fairly
complex and difficult to learn. From a specification, C and Java source code can be generated.
This code can be used for rapid prototyping by applying the UPGRADE-framework. AHEAD
[JSW00] is a good example of an industrial-sized project specified with PROGRES.

The syntax-directed PROGRES editor, that also features an interpreter, guides the user well,
but is not really intuitive. In addition, it is only available for Linux. A further disadvantage of
PROGRES is its monolithic architecture, which makes the development and implementation of
new language concepts difficult.

6 Summary

With the algebraic approach, AGG offers a graph transformation language with a sound theoret-
ical basis. This offers convenient implementation possibilities for projects relying on theoretical
notions. It provides a well-developed environment which can easily be installed and applied.
The main disadvantage is the lack of control structures. Therefore, AGG still has to prove that it
can be applied in large-scale projects.

The biggest advantage of Fujaba is its use of UML, which requires only little learning effort
from the user. In addition, the vivid community is working intensively on improvements and
further extensions. However, the language lacks a formal definition and shows some weak points
when dealing with more complex graph transformation rules. Due to the lack of analyzes the
user is not sufficiently guided during the specification process, often leading to malfunctioning.

PROGRES offers the most sophisticated language and an infrastructure with the highest level

Pre-Proceedings GT-VMT 2007 193/195

Comparison of AGG, Fujaba, and PROGRES

of maturity. The experience with industrial-sized projects proves the practical usability. How-
ever, the environment does not conform to up-to-date standards, requiring a painstaking installa-
tion process and providing a relatively inconvenient interface, particularly to new users.

The jury is still out: Because of the different relevance of the compared aspects, we cannot
give final advice, but leave it to the reader to decide which language to use.

Bibliography

[Agr04] A. Agrawal. Model Based Software Engineering, Graph Grammars and Graph
Transformations. Area paper, EECS at Vanderbilt University, 2004.

[BGS05] S. Burmester, H. Giese, W. Schäfer. Model-Driven Architecture for Hard Real-
Time Systems: From Platform Independent Models to Code. In Proc. of the Euro-
pean Conf. on Model Driven Architecture - Foundations and Applications (ECMDA-
FA’05), Nürnberg, Germany. LNCS 3748, pp. 25–40. Springer, 2005.

[Böh04] B. Böhlen. Specific Graph Models and Their Mappings to a Common Model. In
Pfaltz et al. (eds.). LNCS 3062, pp. 45–60. Springer, 2004.

[BTMS99] R. Bardohl, G. Taentzer, M. Minas, A. Schürr. Application of Graph Transformation
to Visual Languages. In [EEKR99], pp. 105–180, 1999.

[CEH+97] A. Corradini, H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner. Al-
gebraic Approaches to Graph Transformation – Part I: Basic Concepts and Double
Pushout Approach. In [Roz97], pp. 163–245, 1997.

[EEHT05] K. Ehrig, C. Ermel, S. Hänsgen, G. Taentzer. Generation of visual Editors as Eclipse
Plug-ins. In 20th IEEE/ACM Int. Conf. on Automated Software Engineering, ASE’05.
Pp. 134–143. ACM Press, New York, 2005.

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg (eds.). Handbook on Graph
Grammars and Computing by Graph Transformation: Applications, Languages, and
Tools. Volume 2. World Scientific, 1999.

[EHK+97] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, A. Corradini. Alge-
braic Approaches to Graph Transformation – Part II: Single Pushout Approach and
Comparison with Double Pushout Approach. In [Roz97], pp. 247–312, 1997.

[ERT99] C. Ermel, M. Rudolf, G. Taentzer. The AGG Approach: Language and Environment.
In [EEKR99], pp. 551–603, 1999.

[FNT98] T. Fischer, J. Niere, L. Torunski. Konzeption und Realisierung einer integrierten
Entwicklungsumgebung für UML, Java und Story-Driven-Modeling. Master Thesis,
University of Paderborn, 1998.

[FNTZ98] T. Fischer, J. Niere, L. Torunski, A. Zündorf. Story Diagrams: A new Graph
Rewrite Language based on the Unified Modeling Language. In Ehrig et al. (eds.),

Pre-Proceedings GT-VMT 2007 194/195

ECEASST

6th Int. Workshop on Theory and Application of Graph Transformation (TAGT).
LNCS 1764, pp. 296–309. Springer, 1998.

[GW06] H. Giese, B. Westfechtel (eds.). Fujaba Days 2006. Technical Report tr-ri-06-275.
University of Paderborn, Germany, 2006.

[HHT96] A. Habel, R. Heckel, G. Taentzer. Graph Grammars with Negative Application Con-
ditions. Fundamenta Informaticae 26(3/4):pp. 287–313, 1996.

[JSW00] D. Jäger, A. Schleicher, B. Westfechtel. AHEAD: A Graph-Based System for Mod-
eling and Managing Development Processes. Pp. 325–339 in [NSM00].

[MTR06] T. Mens, G. Taentzer, O. Runge. Analysis Refactoring Dependencies using Graph
Transformation. Software Systems Modeling (SoSyM), 2006.

[Nag79] M. Nagl. Graph-Grammatiken: Theorie, Anwendungen, Implementierung. Vieweg
Verlag, 1979.

[NSM00] M. Nagl, A. Schürr, M. Münch (eds.). Int. Workshop on Applications of Graph Trans-
formations with Industrial Relevance, AGTIVE’99. LNCS 1779. Springer, 2000.

[Roz97] G. Rozenberg (ed.). Handbook on Graph Grammars and Computing by Graph
Transformation: Foundations. Volume 1. World Scientific, 1997.

[Sch91] A. Schürr. Operationales Spezifizieren mit programmierten Graphersetzungssyste-
men. PhD-Thesis, RWTH Aachen University, 1991.

[SWZ99] A. Schürr, A. J. Winter, A. Zündorf. The PROGRES Approach: Language and Envi-
ronment. In [EEKR99], pp. 487–550, 1999.

[TB94] G. Taentzer, M. Beyer. Amalgamated Graph Transformations and Their Use for
Specifying AGG - an Algebraic Graph Grammar System. In Int. Workshop on Graph
Transformations in Computer Science. Pp. 380–394. Springer, 1994.

[TMG06] M. Tichy, M. Meyer, H. Giese. On Semantic Issues in Story Diagrams. Pp. 10–14 in
[GW06].

[VSV05] G. Varró, A. Schürr, D. Varró. Benchmarking for Graph Transformation. In 2005
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
Pp. 79–88. IEEE Computer Society, 2005.

[Wol98] D. Wolz. A Colimit Library for Graph Transformations and Algebraic Development
Techniques. PhD-Thesis, TU Berlin, 1998.

Pre-Proceedings GT-VMT 2007 195/195

	Preface.pdf
	Invited Session
	Session on Verification and Model Transformation
	Session on Pattern Matching
	Session on Graph Transformation Language Operations
	Invited Session
	Session on Application of Graph Transformations
	Working Groups

	GT-VMT07PreProceedingsPART.pdf
	bragaabstract.pdf
	p2new.pdf
	Introduction
	Business Process Reengineering
	Mapping Activity Diagram to CSP
	Abstract Syntax
	Transformation Method
	Transformation Rules

	Rule-Level Verification
	Conclusion

	p11new.pdf
	p16new.pdf
	Introduction
	Collaborations and Activities for Service Composition
	State Machines for Service Execution
	Transformation from Activities to State Machines
	The Transformation Algorithm
	Correctness of the Transformation
	Related Work
	Concluding Remarks

	p12new.pdf
	Introduction
	Model Transformation by Graph Transformation
	Graphs with Containment Edges
	Related Work
	Conclusion and Future Work

	p26new.pdf
	Introduction
	Background
	Models and Metamodels
	Graph Patterns
	Graph Pattern Matching

	Unified Search Plan Representation
	Search Graph
	Adornment
	Cost of Search Operations
	Search Plans

	Related work
	Conclusion

	p15new.pdf
	p13new.pdf
	p7new.pdf
	Introduction
	Background
	The GReAT Language

	The Group Operator
	Example of the Group Operator
	Group Implementation
	Related Work
	Summary and Future Work

	p8new.pdf
	p25new.pdf
	Introduction
	Background
	Visual Functional Programming with Interaction Nets Using Explicit Abstraction and Application Nodes
	Agent Archetypes
	Interaction Net Programming with Recursion Patterns
	Fold Archetypes
	Unfold Archetypes
	Conclusions and Future Work

	p18new.pdf
	Introduction
	Background
	Graphs and Graph Morphisms
	Graph Transformations
	Back to the Example

	From Multigraphs to Simple Graphs and back again
	From Multigraphs to Simple Graphs
	From Simple Graphs to Multigraphs
	Categories for Multigraphs and Simple Graphs
	Multigraph versus Simple Graph transformations

	Extensions
	Simulation in SPO Tools
	Conclusion and Future Work

	bragaabstract2.pdf
	p6new.pdf
	Introduction
	Problem Description
	Original Workflow Definition Language
	Shortcomings of the Original Language
	No Real Decomposition Hierarchy
	XOR in the P2P Workflow Definitions
	No Explicit Start and End Elements

	Revised Workflow Definition Language

	Evaluation Environment (EE)
	Graph-Based Rapid Prototyping Support
	Architecture
	Workflow Definition Editor (WDE)
	Workflow Definition Translator (WDT)

	Related Work
	Conclusion and Impact

	p17new.pdf
	p19new.pdf
	Introduction
	Preliminaries
	Imposing a Tree
	On the Computation of a Deeply Connected Tree
	Imposing a k-partite Graph on an Associated Graph
	Example: Exploration of Intra-Cellular Signaling Cascades
	Properties of Protein-Protein Interaction Data
	Possible Queries on PPI Data
	Applying Hierarchy to PPI data
	Visualizing Protein Interaction Networks
	Data Source
	Discussion

	Conclusion

	p3new.pdf
	Introduction
	Compared Aspects
	Theoretical Concepts
	Language Properties
	Infrastructure
	Example

	AGG
	Fujaba
	PROGRES
	Summary

