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Objectives

Characterize reversible combinatorial circuits.

— To apply other theories, such as category theory, braid
theory, and group theory.

— To understand the differences among classical circuits,
guantum circuits, etc.

Using this experience, we want to characterize
mathematical properties of reversible programming
languages.



Reversible Circuits

(a) Rotation (¢ is C(1,1) and invertible)

(flg) = I T

— FTHYI— jag = — @ ¥F—

(¢) Conditional composition (d) Sequential composition

Fig. 1. Reversible circuits

(b) Crossing

f®g =

)

(e) Parallel composition



Some Equivalence Relations of Reversible Circuits

(foflgog)=(lg)o(flg

—{hHh

(f]g) ® h = (f®h | g®h)

e How to model characteristics of circuits?
* What assumptions are required?



Our approach

How to model characteristics of circuits?

— To model them, we use categorical structure, i.e.,
the functoriality of a tensor ® and a

bifunctor (. | .)

What assumptions are required?

— Explicitly, we describe the assumptions for the
family of all circuits



Group Structure in Reversible Circuits
[StormeDeVosJacobs99,GreenAltenkirch08]

A function (or morphism) realized by circuits is an isomorphism.

— One—to—one. The domain and the target are the same size.

Any morphism is invertible.

E.g., Fredkin gate Input Output
000 ==» 000
Py 001 =» 001
010 ==» 010
011 =» 011
100 » 100
101 110
110 101

111

111

Morphisms comprise
group structure.

= Characterize a reversible circuit as a groupoid C:
a category in which any morphism is invertible.



Monoidal Structure in Reversible Circuits
[GreenAltenkirch08]

(C,®,0): a strict symmetric monoidal category
— C: a groupoid
— ® : a tensor product
"n®m:=n+m foranynm e C
- (®,0) and (®,id) are monoids.
~—Nn®OmMAI=n@(MP®1),0®n=n®0=n
- fR®g)QOh=fR(E®®h), dXFfF=fRid=f

Example - :
n{ cf®(@®h)=(f®g)®h
m{ ‘:‘ ‘N®MA1)=(N®mM) ® |
=n+m+|
I{ :.:




Functoriarity in Reversible Circuits

Functor F: C 2 D

- F(idg) =id,, F(f o g) = F(f) o F(g)

Bifunctor G

- G(idg,idgy) = (idp,idy), GF ofg og =G g ) o Gfg
We characterize a conditional composition (. | .) as a
bifunctor.

(Foflgog)=(F1|g)o(f]|Q)

It should be noted that we do not have semantics of O and @.



Wired Category [Informal definition]

- (C,®,(.].))is called wired if

— Negations and wire crossings UZX are well-
defined, and all the circuits can be appropriately
generated.

— Wirings are well-defined.

— The following holds:




Wired Category [Formal Definition] (1/3)

For a category C, define a subcategory Diag(C)
of a category C' x C' as follows:

ob(Diag(C)) :={(c,c) | ce ob(C)},
Diag(C)((c, ), (d,d)) :={(f.9) | f,g € Cle,d)}.



Wired Category [Formal Definition] (2/3)

Let (- | ) : Diag(C') — C be a functor with (- | -)(n,n) = n + 1 for any object n.
The tuple (C,®, (- | -)) is called wired if

(i) C(n,m) :={} if n # m, C(0,0) := {ido}, C(1,1) := {idy, b1, P2, ...}, and
there are a negation - € C'(1,1) and a wire crossing ¢ € ('(2,2) such that
-0 =1idy # - and 0 o0 = idy # o,|respectively. For each n > 2, each
hom-set C'(n,n) is generated by taking o, ® and (- | -) of C'(m,m) and o where
1 <m<n.

(ii) (a) Let oy = idjyj—1-1®0 @ idj—1, ojy = g0 -+ 00— 00, and X;; =
Oitj—1j0 -00iy1200;1 € Cli+ 7,0+ j) forany | =1,2,...,i+j — 1.
For f € C(j,7) and g € C(i,1),

f@g=(2)""o(g® f)o%;,. (3)



Wired Category [Formal Definition] (3/3)

(iii) (- | -) satisfies the following: For f,g € C(n,n) and h € C(m,m),

(f‘ —n— lolf —n—1

( | ):_n (.ﬂg) 9n
flg@h=(f®h|g®h)

L
S
e

(f‘ = Ip—1° ‘f) © n—1




Properties of Circuits

Lemma 2.1 Let C be a wired category. For f,.,gn.hy, kn.t,. s, € C(n,n),

S0 =00
(idy|idy) = (idn| = |idy) = idnt1
by = (Bl
(Falgn) 8 (Balksn) = (U © hnlon o Bs)
In particular, (fn|gn) © bn = (fn © hn—1|gn © hn_1)
t1Q8m @ (falgn) =27 0t @ (fulgn) ® Smo X
(fr | gn) = |gn) o (fn]
(fn®gm)o (hn ®@kmn) = (fnohn) ® (gm0 km)
In particular, pop = @9 = po)

where Y = id; @Lmn+1-

It should be noted that we do not use truth values.
Therefore, this holds for any circuits that satisfy wired properties.
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Classical case

- A wired category C is called classicalif C(1,1) has

exactly two morphisms.

Remark Since C is a groupoid, id, € C(1,1) and
thereis ¥ # id, st. ¥ o ¥ =id,. ¥ is a negation
and hereafter we denote it by —.



Proposition

C: a classically wired category

Suppose that (—| o 0 o (—]|o 0 o (4| = 0

LI - X

C(2,2) can be transformed into the following 24
elements:

3(11_} =,

| |
|
il
i
Q
]
O

, O"O(—|| O .
(mleco(=], (m|oogo|n), |m)oogol|n), [m)ooo(—|
go(-|loogo(n|, ogo|m)ooo|n), moogo|m)oogol|n), moogo(=|ooo(

The number corresponds to the number of all circuits: 4!



Proof (Sketch)

. f can be transformed into a sequence of
functional compositions of idy, =, =, |—),
(—||, and o.

. Any subcircuit of a form (B3zoo)o(Byoo)o
(B1oo) in f' can be replaced with idy, =, —,
or - ® .

. Using an XOR swap, we can move (—| or
|=) to the rightmost if it exists.

. Many repeats of this step can reduce f to
one of the 24 elements.



Concluding Remark

Using functoriarity of (. | .) and ® models
characteristic of circuits, effectively.

None of the proofs of the properties of circuits
requires the truth tables.

Our results in the general case hold for non 0/1
circuits.
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