
A Reversible Virtual Machine

Bill Stoddart, Angel Robert Lynas
University of Teesside

Frank Zeyda, University of York

March 27, 2009

We describe a reversible stack based virtual machine
designed as an execution platform for a sequential
programming language used in a formal
development environment. We revoke Dijkstra’s
“Law of the Excluded Miracle” to obtain a formal
description of backtracking through the use of naked
guarded commands and non-deterministic choice,
with execution support provided by reversibility.
Other constructs supported by the machine include..

Finite sets and relations of arbitrary complexity.

facilities for the collection of all results of a search

probabilistic choice

a ”cut” facility

local variables and nested scopes

lambda expressions and closures

integer and floating point arithmetic

Structure of this Talk

Guarded Command Language, Reversibility and
Backtracking.

“Semantic” vs “Logical” Reversibility.

Mechanisms of the Reversible Virtual Machine.

Guarded command language (GCL) is a form of
programming language with a clean formal
semantics.

pGCL (probabilistic GCL) was used by Paolo Zuliani
in his investigation of logical reversibility (IBM Jnl
of R&D 2001).

In our approach we extract some additional meaning
from GCL that is specific to reversible computation.

Predicate transformer semantics of GCL

Let S be a program and Q a predicate over machine
states.

Let [S]Q be the condition that must hold before S
is executed in order to guarantee Q holds after S is
executed.

Example: [x := x + 1]x = 5 is the condition that
must hold before x := x + 1 is executed to ensure
x = 5 holds afterwards.

This condition is:

Predicate transformer semantics of GCL

Let S be a program operating and Q a predicate
over machine states.

Let [S]Q be the condition that must hold before S
is executed in order to guarantee Q holds after S is
executed.

Example: [x := x + 1]x = 5 is the condition that
must hold before x := x + 1 is executed to ensure
x = 5 holds afterwards.

This condition is: x = 4

The predicate transformer rule for the short
conditional:

[if g then S else T end]Q

≡

(g ⇒ [S]Q) ∧ (¬ g ⇒ [T]Q)

Suggests a decomposition of the conditional into
two more primitive constructs: “choice” and
“guard”

Allowing us to write the short conditional as a
“guarded choice”:

g =⇒ S [] ¬ g =⇒ T

Where the choice and guard constructs have these
beautiful rules, which replace program connectives
for choice and guard with the logical connectives for
conjunction and implication:

[S [] T]Q ≡ [S]Q ∧ [T]Q (choice)

[g =⇒ S]Q ≡ g ⇒ [S]Q (guard)

The constructs g =⇒ S and ¬ g =⇒ T represents
the “meaning” of each half of a conditional. They
have no sensible individual operational meaning in
classical programming. Indeed they are required to
produce “miraculous” results. Suppose g is false,
then

[g =⇒ S]Q ≡ false ⇒ [S]Q ≡ true

i.e. when g is false, g =⇒ S will produce any result
we care to propose.

This is exactly what is required from the part of the
conditional which is not chosen, since analysis of the
other part then gives the substantial result, which
will be unchanged by being combined, via logical
and, with the result true from the part not chosen.

Dijkstra excluded “naked” guarded commands from
the world of programming constructs by proclaiming
the “Law of the Excluded Miracle”.

In a reversible guarded command language however,
we can revoke the Law of the Excluded Miracle, and
give the following interpretation to the naked
guarded command g =⇒ S , based on the predicate
transformer semantics given previously:

If g is true, execute S and continue ahead.

If g is false, engage reverse gear.

In our reversible guarded command language we
also allow non-deterministic choice constructs. This
needs some explaining since it could be argued that
a reversible computation has to be deterministic in
both directions. In fact the apparent
non-determinism of our language stems from
providing a semantics at a more abstract level than
an execution mechanism.

Given a statement of the form

S [] T

there will be some supporting deterministic
mechanism to decide which choice is made.

Backtracking

Consider the sequence

x := 1 [] x := 2 ; x = 2 =⇒ skip

Suppose x := 1 is chosen, the guard x = 2 will then
be false and execution will reverse. The other
choice, x := 2 is than made, and this time the
guard is true and execution continues ahead. This
mechanism does not require any supplementary data
erasure due to the choice construct.

Semantics and Executable Constructs
for Reversibility

S � E

represents the execution of a program S , the
recording of a result as given by the value of
expression E , and a reversal of execution which
restores the original state (apart from leaving the
value of E on an evaluation stack and, if E is a
reference, leaving the referenced structure in
memory).

Where S has non-deterministic choices that can
lead to more than a single result for E

{S � E} is the set of all such results

Example

{x := 1 [] x := 2 � 10 ∗ x} = {10, 20}

We will presently see a more elaborate example,
together with a translation into the postfix language
of the RVM.

Semantic Reversibility

Paolo Zuliani converted pGCL to a reversible
language. To do this he added extra state, in the
form of a history stack, to record information that
would otherwise be lost in forward execution.

For each computational step S he proposes an
augmented, reversible versions Sr and its inverse Si .

Using this technique for assignment he proposes:

S Reversible Op Sr Inverse Op Si

v := e push v ; v := e pop v

This is similar to our approach, though we work at
the level of virtual machine ops. However, we note
that a short cut has been taken in that Sr still
includes the irreversible step v := e.

We allow such short cuts for reasons of convenience,
and because we can argue (as Yokoyama, Axelson
and Glück have done in a study of “reversible
updates”) that updates can in principle be made in
a reversible fashion. We give our analysis in terms
of assignments.

We have some reversible assignment statements to
call upon, for example those of the form x := x + e,
where x does not occur free in e. Such a statement
has an inverse x := x − e.

We note also that exchanging values in two
locations is reversible.

The role of the history stack will be taken by an
integer array, h, whose elements are assumed to be
initialised to zero, and whose top element is h(i − 1)

We write the exchange of values in x and h(i) via
the multiple assignment:

x , h(i) := h(i), x .

A reversible transformation of x := e can be written
as:

assignment h(i − 1) h(i) x
? 0 x0

h(i) := h(i) + e ? e x0

x , h(i) := h(i), x ? x0 e
i := i + 1 0 x0 e

Simulation of Logical Reversibility is fastidious due
to the need to manage data which is of no semantic
consequence, such as the contents of unused stack
locations. We opt instead for a virtual machine
which provides what we term “semantic
reversibility”.

The Reversible Virtual Machine

The RVM provides a Forth stack based virtual
machine. An interpreter allows operations to be
entered from a console or read from a file. A simple
extensible compiler allows new operations to be
defined in terms of existing ones.

The machine is currently implemented on the i386
platform.

Examples of an interpreted interaction in Forth:

1 2 + . <enter> 3 ok

3 4 < . <enter> -1 ok

1 2 3 <enter> ok...

+ + . <enter> 6 ok

10 VALUE X <enter> ok

X 5 * to X <enter> ok

X . <enter> 50 ok

An new command to perform a greater than or
equal test can be defined in terms of a less than test
and an equality test as:

: >= (n1 n2 -- f) < NOT ;

Machine organisation during forward execution:

RVM i386
parameter stack %esi

return stack %esp
frame pointer %edi
history stack hsp (memory)

Memory changing commands use the history stack
to preserve information during execution.

Code for a reversible memory store. The values
pushed to the history stack are the address to be
overwritten, its current contents, and the address of
the code that will restore the original value on
reverse execution.

CODE !_ (x addr --, "store_")

xchg %esp,%esi

pop %eax # address for store

mov (%eax),%edx #get current contents

hpush3 %eax %edx $STORE_r

pop (%eax) #pop x into addr

xchg %esp,%esi

ret

ENDCODE

Machine organisation during reverse execution takes
the following form:

Forth i386
parameter stack %esi

return stack hsp
history stack %esp

A switch to reverse computation is performed by
--> which removes a flag from the stack, continues
forward if the flag is true and reverses execution if
the flag is false. To reverse execution we copy the
history stack pointer to the i386 stack pointer and
return into the most recently deposited reverse op.
The EXPLORE flag controls backtracking.

CODE --> (f -- "guards")

lodsl # %eax = f

if %eax = $0; # reverse

movl $-1,_EXPLORE(%ebp)

mov hsp,%esp #point %esp at hstack

ret #start reverse operations

endif; noop

ENDCODE MUST-IN-LINE

Reverse operations find their parameters on the
stack, and after consuming them they return into
the following reverse operation. Note that they are
never “called”, but only returned to, a method of
organising code which we refer to as “return
threading”. Here is an example: the restore
operation for store. Its coding relies on the way the
history stack is primed during the execution of a
matching ! .

STORE_r:

pop %edx #old contents

pop %eax #address

mov %edx,(%eax) #restore old contents

ret # return into the next reverse op

An example abstract command
language program and its equivalent
RVM code

The following assigns to y the set of all positions at
which the sequence s contains the value x .

y := {i :∈ 1..card(s); s(i) = x =⇒ skip � i}

The code, with an RVM translation:

y := {i :∈ 1..card(s); s(i) = x =⇒ skip � i}

INT { <RUN

1 s CARD .. (push set of possible indices)

CHOICE (make a choice from the set)

to i (assign it to i)

s i APPLY (push value s(i))

x = --> (reverse unless the value = x)

i (otherwise add i to the set of results)

RUN> } to y

Thankyou

