# Universality Issues in Reversible Computing Systems and Cellular Automata

Kenichi Morita Hiroshima University

#### **Contents**

- 1. Introduction
- 2. Reversible Turing machines (RTMs)
- 3. Reversible logic elements and circuits
- 4. Reversible cellular automata (RCAs)

Even very simple reversible systems have universal computing ability!

## 1. Introduction

## **Reversible Computing**

Roughly speaking, it is a "backward deterministic" computing; i.e., every computational configuration has at most one predecessor.



Computational configuration

• Though its definition is rather simple, it reflects physical reversibility well.

## **Reversible Computing**

Roughly speaking, it is a "backward deterministic" computing; i.e., every computational configuration has at most one predecessor.



Computational configuration

• Though its definition is rather simple, it reflects physical reversibility well.

## Several Models of Reversible Computing

- Reversible Turing machines (RTMs)
- Reversible logic elements and circuits
- Reversible cellular automata (RCAs)
- Reversible counter machines (RCMs)
- Others

- These models are closely related each other.
- Reversible computers work in a very different fashion from classical computers!

# 2. Reversible Turing Machines

## Reversible Turing Machines (RTMs)

A "backward deterministic" TM.



#### **Definition of a TM**

$$T = (Q, S, q_0, q_f, s_0, \delta)$$

Q: a finite set of states.

S: a finite set of tape symbols.

 $q_0$ : an initial state  $q_0 \in Q$ .

 $q_f$ : a final state  $q_f \in Q$ .

 $s_0$ : a blank symbol  $s_0 \in S$ .

 $\delta$ : a move relation given by a set of quintuples  $[p, s, s', d, q] \in Q \times S \times S \times \{-, 0, +\} \times Q$ .

#### **Definition of an RTM**

A TM  $T=(Q,S,q_0,q_f,s_0,\delta)$  is called *reversible* iff the following condition holds for any pair of distinct quintuples  $[p_1,s_1,s_1',d_1,q_1]$  and  $[p_2,s_2,s_2',d_2,q_2]$ .

If 
$$q_1 = q_2$$
, then  $s'_1 \neq s'_2 \land d_1 = d_2$ 

(If the next states are the same, then the written symbols must be different and the shift directions must be the same.)

## **Universality of RTMs**

## Theorem [Bennett, 1973]

For any one-tape (irreversible) TM T, there is a garbage-less 3-tape reversible TM which simulates the former.

## A Small Universal RTM (URTM)

A URTM is an RTM that can compute *any* recursive function.

**Theorem** The following URTMs exist:

17-state 5-symbol URTM [Morita and Yamaguchi, 2007]

15-state 6-symbol URTM [Morita, 2008]

## A Small Universal RTM (URTM)

A URTM is an RTM that can compute *any* recursive function.

**Theorem** The following URTMs exist:

17-state 5-symbol URTM [Morita and Yamaguchi, 2007]

15-state 6-symbol URTM [Morita, 2008]

These URTMs can simulate any cyclic tag system [Cook, 2004], which is proved to be universal.

## Cyclic Tag System (CTAG) [Cook, 2004]

$$C = (k, \{Y, N\}, (\text{halt}, p_1, \dots, p_{k-1}))$$

- k: the length of a cycle (positive integer).
- $\{Y, N\}$ : the alphabet used in a CTAG.
- $(p_1, \dots, p_{k-1}) \in (\{Y, N\}^*)^{k-1}$ : production rules.

An instantaneous description (ID) is a pair (v, i), where  $v \in \{Y, N\}^*$  and  $i \in \{0, \dots, k-1\}$ .

For any  $(v,i),(w,j) \in \{Y,N\}^* \times \{0,\cdots,k-1\}$ ,

$$(Yv,i) \Rightarrow (w,j) \text{ iff } [m \neq 0] \land [j=i+1 \mod k]$$
  
  $\land [w=vp_i],$ 

$$(Nv,i) \Rightarrow (w,j) \text{ iff } [j=i+1 \mod k] \land [w=v].$$

## A Simple Example of a CTAG System

$$C_1 = (3, \{Y, N\}, (halt, YN, YY))$$

If an initial word NYY is given, the computing on  $C_1$  proceeds as follows:

$$(NYY, 0)$$
 $\Rightarrow (YY, 1)$ 
 $\Rightarrow (YYN, 2)$ 
 $\Rightarrow (YNYY, 0)$ 

## The quintuple set of the URTM(17,5)

|                        | b            | Y            | N            | *            | \$        |
|------------------------|--------------|--------------|--------------|--------------|-----------|
| $q_0$                  | $-q_2$       | $$-q_1$      | $b - q_{13}$ |              |           |
| $q_1$                  | halt         | $Y-q_1$      | $N-q_1$      | $* + q_0$    | $b-q_1$   |
| $q_2$                  | $* - q_{3}$  | $Y-q_2$      | $N-q_2$      | $* - q_2$    | null      |
| $q_3$                  | $b + q_{12}$ | $b + q_4$    | $b + q_7$    | $b + q_{10}$ |           |
| $q_4$                  | $Y+q_5$      | $Y+q_4$      | $N+q_4$      | $* + q_4$    | $+q_4$    |
| $q_5$                  | $b - q_{6}$  |              |              |              |           |
| $q_6$                  | $Y-q_3$      | $Y-q_6$      | $N-q_6$      | $* - q_{6}$  | $-q_6$    |
| $q_7$                  | $N+q_8$      | $Y+q_7$      | $N+q_7$      | $* + q_7$    | $+q_7$    |
| $q_8$                  | $b-q_9$      |              |              |              |           |
| $q_9$                  | $N-q_3$      | $Y-q_9$      | $N-q_9$      | $* - q_9$    | $-q_9$    |
| $q_{10}$               |              | $Y + q_{10}$ | $N + q_{10}$ | $* + q_{10}$ | $+q_{11}$ |
| $q_{11}$               |              | $Y + q_{11}$ | $N + q_{11}$ | $* + q_{11}$ | $Y+q_0$   |
| <i>q</i> <sub>12</sub> |              | $Y + q_{12}$ | $N + q_{12}$ | $* + q_{12}$ | $-q_3$    |
| <i>q</i> 13            | $* - q_{14}$ | $Y - q_{13}$ | $N - q_{13}$ | $* - q_{13}$ | $-q_{13}$ |
| <i>q</i> 14            | $b + q_{16}$ | $Y - q_{14}$ | $N - q_{14}$ | $b + q_{15}$ |           |
| <i>q</i> 15            | $N+q_0$      | $Y + q_{15}$ | $N + q_{15}$ | $* + q_{15}$ | $+q_{15}$ |
| <i>q</i> <sub>16</sub> |              | $Y + q_{16}$ | $N + q_{16}$ | $* + q_{16}$ | $-q_{14}$ |

## Simulating the CTAG $C_1$ by the URTM(17,5)



#### **Small UTMs and URTMs**

#### **Symbols**

 $\circ$ UTM(2,18)[Rogozhin,1996]

 $\circ$ UTM(3,9)[Kudlek, Rogozhin, 2002]

```
UTM(4,6)[Rogozhin,1996]
UTM(5,5)[Rogozhin,1996]
UTM(17,5)[Morita, Yamaguchi, 2007]
UTM(6,4)[Neary, Woods,2007]
UTM(9,3)[Neary, Woods,2007]
UTM(18,2)[Neary, Woods,2007]
```

States

# 3. Reversible Logic Elements

## Reversible Logic Element

A logic element whose function is described by a one-to-one mapping.

(1) Reversible logic elements without memory (i.e., reversible logic gates):

Toffoli gate

[Toffoli, 1980]

• Fredkin gate

[Fredkin and Toffoli, 1982]

• etc.

## (2) Reversible logic elements with memory:

Rotary element (RE)

[Morita, 2001]

• etc.

## Rotary element (RE)

A 2-state 4-input-line 4-output-line element.



#### (Remark)

We assume signal "1" is given at most one input line.

## **Operations of an RE**

• Parallel case:





• Orthogonal case:





## Logical Universality of a Rotary Element

A Fredkin gate can be composed of REs and delay elements.



(Remark) But, this is not a good method to use REs.

**Any Reversible Turing Machine Can Be Composed Only of REs** 





```
T_{\text{parity}} = (Q, \{0, 1\}, q_0, q_{\text{acc}}, 0, \delta)
Q = \{q_0, q_1, q_2, q_{\text{acc}}, q_{\text{rej}}\}
\delta = \{[q_0, 0, 1, R, q_1],
[q_1, 0, 1, N, q_{\text{acc}}],
[q_1, 1, 0, R, q_2],
[q_2, 0, 1, N, q_{\text{rej}}],
[q_2, 1, 0, R, q_1] \}.
```





















## Billiard Ball Model (BBM)

A reversible physical model of computing –
 [Fredkin and Toffoli, 1982]



## Realization of an RE by BBM [Morita, 2008]



## **Parallel Case**







































# **Orthogonal Case**

$$t = 0$$

$$t = 1$$



















































































#### 3. Reversible Cellular Automata

#### Reversible Cellular Automata (RCAs)

- It is a CA whose global function is one-to-one.
- A kind of spatio-temporal model of a physically reversible space.
- In spite of the strong restriction of reversibility, they have rich ability of computing.
  - Computation-universality
  - Self-reproduction
  - Synchronization
  - etc.

#### Partitioned Cellular Automata

• 1D Partitioned CA (PCA)



A local function f of a 1D PCA.

We can design RCAs easily using PCAs.

#### Universal Reversible CAs

#### — 1D Case —

On infinite configurations:

24-state RPCA [Morita, 2008]

On finite configurations:

98-state RPCA [Morita, 2007]

#### cf. 1D Universal Irreversible CAs:

• On infinite configurations:

2-state CA (ECA of rule 110) [Cook, 2004]

On finite configurations:

7-state CA (a modified model) [Lindgren et al., 1990]

## Universal Reversible CAs — 2D Case —

- On infinite configurations:
  - 2-state Margolus-neighbor RCA [Margolus, 1984]
  - 16-state RPCAs [Morita and Ueno, 1992]
  - 8-state triangular RPCA [Imai and Morita, 1998]

# An 8-State Triangular RPCA $T_1$ [Imai and Morita, 1998]

• It has an extremely simple local function:



# A Fredkin Gate in a Triangular 8-State RPCA $T_1$



## Universal Reversible CAs — 2D Case —

- On infinite configurations:
  - 2-state Margolus-neighbor RCA [Margolus, 1984]
  - 16-state RPCAs [Morita and Ueno, 1992]
  - 8-state triangular RPCA [Imai and Morita, 1998]
- On finite configurations:
  - 81-state RPCA [Morita and Ogiro, 2001]

## A $3^4$ -State Universal RPCA $P_3$

 $P_3 = (Z^2, \{0, 1, 2\}^4, g_3, (0, 0, 0, 0))$ 



The rule scheme (m) represents 33 rules not specified by (a)–(I)  $(w,x,y,z\in\{\text{ blank, }\circ,\bullet\}=\{0,1,2\}).$ 

### Reversible Counter Machine in $P_3$ Space



## Movie of an RCM(2) in $P_3$

#### Self-Reproduction of a Worm in 2D RCA

[Morita and Imai, 1996]

#### Self-Reproduction of a Loop in 3D RCA

[Imai, Hori and Morita, 2002]

### **Concluding Remarks**

- We saw even very simple reversible systems have computation-universality.
- Computation can be carried out in a very different way from that of conventional computers.
- We expect that further studies on them will give new insights for future computing.

## Thank you for your attention!