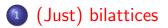
Priestley duality for bilattices

Umberto Rivieccio (joint work with Achim Jung)

3 March, 2011

Outline



Bilattices: definitions

Pre-bilattices

A **pre-bilattice** is a structure $\mathbf{B} = \langle B, \wedge, \vee, \otimes, \oplus \rangle$ such that $\langle B, \leq_t, \wedge, \vee \rangle$ and $\langle B, \leq_k, \otimes, \oplus \rangle$ are both lattices.

Bilattices

A **bilattice** is a structure $\mathbf{B} = \langle B, \wedge, \vee, \otimes, \oplus, \neg \rangle$ such that $\mathbf{B} = \langle B, \wedge, \vee, \otimes, \oplus \rangle$ is a pre-bilattice and $\neg : B \to B$ is a function such that for all $a, b \in B$:

- (i) if $a \leq_t b$ then $\neg b \leq_t \neg a$ (anti-monotone)
- (ii) if $a \leq_k b$ then $\neg a \leq_k \neg b$

(iii) $a = \neg \neg a$

The smallest non-trivial bilattice is \mathcal{FOUR} .

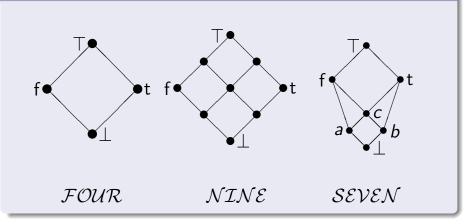
U. Rivieccio (UOB)

(monotone)

(involutive)

Bilattices: definitions

Some (pre-)bilattices



An interpretation of the two lattice orders

The truth-order \leq_t is meant to reflect the degree of **truth** associated with a given sentence, while the knowledge-order \leq_k should reflect the degree of **knowledge** (or, better: of **information**) associated with the sentence.

In case the elements of the bilattice are ordered pairs $\langle a, b \rangle$ where a, b are elements of two lattices (this holds for all interlaced (pre-)bilattices), then a may be thought as intuitively representing the evidence for (or degree of belief in) the truth of some proposition and b as representing the evidence against (or degree of doubt in) the truth of the same proposition.

Main sublcasses of bilattices

- A pre-bilattice is interlaced when all the operations
 {∧, ∨, ⊗, ⊕} are monotonic w.r.t. both lattice orders.
- A pre-bilattice is distributive when all twelve possible distributive laws concerning {∧, ∨, ⊗, ⊕} hold.
- Interlaced pre-bilattices form a variety, and distributive pre-bilattices are a proper subvariety of the interlaced.
- A bilattice is interlaced (distributive) when its pre-bilattice reduct is interlaced (distributive). Both classes are varieties, and distributive bilattices are a proper subvariety of the interlaced.

Observation

In any bounded interlaced pre-bilattice $\langle B, \wedge, \vee, \otimes, \oplus, f, t, \bot, \top \rangle$ we can define $\{\otimes, \oplus\}$ as follows: for any $a, b \in B$,

$$a \otimes b = (a \wedge \bot) \vee (b \wedge \bot) \vee (a \wedge b)$$

$$a \oplus b = (a \land \top) \lor (b \land \top) \lor (a \land b).$$

Bilattices: bounded

Observation

Using the above fact, it is possible to prove that following varieties are termwise equivalent:

- 1. bounded interlaced (distributive) pre-bilattices presented in the language $\{\land,\lor,\otimes,\oplus,f,t,\bot,\top\}$
- 2. algebras $\langle B, \land, \lor, f, t, \bot, \top \rangle$ such that $\langle B, \land, \lor, f, t \rangle$ is a bounded (distributive) lattice and the constants \bot and \top satisfy:

i.
$$\top \lor \bot = t$$

ii. $\top \land \bot = f$
iii. if $\top \in \{a, b, c\}$ or $\bot \in \{a, b, c\}$, then
 $a \land (b \lor c) = (a \land b) \lor (a \land c)$ and
 $a \lor (b \land c) = (a \lor b) \land (a \lor c)$.

Bilattices: bounded

Observation

In particular, a bounded distributive (pre-)bilattice

$$\langle B, \wedge, \vee, \otimes, \oplus, \neg, \mathsf{f}, \mathsf{t}, \bot, \top \rangle$$

can be seen as a De Morgan algebra

$$\langle B, \wedge, \vee, \neg, \mathsf{f}, \mathsf{t} \rangle$$

having two extra constants \bot, \top satisfying that

i.
$$\top \land \bot = f \qquad \top \lor \bot = t$$

ii. $T = \neg T$ $\bot = \neg \bot$.

Product pre-bilattice

Let $\mathbf{L}_1 = \langle L_1, \Box_1, \Box_1 \rangle$ and $\mathbf{L}_2 = \langle L_2, \Box_2, \Box_2 \rangle$ be lattices. The **product pre-bilattice** $\mathbf{L}_1 \odot \mathbf{L}_2 = \langle L_1 \times L_2, \land, \lor, \otimes, \oplus \rangle$ is defined as follows: for all $\langle a_1, a_2 \rangle, \langle b_1, b_2 \rangle \in L_1 \times L_2$,

$$\begin{array}{l} \left\langle a_{1},a_{2}\right\rangle \wedge\left\langle b_{1},b_{2}\right\rangle =\left\langle a_{1}\sqcap_{1}b_{1},\ a_{2}\sqcup_{2}b_{2}\right\rangle \\ \left\langle a_{1},a_{2}\right\rangle \vee\left\langle b_{1},b_{2}\right\rangle =\left\langle a_{1}\sqcup_{1}b_{1},\ a_{2}\sqcap_{2}b_{2}\right\rangle \\ \left\langle a_{1},a_{2}\right\rangle \otimes\left\langle b_{1},b_{2}\right\rangle =\left\langle a_{1}\sqcap_{1}b_{1},\ a_{2}\sqcap_{2}b_{2}\right\rangle \\ \left\langle a_{1},a_{2}\right\rangle \oplus\left\langle b_{1},b_{2}\right\rangle =\left\langle a_{1}\sqcup_{1}b_{1},\ a_{2}\sqcup_{2}b_{2}\right\rangle . \end{array}$$

Remark: Any product pre-bilattice $L_1 \odot L_2$ is interlaced, and it is distributive if and only if both L_1 and L_2 are distributive.

Bilattices: products

Product bilattice

If
$$h: L_1 \cong L_2$$
 is a lattice isomorphism, we define, for any
 $\langle a_1, a_2 \rangle \in L_1 \times L_2$: $\neg \langle a_1, a_2 \rangle = \langle h^{-1}(a_2), h(a_1) \rangle$.
In particular, for any lattice $\mathbf{L} = \langle L, \sqcap, \sqcup \rangle$, the **product bilattice**
 $\mathbf{L} \odot \mathbf{L} = \langle L \times L, \land, \lor, \otimes, \oplus, \neg \rangle$ is defined as follows: for all
 $\langle a_1, a_2 \rangle, \langle b_1, b_2 \rangle \in L \times L$,
 $\langle a_1, a_2 \rangle \land \langle b_1, b_2 \rangle = \langle a_1 \sqcap b_1, a_2 \sqcup b_2 \rangle$
 $\langle a_1, a_2 \rangle \lor \langle b_1, b_2 \rangle = \langle a_1 \sqcap b_1, a_2 \sqcap b_2 \rangle$
 $\langle a_1, a_2 \rangle \otimes \langle b_1, b_2 \rangle = \langle a_1 \sqcap b_1, a_2 \sqcap b_2 \rangle$
 $\langle a_1, a_2 \rangle \oplus \langle b_1, b_2 \rangle = \langle a_1 \sqcup b_1, a_2 \sqcap b_2 \rangle$
 $\langle a_1, a_2 \rangle \oplus \langle b_1, b_2 \rangle = \langle a_1 \sqcup b_1, a_2 \sqcup b_2 \rangle$
 $\neg \langle a_1, a_2 \rangle = \langle a_2, a_1 \rangle$.

э

Representation theorem

Let $\mathbf{B} = \langle B, \wedge, \vee, \otimes, \oplus \rangle$ be an interlaced (pre-)bilattice. Then:

- $\bullet\,$ there are two lattices L_1 and L_2 such that $B\cong L_1\odot L_2$
- **B** is distributive iff both L_1 and L_2 are distributive
- $\operatorname{Con}(\mathbf{B}) = \operatorname{Con}(\langle B, \wedge, \vee \rangle) = \operatorname{Con}(\langle B, \otimes, \oplus \rangle)$
- $\bullet\,$ the lattice ${\rm Con}(B)$ is isomorphic to ${\rm Con}(L_1)\times {\rm Con}(L_2)$
- if B is a bilattice, then $L_1 \cong L_2$ and $\operatorname{Con}(B) \cong \operatorname{Con}(L_1)$.

Representation theorem

One way to prove the representation theorem is to use (one of) the bounds to make projections as follows:

$$a \longmapsto \langle a \lor \top, a \land \top \rangle$$

$$\mathbf{L}_1 = \langle \{a \in B : a \ge_t \top \}, \otimes, \oplus \rangle$$

$$\mathbf{L}_2 = \langle \{a \in B : a \le_t \top \}, \otimes, \oplus \rangle$$

Brouwerian bilattices: definition

Definition (Bou-Jansana-R.)

A Brouwerian bilattice is an algebra $\mathbf{B} = \langle B, \land, \lor, \otimes, \oplus, \supset, \neg \rangle$ such that $\langle B, \land, \lor, \otimes, \oplus, \neg \rangle$ is a bilattice and **B** satisfies:

$$(\mathsf{B1}) \quad (x \supset x) \supset y \approx y$$

(B2)
$$x \supset (y \supset z) \approx (x \land y) \supset z \approx (x \otimes y) \supset z$$

$$(\mathsf{B3}) \quad (x \lor y) \supset z \approx (x \supset z) \land (y \supset z) \approx (x \oplus y) \supset z$$

(B4)
$$x \land ((x \supset y) \supset (x \otimes y)) \approx x$$

(B5)
$$\neg (x \supset y) \supset z \approx (x \land \neg y) \supset z.$$

An **implicative bilattice** is a Brouwerian bilattice that additionally satisfies: $((x \supset y) \supset x) \supset x \approx x \supset x$.

< 🗇 🕨

Brouwerian bilattices: representation

Product Brouwerian bilattice

- Let L = ⟨L, □, □, →⟩ be Brouwerian lattice (i.e. a Heyting algebra that need not have a bottom element)
- L ⊙ L = ⟨L × L, ∧, ∨, ⊗, ⊕, ⊃, ¬⟩ is the Brouwerian bilattice whose bilattice reduct is defined as before and for all a₁, a₂, b₁, b₂ ∈ L,

$$\langle a_1, a_2 \rangle \supset \langle b_1, b_2 \rangle := \langle a_1 \rightarrow b_1, a_1 \sqcap b_2 \rangle.$$

Representation theorem

For any Brouwerian bilattice $\mathbf{B} = \langle L \times L, \wedge, \vee, \otimes, \oplus, \supset, \neg \rangle$

- $B \cong L \odot L$ for some Brouwerian lattice L
- $\operatorname{Con}(\mathbf{B}) \cong \operatorname{Con}(\mathbf{L}).$

Brouwerian bilattices: bounded

Some facts

- Any Brouwerian bilattice B has a maximum w.r.t. ≤_k defined by T = (a ⊃ a) ⊕ ¬(a ⊃ a)
- the underlying pre-bilattice of a Brouwerian bilattice is distributive.

N4-lattices

An *N4-lattice* is a $\{\land, \lor, \supset, \neg, f, t\}$ -subreduct of a bounded Browerian bilattice.

(Any N4-lattice can be embedded into a bilattice product $\textbf{H}\odot\textbf{H}$ where H is a Heyting algebra).

Brouwerian bilattices: bounded

As before

A bounded Brouwerian bilattice

$$\langle B, \wedge, \vee, \otimes, \oplus, \supset, \neg, \mathsf{f}, \mathsf{t}, \bot, \top \rangle$$

can be seen as an N4-lattice

$$\langle B, \wedge, \vee, \supset, \neg, \mathsf{f}, \mathsf{t}, \bot, \top \rangle$$

having extra constants \perp and \top such that

•
$$\langle B, \land, \lor, \neg, f, t, \bot, \top \rangle$$
 is a bounded bilattice

•
$$\top \supset f = f$$
 and $\bot \supset \bot = t$.

Towards duality

Resuming

We can then hope to extend known results on Priestley duality for

- bounded distributive lattices
- bounded distributive lattices with an involutive negation (aka De Morgan algebras)
- Heyting algebras

to, respectively,

- bounded distributive pre-bilattices
- Dounded distributive bilattices
 - bounded Brouwerian bilattices.

Priestley spaces

A Priestley space is a structure $\mathcal{X}=\langle X, au,\leqslant
angle$ such that

- $\langle X, \leqslant \rangle$ is a poset
- **2** $\langle X, \tau \rangle$ is a compact (Hausdorff) space
- for all $x, y \in X$ with $x \leq y$, there is a clopen up-set U s.t. $x \in U$ and $y \notin U$ (\mathcal{X} is totally order-disconnected).

The distributive lattice of a Priestley space

Denoting by $D(\mathcal{X})$ be the set of clopen up-sets of \mathcal{X} , we have that $\langle D(\mathcal{X}), \cap, \cup, \emptyset, X \rangle$ is a bounded distributive lattice.

The Priestley space of a distributive lattice

Let **D** be a bounded distributive lattice and $X(\mathbf{D})$ the set of prime filters of **D**.

- Define, for all $a \in D$, $\Phi(a) := \{P \in X(\mathbf{D}) : a \in P\}$
- the topology τ given by the sub-base

 $\{\Phi(a): a \in D\} \cup \{X \setminus \Phi(a): a \in D\}.$

- Then $\langle X(\mathbf{D}), \tau, \subseteq \rangle$ is a Priestley space
- Φ : $\mathbf{D} \cong D(X(\mathbf{D})).$

Conversely, for any Priestley space \mathcal{X} , $\mathcal{X} \cong X(D(\mathcal{X}))$.

イロト イヨト イヨト イヨト

Categories

- \mathcal{PS} is the category having as objects Priestley spaces and as morphisms continuous order-preserving maps.
- \mathcal{DL} is the category having as objects bounded distributive lattices and as morphisms algebraic bounded lattice homomorphisms.

Functors

- For any $\mathcal{X} \in \mathcal{PS}$, we have that $D(\mathcal{X}) \in \mathcal{DL}$.
- For $\mathcal{X}, \mathcal{X}' \in \mathcal{PS}$ and $f : \mathcal{X} \to \mathcal{X}'$, define $D(f): D(\mathcal{X}') \to D(\mathcal{X})$ as $D(f)(U) := f^{-1}(U)$ for all $U \in D(\mathcal{X}')$.
- For any $\mathbf{D} \in \mathcal{PS}$, we have that $X(\mathbf{D}) \in \mathcal{PS}$.
- For $\mathbf{D}, \mathbf{D}' \in \mathcal{DL}$ and $h: \mathbf{D} \to \mathbf{D}'$, define $X(h): X(\mathbf{D}') \to X(\mathbf{D})$ as $X(h)(P) := h^{-1}(P)$ for all $P \in X(\mathbf{D}')$.

Equivalence

The categories \mathcal{PS} and \mathcal{DL} are dually equivalent via functors D and X.

U. Rivieccio (UOB)

Priestley duality for bilattices

2 March, 2011 22 / 38

Filters and ideals on pre-bilattices

In a bounded pre-bilattice $\langle B, \leqslant_t, \leqslant_k \rangle$, we can consider subsets $F \subseteq B$ that are

- (1) lattice filters of both \leq_t and \leq_k
- (2) filters of \leq_t and ideals of \leq_k
- (3) ideals of \leq_t and filters of \leq_k
- (4) ideals of both \leq_t and \leq_k .
- We shall focus on \leq_t -filters.

Proposition

Any prime \leq_t -filter is either (1) or (2).

Filters and ideals on pre-bilattices

Let $B=L_1 \odot L_2,$ where L_1,L_2 are bounded distributive lattices. Define:

- $\mathcal{F}_1(\mathbf{B}) := \{ F \subseteq B : F \text{ is } a \leq_t \leq_k \text{-filter} \}$
- $\mathcal{F}_2(\mathbf{B}) := \{ F \subseteq B : F \text{ is a } \leqslant_t \text{-filter and } \leqslant_k \text{-ideal} \}$
- $X(\mathbf{B}) := \{ P \subseteq B : P \text{ is a prime } \leq_t \text{-filter} \}$

•
$$X_1(\mathbf{B}) := \mathcal{F}_1(\mathbf{B}) \cap X(\mathbf{B})$$

•
$$X_2(\mathbf{B}) := \mathcal{F}_2(\mathbf{B}) \cap X(\mathbf{B})$$

Then,

•
$$\mathcal{F}_1(\mathbf{B}) \cong \mathcal{F}(\mathbf{L_1})$$
 and $X_1(\mathbf{B}) \cong X(\mathbf{L_1})$

•
$$\mathcal{F}_2(\mathbf{B}) \cong \mathcal{I}(\mathbf{L}_2)$$
 and $X_2(\mathbf{B}) \cong X(\mathbf{L}_2^{op})$

The Priestley space of a distributive pre-bilattice

Let $\mathbf{B} = \langle B, \wedge, \vee, f, t, \bot, \top \rangle$ be a bounded distributive pre-bilattice and $X(\mathbf{B})$ the set of prime \leq_t -filters of \mathbf{B} . Then

•
$$\Phi(a) := \{ P \in X(\mathbf{B}) : a \in P \}$$

•
$$X(\mathbf{B}) = X_1(\mathbf{B}) \cup X_2(\mathbf{B})$$
, where

 $\begin{aligned} X_1(\mathbf{B}) &:= \{ P \in X(\mathbf{B}) : P \text{ is a prime } \leqslant_k \text{-filter} \} \\ X_2(\mathbf{B}) &:= \{ P \in X(\mathbf{B}) : P \text{ is a prime } \leqslant_k \text{-ideal} \}. \end{aligned}$

•
$$X_1(\mathbf{B}) \cap X_2(\mathbf{B}) = \emptyset$$

•
$$X_1(\mathbf{B}) = \Phi(\top)$$
 and $X_2(\mathbf{B}) = \Phi(\bot)$.

The Priestley space of a distributive pre-bilattice

Let $\mathbf{B} = \langle B, \wedge, \vee, f, t, \bot, \top \rangle$ be a bounded distributive pre-bilattice and $X(\mathbf{B})$ the set of prime \leq_t -filters of \mathbf{B} . Then

•
$$\Phi(a) := \{ P \in X(\mathbf{B}) : a \in P \}$$

•
$$X(\mathbf{B}) = X_1(\mathbf{B}) \cup X_2(\mathbf{B})$$
, where

 $\begin{aligned} X_1(\mathbf{B}) &:= \{ P \in X(\mathbf{B}) : P \text{ is a prime } \leqslant_k \text{-filter} \} \\ X_2(\mathbf{B}) &:= \{ P \in X(\mathbf{B}) : P \text{ is a prime } \leqslant_k \text{-ideal} \}. \end{aligned}$

•
$$X_1(\mathbf{B}) \cap X_2(\mathbf{B}) = \emptyset$$

•
$$X_1(\mathbf{B}) = \Phi(\top)$$
 and $X_2(\mathbf{B}) = \Phi(\bot)$.

Remark

If $\boldsymbol{B}=\boldsymbol{L_1}\odot\boldsymbol{L_2},$ then

• the subspace $\langle X_1(\mathbf{B}), \tau, \subseteq \rangle$ is homeomorphic to the Priestley space of \mathbf{L}_1

• $\langle X_2(\mathbf{B}), \tau, \subseteq \rangle$ is homeomorphic to the Priestley space of \mathbf{L}_2^{op} .

Pre-bilattice spaces

Define a *pre-bilattice space* to be a tuple $\mathcal{X} = \langle X, \tau, \leq, X_1, X_2 \rangle$ s.t.:

- $\langle X, \tau, \leqslant \rangle$ is a Priestley space
- $X_1, X_2 \subseteq X$ are clopen up-sets such that $X_1 \cap X_2 = \emptyset$ and $X_1 \cup X_2 = X$.

A pre-bilattice function $f: X \to X'$ is a continuous order-preserving map such that $f(X_1) \subseteq X'_1$ and $f(X_2) \subseteq X'_2$.

Proposition

Denoting by $D(\mathcal{X})$ the set of clopen up-sets of \mathcal{X} , we have that $\langle D(\mathcal{X}), \cap, \cup, \emptyset, X, X_1, X_2 \rangle$ is a bounded distributive pre-bilattice and, for any bounded distributive pre-bilattice **B**,

 $\mathbf{B} \cong \langle D(X(\mathbf{B})), \cap, \cup, \varnothing, X(\mathbf{B}), X_1(\mathbf{B}), X_2(\mathbf{B}) \rangle.$

Proposition

For any pre-bilattice space \mathcal{X} , $\mathcal{X} \cong \langle X(D(\mathcal{X})), \Phi(X_1), \Phi(X_2) \rangle$.

Priestley duality extends to a duality between:

- pre-bilattices with $\{\wedge,\,\vee,\,f,\,t,\,\top,\,\bot\}\text{-homomorphisms}$ as morphisms
- pre-bilattice spaces with pre-bilattice functions as morphisms.

Priestley duality (De Morgan algebras)

De Morgan algebras

A *De Morgan algebra* is a bounded distributive lattice $\langle A, \land, \lor, \neg, f, t \rangle$ with a unary operation $\neg : A \rightarrow A$ that satisfies:

•
$$x \leq y$$
 iff $\neg y \leq \neg x$

Relation with bilattices

The { \land, \lor, \neg, f, t }-reduct of any bounded distributive bilattice is a De Morgan algebra. Conversely, any bilattice can be seen as a De Morgan algebra having two extra constants \bot, \top satisfying that

i.
$$\top \land \bot = f \qquad \top \lor \bot = t$$

ii. $\top = \neg \top$ $\bot = \neg \bot$.

Priestley duality (De Morgan algebras)

De Morgan algebras

Let **A** be a De Morgan algebra and $P \in X(\mathbf{A})$ a prime filter. Define:

•
$$\neg P := \{a \in A : \neg a \in P\}$$

•
$$g(P) := A \setminus \neg P$$
.

Then:

- $\neg P$ is a prime ideal
- g(P) is a prime filter

g: X(A) → X(A) is an order-reversing involution,
 i.e. g² = id_{X(A)}.

The Priestley space of a De Morgan algebra

For any De Morgan algebra A,

•
$$\langle X(\mathbf{A}), au, \subseteq
angle$$
 is a Priestley space

• $g: X(\mathbf{A}) \to X(\mathbf{A})$ is an order-reversing homeomorphism s.t. $g^2 = id_{X(\mathbf{A})}$.

•
$$\Phi: \mathbf{A} \cong \langle D(X(\mathbf{A})), \cap, \cup, \neg, \emptyset, X(\mathbf{A}) \rangle$$
, where

$$\neg U := X(\mathbf{A}) \backslash g(U)$$

for any $U \in D(X(\mathbf{A}))$.

Priestley duality (De Morgan algebras)

De Morgan spaces

A De Morgan space to is a tuple $\mathcal{X} = \langle X, \tau, \leqslant, g \rangle$ such that

• $\langle X, \tau, \leqslant \rangle$ is a Priestley space

• $g: X \to X$ is an order-reversing homeomorphism s.t. $g^2 = id_{\chi}$.

Proposition

For any De Morgan space \mathcal{X} , $\mathcal{X} \cong \langle X(D(\mathcal{X})), g \rangle$. Priestley duality extends to a duality between:

- De Morgan algebras with $\{\wedge,\,\vee,\,\neg,\,f,\,t\}\text{-homomorphisms}$ as morphisms
- De Morgan spaces with *De Morgan functions* as morphisms, i.e. monotonic and continuous functions that commute with g.

The Priestley space of a distributive bilattice

For any distributive bilattice $\mathbf{B} = \langle B, \wedge, \vee, \neg, f, t, \top, \bot \rangle$,

- (1) $\langle X(\mathbf{B}), \tau, \subseteq, X_1(\mathbf{B}), X_2(\mathbf{B}) \rangle$ is a pre-bilattice space
- (2) $\langle X(\mathbf{A}), \tau, g \subseteq \rangle$ is a De Morgan space
- (3) $g(X_1(\mathbf{B})) = X_2(\mathbf{B})$
- (4) $\Phi: \mathbf{B} \cong \langle D(X(\mathbf{B})), \cap, \cup, \neg, \emptyset, X(\mathbf{B}), X_1(\mathbf{B}), X_2(\mathbf{B}) \rangle.$

Bilattice spaces

We define $\mathcal{X} = \langle X, \tau, \leq, g, X_1, X_2 \rangle$ to be a *bilattice space* if it satisfies (1) to (3). A *bilattice function* $f : \mathcal{X} \to \mathcal{X}'$ is a De Morgan function that satisfies $f(X_1) \subseteq X'_1$.

Proposition

For any bilattice space \mathcal{X} , $\mathcal{X} \cong \langle X(D(\mathcal{X})), g \rangle$. Priestley duality extends to a duality between:

- bilattices with $\{\land,\lor,\neg,f,t,\top,\bot\}$ -homomorphisms as morphisms
- bilattice spaces with bilattice functions as morphisms.

Priestley duality (Brouwerian bilattices)

Heyting spaces

A *Heyting space* is a Priestley space $\mathcal{X} = \langle X, \tau, \leq \rangle$ such that, for any open $O \in \tau$, the down-set $O \downarrow$ is also open.

A Heyting function is a continuous monotone map $f: X \to X'$ such that, for any open $O \in X'$,

$$f^{-1}(O{\downarrow}) = (f^{-1}(O)){\downarrow}$$

The Priestley space of a Brouwerian bilattice

For any Brouwerian bilattice $\mathbf{B} = \langle B, \wedge, \vee, \supset, \neg, f, t, \top, \bot \rangle$,

(1)
$$\langle X(\mathbf{B}), \tau, \subseteq, g, X_1(\mathbf{B}), X_2(\mathbf{B}) \rangle$$
 is a bilattice space

(2) $\langle X_1(\mathbf{B}), \tau, \subseteq \rangle$ is a Heyting space

We take this as definition of Brouwerian bilattice space.

Priestley duality (Brouwerian bilattices)

Brouwerian bilattice spaces

Given a Brouwerian bilattice space $\mathcal{X} = \langle X, \tau, \subseteq, g, X_1, X_2 \rangle$ and $U, V \subseteq X$, define:

$$U \supset V := (X_1 \setminus [(U \setminus V) \cap X_1] \downarrow) \cup (X_2 \setminus (g(U) \setminus V)).$$

Then

$$\langle D(\mathcal{X}), \cap, \cup, \supset, \neg, \emptyset, X, X_1, X_2 \rangle$$

is a Brouwerian bilattice.

Moreover, for any Brouwerian bilattice B,

 $\Phi \colon \mathbf{B} \cong \langle D(X(\mathbf{B})), \cap, \cup, \supset, \neg, \emptyset, X(\mathbf{B}), X_1(\mathbf{B}), X_2(\mathbf{B}) \rangle.$

Conversely, any Brouwerian bilattice space ${\mathcal X}$ is homeomorphic to $X(D({\mathcal X})).$

Priestley duality (Brouwerian bilattices)

Brouwerian bilattice functions

Define a *Brouwerian bilattice function* to be a bilattice function $f: X \to X'$ such that $f: X_1 \to X'_1$ is a Heyting fuction, i.e. for any open $O \subseteq X'$,

$$f^{-1}([O \cap X_1'] \downarrow) \cap X_1 = [f^{-1}(O \cap X_1')] \downarrow \cap X_1$$

Duality

We obtain thus a duality between:

- Brouwerian bilattices with $\{\wedge,\vee,\supset,\neg,f,t\}\text{-homomorphisms}$ as morphisms
- Brouwerian bilattice spaces with Brouwerian bilattice functions as morphisms.