Coalgebraic Logics for Knowledge Representation and Reactive Systems

Lutz Schröder

DFKI Bremen

University of Leicester, June 24, 2011

Introduction: Modal Logic in Computer Science

- Description logics
 - Core formalism of KR and the Semantic Web
 - Underlying logic of OWL-DL
- Temporal logics (CTL, LTL)
- (and many more: epistemic, deontic, ...)
- Relational semantics
 - Binary relations between individuals
 - Guarded universal and existential quantification

Sichere Kognitive Systeme

Many modes of expression need more than relational semantics, e.g.

Uncertainty(Probabilities)Vagueness(Fuzzy truth values)Defeasibility(Preference orderings)Causation and agency(Games)

Large variety of domain-specific logics

- + Suitable expressive means for every purpose
- Multiplied need for tools and algorithms

Coalgebra acts as a unified framework for real-life reasoning

- semantically
- logically
 - generic complete axiomatizations
- algorithmically
 - generic decidability results
 - generic algorithms and complexity analysis

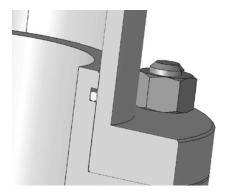
- Real-life reasoning
- Review of relational semantics
- Coalgebraic logic
- One-step rules and generic algorithms

- CATIA DMU Analyser:
 - Overlaps of parts

OWL in CAD Quality Control

- CATIA DMU Analyser:
 - Overlaps of parts
 - Not every overlap is an error
- OWL Ontology:

part ⊑ overlaps only gasket ⊔ (bolt ⊓ overlaps only nut) ⊔...



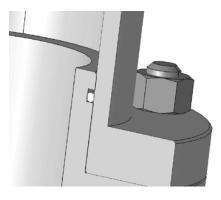
(Franke/Klein/Schröder/Thoben CIRP Design 2010)

Conditional logic in CAD Quality Control

 $a \Rightarrow b$: If *a* then normally *b*.

- $part \Rightarrow overlaps \ only \ nothing$
- $\text{gasket} \Rightarrow \text{overlaps some part}$
 - bolt \Rightarrow overlaps some nut
 - bolt □ hasExplicitPart some thread
 - \Rightarrow overlaps only nothing

(Franke/Klein/Schröder/Thoben CIRP Design 2010)



[BMBF KMU Innovativ project SIMPLE Semantically founded implementation of clinical practice guidelines

From the German CPG for coronary heart disease:

7-13 In presence of medium prior probability and inconclusive ergometry, an exercise test with imaging should be carried out.

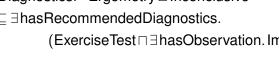
Approximation in relational DL:

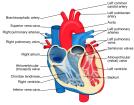
∀hasPriorBiskCHG. Medium □

 \forall has Diagnostics. \neg Ergometry \sqcup Inconclusive

 $\Box \exists$ hasRecommendedDiagnostics.

(ExerciseTest $\sqcap \exists$ hasObservation. Imaging)





[BMBF KMU Innovativ project SIMPLE Semantically founded implementation of clinical practice guidelines]

From the German CPG for coronary heart disease:

7-13 In presence of medium prior probability and inconclusive ergometry, an exercise test with imaging should be carried out.

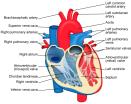
Approximation in relational DL:

∀hasPriorRiskCHG. Medium ⊓

 \forall hasDiagnostics. \neg Ergometry \sqcup Inconclusive

 $\sqsubseteq \exists has Recommended Diagnostics.$

 $(ExerciseTest \sqcap \exists hasObservation. Imaging)$



[BMBF KMU Innovativ project SIMPLE Semantically founded implementation of clinical practice guidelines]

From the German CPG for coronary heart disease:

7-13 In presence of medium prior probability and inconclusive ergometry, an exercise test with imaging should be carried out.

Brachoophals ratery Spectrum ven zan-Rige submody ven Rige submody ven Apprendigter Charles werder Rige submody ven Apprendigter Forter ven zan-

Approximation in relational DL:

 \forall has Prior Risk CHG. Medium \sqcap

 \forall hasDiagnostics. \neg Ergometry \sqcup Inconclusive

 $\sqsubseteq \exists has Recommended Diagnostics.$

 $(ExerciseTest \sqcap \exists hasObservation. Imaging)$

[BMBF KMU Innovativ project SIMPLE Semantically founded implementation of clinical practice guidelines]

From the German CPG for coronary heart disease:

7-13 In presence of medium prior probability and inconclusive ergometry, an exercise test with imaging should be carried out.

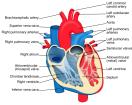
Approximation in relational DL:

 \forall has Prior Risk CHG. Medium \sqcap

 \forall hasDiagnostics. \neg Ergometry \sqcup Inconclusive

 $\sqsubseteq \exists has Recommended Diagnostics.$

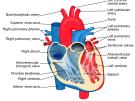
(ExerciseTest ⊓∃hasObservation. Imaging)



[BMBF KMU Innovativ project SIMPLE Semantically founded implementation of clinical practice guidelines]

From the German CPG for coronary heart disease:

7-13 In presence of medium prior probability and inconclusive ergometry, an exercise test with imaging should be carried out.



Better approximation in coalgebraic description logic:

moderately(probably (∃.hasDisorder.CHD))⊓

 \forall hasDiagnostics. \neg Ergometry \sqcup Inconclusive

 $\Rightarrow \exists$ has Recommended Diagnostics.

(ExerciseTest □ ∃ hasObservation. Imaging)

Nested defeasible implication:

Units normally seeing at least 100 new cases of cancer per annum should be able to maintain their expertise.

Comparison of probabilities:

Radiotherapy should be given following mastectomy or breast conserving surgery [...] where the benefit to the individual is likely to outweigh risks of radiation related morbidity.

(SIGN breast cancer CPG)

9

Combined vague temporality, belief, and uncertainty:

Aspirin should be given to all patients with a STEMI as soon as possible after the diagnosis is deemed probable.

(European CPG for acute ST-segment elevated myocardial infarction) P Intervet

Concepts

$$C ::= \bot \mid A \mid \neg C \mid C_1 \sqcap C_2 \mid \forall R. C$$

Interpretations \mathcal{I} :

•
$$(\Delta^{\mathcal{I}}, (A^{\mathcal{I}}), (R^{\mathcal{I}}))$$
 where

$$P \mathcal{A} \subseteq \Delta$$
$$P \mathcal{I} \subset \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$$

• Extension $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ of concepts *C*:

$$(\forall R. C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} \mid \forall y \in \Delta^{\mathcal{I}}. xR^{\mathcal{I}}y \Rightarrow y \in C^{\mathcal{I}}\}$$

E.g.

$ChessFanatic = ChessPlayer \sqcap \forall hasFriend. ChessFanatic$

Logic	Systems	Syntax	Reading	
Probabilistic logics	Markov chains	L _p C	With Prob. $\geq p$, C	
Graded logics	Multigraphs	≥nR.C	\geq <i>n R</i> -successors satisfy <i>C</i>	
Conditional logics	Preference models	$C \Rightarrow D$	If C then normally D	
Alternating- time logic	Concurrent game struct.	$\langle\!\langle C angle\! angle C$	Coalition C can force C	
Game logic	Game models	$\langle \gamma angle C$	Angel can force C in game γ	

Logic	Systems	Syntax	Reading	
Probabilistic logics	Markov chains	L _p C	With Prob. $\geq p$, C	
Graded logics	Multigraphs	≥nR.C	\geq <i>n R</i> -successors satisfy <i>C</i>	
Conditional logics	Preference models	$C \Rightarrow D$	If C then normally D	
Alternating- time logic	Concurrent game struct.	$\langle\!\langle C angle\! angle C$	Coalition C can force C	
Game logic	Game models	$\langle \gamma angle C$	Angel can force C in game γ	

KR

Logic Systems Syntax Reading Probabilistic Markov chains With Prob. $\geq p, C$ $L_{p}C$ logics Graded **Multigraphs** > n R-successors satisfy C > nR.Clogics Conditional Preference $C \Rightarrow D$ If C then normally D logics models Alternating-Concurrent $\langle\!\langle C \rangle\!\rangle C$ Coalition C can force C time logic game struct. Angel can force C $\langle \gamma \rangle C$ Game logic Game models in game γ

Reactive systems

Logic	Systems	Syntax	Reading	
Probabilistic logics	Markov chains	L _p C	With Prob. $\geq p$, C	
Graded logics	Multigraphs	≥nR.C	\geq <i>n R</i> -successors satisfy <i>C</i>	
Conditional logics	Preference models	$C \Rightarrow D$	If C then normally D	
Alternating- time logic	Concurrent game struct.	$\langle\!\langle C angle\! angle C$	Coalition C can force C	
Game logic	Game models	$\langle \gamma angle C$	Angel can force C in game γ	

Multi-agent systems

... for such logics has been notoriously limited:

CondLean: weak conditional logics

▶ Pronto: P-SHIQ(D).

Interpretations of role R are P-coalgebras

• Extension of $\forall R. C$:

$$(\forall R. C)^{\mathcal{I}} = \{ x \in \Delta_{I} \mid \xi_{R}(x) \in \{ A \in \mathcal{P}(\Delta^{\mathcal{I}}) \mid A \subseteq C^{\mathcal{I}} \} \}$$
$$=: \llbracket \forall R \rrbracket_{\Delta^{\mathcal{I}}}(C^{\mathcal{I}})$$
predicate lifting

functor

Coalgebraic Logic

- General modal signatures Σ (sets of finitary modal operators)
- Abstraction of the type of interpretations:
 - Functor (parametrized data type) $T : \mathbf{Set} \to \mathbf{Set}$
 - Interpretations = T-coalgebras

$$\xi: \Delta^{\mathcal{I}} o T(\Delta^{\mathcal{I}})$$

- Abstraction of the semantics of operators $L \in \Sigma$:
 - predicate liftings $\llbracket L \rrbracket_X : \mathcal{P}(X) \to \mathcal{P}(TX)$, natural in X
 - $(LC)^{\mathcal{I}} = \xi^{-1}[\llbracket L \rrbracket_{\Delta^{\mathcal{I}}}(C^{\mathcal{I}})]$

(Pattinson 2003, Schröder 2005)

Nearly Everything is Coalgebraic

Logic	Systems	Syntax	Functor
Classical DLs	Relational models	∀ <i>R</i> . <i>C</i>	Powerset $\mathcal{P}(X)$
Probabilistic logics	Markov chains	$egin{array}{c} L_{ ho}C\ \sum a_i P(C_i) \geq b \end{array}$	Distributions $D(X)$
Graded logics	Multigraphs	\geq nR. C $\sum a_i \#(C_i) \geq b$	$\begin{array}{l} \text{Multisets} \\ \mathcal{B}(X) = X \rightarrow \mathbb{N}_{\infty} \end{array}$
Conditional logics	Preference models	$C \Rightarrow D$	Preference orders $\exists (S, \preceq) . S \rightarrow X$
Alternating- time logic	Concurrent game struct.	[<i>c</i>] <i>C</i>	Games $\exists (S_i). (\prod S_i \rightarrow X)$
Game logic	Game models	$\left< \gamma \right> C$	Upclosed nbhd. systems

(Schröder/Pattinson/Cirstea/Kurz/Venema et al. 2004-2010)

Lutz Schröder: Coalgebraic Logics for Knowledge Representation and Reactive Systems

Leicester 06/2011

(Fagin/Halpern JACM 1994)

Functor D(X) = distributions on X

Interpretations $\Delta^{\mathcal{I}} \rightarrow D(\Delta^{\mathcal{I}})$ = Markov chains

Operators L_p 'with probability $\geq p$ '

$$\llbracket L_{\rho} \rrbracket_{X}(A) = \{ \mu \in D(X) \mid \mu(A) \geq \rho \}$$

(Alur et al. JACM 2002)

 $N = \{1, \ldots, n\}$ set of agents, $c \subseteq N$ coalition

Functor:

$$F(X) = \left\{ (k_1, \ldots, k_n, f) \mid f : \left(\prod_{i \in N} \{1, \ldots, k_i\} \right) \to X \right\}$$

Interpretations $\Delta^{\mathcal{I}} \to F(\Delta^{\mathcal{I}})$ = concurrent game structures

Operators [c] 'c can force ... in the next step'

$$\llbracket \llbracket c \rrbracket \rrbracket_X(A) = \{ f \in F(X) \mid \exists \sigma_c. \forall \sigma_{N-c}. f(\sigma_c, \sigma_{N-c}) \in A \}$$

Parametrized Systems:

- Fixed propositional part
- Further fixed parts depending on orthogonal features (nominals, fixed points)
- Parameter: Axiomatization of the functor through (cutfree complete) one-step rules (Schröder/Pattinson LICS 06; see my Leicester seminar talk of March 2006)

One-step logic: V set of prop. var.,

$$\Sigma V = \{La \mid a \in V, L \in \Sigma\}.$$

Given $\tau: V \to \mathcal{P}(X)$, interpret

- ▶ propositional formulas φ over V as $\llbracket \varphi \rrbracket \tau \subseteq X$
- ▶ propositional formulas ψ over ΣV as $\llbracket \psi \rrbracket \tau \subseteq TX$ by

 $\llbracket La \rrbracket \tau = \llbracket L \rrbracket_X \tau(a)$

One-step rules:

propositional over Vclause over ΣV

$$\frac{\varphi}{\psi} \text{ one-step sound if } \llbracket \varphi \rrbracket \tau = X \implies \llbracket \psi \rrbracket \tau = TX.$$

 $\frac{\varphi}{\psi}$

$$\frac{A \to C \qquad C \to B}{A \to B}$$

Undesirable for proof search.

Lutz Schröder: Coalgebraic Logics for Knowledge Representation and Reactive Systems

Leicester 06/2011

Set \mathcal{R} of one-step rules one-step cut-free complete if for clauses χ over ΣV

$$\llbracket \chi \rrbracket \tau = TX \implies \exists \varphi / \psi \in \mathcal{R}, \sigma : V \to V.$$
$$\llbracket \varphi \sigma \rrbracket \tau = X, \quad \psi \sigma \text{ contracted}, \quad \psi \sigma \subseteq \chi.$$

One-step cut-free complete rule sets (OSCCR)

- induce tableau-based model constructions
- yield cut-free complete deduction systems for the full logic

 → proof search

21

ALC:

$$\frac{\bigcup_{i=1}^{n} \neg a_{i} \sqcup b}{\bigcup_{i=1}^{n} \neg \forall R. a_{i} \sqcup \forall R. b} \quad (n \ge 0)$$

Local type-1 probabilistic logic:

Arithmetic of characteristic functions

$$\begin{split} \overbrace{\sum_{i=0}^{n} r_{i}a_{i}}^{n} \succ \overbrace{\sum_{i=0}^{n} r_{i}p_{i}}^{n}}_{\bigsqcup_{0 \leq i \leq n} sgn(r_{i})L_{p_{i}}a_{i}} \\ \end{split}$$
where $n \geq 0, r_{i} \in \mathbb{Z} - \{0\}, \succ = \begin{cases} > & \text{if } r_{i} < 0 \text{ for all } i \\ \geq & \text{otherwise} \end{cases}$

- PSPACE for next-step-logics
- PSPACE for coalgebraic hybrid logic
- EXPTIME for coalgebraic description logics (i.e. with TBoxes)
- Completeness and EXPTIME global caching for flat fixed point logics via O-adjointness (Schröder/Venema 2010)
 - Alternating μ -calculus (Alur et al. 2002)
 - Graded μ-calculus (Kupferman et al. 2002)

23

Flat Coalgebraic Fixed Point Logics

Flat fixed point operators

$$\begin{aligned} & \sharp_{\gamma}(\phi) \equiv \mu x. \, \gamma(\phi, x) \\ & \flat_{\gamma}(\phi) \equiv v x. \, \gamma(\phi, x) \qquad (\gamma \text{ modal}) \end{aligned}$$

 \rightarrow fragments of single-variable coalgebraic μ -calculus.

E.g.

- CTL: $AF \varphi = \sharp_{\rho \lor \Box x} \varphi$
- $\flat_{p \land \Box \Box x}$ not in CTL*
- ATL: $\langle \langle C \rangle \rangle F \varphi = \sharp_{\rho \lor [C]x} \varphi$
- ► Graded µ-calculus (Kupferman et al. 2002):

$$\sharp_{p\lor\diamond_2 x} \varphi$$

'the current state is the root of a binary tree whose leaves satisfy φ '.

Briefly: $\sharp_{\gamma}(\phi)$ is a least fixed point', i.e.:

Unfolding:

$$\gamma(\varphi,\sharp_{\gamma}\varphi) o \sharp_{\gamma}\varphi$$

Fixed-point induction:

$$rac{\gamma(arphi,\chi)
ightarrow \chi}{\sharp_\gamma(arphi)
ightarrow \chi}$$

Are these complete?

• Do imply that $\sharp_{\gamma}(\varphi)$ is a least fixed point in the Lindenbaum algebra

Show constructivity of the Lindenbaum algebra:

$$\sharp_{\gamma}(\phi) = \bigvee_{i < \omega} \gamma(\phi)^i(\bot)$$

via \mathcal{O} -adjointness of $\gamma(\varphi)$: for all ψ there is a finite set $G_{\gamma(\varphi)}(\psi)$ s.t.

$$\gamma(arphi,
ho)\leq\psi\iff
ho\leq\chi\quad ext{for some }\chi\in G_{\gamma(arphi)}(\psi)$$

Constructivity implies

 $\sharp_{\gamma} \phi \wedge \psi$ consistent $\implies \gamma(\phi)^{i}(\bot) \wedge \psi$ consistent for some $i < \omega$.

Tableau construction with time-outs

- Unfolding & guardedness:
 w.l.o.g. the top level of every formula is modal
- Rigidity lemma:

w.l.o.g. proofs of modal clauses end in modal one-step rules

Example: Adjointness of \Box . Recall rule:

$$rac{igwedge_{i=1}^{n}a_{i}
ightarrow b}{igwedge_{i=1}^{n}\Box a_{i}
ightarrow \Box b} \quad (n\geq 0)$$

$$\Box
ho \leq \psi = \bigwedge_{i=1}^n \Box \chi_i \rightarrow \bigvee_{j=1}^m \Box \theta_j$$

- Unfolding & guardedness:
 w.l.o.g. the top level of every formula is modal
- Rigidity lemma:

w.l.o.g. proofs of modal clauses end in modal one-step rules

Example: Adjointness of \Box . Recall rule:

$$rac{igwedge_{i=1}^{n}a_{i}
ightarrow b}{igwedge_{i=1}^{n}\Box a_{i}
ightarrow \Box b} \quad (n\geq 0)$$

$$\Box \rho \leq \psi = \bigwedge_{i=1}^{n} \Box \chi_{i} \to \bigvee_{j=1}^{m} \Box \theta_{j}$$
$$\iff \vdash \Box \rho \to \bigwedge_{i=1}^{n} \Box \chi_{i} \to \bigvee_{j=1}^{m} \Box \theta_{j}$$

- Unfolding & guardedness:
 w.l.o.g. the top level of every formula is modal
- Rigidity lemma:

w.l.o.g. proofs of modal clauses end in modal one-step rules

Example: Adjointness of \Box . Recall rule:

$$rac{igwedge_{i=1}^{n}a_{i}
ightarrow b}{igwedge_{i=1}^{n}\Box a_{i}
ightarrow \Box b} \quad (n\geq 0)$$

$$\Box \rho \leq \psi = \bigwedge_{i=1}^{n} \Box \chi_{i} \rightarrow \bigvee_{j=1}^{m} \Box \theta_{j}$$
$$\iff \vdash \Box \rho \land \bigwedge_{i=1}^{n} \Box \chi_{i} \rightarrow \bigvee_{j=1}^{m} \Box \theta_{j}$$

- Unfolding & guardedness:
 w.l.o.g. the top level of every formula is modal
- Rigidity lemma:

w.l.o.g. proofs of modal clauses end in modal one-step rules

Example: Adjointness of \Box . Recall rule:

$$rac{igwedge_{i=1}^{n}a_{i}
ightarrow b}{igwedge_{i=1}^{n}\Box a_{i}
ightarrow \Box b} \quad (n\geq 0)$$

$$\Box \rho \leq \psi = \bigwedge_{i=1}^{n} \Box \chi_{i} \rightarrow \bigvee_{j=1}^{m} \Box \theta_{j}$$
$$\iff \vdash \Box \rho \land \bigwedge_{i=1}^{n} \Box \chi_{i} \rightarrow \bigvee_{j=1}^{m} \Box \theta_{j}$$
$$\stackrel{\text{Rigidity}}{\iff} \vdash \rho \land \bigwedge_{i=1}^{n} \chi_{i} \rightarrow \theta_{j} \quad \text{für ein } j$$

- Unfolding & guardedness:
 w.l.o.g. the top level of every formula is modal
- Rigidity lemma:

w.l.o.g. proofs of modal clauses end in modal one-step rules

Example: Adjointness of \Box . Recall rule:

$$rac{igwedge_{i=1}^{n}a_{i}
ightarrow b}{igwedge_{i=1}^{n}\Box a_{i}
ightarrow \Box b} \quad (n\geq 0)$$

$$\Box \rho \leq \psi = \bigwedge_{i=1}^{n} \Box \chi_{i} \to \bigvee_{j=1}^{m} \Box \theta_{j}$$
$$\iff \vdash \Box \rho \land \bigwedge_{i=1}^{n} \Box \chi_{i} \to \bigvee_{j=1}^{m} \Box \theta_{j}$$
$$\stackrel{\text{Rigidity}}{\iff} \vdash \rho \to \bigwedge_{i=1}^{n} \chi_{i} \to \theta_{j} \quad \text{für ein } j$$

- Unfolding & guardedness:
 w.l.o.g. the top level of every formula is modal
- Rigidity lemma:

w.l.o.g. proofs of modal clauses end in modal one-step rules

Example: Adjointness of \Box . Recall rule:

$$rac{igwedge_{i=1}^{n}a_{i}
ightarrow b}{igwedge_{i=1}^{n}\Box a_{i}
ightarrow \Box b} \quad (n\geq 0)$$

$$\Box \rho \leq \psi = \bigwedge_{i=1}^{n} \Box \chi_{i} \to \bigvee_{j=1}^{m} \Box \theta_{j}$$
$$\iff \vdash \Box \rho \land \bigwedge_{i=1}^{n} \Box \chi_{i} \to \bigvee_{j=1}^{m} \Box \theta_{j}$$
$$\stackrel{\text{Rigidity}}{\iff} \vdash \rho \to \bigwedge_{i=1}^{n} \chi_{i} \to \theta_{j} \quad \text{für ein } j$$

- Unfolding & guardedness:
 w.l.o.g. the top level of every formula is modal
- Rigidity lemma:

w.l.o.g. proofs of modal clauses end in modal one-step rules

Example: Adjointness of \Box . Recall rule:

$$rac{igwedge_{i=1}^{n}a_{i}
ightarrow b}{igwedge_{i=1}^{n}\Box a_{i}
ightarrow \Box b} \quad (n\geq 0)$$

$$\Box \rho \leq \psi = \bigwedge_{i=1}^{n} \Box \chi_{i} \rightarrow \bigvee_{j=1}^{m} \Box \theta_{j}$$
$$\iff \vdash \Box \rho \land \bigwedge_{i=1}^{n} \Box \chi_{i} \rightarrow \bigvee_{j=1}^{m} \Box \theta_{j}$$
$$\stackrel{\text{Rigidity}}{\iff} \vdash \rho \rightarrow \bigwedge_{i=1}^{n} \chi_{i} \rightarrow \theta_{j} \quad \text{für ein } j$$
Thus put $G_{\Box x}(\psi) = \{\bigwedge_{i=1}^{n} \chi_{i} \rightarrow \theta_{j} \mid j = 1, \dots, m\}$

Conclusions

- Coalgebra provides a uniform framework for modal and hybrid logics
 - Graded operators (knowledge representation, redundancy)
 - Probabilistic operators (quantitative uncertainty, reactive systems)
 - Conditional operators (nonmonotonic reasoning)
 - Alternating-time logics, game logic, logics of agency (multi-agent systems)
- Wide range of generic decision procedures and complexity bounds
- Modular

(Schröder/Pattinson ICALP 2007)

- Frequently new bounds and calculi for instance logics, in particular in presence of
 - nominals
 - fixed points

28

- Manydimensional coalgebraic logics
- Fuzzy coalgebraic logics
 - E.g. the logic of probably
- Vision: generic, efficient modular reasoning tools
 - Ongoing optimization of CoLoSS (PhD thesis Hausmann)
 - Enable use in realistic applications, e.g. CPGs

Thanks for your attention!

▶ Nominals *i*,*j*,... are atomic concepts to be interpreted as singletons

Internalize ABoxes via satisfaction operators

 $@_i C = `i \text{ satisfies } C'$

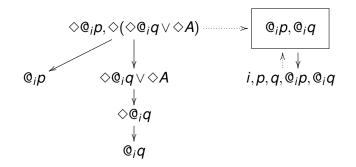
- General concept inclusions $C \sqsubseteq D$
- Tableaux diverge without blocking: for gci ⊤ ⊑ ∃R. A,

$$T, \exists R. A$$
$$A, \exists R. A$$
$$A, \exists R. A$$

► Tedious analysis even for *ALC* (Donini/Massacci 99)

A Global Caching Algorithm

Collect @-formulas along a winning strategy:



- Decidability in EXPTIME
- Room for heuristic optimization
- Novel algorithm even for the relational case

(Goré/Kupke/Pattinson/Schröder IJCAR 10)

Lutz Schröder: Coalgebraic Logics for Knowledge Representation and Reactive Systems

Leicester 06/2011