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Core notions of algorithm/machine:

▸ Turing machine ≈ Finite control states + Infinite tape.

▸ Register machine ≈ Finite control states + Registers (Zm).

Can view as possibly infinite set of states by absorbing memory.

‘Finite state machine + interaction with unbounded memory’
permits description of possibly infinite sets of states.
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Alternative method of describing possibly infinite states:

▸ Alg(�,E) a variety e.g. Set, SL�, DL, BA, Vect(F), Ab etc.

▸ T ∶ Alg → Alg a finitary surjection preserving endofunctor.

▸ Machines are finitely presentable coalgebras i.e.

γ ∶ A→ TA

where γ an Alg-morphism and A ∈ Alg finitely presentable.
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But how are we to think of these finitely presentable (FP)
coalgebras?

Following the work of Silva, Bonsangue and Rutten and also that
of Milius, we represent them syntactically using expressions.
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L(T) ∋ ϕ ∶∶= σ(ϕj)j∈ar(σ) ∣ [λ](ϕj)j∈ar(λ) ∣ x ∣ µx .ϕ

where σ ∈ �, λ ∈ Λ, x ∈ X = {xn ∶ n ∈ ω} are fixpoint constants.

▸ Λ is some ‘operator signature’ induced by T e.g.

Λ =∐
n∈ω

UTFn ar(n, t) = n

although usually much too big.

▸ Restrict to [λ]-guarded expressions Lg(T), needn’t be closed.
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Theorem (Kleene theorem)

For finitary surjection preserving T ∶ Alg → Alg have translations:

1. Pointed FP TX -coalgebra (A, γ, a0) to ϕ(A,γ,a0) ∈ Lg(T).
2. Guarded ϕ to pointed FP TX -coalgebra (Aϕ, γϕ, aϕ).

such that:

(A, γ, a0) and (Aϕ(A,γ,a0)
, γϕ(A,γ,a0)

, aϕ(A,γ,a0)
)

are ω-step behaviourally equivalent.

▸ TX = FX +T extends T with ‘colours’ X .

▸ For all known finitary T ∶ Alg → Alg, ω-step behaviourally
equivalent ⇒ behaviourally equivalent.
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Proof sketch: Synthesis of (Aϕ, γϕ, aϕ) from ϕ ∈ Lg(T ).

1. Construct subexpressions Sϕ ⊆ω Lg(T ) of ϕ.

2. Can view ϕ as coalgebra for polynomial functor P ∶ Set→ Set,

∆ϕ ∶ Sϕ → P(Sϕ)

3. Apply a ‘free construction’ F̃ ∶ CoalgSet(P)→ CoalgAlg(TX ):

γϕ ∶= F̃∆ϕ ∶ FSϕ → TX (FSϕ)

Aϕ = FSϕ is finitely generated free algebra, aϕ = ηSϕ
(ϕ) ∈ Aϕ.

Note: If ϕ is closed then F̃∆ϕ effectively a T -coalgebra.
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Example

For T ∶ Vect(R)→ Vect(R) where T = R × Id ,

L(T) ∋ ϕ ∶∶= 0 ∣ k.ϕ ∣ ϕ1 + ϕ2 ∣ [∗] ∣◯ϕ ∣ x ∣ µx .ϕ (k ∈ R)

If ϕ = µx .([∗] + 1
2◯x) ∈ Lg(T ) then:

▸ Sϕ = {ϕ}
▸ ∆ϕ ∶ Sϕ → PSϕ is defined ∆ϕ(ϕ) = [[∗] + 1

2◯](ϕ)

▸ γϕ ∶ FSϕ → R × FSϕ is linear transform ( 1
1
2

) ∶ R→ R
2

▸ Behaviour is (1, 1
2 ,

1
4 , . . . ).
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Example

Consider T = 2 × IdA on Set, SL�, DL and BA where
A = {ai ∶ i ∈ n}. The respective expressions are:

▸ ϕ ∶∶= [0](ϕj)j∈n ∣ [1](ϕj)j∈n ∣ x ∣ µx .ϕ

▸ ϕ ∶∶= � ∣ ϕ1 ⊕ ϕ2 ∣ [0] ∣ [1] ∣ [ai ]ϕ ∣ x ∣ µx .ϕ

▸ ϕ ∶∶= � ∣ ⊺ ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 ∨ ϕ2 ∣ [0] ∣ [1] ∣ [ai ]ϕ ∣ x ∣ µx .ϕ

▸ ϕ ∶∶= � ∣ ϕ1 ∧ ϕ2 ∣ ¬ϕ ∣ [0] ∣ [1] ∣ [ai ]ϕ ∣ x ∣ µx .ϕ

The expressions may be viewed as deterministic, nondeterministic,
alternating and boolean automata, respectively.

In each case the synthesis procedure constructs a deterministic
automaton over the respective finitely generated free algebra.
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Example

Can represent digital circuits (gates + flip flops) by expression
linear in its size. Synthesis effectively constructs Mealy machine
i.e. performs and hides internal communication.

ϕ ∶∶= � ∣ ϕ1 ⊕ ϕ2 ∣ moduleI ∶O(ϕ) ∣ [χ1 ⇒ χ2]ϕ ∣ x ∣ µx .ϕ

Example

Can represent unbounded memory via e.g. abelian groups with
constants. Memory is persistent. (Needs more work)
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Other direction: ϕ ∈ Lg(T) from pointed FP TX -coalgebra.

Example

Consider T = C × Id ∶ Vect(C)→ Vect(C) and γ ∶ F2→ C × F2,

γ1 = ( 1 0 ) ∶ C2 → C γ2 = (
0 − i

2
i
2 0

) ∶ C2 → C
2

If the initial state is ( 1
0
) the construction yields the expression:

µx .([∗] +◯◯x

4
)

i.e. the behaviour is (1,0, 1
4 ,0,

1
16 ,0, . . . ).
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For the remainder of the talk we discuss completeness and
automatic proof construction.

Completeness of what?

L(T) ∋ ϕ ∶∶= σ(ϕj)j∈ar(σ) ∣ [λ](ϕj)j∈ar(λ) ∣ x ∣ µx .ϕ

Need to give interpretation of expressions.
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Theorem
If T ∶ Alg → Alg is a finitary surjection and mono preserving
functor with ω-bounded behaviour then the final T -coalgebra is a
quotient of a final coalgebra for a polynomial functor on Set.

Sketch.

ΩT = Pω
1/ ≈

t1 ≈ t2 iff ∀n ∈ ω.(depth n restrictions equivalent in algebra T n
1).

Note: No counter-examples to ω-bounded behaviour known.
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Semantic domain of expressions:

▸ Have final coalgebra γTX ∶ ΩTX → TXΩTX .

▸ Coalg(TX ) inherits cocompleteness from Alg, so let
γQ ∶ ΩQ → TXΩQ be colimit of all FP TX -coalgebras.

▸ Finally construct morphic image of γQ in ΩTX :

γ[Q] ∶ Ω[Q] → TXΩ[Q]

In many important cases γQ = γ[Q], but not always.

Intuitively γ[Q] is subcoalgebra of rational behaviours in ΩTX .
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For ϕ ∈ Lg(T) define semantics JϕKΩ[Q] ∈ Ω[Q]:

JϕKΩ[Q] = behaviour of pointed FP TX -coalgebra (Aϕ, γϕ, aϕ)

i.e. behaviour of synthesised coalgebra.

Completeness:

Provide an equational proof system such that:

⊢ ϕ = ψ iff JϕKΩ[Q] = JψKΩ[Q]
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The ‘natural’ choice for this proof system is:

1. Equations from variety Alg(�,E) i.e. the set E.

2. Equations which present functor (rank-1) i.e. we assume TX
is equationally presentable.

3. Unique fixpoint axiom and rule:

µx .ϕ = ϕ[x ∶= µx .ϕ] ϕ[x ∶= ψ] = ψ
µx .ϕ = ψ

They are always sound i.e. ⊢ ϕ = ψ implies JϕKΩ[Q] = JψKΩ[Q] .
Expressions are guarded, so have guarded congruence rule for µx .
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Example

T = 2 × IdA ∶ SL� → SL� where A = {ai ∶ i ∈ n},

ϕ ∶∶= � ∣ ϕ1 ⊕ ϕ2 ∣ [0] ∣ [1] ∣ [a]ϕ ∣ x ∣ µx .ϕ

▸ Lg(T) may be viewed as ‘nondeterministic automata’.

▸ JϕKTX = JψKTX iff they accept the same language.

▸ So completeness must construct equational proof that two
nondeterministic automata accept the same language.
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How are we to prove completeness?

Rough idea:

1. If JϕKΩ[Q] = JψKΩ[Q] then ω-step behaviourally equivalent i.e.
depth n unwindings equivalent in each T n

X1.

2. So to ‘prove’ ϕ = ψ try to construct a finite directed graph
which can be unwound to arbitrary depth – each depth n
proof is an equational proof in T n

X1.

3. Finally need to convert this non-wellfounded proof into a
well-founded equational proof: use unique fixpoint rule.
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Constructing non-wellfounded proofs.

▸ Functor T ∶ Alg → Alg has equational presentation iff T
preserves sifted colimits. [Kurz, Rosicky]

▸ Core technique: present functor T ∶ Alg → Alg by one-step
rules. [Schröder (BA case)].

Theorem
If FP = FG in Alg then finitary T ∶ Alg → Alg preserves monos iff it
has a presentation by one-step complete one-step rules.

Also many functors on other varieties have such a presentation.
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Example

▸ P̃ω ∶ SL� → SL� is presented by rules:

{pi = qj ∶ (i , j) ∈ R}
⊕i∈m◇pi =⊕j∈n◇qj

whenever R ⊆ m × n has R[m] = n and R†[n] = m.

▸ T ∶ BA→ BA defined TA =
⎧⎪⎪⎨⎪⎪⎩

1 A = 1
2 otherwise

has presentation:

� = ⊺
� = ⊺
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Examples of rank-1 equations and ‘corresponding’ one-step rules.

(Set) [2](x , x) = [1]x x = z y = z

[2](x , y) = [1]z

(Set) [1,1,1](x , y , y) = [2,1](y , x) x = b y = a z = a

[1,1,1](x , y , z) = [2,1](a,b)

(SL�) ◇ x ≤◇(x ⊕ y) x ≤ y

◇x ≤◇y

(SL�) [a](x ⊕ y) ≤ [a]x ⊕ [a]y x ≤ y ⊕ z

[a]x ≤ [a]y ⊕ [a]z

(BA) ◻ ⊺ = ⊺ x

◻x

(BA) ◻ (p ∨ q) ≤ ◻p ∨◇q
x = y ∨ z

◻x ≤ ◻y ∨◇z
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Theorem

For either:

▸ The functor FU ∶ Alg → Alg on any variety, or

▸ Every mono and surjective preserving functor T ∶ Alg → Alg
where Alg has ‘finitely generated relations’ e.g. locally-finite
varieties, Vect(F) and Ab.

one can construct a finite ‘closed tableau’ for a pair of expressions
(ϕ,ψ) ∈ (Lg(T))2 iff they are behaviourally equivalent.
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Pω ∶ Set→ Set
�� ���� ��x0

		
≈beh

�� ���� ��y0

���� ���� ��y1
]]

�� ���� ��[1]µx0.[1]x0 = [1][1]µy0.[1][1]y0 ED

BC
loopθ

oo

�� ���� ��[1]µx0.[1]x0 = [1]µy0.[1][1]y0

Rθ

OO

//___
�� ���� ��[1]µx0.[1]x0 = [1][1]µy0.[1][1]y0

Rθ

OO
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Converting non-wellfounded proofs to equational proofs.

The idea comes from Salomaa.

▸ In the sixties he axiomatised the regular expressions using
unique fixed points.

▸ He required ‘ϵ-free’ expressions – becomes guardedness in our
setting.

▸ Core idea:

1. If two regular expressions denote same language then can
construct finite collection of ‘linear’ equations over pairs
(effectively a bisimulation).

2. Using the unique fixpoint rule one can unwind these equations,
yielding an equational proof.
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How to generalise?

1. Desire to construct bisimulations leads us to require
T ∶ Alg → Alg has a relation lifting T̄ ∶ Rel→ Rel.

2. The relevant notion of bisimulation we use is HJ-bisimulation
[Staton]. It fits better than the usual notion of bisimulation.

3. Crucially, we extend the notion of ‘one-step rule’ to ‘one-step
relational rule’.

Lemma

▸ If T ∶ Alg → Alg has one-step complete presentation by
relational rules then T has a relation lifting.

▸ If Alg has finitely generated relations then finitary
T ∶ Alg → Alg has a relation lifting then T has a one-step
complete presentation by relational rules.
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Theorem
If T has a one-step complete relational presentation then every
closed tableau yields:

▸ An HJ-bisimulation.

▸ An equational proof of behavioural equivalence using
Salomaa’s method.

Yields completeness for:

▸ Functors with a relation lifting and ω-bounded behaviour on
Set, SL�, DL, BA, Vect(F), Ab and many others.

▸ The comonad functor on an arbitrary variety if it has a
relation lifting.
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