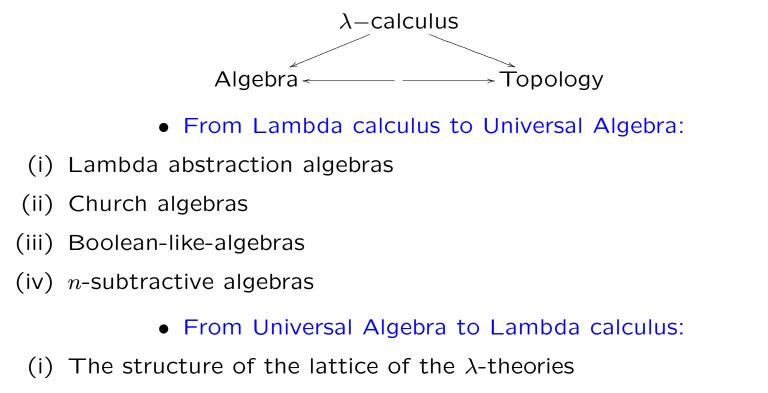
Lambda Calculus between Algebra and Topology

Antonino Salibra

Università Ca'Foscari Venezia

Lambda Calculus between Algebra and Topology



- (ii) Boolean algebras, Stone representation theorem and the indecomposable semantics
- (iii) The order-incompleteness problem

Lambda Calculus between Algebra and Topology

Topology refines partial orderings through the separation axioms:

A space (X, τ) is T_0 iff the specialization preorder \leq_{τ} is a partial order. Every partial order is the specialization order of a space.

• From Lambda calculus to Topology:

- (i) new axioms of separation
- (ii) topological algebras
- (iii) Visser spaces and Priestley spaces

• From Topology to Lambda calculus:

- (i) Topological incompleteness/completeness theorems
- (ii) Topological models
- (iii) The equational completeness problem for Scott semantics

Part 0 Lambda Calculus: Church, Curry, Scott

Scott

- Church (around 1930): Lambda calculus
- λ -theory = congruence w.r.t. application and λ -abstractions containing $\alpha\beta$ -conversion
- Scott: First model and Continuous Semantics (1969) A continuous model \mathcal{D} is a reflexive object in the category **CPO** of complete partial orderings.
- All known models of λ -calculus admits a compatible (w.r.t. application) partial order and are topological algebras (w.r.t. Scott topology).
- Each model \mathcal{D} defines an equational theory and an order theory:

 $Eq(\mathcal{D}) = \{(M, N) : |M|^{\mathcal{D}} = |N|^{\mathcal{D}}\}; \quad Ord(\mathcal{D}) = \{(M, N) : |M|^{\mathcal{D}} \le |N|^{\mathcal{D}}\}$

Theory (In)Completeness Problem

A class C of models of λ-calculus is theory complete if
 (∀ consistent λ-theory T)(∃M ∈ C) Th=(M) = T.

Theory incomplete, otherwise.

Theorem 1 (*Theory incompleteness*) All known semantics are theory incomplete. Honsell-Ronchi: Scott semantics; Bastonero-Gouy: stable semantics; Salibra: strongly stable semantics and all pointed po-models.

- Selinger (1996) asked: Are partial orderings intrinsic to computations?
- A *po-model* is a pair (\mathcal{M}, \leq) , where \mathcal{M} is a model and \leq is a nontrivial partial ordering on \mathcal{M} making the application monotone.
- The order-completeness problem by Selinger asks whether the class ℙ^O of po-models is theory complete or not.

ANSWER: Unknown.

The best we know about order-incompleteness:

Theorem 2 (Carraro-S. 2013) There exists a λ -theory T such that, for every po-model (\mathcal{M}, \leq) ,

 $Th_{=}(\mathcal{M}) \supseteq T \Rightarrow (\mathcal{M}, \leq)$ has infinite connected components and the connected component of the looping term Ω is a singleton set.

Two Other Open Problems

• Equational Completeness Problem asks whether there exists a Scott continuous model whose equational theory is the least λ -theory $\lambda\beta$:

 $Eq(\mathcal{D}) = \lambda\beta$, for some Scott continuous model \mathcal{D}

ANSWER: Unknown

• Equational Consistency Problem (Honsell-Plotkin 2006) asks whether, for every finite set E of equations between λ -terms consistent with the λ -calculus, there exists a Scott continuous model contemporaneously satisfying all equations of E.

 $(\forall E \text{ finite set of identities})[(E \cup \lambda\beta \text{ consistent}) \rightarrow (\exists D \in \text{Scott}) D \models E]?$ ANSWER: No (Carraro-S. 2013).

• These problems and the order incompleteness problem are interconnected

Part I Topology: Scott, Selinger, Visser, Priestley

The technique for the Equational Completeness Problem

Remember that the Equational Completeness Problem asks whether there exists a Scott continuous model whose equational theory is the least λ -theory $\lambda\beta$:

 $Eq(\mathcal{D}) = \lambda\beta$, for some Scott continuous model \mathcal{D} .

Given a class \mathbb{C} of po-models, we sometimes are able to construct an "effective" po-model \mathcal{E} (maybe not in the class \mathbb{C}) such that

 $Ord(\mathcal{E}) \subseteq Ord(\mathcal{D}), \text{ for all } \mathcal{D} \in \mathbb{C}.$

Lemma 1 If \mathcal{E} is an effective po-model, then, after encoding,

- 1. $|M|^{\mathcal{E}}$ is an r.e. element of the model for every closed λ -term M;
- 2. $|M|^{\mathcal{E}}$ is a decidable element for every closed normal form M.
- 3. $\{N : \mathcal{E} \models N \leq \lambda x.x\}$ is co-r.e.

Visser

Theorem 3 (Berline-Manzonetto-S. 2007) Given a class \mathbb{C} of models, if there exists an "effective" model \mathcal{E} such that

 $(\forall \mathcal{D} \in \mathbb{C}) \ Ord(\mathcal{E}) \subseteq Ord(\mathcal{D}),$

then, for every model $\mathcal{D} \in \mathbb{C}$, we have:

(i) $Ord(\mathcal{D})$ is not r.e.

(ii) $Eq(\mathcal{D}) \neq \lambda\beta$.

Proof. Define Visser topology over the set Λ of λ -terms (modulo $\lambda\beta$):

 $X \subseteq \Lambda$ is Visser base open if it is β -closed and co-r.e.

Theorem 4 (*Visser 1980*) *Visser topology is hyperconnected on* Λ . (i) Assume $Ord(\mathcal{D})$ to be r.e. for some $\mathcal{D} \in \mathbb{C}$.

$$\{N : \mathcal{E} \models N \leq \lambda x.x\}$$
 co-r.e. $\subseteq \{N : \mathcal{D} \models N \leq \lambda x.x\}$ r.e.

Visser open

Visser closed

(ii) (Selinger 1996) If $Eq(\mathcal{D}) = \lambda\beta$ for a po-model \mathcal{D} , then the term denotations are an antichain. Consequence: $Eq(\mathcal{D}) = Ord(\mathcal{D}) = \lambda\beta$ are r.e.

The Equational Completeness Problem

SOME RESULTS (Carraro-S. 2009):

- $\lambda\beta\eta$ is not the theory of a model living in the category of Scott domains.
- $\lambda\beta$ is not the theory of a filter model living in **CPO**.

Leaving Lambda Calculus Towards Computability Theory (Work in Progress)

- An enumerated set is a pair $X = (|X|, \phi_X)$, where $\phi_X : \omega \to |X|$ is an onto map (Mal'cev 1964)
- Recursive Functions: $\phi: \omega \to \text{RecFun}$ mapping the "program" n into the function ϕ_n computed by the program "n".
- Lambda Calculus: $\phi_{\Lambda} : \Lambda \to \Lambda/\lambda\beta$ mapping a λ -term M into its equivalence class $[M]_{\beta}$.
- Given an enumerated set X, we define $Y \subseteq X$ r.e. (co-r.e., decidable) if $\phi_X^{-1}(Y)$ is r.e. (co-r.e., decidable).

The Visser topology

- The r.e. sets of X are a ring \mathcal{R}_X of sets generating a topology τ_E on |X|.
- The co-r.e. sets of X are a ring co- \mathcal{R}_X of sets generating a topology τ_V on |X|.

 $(|X|, \tau_E, \tau_V)$ is a bitopological space

 au_E is the Ershov topology and au_V is the Visser topology

Lemma 2 τ_E is T_0 iff τ_V is T_0 $(a \leq_E b \text{ iff } b \leq_V a)$.

- Recursive Functions: τ_E on RecFun is the Scott topology; while τ_V is T_0 with $f \downarrow \tau_V$ -open iff graph(f) is decidable.
- Lambda Calculus: τ_E on $\Lambda/\lambda\beta$ is the discrete topology, while τ_V is non-trivial, hyperconnected and T_1 .

The Visser topology

Definition 1 (Visser) An enumerated set $X = (|X|, \phi)$ is pre-complete if, for every partial recursive function f, there exists a total recursive function g such that

$$f \downarrow n \Rightarrow \phi_{f(n)} = \phi_{g(n)}.$$

Proposition 1 (*i*) The set of computable functions is precomplete. (*ii*) (Visser) Λ/T ($T \ a \ \lambda$ -theory) is precomplete.

Proof. (i) Define

$$\phi_{g(x)}(y) = \begin{cases} \phi_{f(x)}(y), & \text{if } x \in dom(f) \\ \uparrow, & \text{otherwise} \end{cases}$$

(ii) Let $\lceil M \rceil$ be the Godel number of λ -term M and let n_{λ} be the λ -term denoted by the number n. Barendregt has shown that there exists a λ -term E such that, for every M, $E \lceil M \rceil =_{\lambda\beta} M$. Let F be a λ -term representing the computable function f. Define

$$g(n) = \ulcorner E(F\underline{n}) \urcorner.$$
$$g(n)_{\lambda} = E(F\underline{n}) =_{\lambda\beta} E(\underline{f(n)}) =_{\lambda\beta} f(n)_{\lambda}.$$

Proposition 2 (Visser) If the enumerated set $X = (|X|, \phi)$ is pre-complete then

1. τ_V is hyperconnected;

2. τ_E is compact iff \leq_{τ_E} has a bottom element.

Proof: (1) If $V \cup U = \omega$, where V and U are r.e. and ϕ -closed sets of natural numbers, then either $V = \omega$ or $U = \omega$.

By contraposition assume that neither V nor U is ω . Let $a \in V \setminus U$ and $b \in U \setminus V$. Let A and B be two recursively inseparable sets of natural numbers. Define the partial function

$$f(x) = \begin{cases} a, & \text{if } x \in A \\ b, & \text{if } x \in B \\ \uparrow, & \text{otherwise} \end{cases}$$

Consider a total recursive function g completing f up to ϕ -equivalence. We have $g^{-1}(V) \cup g^{-1}(U) = \omega$, $A \subseteq g^{-1}(V) \setminus g^{-1}(U)$ and $B \subseteq g^{-1}(U) \setminus g^{-1}(V)$. Then A and B are recursively separable. Contradiction.

(2) By (1) every finite covering of |X| must contain |X|.

The Priestley space of computability

Hereafter we always assume that τ_E is T_0 .

Proposition 3 $\tau_E \lor \tau_V$ is zero-dimensional (i.e., it has a base of clopens), Hausdorff and satisfies the Priestley separation axiom (w.r.t. \leq_E).

Proof: Let $a, b \in X$. Since τ_E is T_0 , either $a \not\leq_E b$ or $b \not\leq_E a$. In the first case there is an r.e. open U such that $a \in U$ but $b \notin U$. $X \setminus U$ is a co-r-e open such that $b \in X \setminus U$ and $a \notin X \setminus U$.

Let $x \not\leq_E y$. Then there is an r.e. set U such that $x \in U$ but $y \notin U$. U is E-upper. The complement is E-down which contains y but not x.

Proposition 4 Let X be an enumerated set. If $(|X|, \tau_E)$ is a T_0 -space, then the compactification of $(|X|, \tau_E \lor \tau_V)$ is a Priestly space and $(|X|, \tau_E \lor \tau_V)$ is a dense subspace of this compactification.

Proof: We consider the ring \mathcal{R}_X of r.e. subsets of |X| and consider the product topology on $2^{\mathcal{R}_X}$. Consider the closed subspace of lattice homomorphisms $HOM(\mathcal{R}_X^E, 2)$. It is Priestley (because closed), and $(|X|, \tau_E \vee \tau_V)$ embeddes into $HOM(\mathcal{R}_X, 2)$ as a dense subspace.

Consider $2 = \{0, 1\}$ with three topologies:

• The discrete top τ_d ; The top τ_0 with 0 < 1; The top τ_1 with 1 < 0.

We have $\tau_d = \tau_0 \vee \tau_1$. We consider the ring \mathcal{R}_X^E of r.e. subsets of |X| and consider the product topology on $2^{\mathcal{R}_X^E}$. We have:

- The topology $\prod \tau_0$ on $2^{\mathcal{R}_{\chi}^E}$ is the Scott topology w.r.t. \subseteq ;
- The topology $\prod \tau_1$ on $2^{\mathcal{R}_X^E}$ is the Scott topology w.r.t. \supseteq ;
- The topology $\prod \tau_d = \prod \tau_0 \vee \prod \tau_1$ on $2^{\mathcal{R}_X^E}$ is a Priestley space.

Consider the closed subspace of lattice homomorphisms $HOM(\mathcal{R}_X^E, 2)$. It is Priestley (because closed), and $(|X|, \tau_E \vee \tau_V)$ embeddes into $HOM(\mathcal{R}_X^E, 2)$ as a dense subspace.

We consider a map $e: X \to Hom(\mathcal{R}X, 2)$ defined as follows, for every r.e. set Y and every $x \in X$: e(x)(Y) = 1 iff $x \in Y$. The map e is bi-continuous because, for every r.e. set Y, $Y = e^{-1}(\{f : f(Y) = 1\})$ and $X \setminus Y = e^{-1}(\{f : f(Y) = 0\})$.

The codomain of X is a dense subspace Y of Hom $(\mathcal{R}X, 2)$.

X is homeomorphic to Y iff the ring $\mathcal{R}X$ distinguishes the points of X.

Remark: What is the compactification of lambda calculus? We extend the application operator and the lambda-abstractions to its compactification.

Part II Algebras: Stone, Boole and Church

Stone and Boole

Theorem 5 (Stone Representation Theorem)

- Every Boolean algebra is isomorphic to a field of sets.
- Every Boolean algebra can be embedded into a Boolean product of indecomposable Boolean algebras (**2** is the unique indecomposable Boolean algebra!).

Then every Boolean algebra is isomorphic to a subalgebra of $2^{I} = \mathcal{P}(I)$ for a suitable set I.

Generalisations to other classes of algebras by Pierce (rings with unit) Comer and Vaggione.

Combinatory algebras (CA) and λ -abstraction algebras (LAA) satisfy an analogous theorem...

Church algebras

The untyped λ -calculus has truth values 0,1 and "if-then-else" construct q(x, y, z) of programming:

- λ -calculus (LAA): $1 \equiv \lambda xy.x$; $0 \equiv \lambda xy.y$; q(e, x, y) = (ex)y
- Combinatory logic (CA): $1 \equiv \mathbf{k}$; $0 \equiv \mathbf{sk}$; q(e, x, y) = (ex)y
- Boolean algebras: $q(e, x, y) = (e \land x) \lor (\neg e \land y)$
- Rings with unit 1: $q(e, x, y) \equiv ex + (1 e)y$.

Definition 2 (Manzonetto-Salibra 2008) An algebra A is a Church algebra if it admits two constants 0,1 and a ternary term q(x, y, z) satisfying:

$$q(1, x, y) = x;$$
 $q(0, x, y) = y.$

There are equations which are contemporaneously satisfied by 0 and 1: for example,

$$q(1, x, x) = x;$$
 $q(0, x, x) = x.$

Central elements

An element e of a Church algebra A is *central* if

$$\mathbf{A} \cong \mathbf{A}/Cong(e=1) \times \mathbf{A}/Cong(e=0).$$

Lemma 3 Let A be a Church algebra et $e \in A$. The following conditions are equivalent:

- *e* is central;
- *e* satisfies the following identities:

(i)
$$q(e, x, x) = x$$

- (*ii*) q(e,q(e,x,y),z) = q(e,x,z) = q(e,x,q(e,y,z)).
- (*iii*) $q(e, f(\overline{x}), f(\overline{y})) = f(q(e, x_1, y_1), \dots, q(e, x_n, y_n)), \forall operation f$
- (iv) e = q(e, 1, 0).

Central elements are the unique way to decompose the algebra as Cartesian product.

A is indecomposable if the unique central elements are 0, 1.

Stone, Boole and Church

Theorem 6 • The central elements of a Church algebra A constitute a Boolean algebra:

 $e \lor d = q(e, 1, d); \quad e \land d = q(e, d, 0); \quad \neg e = q(e, 0, 1)$

• Let \mathcal{V} be a variety of Church algebras, $\mathbf{A} \in \mathcal{V}$ and \mathcal{F} be the Boolean space of maximal ideals of the Boolean algebra of central elements of \mathbf{A} . Then the map

$$f: A \to \prod_{I \in \mathcal{F}} (A/\theta_I),$$

defined by

$$f(x) = (x/\theta_I : I \in \mathcal{F}),$$

gives a weak Boolean product representation of A. The quotient algebras A/θ_I are directly indecomposable if the indecomposable members of V constitute a universal class. (True for CA and LAA!)

Central elements at work in lambda calculus!

The indecomposable CAs (models of λ -calculus) are the building blocks of CA.

The **indecomposable semantics** is the class of models which are indecomposable as combinatory algebras.

Theorem 7 Scott is always simple!

Proof: Scott continuous semantics (and the other known semantics of λ -calculus) are included within the indecomposable semantics, because every Scott model is simple (i.e., it admits only trivial congruences) as a combinatory algebra.

Central elements at work in lambda calculus!

Theorem 8 The algebraic incompleteness theorem: There exists a continuum of λ -theories which are not equational theories of indecomposable models.

Proof:

1.Decomposable CAs are closed under expansion.

2. $\Omega \equiv (\lambda x.xx)(\lambda x.xx)$ is a non-trivial central element in the term algebra of a suitable λ -theory ϕ , because

- the λ -theory ψ_1 generated by $\Omega = \lambda xy.x$ is consistent;
- the λ -theory ψ_2 generated by $\Omega = \lambda xy.y$ is consistent;
- Ω is central in the term algebra of $\phi = \psi_1 \cap \psi_2$.
- 3. All models of ϕ are decomposables!

The algebraic incompleteness theorem encompasses all known theory incompleteness theorems:

(Honsell-Ronchi 1992) Scott continuous semantics;

(Bastonero-Guy 1999) Stable semantics;

(Salibra 2001) Strongly stable semantics.

Central elements at work in universal algebra!

- 1. *Boolean-like algebras*: Church algebras (of any algebraic type), where all elements are central.
- 2. Semi-Boolean-like algebras: Church algebras (of any algebraic type), where all elements are semi-central.

Theorem 9 A double pointed variety is discriminator iff it is idempotent semi-Boolean-like and 0-regular.

3. Lattices of equational theories

Part III: The λ -calculus is algebraic

Lambda terms

- Algebraic similarity type Σ :

 - Binary operator:
 - Unary operators: $\lambda x, \lambda y, \lambda z, \ldots$ (λ -abstractions)

- Nullary operators: x, y, z, ... (names = variables of λ -calculus)

- (application)
- A λ -term is a ground Σ -term (no algebraic variable)

$\lambda x.xy$

• A context is just a term of type Σ ; algebraic variables a, b, c, \ldots (holes in Barendregt's terminology) may be involved

 $\lambda x.xa$

Two substitutions

• Substitution for names (with α -conversion)

$$(\lambda x.xy)[y := x] = \lambda z.zx$$

We care...

• Substitution for variables (without α -conversion)

$$(\lambda x.xa)[a := x] = \lambda x.xx$$

We do not care...

The untyped $\lambda\text{-calculus}$

• Let

$$\Lambda = (\Lambda, \cdot, \lambda x, x)_{x \in \text{Names}}$$

be the absolutely free Σ -algebra over an empty set of generators.

A λ -theory is any congruence on Λ (i.e., equivalence relation compatible w.r.t. application and λ -abstractions) including $\alpha\beta$ -conversion

It seems that Universal Algebra cannot be applied to λ calculus because $\alpha\beta$ -conversion does not involve algebraic variables!

Two starting points for the algebraic λ -calculus

• The lattice λT of λ -theories

\cong

The lattice of congruences of the term algebra $\Lambda/\lambda\beta$ ($\lambda\beta$ is the least congruence on Λ including α - and β -conversion)

• The variety (equational class) generated by Λ/\lambdaeta

=

Class of Σ -algebras satisfying all identities between contexts satisfied by $\Lambda/\lambda\beta$

- CA = class of combinatory algebras (Curry-Schönfinkel 1920-30)
- LAA = class of λ -abstraction algebras (Pigozzi-Salibra 1993)

Theorem 10 (Salibra 2000) LAA = Variety($\Lambda/\lambda\beta$)

The algebraic lambda calculus

Theorem 11 (S. 2000) The variety generated by $\Lambda/\lambda\beta$ is axiomatized by:

- $(\beta_1) (\lambda a.a)x = x$
- $(\beta_2) \quad (\lambda a.b)x = b \qquad (b \neq a)$
- $(\beta_3) (\lambda a.x)a = x$
- (β_4) $(\lambda aa.x)y = \lambda a.x$
- $(\beta_5) (\lambda a.xy)z = (\lambda a.x)z \cdot (\lambda a.y)z$
- $(\beta_6) \ (\lambda b.y)c = y \ \Rightarrow \ (\lambda ab.x)y = \lambda b.(\lambda a.x)y \qquad (c \neq b, \ a \neq b)$
- (α) $(\lambda b.x)c = x \Rightarrow \lambda a.x = \lambda b.(\lambda a.x)b$ $(a \neq b)$

Algebras satisfying (β_1) - (β_6) and (α) are called lambda abstraction algebras (LAAs, for brevity) and were introduced by Pigozzi-S. (1993)

The algebraic lambda calculus

- An element of a LAA may depend on all possible names in $Na = \{x, y, z, x_1, y_1, z_1, \dots\}$
 - Cartesian product: $\langle x, y, z, x_1, y_1, z_1, \dots \rangle \in (\Lambda/\lambda\beta)^{Na}$
 - Lambda theories of infinitary λ -calculus: $\lambda x.x(y(z(x_1(y_1(x_1(\dots)$
- Examples of LAAs:
 - The term algebra Λ/ϕ of a (infinitary) λ -theory ϕ
 - Algebras of functions obtained by the models of $\lambda\text{-calculus}$

LAA and Universal Algebra

Universal Algebra: A variety \mathcal{V} is studied by means of the lattice identities contemporaneously satisfied by all congruence lattices of the algebras in \mathcal{V} .

A priori we can apply the last 30 years of Universal Algebra to the variety LAA:

Theorem 12 (Lusin-Salibra 2004) Every lattice identity holding in (all congruence lattices of algebras in) LAA is trivial.

But Universal Algebra is at work!

Universal Algebra at work

Theorem 13 (Salibra 2000) The lattice λT of λ -theories is isomorphic to the lattice of equational theories of LAA's.

Corollary 1 Every variety of LAAs is generated by the term algebra Λ/ϕ of a suitable λ -theory ϕ .

- λ -theory $\phi \Leftrightarrow \forall$ Variety generated by term algebra Λ/ϕ .
- λ -theory $\phi \Leftrightarrow$ Lattice interval $\{\psi : \psi \ge \phi\} \cong$ congruence lattice of Λ/ϕ
- λ -calculus problem = Problem of existence of a subvariety of LAA.

Example: Order-incompleteness problem (by Selinger)

The lattice λT of λ -theories

Conjecture: Every nontrivial lattice identity fails in λT

- (Visser 1980)
 - Every countable poset embeds into λT by an order-preserving map.
 - Every lattice interval $[\phi, \psi]$ (ϕ, ψ r.e.) λ -theories has a continuum of elements.
- (Lusin-Salibra 2004) λT satisfies the Zipper condition:

 $\phi \lor \psi = 1$ and $\delta \land \phi = \delta \land \psi \Rightarrow \delta \le \phi \land \psi$.

- (Salibra 2001) λT is not modular.
- (Berline-Salibra 2006) \exists a finite axiomatisable λ -theory ϕ such that the lattice interval $[\phi] = \{\psi : \psi \ge \phi\}$ is distributive.
- (Statman 2001) The meet of all coatoms of λT is $\neq \lambda\beta$. (i.e., there exist equations M = N such that $\phi \cup \{M = N\}$ is consistent for every consistent λ -theory ϕ).
- (Manzonetto-Salibra 2008) (\forall natural number n)($\exists \lambda$ -theory ϕ_n) such that the interval sublattice $[\phi_n) = \{\psi : \psi \ge \phi_n\}$ is isomorphic to the finite Boolean lattice 2^n .

Part IV Separability: Selinger, Coleman, Kearnes, Sequeira

Theory (In)Completeness Problem

• A class $\mathbb C$ of models of λ -calculus is theory complete if

 $(\forall \text{ consistent } \lambda \text{-theory } T)(\exists \mathcal{D} \in \mathbb{C}) \quad Eq(\mathcal{D}) = T.$

Theory incomplete, otherwise.

Theorem 14 (*Theory incompleteness*) All known semantics are theory incomplete. Honsell-Ronchi (1984): Scott semantics; Bastonero-Gouy (1996): stable semantics; S. (2001): strongly stable semantics and all pointed po-models.

- A *po-model* is a pair (\mathcal{D}, \leq) , where \mathcal{D} is a model and \leq is a nontrivial partial ordering on \mathcal{D} making monotone the application operator.
- Selinger (1996) The order-completeness problem asks whether the class ℙO of pomodels is theory complete or not.

ANSWER: Unknown.

The best we know about order-incompleteness:

Theorem 15 (Carraro-S. 2013) There exists a finitely axiomatizable λ -theory T such that, for every po-model (\mathcal{D}, \leq) ,

 $Eq(\mathcal{D}) \supseteq T \Rightarrow (\mathcal{D}, \leq)$ has infinite connected components

and the connected component of the looping term Ω is a singleton set.

The Order-Incompleteness Problem

Theorem 16 (Hagemann 73, Selinger 96, Coleman 96-97) Let \mathcal{V} be a variety of algebras. Then the following conditions are equivalent:

- 1. \mathcal{V} is *n*-permutable for some $n \geq 2$ (i.e., $\theta \lor \phi = \theta \circ \phi \circ \theta \circ \cdots \circ \phi$ (*n*-times)).
- 2. There exist a natural number $n \ge 2$ and ternary terms p_1, \ldots, p_{n-1} in the type of \mathcal{V} such that \mathcal{V} satisfies the following Mal'cev identities:

$$\begin{array}{rcl} x &=& p_1(x,y,y);\\ p_i(x,x,y) &=& p_{i+1}(x,y,y) & (i=1,\ldots,n-2);\\ p_{n-1}(x,x,y) &=& y. \end{array}$$

- 3. Every T_0 -topological algebra in \mathcal{V} is T_1 .
- 4. Every T_0 -topological algebra in \mathcal{V} is T_1 and sober.
- 5. Every algebra in \mathcal{V} is unorderable.
- 6. Every compatible preorder on an algebra in \mathcal{V} is symmetric (and thus a congruence).

The order incompleteness problem is equivalent to find an *n*-permutable variety of combinatory algebras.

The Order-Incompleteness Problem

In the case a variety $\mathcal V$ has two constants 0 and 1, the Mal'cev identities give:

$$0 = p_1(0,1,1);$$

$$p_i(0,0,1) = p_{i+1}(0,1,1) \quad (i = 1,...,n-2);$$

$$p_{n-1}(0,0,1) = 1.$$

If we define the unary term operations $f_i(x) = p_i(0, x, 1)$, then the above identities can be written as follows:

 $0 = f_1(1); \qquad f_i(0) = f_{i+1}(1) \quad (i = 1, \dots, n-2); \qquad f_{n-1}(0) = 1.$ (1)

This suggests the following theorem:

Theorem 17 Let \mathcal{V} be a variety with two constants 0 and 1. Then the constants 0 and 1 are incomparable in all ordered algebras in \mathcal{V} if, and only if, there exist a natural number $n \ge 2$ and unary terms f_1, \ldots, f_{n-1} in the type of \mathcal{V} such that the identities (1) hold in \mathcal{V} .

The Order-Incompleteness Problem

In the case a variety \mathcal{V} has a constant 0, then we can relativise the Mal'cev identities of Theorem **??** as follows:

$$0 = p_1(0, y, y);$$

$$p_i(0, 0, y) = p_{i+1}(0, y, y) \quad (i = 1, ..., n-2);$$

$$p_{n-1}(0, 0, y) = y.$$

If we define the binary term operations $s_i(y,x) = p_i(0,x,y)$, then the above identities can be written as follows:

$$0 = s_1(x, x)$$

$$s_i(x, 0) = s_{i+1}(x, x) \quad (i = 1, ..., n-2);$$

$$s_{n-1}(x, 0) = x.$$
(2)

Relaxing the Order-Incompleteness Problem

Theorem 18 (Carraro-S. 2013) Let \mathcal{V} be a variety of algebras with 0. Then the following conditions are equivalent:

1. \mathcal{V} is *n*-subtractive for some $n \geq 2$, that is, there exist $n \geq 2$ and binary terms s_1, \ldots, s_{n-1} such that \mathcal{V} satisfies the Mal'cev identities:

$$0 = s_1(y, y);$$

$$s_i(y, 0) = s_{i+1}(y, y) \quad (i = 1, ..., n-2);$$

$$s_{n-1}(y, 0) = y.$$

- 2. Every T_0 -topological algebra in \mathcal{V} is T_1 -separated in 0.
- 3. Every algebra in \mathcal{V} is 0-unorderable.

Theorem 19 2-subtractivity is consistent with lambda calculus.

Equational Consistency Problem (Honsell-Plotkin 2006) asks whether

 $(\forall E \text{ finite set of identities})[(E \cup \lambda\beta \text{ consistent}) \rightarrow (\exists D \in \text{Scott}) D \models E]?$ ANSWER: No

Separability in *n*-permutable varieties: *n*-step Hausdorff

Theorem 20 Kearnes-Sequeira (2002) Every *n*-permutable variety of algebras is $\lfloor n/2 \rfloor$ -step Hausdorff.

Let X be a topological space. For every $a \in X$, we define:

1. $\Gamma_0^a = \emptyset;$

2. $\Gamma_{i+1}^a = \{b : \exists \text{ open } U, V \text{ with } a \in U, b \in V \text{ and } U \cap V \subseteq \Gamma_i^a\}.$

Definition 3 Coleman(1997) X is n-step Hausdorff if $\Gamma_n^a = A/\{a\}$ for all $a \in X$.

n-step Hausdorff implies T_1 .

n-step Hausdorff implies *k*-step Hausdorff for every $k \ge n$.

1-step Hausdorff is equivalent to T_2 .

A variety of algebras is n-step Hausdorff if every topological algebra in the variety is n-step Hausdorff.

Axioms of *n*-subtractivity:

$$0 = s_1(y, y);$$

$$s_i(y, 0) = s_{i+1}(y, y) \quad (i = 1, ..., n - 2);$$

$$s_{n-1}(y, 0) = y.$$

The rank $r(y) = min\{k : s_k(y, 0) \neq 0\}$ $(y \neq 0).$

The rank r(y) exists and $1 \le r(y) \le n-1$.

Let A be an *n*-subtractive T_0 -topological algebra. Define the opens

$$R_i = \{a : \kappa(a) \le i\} = \bigcup_{1 \le j \le i} \{a : s_j(a, 0) \ne 0\}$$

Then

$$R_0 = \emptyset; \qquad R_i \subseteq R_{i+1}; \qquad R_{n-1} = A/\{0\}.$$

Define the opens

 $\Sigma_i = \{a : (\exists U, V \text{ opens}) \ a \in U, \ 0 \in V \text{ and } U \cap V \subseteq R_{i-1}\}$ $(1 \le i \le n)$ Then we have:

- $\Sigma_1 = \{a : a \text{ and } 0 \text{ are } T_2\text{-separated}\};$
- $R_{i-1} \subseteq \Sigma_i \subseteq \Sigma_{i+1};$
- $\Sigma_n = A \setminus \{0\}.$

Theorem 21 Let A be an *n*-subtractive T_0 -topological algebra. Then we have:

$$R_i \subseteq \Sigma_i = \{a : (\exists U, V \text{ opens}) a \in U, 0 \in V \text{ and } U \cap V \subseteq R_{i-1}\}.$$

Proof: We show that $a \in \Sigma_{r(a)}$. Since $s_{r(a)}(a,0) \neq 0$, then there exists an open neighbourhood W of $s_{r(a)}(a,0)$ such that $0 \notin W$. By the continuity of $s_{r(a)}$ there exist two open neighbourhoods U and V of a and 0 respectively such that

$$s_{r(a)}(U,V) \subseteq W.$$

If r(a) = 1 and there exists $b \in U \cap V$, then $0 = s_1(b, b) \in W$, contradicting the hypothesis on W. Then $V \cap U = \emptyset$; thus a and 0 are T_2 -separated, and $a \in \Sigma_1$.

If r(a) > 1, for every $b \in U \cap V$ we have that $s_{r(a)}(b,b) \in W$, that implies

$$s_{r(a)-1}(b,0) = s_{r(a)}(b,b) \neq 0.$$

This means that the rank of b is less than the rank of a for every $b \in U \cap V$. Then $U \cap V \subseteq R_{r(a)-1}$, so that $a \in \Sigma_{r(a)}$.

Proposition 5 Every *n*-subtractive T_0 -topological algebra is n-1-step Hausdorff in 0.

Proof: We show by induction that

$$\Sigma_i \subseteq \Gamma_i^0 = \{b : \exists \text{ open } U, V \text{ with } b \in U, 0 \in V \text{ and } U \cap V \subseteq \Gamma_{i-1}^0\}$$

for all $1 \le i \le n$. For i = 0 the result is trivial.

 $\begin{array}{lll} \boldsymbol{\Sigma}_{i+1} &=& \{a: \exists \text{ open } U, V \text{ with } a \in U, \ 0 \in V \text{ and } U \cap V \subseteq R_i\} & \text{by definition} \\ &\subseteq& \{a: \exists \text{ open } U, V \text{ with } a \in U, \ 0 \in V \text{ and } U \cap V \subseteq \boldsymbol{\Sigma}_i\} & \text{by } R_i \subseteq \boldsymbol{\Sigma}_i \\ &\subseteq& \{a: \exists \text{ open } U, V \text{ with } a \in U, \ 0 \in V \text{ and } U \cap V \subseteq \boldsymbol{\Gamma}_i^0\} & \text{by induction} \\ &=& \boldsymbol{\Gamma}_{i+1}^0 & & \text{by definition} \end{array}$

The conclusion follows because $R_{n-1} \subseteq \Sigma_{n-1} \subseteq \Gamma_{n-1}^0$ and $R_{n-1} = A \setminus \{0\}$.

New separability axioms in topological spaces

Let (X, τ) be a topological space and $a \in X$.

A sequence Y of length an ordinal α of open sets is called an *a*-sequence if

 $Y_0 = \emptyset$; $Y_i \subseteq Y_{i+1}$ and $a \notin Y_i$ for every $i < \alpha$.

For every $i \ge 1$ define the opens

 $\Sigma_{i,Y}^a = \{b : (\exists U, V \text{ opens}) a \in U, b \in V \text{ and } U \cap V \subseteq Y_{i-1}\}$

X is β -step Y, a-Hausdorff if β is the least ordinal satisfying $\Sigma_{\beta,Y}^a = X \setminus \{a\}$.

X is α -step Y, a-Hausdorff if $\bigcup_{\beta>1} \Sigma^a_{\beta,Y} = X \setminus \{a\}.$

Proposition 6 If $Y_i \subseteq \sum_{i,Y}^a$ then $\sum_{i,Y}^a \subseteq \Gamma_i^a$.

Corollary 2 If $Y_i \subseteq \sum_{i,Y}^a$ for every *i*, and *X* is *n*-step *Y*-Hausdorff, then *X* is *n*-step Hausdorff.

What are the *a*-sequences Y satisfying $Y_i \subseteq \sum_{i,Y}^a$ for every *i*?