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Lambda Calculus between Algebra and Topology
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Algebra //oo Topology

• From Lambda calculus to Universal Algebra:

(i) Lambda abstraction algebras

(ii) Church algebras

(iii) Boolean-like-algebras

(iv) n-subtractive algebras

• From Universal Algebra to Lambda calculus:

(i) The structure of the lattice of the λ-theories

(ii) Boolean algebras, Stone representation theorem and the indecom-
posable semantics

(iii) The order-incompleteness problem



Lambda Calculus between Algebra and Topology

Topology refines partial orderings through the separation axioms:

A space (X, τ) is T0 iff the specialization preorder ≤τ is a partial order.
Every partial order is the specialization order of a space.

• From Lambda calculus to Topology:

(i) new axioms of separation

(ii) topological algebras

(iii) Visser spaces and Priestley spaces

• From Topology to Lambda calculus:

(i) Topological incompleteness/completeness theorems

(ii) Topological models

(iii) The equational completeness problem for Scott semantics



Part 0

Lambda Calculus: Church, Curry, Scott



Scott

• Church (around 1930): Lambda calculus

• λ-theory = congruence w.r.t. application and λ-abstractions containing
αβ-conversion

• Scott: First model and Continuous Semantics (1969) A continuous
model D is a reflexive object in the category CPO of complete partial
orderings.

• All known models of λ-calculus admits a compatible (w.r.t. application)
partial order and are topological algebras (w.r.t. Scott topology).

• Each model D defines an equational theory and an order theory:

Eq(D) = {(M,N) : |M |D = |N |D}; Ord(D) = {(M,N) : |M |D ≤ |N |D}



Theory (In)Completeness Problem

• A class C of models of λ-calculus is theory complete if

(∀ consistent λ-theory T )(∃M ∈ C) Th=(M) = T .

Theory incomplete, otherwise.

Theorem 1 (Theory incompleteness) All known semantics are theory incomplete.
Honsell-Ronchi: Scott semantics; Bastonero-Gouy: stable semantics; Salibra: strongly
stable semantics and all pointed po-models.

• Selinger (1996) asked: Are partial orderings intrinsic to computations?

• A po-model is a pair (M,≤), where M is a model and ≤ is a nontrivial partial ordering
on M making the application monotone.

• The order-completeness problem by Selinger asks whether the class PO of po-models is
theory complete or not.

ANSWER: Unknown.

The best we know about order-incompleteness:

Theorem 2 (Carraro-S. 2013) There exists a λ-theory T such that, for every po-model
(M,≤),

Th=(M) ⊇ T ⇒ (M,≤) has infinite connected components

and the connected component of the looping term Ω is a singleton set.



Two Other Open Problems

• Equational Completeness Problem asks whether there exists a Scott con-
tinuous model whose equational theory is the least λ-theory λβ:

Eq(D) = λβ, for some Scott continuous model D
ANSWER: Unknown

• Equational Consistency Problem (Honsell-Plotkin 2006) asks whether,
for every finite set E of equations between λ-terms consistent with the
λ-calculus, there exists a Scott continuous model contemporaneously
satisfying all equations of E.

(∀E finite set of identities)[(E ∪ λβ consistent)→ (∃D ∈ Scott) D |= E]?

ANSWER: No (Carraro-S. 2013).

• These problems and the order incompleteness problem are interconnected



Part I

Topology: Scott, Selinger, Visser, Priestley



The technique for the Equational Completeness Problem

Remember that the Equational Completeness Problem asks whether there
exists a Scott continuous model whose equational theory is the least λ-theory
λβ:

Eq(D) = λβ, for some Scott continuous model D.

Given a class C of po-models, we sometimes are able to construct an “effec-
tive” po-model E (maybe not in the class C) such that

Ord(E) ⊆ Ord(D), for all D ∈ C.

Lemma 1 If E is an effective po-model, then, after encoding,

1. |M |E is an r.e. element of the model for every closed λ-term M ;

2. |M |E is a decidable element for every closed normal form M .

3. {N : E |= N ≤ λx.x} is co-r.e.



Visser
Theorem 3 (Berline-Manzonetto-S. 2007) Given a class C of models, if there
exists an “effective” model E such that

(∀D ∈ C) Ord(E) ⊆ Ord(D),

then, for every model D ∈ C, we have:
(i) Ord(D) is not r.e.
(ii) Eq(D) 6= λβ.

Proof. Define Visser topology over the set Λ of λ-terms (modulo λβ):

X ⊆ Λ is Visser base open if it is β-closed and co-r.e.

Theorem 4 (Visser 1980) Visser topology is hyperconnected on Λ.
(i) Assume Ord(D) to be r.e. for some D ∈ C.

{N : E |= N ≤ λx.x} co-r.e. ⊆ {N : D |= N ≤ λx.x} r.e.

Visser open Visser closed

⇓
{N : D |= N ≤ λx.x} = Λ.

(ii) (Selinger 1996) If Eq(D) = λβ for a po-model D, then the term denota-
tions are an antichain. Consequence: Eq(D) = Ord(D) = λβ are r.e.



The Equational Completeness Problem

SOME RESULTS (Carraro-S. 2009):

• λβη is not the theory of a model living in the category of Scott domains.

• λβ is not the theory of a filter model living in CPO.



Leaving Lambda Calculus Towards Computability Theory

(Work in Progress)

• An enumerated set is a pair X = (|X|, φX), where φX : ω → |X| is an onto
map (Mal’cev 1964)

• Recursive Functions: φ : ω → RecFun mapping the “program” n into the
function φn computed by the program “n”.

• Lambda Calculus: φΛ : Λ → Λ/λβ mapping a λ-term M into its equiva-
lence class [M ]β.

• Given an enumerated set X, we define
Y ⊆ X r.e. (co-r.e., decidable) if φ−1

X (Y ) is r.e. (co-r.e., decidable).



The Visser topology

• The r.e. sets of X are a ring RX of sets generating a topology τE on |X|.

• The co-r.e. sets of X are a ring co-RX of sets generating a topology τV
on |X|.

(|X|, τE, τV ) is a bitopological space

τE is the Ershov topology and τV is the Visser topology

Lemma 2 τE is T0 iff τV is T0 (a ≤E b iff b ≤V a).

• Recursive Functions: τE on RecFun is the Scott topology; while τV is T0

with f↓ τV -open iff graph(f) is decidable.

• Lambda Calculus: τE on Λ/λβ is the discrete topology, while τV is non-
trivial, hyperconnected and T1.



The Visser topology

Definition 1 (Visser) An enumerated set X = (|X|, φ) is pre-complete if, for
every partial recursive function f , there exists a total recursive function g such
that

f↓n ⇒ φf(n) = φg(n).

Proposition 1 (i) The set of computable functions is precomplete.
(ii) (Visser) Λ/T (T a λ-theory) is precomplete.

Proof. (i) Define

φg(x)(y) =

{
φf(x)(y), if x ∈ dom(f)

↑, otherwise

(ii) Let pMq be the Godel number of λ-term M and let nλ be the λ-term
denoted by the number n. Barendregt has shown that there exists a λ-term
E such that, for every M , EpMq =λβ M . Let F be a λ-term representing the
computable function f . Define

g(n) = pE(Fn)q.

g(n)λ = E(Fn) =λβ E(f(n)) =λβ f(n)λ.



Proposition 2 (Visser) If the enumerated set X = (|X|, φ) is pre-complete
then

1. τV is hyperconnected;

2. τE is compact iff ≤τE has a bottom element.

Proof: (1) If V ∪ U = ω, where V and U are r.e. and φ-closed sets of natural
numbers, then either V = ω or U = ω.
By contraposition assume that neither V nor U is ω. Let a ∈ V \U and b ∈ U\V .
Let A and B be two recursively inseparable sets of natural numbers. Define
the partial function

f(x) =


a, if x ∈ A
b, if x ∈ B
↑, otherwise

Consider a total recursive function g completing f up to φ-equivalence. We
have g−1(V )∪g−1(U) = ω, A ⊆ g−1(V )\g−1(U) and B ⊆ g−1(U)\g−1(V ). Then
A and B are recursively separable. Contradiction.

(2) By (1) every finite covering of |X| must contain |X|.



The Priestley space of computability

Hereafter we always assume that τE is T0.

Proposition 3 τE ∨ τV is zero-dimensional (i.e., it has a base of clopens),
Hausdorff and satisfies the Priestley separation axiom (w.r.t. ≤E).

Proof: Let a, b ∈ X. Since τE is T0, either a 6≤E b or b 6≤E a. In the first case
there is an r.e. open U such that a ∈ U but b /∈ U . X \U is a co-r-e open such
that b ∈ X \ U and a /∈ X \ U .

Let x 6≤E y. Then there is an r.e. set U such that x ∈ U but y /∈ U . U is
E-upper. The complement is E-down which contains y but not x.

Proposition 4 Let X be an enumerated set. If (|X|, τE) is a T0-space, then
the compactfication of (|X|, τE ∨ τV ) is a Priestly space and (|X|, τE ∨ τV ) is a
dense subspace of this compactification.

Proof: We consider the ring RX of r.e. subsets of |X| and consider the product
topology on 2RX. Consider the closed subspace of lattice homomorphisms
HOM(RE

X,2). It is Priestley (because closed), and (|X|, τE ∨ τV ) embeddes
into HOM(RX,2) as a dense subspace.



Consider 2 = {0,1} with three topologies:

• The discrete top τd; The top τ0 with 0 < 1; The top τ1 with 1 < 0.

We have τd = τ0 ∨ τ1. We consider the ring RE
X of r.e. subsets of |X| and

consider the product topology on 2R
E
X. We have:

• The topology
∏
τ0 on 2R

E
X is the Scott topology w.r.t. ⊆;

• The topology
∏
τ1 on 2R

E
X is the Scott topology w.r.t. ⊇;

• The topology
∏
τd =

∏
τ0 ∨

∏
τ1 on 2R

E
X is a Priestley space.

Consider the closed subspace of lattice homomorphisms HOM(RE
X,2). It is

Priestley (because closed), and (|X|, τE ∨ τV ) embeddes into HOM(RE
X,2) as

a dense subspace.

We consider a map e : X → Hom(RX,2) defined as follows, for every r.e. set
Y and every x ∈ X: e(x)(Y ) = 1 iff x ∈ Y .



The map e is bi-continuous because, for every r.e. set Y , Y = e−1({f : f(Y ) =
1}) and X \ Y = e−1({f : f(Y ) = 0}).

The codomain of X is a dense subspace Y of Hom(RX,2).

X is homeomorphic to Y iff the ring RX distinguishes the points of X.

Remark: What is the compactfication of lambda calculus? We extend the
application operator and the lambda-abstractions to its compactification.



Part II

Algebras: Stone, Boole and Church



Stone and Boole

Theorem 5 (Stone Representation Theorem)

• Every Boolean algebra is isomorphic to a field of sets.

• Every Boolean algebra can be embedded into a Boolean
product of indecomposable Boolean algebras (2 is the unique
indecomposable Boolean algebra!).

Then every Boolean algebra is isomorphic to a subalgebra of
2I = P(I) for a suitable set I.

Generalisations to other classes of algebras by Pierce (rings with
unit) Comer and Vaggione.

Combinatory algebras (CA) and λ-abstraction algebras (LAA)
satisfy an analogous theorem...



Church algebras

The untyped λ-calculus has truth values 0,1 and “if-then-else” construct
q(x, y, z) of programming:

• λ-calculus (LAA): 1 ≡ λxy.x; 0 ≡ λxy.y; q(e, x, y) = (ex)y

• Combinatory logic (CA): 1 ≡ k; 0 ≡ sk; q(e, x, y) = (ex)y

• Boolean algebras: q(e, x, y) = (e ∧ x) ∨ (¬e ∧ y)

• Rings with unit 1: q(e, x, y) ≡ ex+ (1− e)y.

Definition 2 (Manzonetto-Salibra 2008) An algebra A is a Church algebra
if it admits two constants 0,1 and a ternary term q(x, y, z) satisfying:

q(1, x, y) = x; q(0, x, y) = y.

There are equations which are contemporaneously satisfied by 0 and 1: for
example,

q(1, x, x) = x; q(0, x, x) = x.



Central elements

An element e of a Church algebra A is central if

A ∼= A/Cong(e = 1)×A/Cong(e = 0).

Lemma 3 Let A be a Church algebra et e ∈ A. The following conditions are
equivalent:

• e is central;

• e satisfies the following identities:
(i) q(e, x, x) = x.

(ii) q(e, q(e, x, y), z) = q(e, x, z) = q(e, x, q(e, y, z)).
(iii) q(e, f(x), f(y)) = f(q(e, x1, y1), . . . , q(e, xn, yn)), ∀ operation f

(iv) e = q(e,1,0).

Central elements are the unique way to decompose the algebra as Cartesian
product.

A is indecomposable if the unique central elements are 0,1.



Stone, Boole and Church

Theorem 6 • The central elements of a Church algebra A
constitute a Boolean algebra:

e ∨ d = q(e,1, d); e ∧ d = q(e, d,0); ¬e = q(e,0,1)

• Let V be a variety of Church algebras, A ∈ V and F be the
Boolean space of maximal ideals of the Boolean algebra of
central elements of A. Then the map

f : A→ ΠI∈F(A/θI),

defined by
f(x) = (x/θI : I ∈ F),

gives a weak Boolean product representation of A. The quo-
tient algebras A/θI are directly indecomposable if the inde-
composable members of V constitute a universal class. (True
for CA and LAA!)



Central elements at work in lambda calculus!

The indecomposable CAs (models of λ-calculus) are the building blocks of
CA.

The indecomposable semantics is the class of models which are indecom-
posable as combinatory algebras.

Theorem 7 Scott is always simple!

Proof: Scott continuous semantics (and the other known semantics of λ-
calculus) are included within the indecomposable semantics, because every
Scott model is simple (i.e., it admits only trivial congruences) as a combina-
tory algebra.



Central elements at work in lambda calculus!

Theorem 8 The algebraic incompleteness theorem: There exists a contin-
uum of λ-theories which are not equational theories of indecomposable mod-
els.

Proof:

1.Decomposable CAs are closed under expansion.
2. Ω ≡ (λx.xx)(λx.xx) is a non-trivial central element in the term algebra of
a suitable λ-theory φ, because

- the λ-theory ψ1 generated by Ω = λxy.x is consistent;

- the λ-theory ψ2 generated by Ω = λxy.y is consistent;

- Ω is central in the term algebra of φ = ψ1 ∩ ψ2.

3. All models of φ are decomposables!

The algebraic incompleteness theorem encompasses all known theory incom-
pleteness theorems:

(Honsell-Ronchi 1992) Scott continuous semantics;

(Bastonero-Guy 1999) Stable semantics;

(Salibra 2001) Strongly stable semantics.



Central elements at work in universal algebra!

1. Boolean-like algebras: Church algebras (of any algebraic type), where all
elements are central.

2. Semi-Boolean-like algebras: Church algebras (of any algebraic type),
where all elements are semi-central.

Theorem 9 A double pointed variety is discriminator iff it is idempotent
semi-Boolean-like and 0-regular.

3. Lattices of equational theories



Part III: The λ-calculus is algebraic



Lambda terms

• Algebraic similarity type Σ:

– Nullary operators: x, y, z, . . . (names = variables of λ-calculus)

– Binary operator: • (application)

– Unary operators: λx, λy, λz, . . . (λ-abstractions)

• A λ-term is a ground Σ-term (no algebraic variable)

λx.xy

• A context is just a term of type Σ; algebraic variables a, b, c, . . . (holes in
Barendregt’s terminology) may be involved

λx.xa



Two substitutions

• Substitution for names (with α-conversion)

(λx.xy)[y := x] = λz.zx

We care...

• Substitution for variables (without α-conversion)

(λx.xa)[a := x] = λx.xx

We do not care...



The untyped λ-calculus

• Let

Λ = (Λ, ·, λx, x)x∈Names

be the absolutely free Σ-algebra over an empty set of gener-

ators.

A λ-theory is any congruence on Λ (i.e., equivalence relation

compatible w.r.t. application and λ-abstractions) including

αβ-conversion

It seems that Universal Algebra cannot be applied to λ-

calculus because αβ-conversion does not involve algebraic

variables!



Two starting points for the algebraic λ-calculus

• The lattice λT of λ-theories
∼=

The lattice of congruences of the term algebra Λ/λβ
(λβ is the least congruence on Λ including α- and β-conversion)

• The variety (equational class) generated by Λ/λβ

=

Class of Σ-algebras satisfying all identities between contexts satisfied by Λ/λβ

• CA = class of combinatory algebras (Curry-Schönfinkel 1920-30)

• LAA = class of λ-abstraction algebras (Pigozzi-Salibra 1993)

Theorem 10 (Salibra 2000) LAA = Variety(Λ/λβ)



The algebraic lambda calculus

Theorem 11 (S. 2000) The variety generated by Λ/λβ is axiomatized by:

(β1) (λa.a)x = x

(β2) (λa.b)x = b (b 6= a)

(β3) (λa.x)a = x

(β4) (λaa.x)y = λa.x

(β5) (λa.xy)z = (λa.x)z · (λa.y)z

(β6) (λb.y)c = y ⇒ (λab.x)y = λb.(λa.x)y (c 6= b, a 6= b)

(α) (λb.x)c = x ⇒ λa.x = λb.(λa.x)b (a 6= b)

Algebras satisfying (β1)-(β6) and (α) are called lambda abstraction algebras
(LAAs, for brevity) and were introduced by Pigozzi-S. (1993)



The algebraic lambda calculus

• An element of a LAA may depend on all possible names in

Na = {x, y, z, x1, y1, z1, . . . }

– Cartesian product: 〈x, y, z, x1, y1, z1, . . . 〉 ∈ (Λ/λβ)Na

– Lambda theories of infinitary λ-calculus: λx.x(y(z(x1(y1(x1(. . . ) . . . )

• Examples of LAAs:

– The term algebra Λ/φ of a (infinitary) λ-theory φ

– Algebras of functions obtained by the models of λ-calculus



LAA and Universal Algebra

Universal Algebra: A variety V is studied by means of the lattice

identities contemporaneously satisfied by all congruence lattices

of the algebras in V.

A priori we can apply the last 30 years of Universal Algebra to

the variety LAA:

Theorem 12 (Lusin-Salibra 2004) Every lattice identity holding

in (all congruence lattices of algebras in) LAA is trivial.

But Universal Algebra is at work!



Universal Algebra at work

Theorem 13 (Salibra 2000) The lattice λT of λ-theories is isomorphic to
the lattice of equational theories of LAA’s.

Corollary 1 Every variety of LAAs is generated by the term algebra Λ/φ of
a suitable λ-theory φ.

• λ-theory φ ⇔ Variety generated by term algebra Λ/φ.

• λ-theory φ ⇔ Lattice interval {ψ : ψ ≥ φ} ∼= congruence lattice of Λ/φ

• λ-calculus problem = Problem of existence of a subvariety of LAA.

Example: Order-incompleteness problem (by Selinger)



The lattice λT of λ-theories

Conjecture: Every nontrivial lattice identity fails in λT

• (Visser 1980)

– Every countable poset embeds into λT by an order-preserving map.

– Every lattice interval [φ, ψ] (φ, ψ r.e.) λ-theories has a continuum of elements.

• (Lusin-Salibra 2004) λT satisfies the Zipper condition:

φ ∨ ψ = 1 and δ ∧ φ = δ ∧ ψ ⇒ δ ≤ φ ∧ ψ.

• (Salibra 2001) λT is not modular.

• (Berline-Salibra 2006) ∃ a finite axiomatisable λ-theory φ such that the lattice interval
[φ) = {ψ : ψ ≥ φ} is distributive.

• (Statman 2001) The meet of all coatoms of λT is 6= λβ. (i.e., there exist equations
M = N such that φ ∪ {M = N} is consistent for every consistent λ-theory φ).

• (Manzonetto-Salibra 2008)
(∀natural number n)(∃λ-theory φn) such that the interval sublattice
[φn) = {ψ : ψ ≥ φn} is isomorphic to the finite Boolean lattice 2n.



Part IV

Separability: Selinger, Coleman, Kearnes, Sequeira



Theory (In)Completeness Problem

• A class C of models of λ-calculus is theory complete if

(∀ consistent λ-theory T )(∃D ∈ C) Eq(D) = T .

Theory incomplete, otherwise.

Theorem 14 (Theory incompleteness) All known semantics are theory incomplete.
Honsell-Ronchi (1984): Scott semantics;
Bastonero-Gouy (1996): stable semantics;
S. (2001): strongly stable semantics and all pointed po-models.

• A po-model is a pair (D,≤), where D is a model and ≤ is a nontrivial partial ordering
on D making monotone the application operator.

• Selinger (1996) The order-completeness problem asks whether the class PO of po-
models is theory complete or not.

ANSWER: Unknown.

The best we know about order-incompleteness:

Theorem 15 (Carraro-S. 2013) There exists a finitely axiomatizable λ-theory T such
that, for every po-model (D,≤),

Eq(D) ⊇ T ⇒ (D,≤) has infinite connected components

and the connected component of the looping term Ω is a singleton set.



The Order-Incompleteness Problem

Theorem 16 (Hagemann 73, Selinger 96, Coleman 96-97) Let V be a variety
of algebras. Then the following conditions are equivalent:

1. V is n-permutable for some n ≥ 2 (i.e., θ∨φ = θ ◦φ ◦ θ ◦ · · · ◦φ (n-times)).

2. There exist a natural number n ≥ 2 and ternary terms p1, . . . , pn−1 in the
type of V such that V satisfies the following Mal’cev identities:

x = p1(x, y, y);
pi(x, x, y) = pi+1(x, y, y) (i = 1, . . . , n− 2);

pn−1(x, x, y) = y.

3. Every T0-topological algebra in V is T1.

4. Every T0-topological algebra in V is T1 and sober.

5. Every algebra in V is unorderable.

6. Every compatible preorder on an algebra in V is symmetric (and thus a
congruence).

The order incompleteness problem is equivalent to find an n-permutable va-
riety of combinatory algebras.



The Order-Incompleteness Problem

In the case a variety V has two constants 0 and 1, the Mal’cev identities give:

0 = p1(0,1,1);
pi(0,0,1) = pi+1(0,1,1) (i = 1, . . . , n− 2);

pn−1(0,0,1) = 1.

If we define the unary term operations fi(x) = pi(0, x,1), then the above
identities can be written as follows:

0 = f1(1); fi(0) = fi+1(1) (i = 1, . . . , n− 2); fn−1(0) = 1. (1)

This suggests the following theorem:

Theorem 17 Let V be a variety with two constants 0 and 1. Then the
constants 0 and 1 are incomparable in all ordered algebras in V if, and only
if, there exist a natural number n ≥ 2 and unary terms f1, . . . , fn−1 in the type
of V such that the identities (1) hold in V.



The Order-Incompleteness Problem

In the case a variety V has a constant 0, then we can relativise the Mal’cev
identities of Theorem ?? as follows:

0 = p1(0, y, y);
pi(0,0, y) = pi+1(0, y, y) (i = 1, . . . , n− 2);

pn−1(0,0, y) = y.

If we define the binary term operations si(y, x) = pi(0, x, y), then the above
identities can be written as follows:

0 = s1(x, x)
si(x,0) = si+1(x, x) (i = 1, . . . , n− 2);

sn−1(x,0) = x.
(2)



Relaxing the Order-Incompleteness Problem

Theorem 18 (Carraro-S. 2013) Let V be a variety of algebras with 0. Then
the following conditions are equivalent:

1. V is n-subtractive for some n ≥ 2, that is, there exist n ≥ 2 and binary
terms s1, . . . , sn−1 such that V satisfies the Mal’cev identities:

0 = s1(y, y);
si(y,0) = si+1(y, y) (i = 1, . . . , n− 2);

sn−1(y,0) = y.

2. Every T0-topological algebra in V is T1-separated in 0.

3. Every algebra in V is 0-unorderable.

Theorem 19 2-subtractivity is consistent with lambda calculus.

Equational Consistency Problem (Honsell-Plotkin 2006) asks whether

(∀E finite set of identities)[(E ∪ λβ consistent)→ (∃D ∈ Scott) D |= E]?

ANSWER: No



Separability in n-permutable varieties: n-step Hausdorff

Theorem 20 Kearnes-Sequeira (2002) Every n-permutable variety of alge-
bras is bn/2c-step Hausdorff.

Let X be a topological space. For every a ∈ X, we define:

1. Γa
0 = ∅;

2. Γa
i+1 = {b : ∃ open U, V with a ∈ U , b ∈ V and U ∩ V ⊆ Γa

i }.

Definition 3 Coleman(1997) X is n-step Hausdorff if Γa
n = A/{a} for all

a ∈ X.

n-step Hausdorff implies T1.

n-step Hausdorff implies k-step Hausdorff for every k ≥ n.

1-step Hausdorff is equivalent to T2.

A variety of algebras is n-step Hausdorff if every topological algebra in the
variety is n-step Hausdorff.



Separability in n-subtractive varieties

Axioms of n-subtractivity:

0 = s1(y, y);
si(y,0) = si+1(y, y) (i = 1, . . . , n− 2);

sn−1(y,0) = y.

The rank r(y) = min{k : sk(y,0) 6= 0} (y 6= 0).

The rank r(y) exists and 1 ≤ r(y) ≤ n− 1.

Let A be an n-subtractive T0-topological algebra. Define the opens

Ri = {a : κ(a) ≤ i} =
⋃

1≤j≤i

{a : sj(a,0) 6= 0}

Then

R0 = ∅; Ri ⊆ Ri+1; Rn−1 = A/{0}.



Separability in n-subtractive varieties

Define the opens

Σi = {a : (∃U, V opens) a ∈ U , 0 ∈ V and U ∩ V ⊆ Ri−1} (1 ≤ i ≤ n)

Then we have:

• Σ1 = {a : a and 0 are T2-separated};

• Ri−1 ⊆ Σi ⊆ Σi+1;

• Σn = A \ {0}.



Separability in n-subtractive varieties

Theorem 21 Let A be an n-subtractive T0-topological algebra. Then we
have:

Ri ⊆ Σi = {a : (∃U, V opens) a ∈ U , 0 ∈ V and U ∩ V ⊆ Ri−1}.

Proof : We show that a ∈ Σr(a). Since sr(a)(a,0) 6= 0, then there exists an
open neighbourhood W of sr(a)(a,0) such that 0 /∈ W . By the continuity of
sr(a) there exist two open neighbourhoods U and V of a and 0 respectively
such that

sr(a)(U, V ) ⊆W.

If r(a) = 1 and there exists b ∈ U ∩ V , then 0 = s1(b, b) ∈ W , contradicting
the hypothesis on W . Then V ∩ U = ∅; thus a and 0 are T2-separated, and
a ∈ Σ1.

If r(a) > 1, for every b ∈ U ∩ V we have that sr(a)(b, b) ∈W , that implies

sr(a)−1(b,0) = sr(a)(b, b) 6= 0.

This means that the rank of b is less than the rank of a for every b ∈ U ∩ V .
Then U ∩ V ⊆ Rr(a)−1, so that a ∈ Σr(a).



Separability in n-subtractive varieties

Proposition 5 Every n-subtractive T0-topological algebra is n−1-step Haus-
dorff in 0.

Proof: We show by induction that

Σi ⊆ Γ0
i = {b : ∃ open U, V with b ∈ U , 0 ∈ V and U ∩ V ⊆ Γ0

i−1}
for all 1 ≤ i ≤ n. For i = 0 the result is trivial.

Σi+1 = {a : ∃ open U, V with a ∈ U , 0 ∈ V and U ∩ V ⊆ Ri} by definition
⊆ {a : ∃ open U, V with a ∈ U , 0 ∈ V and U ∩ V ⊆ Σi} by Ri ⊆ Σi

⊆ {a : ∃ open U, V with a ∈ U , 0 ∈ V and U ∩ V ⊆ Γ0
i } by induction

= Γ0
i+1 by definition

The conclusion follows because Rn−1 ⊆ Σn−1 ⊆ Γ0
n−1 and Rn−1 = A \ {0}.



New separability axioms in topological spaces

Let (X, τ) be a topological space and a ∈ X.

A sequence Y of length an ordinal α of open sets is called an a-sequence if

Y0 = ∅; Yi ⊆ Yi+1 and a /∈ Yi for every i < α.

For every i ≥ 1 define the opens

Σa
i,Y = {b : (∃U, V opens) a ∈ U , b ∈ V and U ∩ V ⊆ Yi−1}

X is β-step Y, a-Hausdorff if β is the least ordinal satisfying Σa
β,Y = X \ {a}.

X is α-step Y, a-Hausdorff if
⋃
β≥1 Σa

β,Y = X \ {a}.

Proposition 6 If Yi ⊆ Σa
i,Y then Σa

i,Y ⊆ Γa
i .

Corollary 2 If Yi ⊆ Σa
i,Y for every i, and X is n-step Y -Hausdorff, then X is

n-step Hausdorff.

What are the a-sequences Y satisfying Yi ⊆ Σa
i,Y for every i?


