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Coalgebras and Bisimulation

Consider the countable powerset functor P[0:Rol,

A countably branching transition system M is a PORol_coalgebra (M, Cm)-

Bisimulations
Let M and N be countably branching transition systems.

A bisimulation is a relation M- R N such that x R x’ implies
Cmx BisimR (yx'.

U BisimR V meansVy € U. 3y’ e V.y Ry AVy € V. dy € U. yRy’.J

The greatest bisimulation is bisimilarity.
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Coalgebras and Bisimulation

Consider the countable powerset functor P[0:Rol,

A countably branching transition system M is a PORol_coalgebra (M, Cm)-

Bisimulations
Let M and N be countably branching transition systems.

A bisimulation is a relation M- R N such that x R x’ implies
Cmx BisimR (yx'.

U BisimR V meansVy € U. 3y’ e V.y Ry AVy € V. dy € U. yRy’.J

The greatest bisimulation is bisimilarity.
This is closely related to final P0Rol_coalgebras.
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Bisimilarity: Using A Final Coalgebra

Let P be a final F-coalgebra, and oy the anamorphism from M.
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Bisimilarity: Using A Final Coalgebra

Let P be a final F-coalgebra, and oy the anamorphism from M.

Theorem: characterizing bisimilarity

x € M is bisimilar to y € N iff opx = opny.
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Bisimilarity: Constructing A Final Coalgebra

Encompassment

We define a preorder on countably branching transition systems.
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Encompassment

We define a preorder on countably branching transition systems.
M is encompassed by N when for every x € M there is bisimilar y € N.
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Bisimilarity: Constructing A Final Coalgebra

Encompassment

We define a preorder on countably branching transition systems.
M is encompassed by N when for every x € M there is bisimilar y € N.

The Theorem

Let M be a countably branching transition system that is all-encompassing.
Then M modulo bisimilarity is a final P¥l_coalgebra.
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Bisimilarity: Constructing A Final Coalgebra

Encompassment

We define a preorder on countably branching transition systems.
M is encompassed by N when for every x € M there is bisimilar y € N.

The Theorem
Let M be a countably branching transition system that is all-encompassing.
Then M modulo bisimilarity is a final P0*l_coalgebra.

| A\

All-Encompassing Example
Take the disjoint union of every transition system carried by a countable

cardinal.
It's all-encompassing because every node of a countably branching
transition system has countably many successors.
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Let M and N be countably branching transition systems.

A simulation is a relation M- R N such that x R x’ implies
Cpx SimR Cnx'.
U SimR V meansVy € U. 3y’ e V.y R y'.

The greatest simulation is similarity.
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Bisim and Sim are both P[O:Xl_relators.
Let F be an endofunctor on Set.

An F-relator maps each relation X ~%+ ¥ toarelation FX —F>FY .

Monotonicity

R,R’
X——=Y

RCR =TRCIR
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Bisim and Sim are both P[O:Xl_relators.
Let F be an endofunctor on Set.

An F-relator maps each relation X ~%+ ¥ toarelation FX —F>FY .
Monotonicity

R,R’
X——=Y

RCR =TRCIR

Stability (Hughes and Jacobs)

X/ fox
%z
Y’ = Y
r(f.£)R) = (FF.Fe) TR
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Properties of relational extension (2)

Lax functoriality

idrx <€ Tidyx
(MR);(rS) < T (R;S)
R S

X—Y—Z

Paul Blain Levy (University of Birmingham) Similarity quotients as final coalgebras June 24, 2011 8 /29



Properties of relational extension (2)

Lax functoriality

idrx <€ Tidyx
(MR);(rS) < T (R;S)
R S

X—Y—Z

Hesselink and Thijs required strict preservation of binary composition, lax
preservation of identities.

But Bisim as a P[%3]-relator does not preserve binary composition.
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Properties of relational extension (2)

Lax functoriality

idrx <€ Tidyx
(MR);(rS) < T (R;S)
R S

X—Y—Z

Hesselink and Thijs required strict preservation of binary composition, lax
preservation of identities.
But Bisim as a P[%3]-relator does not preserve binary composition.

Conversive Relator

MR =(MR)*
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[-simulation

Definition of I-simulation

A T-simulation M R N is a relation such that

R C (CmyCn) IR

The greatest one is [-similarity.
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[-simulation

Definition of I-simulation

A T-simulation M R N is a relation such that

R C (CmyCn) IR

The greatest one is [-similarity.

Properties of -similarity

@ Reflexive and transitive.

e Symmetric if I" is conversive.

o For M—> N a coalgebra morphism, x € M and f(x) € N are
mutually I-similar.
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Encompassm

Definition

M is -encompassed by N when every x € M is mutually [-similar to some
y eN.
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Encompassment

Definition

M is -encompassed by N when every x € M is mutually [-similar to some
y eN.

This is reflexive and transitive.

If there is a coalgebra morphism M —— N
then M is -encompassed by N.
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Encompassment

Definition

M is -encompassed by N when every x € M is mutually [-similar to some
y eN.

This is reflexive and transitive.

If there is a coalgebra morphism M —— N
then M is -encompassed by N.

If there is a surjective coalgebra morphism M —— N
then M and N are mutually '-encompassed.
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Lower and Upper Simulations (Ulidowski)

A countably branching transition system with divergence is a coalgebra for
X s PORl(X 4 1),
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Lower and Upper Simulations (Ulidowski)

A countably branching transition system with divergence is a coalgebra for
X s PORl(X 4 1),

We write x {} to mean that x may diverge.
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Lower and Upper Simulations (Ulidowski)

A countably branching transition system with divergence is a coalgebra for
X s PORl(X 4 1),
We write x {} to mean that x may diverge.

Lower simulation

A lower simulation M —%—= N is a relation such that for x R x’

@ x ~» y implies there is y’ such that X’ ~ y’ and y R y’.
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Lower and Upper Simulations (Ulidowski)

A countably branching transition system with divergence is a coalgebra for
X s PORl(X 4 1),
We write x {} to mean that x may diverge.

Lower simulation

A lower simulation M —%—= N is a relation such that for x R x’

@ x ~» y implies there is y’ such that X’ ~ y’ and y R y’.

Upper simulation

An upper simulation M —T£ N is a relation such that for x R x’ with
xff
o x' ¢

@ x' ~ y’ implies that there is y such that x ~ y and y R y'.
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Lower and Upper Simulations (Ulidowski)

A countably branching transition system with divergence is a coalgebra for
X s PORl(X 4 1),
We write x {} to mean that x may diverge.

Lower simulation

A lower simulation M —%—= N is a relation such that for x R x’

@ x ~» y implies there is y’ such that X’ ~ y’ and y R y’.

Upper simulation

An upper simulation M —T£ N is a relation such that for x R x’ with
xff
o x' ¢

@ x' ~ y’ implies that there is y such that x ~ y and y R y'.

Many variants, each given by a relator preserving binary composition.
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Probabilistic Systems

DX is the set of discrete subprobability distributions on X, i.e. functions
d: X —[0,1] such that >~ _yd(x) <1.
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Probabilistic Systems

DX is the set of discrete subprobability distributions on X, i.e. functions
d: X —[0,1] such that >~ _yd(x) <1.

A partial Markov chain is a D coalgebra.

Probabilistic simulation

A simulation M _7'z_> N is a relation such that for x R x’

Cux(U) < Cuy(R(U)) forall U C X

It's a bisimulation when also

(Cmx) 1 < (CuxX) 1
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Probabilistic Systems

DX is the set of discrete subprobability distributions on X, i.e. functions
d: X —[0,1] such that >~ _yd(x) <1.

A partial Markov chain is a D coalgebra.

Probabilistic simulation

A simulation M _7'z_> N is a relation such that for x R x’

Cux(U) < Cuy(R(U)) forall U C X

It's a bisimulation when also

(Cmx) 1 < (CuxX) 1

Given by relators ProbSim and conversive ProbBisim.
They both preserve binary composition.
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The endofunctor Fr

Fr is an endofunctor on Preord
o A= (Ao, <a) is mapped to (FAo, (<a))

° A*f> B is mapped to Ff.
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The endofunctor Fr

Fr is an endofunctor on Preord
o A= (Ao, <a) is mapped to (FAo, (<a))
° A*f> B is mapped to Ff.

Consider a final Pé?ﬁ(’]

o Equality on M is bisimilarity

coalgebra M.

@ The preorder <y is similarity.

What if we only care about similarity?
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Preord and Poset

Poset is a replete subcategory of Preord, i.e. full and isomorphism-closed.
It is also reflective.

Quotient of a Preordered Set A

The principal lower set of x € Ais [x] = {y € A| y <a x}.
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Preord and Poset

Poset is a replete subcategory of Preord, i.e. full and isomorphism-closed.
It is also reflective.

Quotient of a Preordered Set A

The principal lower set of x € Ais [x] £ {y € A| y <a x}.
The quotient poset QA = {[x] | x € A}, ordered by inclusion.

The quotienting map A A QA isx— [x].
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Preord and Poset

Poset is a replete subcategory of Preord, i.e. full and isomorphism-closed.
It is also reflective.

Quotient of a Preordered Set A

The principal lower set of x € Ais [x] £ {y € A| y <a x}.
The quotient poset QA = {[x] | x € A}, ordered by inclusion.
The quotienting map A A QA isx— [x].

Alternatively quotient A by the symmetrization of <.
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We obtain a composite

Fi Q
Preord —— Preord —— Poset

In our example, it maps A to the set of countably generated lower sets,
ordered by inclusion.
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The Endofunctor QFr

We obtain a composite

Fi Q
Preord —— Preord —— Poset

In our example, it maps A to the set of countably generated lower sets,
ordered by inclusion.

@ QFr is an endofunctor on Preord.

@ QFr restricts to an endofunctor on Poset.
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The Endofunctor QFr

We obtain a composite

Fi Q
Preord —— Preord —— Poset

In our example, it maps A to the set of countably generated lower sets,
ordered by inclusion.

@ QFr is an endofunctor on Preord.

@ QFr restricts to an endofunctor on Poset.

A final coalgebra for the one must be a final coalgebra for the other.
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The Endofunctor QFr

We obtain a composite

Fi Q
Preord —— Preord —— Poset

In our example, it maps A to the set of countably generated lower sets,
ordered by inclusion.

@ QFr is an endofunctor on Preord.

@ QFr restricts to an endofunctor on Poset.
A final coalgebra for the one must be a final coalgebra for the other.

If T is conversive, it restricts to Setoid or DiscSetoid = Set.
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Let A and B be preordered sets.

A bimodule AJOZ%- B is a relation such that

a <aaR b<pgb impliesa R bV
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Let A and B be preordered sets.

A bimodule AJOZ%- B is a relation such that

a <aaR b<pgb impliesa R bV

We can quotient it to obtain a bimodule QA%Q—> QB .

[a] QR [b] when a R b

Paul Blain Levy (University of Birmingham) Similarity quotients as final coalgebras June 24, 2011



QFr-coalgebras

Let M and N be QFr-coalgebras.

A simulation M j—> N is a bimodule such that

R C ((m. () PQIR

The greatest simulation is similarity.
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QFr-coalgebras

Let M and N be QFr-coalgebras.

A simulation M j—> N is a bimodule such that

R C ((m. () PQIR

The greatest simulation is similarity.

Same properties as [-similarity between F-coalgebras.
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QFr-coalgebras

Let M and N be QFr-coalgebras.

A simulation M j—> N is a bimodule such that

R C ((m. () PQIR

The greatest simulation is similarity.
Same properties as [-similarity between F-coalgebras.

Also encompassment.
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Extensional QFr-coalgebras

A QFr-coalgebra N = (N, () is extensional when <p- is
@ a partial order

o similarity on .
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Extensional QFr-coalgebras

A QFr-coalgebra N = (N, () is extensional when <p- is
@ a partial order

o similarity on .

Key property

If M is encompassed by N, there is a unique coalgebra morphism
M——N.
Otherwise there is none.
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Extensional quotient

Let M be a QFr-coalgebra.
Let A be M quotiented by similarity.
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Extensional quotient

Let M be a QFr-coalgebra.
Let A be M quotiented by similarity.
There is a unique QFr-coalgebra N carried by M'/ <

such that M —> N is a coalgebra morphism.

Moreover N is extensional.
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From F-coalgebra to QFr-coalgebra

We have a functor A : Set — Preord mapping X to (X, (=x)).
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From F-coalgebra to QFr-coalgebra

We have a functor A : Set — Preord mapping X to (X, (=x)).
We have a functor A" : Coalg(Set, F) — Coalg(Preord, QF)

mapping M = (M, (y) to the coalgebra with
o carrier AM"

PFram:

o behaviour AM —"> FrAM 22 QFc AM:
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From F-coalgebra to QFr-coalgebra

We have a functor A : Set — Preord mapping X to (X, (=x)).
We have a functor A" : Coalg(Set, F) — Coalg(Preord, QF)

mapping M = (M, (y) to the coalgebra with
o carrier AM"

PFram:

o behaviour AM —"> FrAM 22 QFc AM:

Simulation is unchanged

Let M and N be F-coalgebras. Then x € M is I-similar to y € N
iff (AT M)x is similar to (ATN)y.
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Using A Final Coalgebra

A QFr-coalgebra P is final iff it is extensional and all-encompassing.
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Using A Final Coalgebra

A QFr-coalgebra P is final iff it is extensional and all-encompassing.
We can use it to characterize similarity on QFr-coalgebras.

So we can use it to characterize -similarity on F-coalgebras.
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Using A Final Coalgebra

A QFr-coalgebra P is final iff it is extensional and all-encompassing.
We can use it to characterize similarity on QFr-coalgebras.
So we can use it to characterize -similarity on F-coalgebras.

The only elements of P that matter for this task are anamorphic images of
(A"M)x.

Are there any others?
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From QFr-coalgebra to F-coalgebra

Key Theorem

Given a QFr-coalgebra N

there is an F-coalgebra M

and a surjective coalgebra morphism Af'p—— N .

June 24, 2011 22 /29
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From QFr-coalgebra to F-coalgebra

Key Theorem

Given a QFr-coalgebra N

there is an F-coalgebra M

and a surjective coalgebra morphism Af'p—— N .

Beyond Set?
@ Proof uses the Axiom of Choice.
@ Nevertheless, we can generalize from Set to presheaf categories and
sheaf categories, provided F preserves epimorphisms.

June 24, 2011 22 /29
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Constructing a Final Coalgebra

o If M is an all-I-encompassing F-coalgebra,

the extensional quotient of AT M is a final QFr-coalgebra.

Paul Blain Levy (University of Birmingham) Similarity quotients as final coalgebras June 24, 2011 23 /29



Constructing a Final Coalgebra

o If M is an all-I-encompassing F-coalgebra,
the extensional quotient of AT M is a final QFr-coalgebra.

Any final QFr-coalgebra must arise in this way.
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2-nested simulation

Let M and N be countably branching transition systems.

A 2-nested simulation from M to N is a simulation contained in the
converse of a simulation.
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2-nested simulation

Let M and N be countably branching transition systems.

A 2-nested simulation from M to N is a simulation contained in the
converse of a simulation.

Can we characerize 2-nested similarity using a final coalgebra?
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Nested Preordered Sets

A nested preordered set is a set X with two preorders
@ <, think 2-nested similarity
@ <, think converse of similarity

subject to the constraints

=]
N—r
N
—~
o
~

N
2
IN
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Nested Preordered Sets

A nested preordered set is a set X with two preorders
@ <, think 2-nested similarity
o <, think converse of similarity

subject to the constraints

r
N 1N
V7

N

It is a nested poset when the intersection (<) N (<o) actually (<,) is a
partial order.

Paul Blain Levy (University of Birmingham) Similarity quotients as final coalgebras June 24, 2011 25 /29



Nested Preordered Sets

A nested preordered set is a set X with two preorders
@ <, think 2-nested similarity
o <, think converse of similarity

subject to the constraints

r
N 1N
V7

N

It is a nested poset when the intersection (<) N (<o) actually (<,) is a
partial order.

A monotone function A—f> B must preserve both preorders.
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Nested Preordered Sets

A nested preordered set is a set X with two preorders
@ <, think 2-nested similarity
o <, think converse of similarity

subject to the constraints

N 1N

It is a nested poset when the intersection (<) N (<o) actually (<,) is a
partial order.

A monotone function A—f> B must preserve both preorders.
NestPoset is a reflective replete subcategory of NestPreord.
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Double relations

A double relation X R Y consists of two relations R, and R,.
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Double relations

A double relation X R Y consists of two relations R, and R,
We have a POXol_relator matrix TwoSim

. def .
TwoSimp = Sim

T

TwoSim,, = Sim®
def

TwoSim, TwoSime, = Sim€

Paul Blain Levy (University of Birmingham)

Similarity quotients as final coalgebras

June 24, 2011



Double relations

A double relation X R Y consists of two relations R, and R,.

We have a PORol_relator matrix TwoSim

. def . .
TwoSimp,, = Sim TwoSim,, o
b K
. def .
TwoSime,, = T TwoSim, o

This maps a double relation X Koy

TwoSimR
—

to a double relation p[0.Ro] x PploRo] y

(TwoSimR), = SimR, N SimR,

(TwoSimR), = Simg

= Sim®
def

= Sim®

This operation behaves like a relator and does not preserve binary

composition.
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Endofunctor for Nested Simulation

We obtain a functor

[0,Rq]
TwoSim

Q
NestPreord ——— NestPreord —— NestPoset

giving an endofunctor on NestPreord and on NestPoset.
Its final coalgebra characterizes 2-nested simulation.
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Multiple Relations

Instead of working with relations, we work with /-relations. | a fixed set
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Multiple Relations

Instead of working with relations, we work with /-relations. | a fixed set

Instead of a relator, we use a relator /-matrix.
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Multiple Relations

Instead of working with relations, we work with /-relations. | a fixed set

Instead of a relator, we use a relator /-matrix.

Need positive and negative constraints on the preorders.
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Multiple Relations

Instead of working with relations, we work with /-relations. | a fixed set
Instead of a relator, we use a relator /-matrix.
Need positive and negative constraints on the preorders.

More generally, we can work with O-relations, where Q is a quantale.
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Conclusions

@ We can treat bisimulation, many notions of simulation and nested
simulation.

@ We can use a final coalgebra to characterize similarity.

@ Conversely, we can construct a final coalgebra by taking an
all-encompassing transition system and quotienting by similarity.
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