Similarity quotients as final coalgebras

Paul Blain Levy

University of Birmingham

June 24, 2011

- 2 Simulation and Relators
- Simulation and Final Coalgebras
- 4 Nested Simulation

Consider the countable powerset functor $\mathcal{P}^{[0,\aleph_0]}$.

A countably branching transition system M is a $\mathcal{P}^{[0,\aleph_0]}$ -coalgebra (M^{\cdot}, ζ_M) .

Bisimulations

Let M and N be countably branching transition systems.

A bisimulation is a relation $M^{\cdot} \xrightarrow{\mathcal{R}} N^{\cdot}$ such that $x \mathcal{R} x'$ implies $\zeta_M x$ Bisim $\mathcal{R} \zeta_N x'$.

 $U \operatorname{Bisim} \mathcal{R} \ V \text{ means } \forall y \in U. \ \exists y' \in V. \ y \ \mathcal{R} \ y' \land \forall y' \in V. \ \exists y \in U. \ y \ \mathcal{R} \ y'.$

The greatest bisimulation is *bisimilarity*.

Consider the countable powerset functor $\mathcal{P}^{[0,\aleph_0]}$.

A countably branching transition system M is a $\mathcal{P}^{[0,\aleph_0]}$ -coalgebra (M^{\cdot}, ζ_M) .

Bisimulations

Let M and N be countably branching transition systems.

A bisimulation is a relation $M^{-} \xrightarrow{\mathcal{R}} N^{-}$ such that $x \mathcal{R} x'$ implies $\zeta_M x$ Bisim $\mathcal{R} \zeta_N x'$.

 $U \operatorname{Bisim} \mathcal{R} \ V \text{ means } \forall y \in U. \ \exists y' \in V. \ y \ \mathcal{R} \ y' \land \forall y' \in V. \ \exists y \in U. \ y \ \mathcal{R} \ y'.$

The greatest bisimulation is *bisimilarity*. This is closely related to final $\mathcal{P}^{[0,\aleph_0]}$ -coalgebras. Let P be a final F-coalgebra, and σ_M the anamorphism from M.

Let P be a final F-coalgebra, and σ_M the anamorphism from M.

Theorem: characterizing bisimilarity

 $x \in M$ is bisimilar to $y \in N$ iff $\sigma_M x = \sigma_N y$.

Bisimilarity: Constructing A Final Coalgebra

Encompassment

We define a preorder on countably branching transition systems.

Bisimilarity: Constructing A Final Coalgebra

Encompassment

We define a preorder on countably branching transition systems. *M* is *encompassed by N* when for every $x \in M$ there is bisimilar $y \in N$.

Bisimilarity: Constructing A Final Coalgebra

Encompassment

We define a preorder on countably branching transition systems. *M* is *encompassed by N* when for every $x \in M$ there is bisimilar $y \in N$.

The Theorem

Let *M* be a countably branching transition system that is all-encompassing. Then *M* modulo bisimilarity is a final $\mathcal{P}^{[0,\aleph_0]}$ -coalgebra.

Encompassment

We define a preorder on countably branching transition systems. *M* is *encompassed by N* when for every $x \in M$ there is bisimilar $y \in N$.

The Theorem

Let *M* be a countably branching transition system that is all-encompassing. Then *M* modulo bisimilarity is a final $\mathcal{P}^{[0,\aleph_0]}$ -coalgebra.

All-Encompassing Example

Take the disjoint union of every transition system carried by a countable cardinal.

It's all-encompassing because every node of a countably branching transition system has countably many successors.

Simulations

Let M and N be countably branching transition systems.

A simulation is a relation $M^{\cdot} \xrightarrow{\mathcal{R}} N^{\cdot}$ such that $x \mathcal{R} x'$ implies $\zeta_M x \operatorname{Sim} \mathcal{R} \zeta_N x'$. $U \operatorname{Sim} \mathcal{R} V$ means $\forall y \in U. \exists y' \in V. y \mathcal{R} y'$.

The greatest simulation is similarity.

Relators

Bisim and Sim are both $\mathcal{P}^{[0,\aleph_0]}$ -relators. Let F be an endofunctor on **Set**.

An *F*-relator maps each relation $X \xrightarrow{\mathcal{R}} Y$ to a relation $FX \xrightarrow{\Gamma\mathcal{R}} FY$.

Monotonicity

$$X \xrightarrow{\mathcal{R},\mathcal{R}'} Y$$

$$\mathcal{R}\subseteq \mathcal{R}' \Rightarrow \Gamma \mathcal{R} \subseteq \Gamma \mathcal{R}'$$

Relators

Bisim and Sim are both $\mathcal{P}^{[0,\aleph_0]}$ -relators. Let F be an endofunctor on **Set**.

An *F*-relator maps each relation $X \xrightarrow{\mathcal{R}} Y$ to a relation $FX \xrightarrow{\Gamma\mathcal{R}} FY$.

Monotonicity

$$X \xrightarrow{\mathcal{R},\mathcal{R}'} Y$$

$$\mathcal{R} \subseteq \mathcal{R}' \Rightarrow \Gamma \mathcal{R} \subseteq \Gamma \mathcal{R}'$$

Stability (Hughes and Jacobs)

$$\begin{array}{c} X' \xrightarrow{f} X \\ & \downarrow^{\mathcal{R}} \\ Y' \xrightarrow{g} Y \end{array}$$

$$\Gamma((f,g)^{-1}\mathcal{R}) = (Ff,Fg)^{-1}\Gamma\mathcal{R}$$

Paul Blain Levy (University of Birmingham) Similarity quotients as final coalgebras

Properties of relational extension (2)

Lax functoriality

$$id_{\Gamma X} \subseteq \Gamma id_X$$
$$(\Gamma \mathcal{R}); (\Gamma \mathcal{S}) \subseteq \Gamma(\mathcal{R}; \mathcal{S})$$
$$X \xrightarrow{\mathcal{R}} Y \xrightarrow{\mathcal{S}} Z$$

Properties of relational extension (2)

Lax functoriality

$$\begin{aligned} & \operatorname{id}_{\Gamma X} &\subseteq \operatorname{Fid}_{X} \\ (\Gamma \mathcal{R}); (\Gamma \mathcal{S}) &\subseteq \operatorname{F}(\mathcal{R}; \mathcal{S}) \\ & X \xrightarrow{\mathcal{R}} Y \xrightarrow{\mathcal{S}} Z \end{aligned}$$

Hesselink and Thijs required strict preservation of binary composition, lax preservation of identities.

But Bisim as a $\mathcal{P}^{[0,3]}$ -relator does not preserve binary composition.

Properties of relational extension (2)

Lax functoriality

$$\begin{aligned} & \operatorname{id}_{\Gamma X} & \subseteq & \operatorname{Fid}_X \\ (\Gamma \mathcal{R}); (\Gamma \mathcal{S}) & \subseteq & \Gamma(\mathcal{R}; \mathcal{S}) \\ & X \xrightarrow{\mathcal{R}} Y \xrightarrow{\mathcal{S}} Z \end{aligned}$$

Hesselink and Thijs required strict preservation of binary composition, lax preservation of identities.

But Bisim as a $\mathcal{P}^{[0,3]}$ -relator does not preserve binary composition.

Conversive Relator

$$\Gamma(\mathcal{R}^c) = (\Gamma\mathcal{R})^c$$

Definition of Γ-simulation

A Γ -simulation $M \xrightarrow{\mathcal{R}} N$ is a relation such that

$$\mathcal{R} \subseteq (\zeta_M, \zeta_N)^{-1} \Gamma \mathcal{R}$$

The greatest one is Γ -similarity.

Definition of **F**-simulation

A Γ -simulation $M \xrightarrow{\mathcal{R}} N$ is a relation such that

$$\mathcal{R} \subseteq (\zeta_M, \zeta_N)^{-1} \Gamma \mathcal{R}$$

The greatest one is Γ -similarity.

Properties of Γ-similarity

- Reflexive and transitive.
- Symmetric if Γ is conversive.
- For $M \xrightarrow{f} N$ a coalgebra morphism, $x \in M$ and $f(x) \in N$ are mutually Γ -similar.

M is Γ -encompassed by *N* when every $x \in M$ is mutually Γ -similar to some $y \in N$.

M is Γ -encompassed by *N* when every $x \in M$ is mutually Γ -similar to some $y \in N$.

This is reflexive and transitive.

M is Γ -encompassed by *N* when every $x \in M$ is mutually Γ -similar to some $y \in N$.

This is reflexive and transitive.

If there is a coalgebra morphism $M \longrightarrow N$ then M is Γ -encompassed by N.

M is Γ -encompassed by *N* when every $x \in M$ is mutually Γ -similar to some $y \in N$.

This is reflexive and transitive.

If there is a coalgebra morphism $M \longrightarrow N$ then M is Γ -encompassed by N.

If there is a surjective coalgebra morphism $M \longrightarrow N$ then M and N are mutually Γ -encompassed.

A countably branching transition system with divergence is a coalgebra for $X \mapsto \mathcal{P}^{[0,\aleph_0]}(X+1)$.

A countably branching transition system with divergence is a coalgebra for $X \mapsto \mathcal{P}^{[0,\aleph_0]}(X+1)$.

We write $x \uparrow f$ to mean that x may diverge.

A countably branching transition system with divergence is a coalgebra for $X \mapsto \mathcal{P}^{[0,\aleph_0]}(X+1)$. We write $x \Leftrightarrow$ to mean that x may diverge

We write $x \uparrow f$ to mean that x may diverge.

Lower simulation

A lower simulation $M \xrightarrow{\mathcal{R}} N$ is a relation such that for $x \mathcal{R} x'$

• $x \rightsquigarrow y$ implies there is y' such that $x' \rightsquigarrow y'$ and $y \mathcal{R} y'$.

A countably branching transition system with divergence is a coalgebra for $X \mapsto \mathcal{P}^{[0,\aleph_0]}(X+1)$. We write $x \uparrow to$ mean that x may diverge.

Lower simulation

A lower simulation $M \xrightarrow{\mathcal{R}} N$ is a relation such that for $x \mathcal{R} x'$

• $x \rightsquigarrow y$ implies there is y' such that $x' \rightsquigarrow y'$ and $y \mathcal{R} y'$.

Upper simulation

An upper simulation $M \xrightarrow{\mathcal{R}} N$ is a relation such that for $x \mathcal{R} x'$ with $x \notin x'$ • $x' \notin y'$

• $x' \rightsquigarrow y'$ implies that there is y such that $x \rightsquigarrow y$ and y \mathcal{R} y'.

A countably branching transition system with divergence is a coalgebra for $X \mapsto \mathcal{P}^{[0,\aleph_0]}(X+1)$. We write $x \uparrow to$ mean that x may diverge.

We write $X \parallel$ to mean that X may alve

Lower simulation

A lower simulation $M \xrightarrow{\mathcal{R}} N$ is a relation such that for $x \mathcal{R} x'$

• $x \rightsquigarrow y$ implies there is y' such that $x' \rightsquigarrow y'$ and $y \mathcal{R} y'$.

Upper simulation

An upper simulation $M \xrightarrow{\mathcal{R}} N$ is a relation such that for $x \mathcal{R} x'$ with $x \notin$

- x′ ∯
- $x' \rightsquigarrow y'$ implies that there is y such that $x \rightsquigarrow y$ and y $\mathcal{R} y'$.

Many variants, each given by a relator preserving binary composition.

Probabilistic Systems

DX is the set of discrete subprobability distributions on *X*, i.e. functions $d: X \to [0, 1]$ such that $\sum_{x \in X} d(x) \leq 1$.

Probabilistic Systems

DX is the set of discrete subprobability distributions on X, i.e. functions $d: X \to [0, 1]$ such that $\sum_{x \in X} d(x) \leq 1$.

A partial Markov chain is a D coalgebra.

Probabilistic simulation

A simulation $M \xrightarrow{\mathcal{R}} N$ is a relation such that for $x \mathcal{R} x'$

 $\zeta_M x(U) \leqslant \zeta_N y(\mathcal{R}(U))$ for all $U \subseteq X$

It's a bisimulation when also

 $(\zeta_M x) \Uparrow \leq (\zeta_N x') \Uparrow$

Probabilistic Systems

DX is the set of discrete subprobability distributions on X, i.e. functions $d: X \to [0, 1]$ such that $\sum_{x \in X} d(x) \leq 1$.

A partial Markov chain is a D coalgebra.

Probabilistic simulation

A simulation $M \xrightarrow{\mathcal{R}} N$ is a relation such that for $x \mathcal{R} x'$

$$\zeta_M x(U) \leqslant \zeta_N y(\mathcal{R}(U))$$
 for all $U \subseteq X$

It's a bisimulation when also

 $(\zeta_M x) \Uparrow \leq (\zeta_N x') \Uparrow$

Given by relators **ProbSim** and conversive **ProbBisim**. They both preserve binary composition.

F_{Γ} is an endofunctor on **Preord**

- $A = (A_0, \leqslant_A)$ is mapped to $(FA_0, \Gamma(\leqslant_A))$
- $A \xrightarrow{f} B$ is mapped to Ff.

 F_{Γ} is an endofunctor on **Preord**

• $A = (A_0, \leqslant_A)$ is mapped to $(F\!A_0, \Gamma(\leqslant_A))$

•
$$A \xrightarrow{f} B$$
 is mapped to Ff .

Consider a final $\mathcal{P}_{\text{Sim}}^{[0,\aleph_0]}$ coalgebra M.

- Equality on *M*[·] is bisimilarity
- The preorder \leq_{M} is similarity.

What if we only care about similarity?

Poset is a replete subcategory of **Preord**, i.e. full and isomorphism-closed. It is also reflective.

Quotient of a Preordered Set A

The principal lower set of $x \in A$ is $[x] \stackrel{\text{def}}{=} \{y \in A \mid y \leq_A x\}.$

Poset is a replete subcategory of **Preord**, i.e. full and isomorphism-closed. It is also reflective.

Quotient of a Preordered Set A

The principal lower set of $x \in A$ is $[x] \stackrel{\text{def}}{=} \{y \in A \mid y \leq_A x\}$. The quotient poset $QA = \{[x] \mid x \in A\}$, ordered by inclusion. The quotienting map $A \stackrel{P_A}{\longrightarrow} QA$ is $x \mapsto [x]$. **Poset** is a replete subcategory of **Preord**, i.e. full and isomorphism-closed. It is also reflective.

Quotient of a Preordered Set A

The principal lower set of $x \in A$ is $[x] \stackrel{\text{def}}{=} \{y \in A \mid y \leq_A x\}$. The quotient poset $QA = \{[x] \mid x \in A\}$, ordered by inclusion. The quotienting map $A \stackrel{P_A}{\longrightarrow} QA$ is $x \mapsto [x]$. Alternatively quotient A by the symmetrization of \leq_A . We obtain a composite

Preord
$$\xrightarrow{F_{\Gamma}}$$
 Preord \xrightarrow{Q} **Poset**

In our example, it maps A to the set of countably generated lower sets, ordered by inclusion.
We obtain a composite

Preord
$$\xrightarrow{F_{\Gamma}}$$
 Preord \xrightarrow{Q} **Poset**

In our example, it maps A to the set of countably generated lower sets, ordered by inclusion.

- QF_{Γ} is an endofunctor on **Preord**.
- QF_{Γ} restricts to an endofunctor on **Poset**.

We obtain a composite

Preord
$$\xrightarrow{F_{\Gamma}}$$
 Preord \xrightarrow{Q} **Poset**

In our example, it maps A to the set of countably generated lower sets, ordered by inclusion.

- QF_{Γ} is an endofunctor on **Preord**.
- QF_{Γ} restricts to an endofunctor on **Poset**.

A final coalgebra for the one must be a final coalgebra for the other.

We obtain a composite

Preord
$$\xrightarrow{F_{\Gamma}}$$
 Preord \xrightarrow{Q} **Poset**

In our example, it maps A to the set of countably generated lower sets, ordered by inclusion.

- QF_{Γ} is an endofunctor on **Preord**.
- QF_{Γ} restricts to an endofunctor on **Poset**.

A final coalgebra for the one must be a final coalgebra for the other.

If Γ is conversive, it restricts to **Setoid** or **DiscSetoid** \cong **Set**.

Let A and B be preordered sets. A bimodule $A \xrightarrow{\mathcal{R}} B$ is a relation such that

 $a' \leq_A a \mathcal{R} b \leq_B b'$ implies $a' \mathcal{R} b'$

Let A and B be preordered sets. A bimodule $A \xrightarrow{\mathcal{R}} B$ is a relation such that $a' \leq_A a \mathcal{R} \ b \leq_B b'$ implies $a' \mathcal{R} \ b'$ We can quotient it to obtain a bimodule $QA \xrightarrow{Q\mathcal{R}} QB$. [a] $Q\mathcal{R}$ [b] when $a \mathcal{R} \ b$ Let *M* and *N* be QF_{Γ} -coalgebras. A simulation $M \xrightarrow{\mathcal{R}} N$ is a bimodule such that

$$\mathcal{R} \subseteq (\zeta_{\mathcal{M}},\zeta_{\mathcal{N}})^{-1}\mathcal{Q}\Gamma\mathcal{R}$$

The greatest simulation is similarity.

Let *M* and *N* be QF_{Γ} -coalgebras. A simulation $M \xrightarrow{\mathcal{R}} N$ is a bimodule such that

$$\mathcal{R} \subseteq (\zeta_{\mathcal{M}}, \zeta_{\mathcal{N}})^{-1} \mathcal{Q} \Gamma \mathcal{R}$$

The greatest simulation is similarity.

Same properties as Γ -similarity between F-coalgebras.

Let M and N be QF_{Γ} -coalgebras.

A simulation $M \xrightarrow{\mathcal{R}} N$ is a bimodule such that

 $\mathcal{R} \subseteq (\zeta_M, \zeta_N)^{-1} Q \Gamma \mathcal{R}$

The greatest simulation is similarity.

Same properties as Γ -similarity between F-coalgebras.

Also encompassment.

A QF_{Γ} -coalgebra $N = (N^{\cdot}, \zeta_N)$ is extensional when $\leqslant_{N^{\cdot}}$ is

- a partial order
- similarity on N.

A QF_{Γ} -coalgebra $N = (N^{\cdot}, \zeta_N)$ is extensional when $\leq_{N^{\cdot}}$ is

- a partial order
- similarity on N.

Key property

If M is encompassed by N, there is a unique coalgebra morphism $M \longrightarrow N$. Otherwise there is none. Let M be a QF_{Γ} -coalgebra.

Let A be M^{\cdot} quotiented by similarity.

- Let M be a QF_{Γ} -coalgebra.
- Let A be M^{\cdot} quotiented by similarity.
- There is a unique QF_{Γ} -coalgebra N carried by M^{\cdot}/\lesssim .
- such that $M \xrightarrow{p} N$ is a coalgebra morphism.
- Moreover N is extensional.

We have a functor $\Delta : \mathbf{Set} \longrightarrow \mathbf{Preord}$ mapping X to $(X, (=_X))$.

We have a functor $\Delta : \mathbf{Set} \longrightarrow \mathbf{Preord}$ mapping X to $(X, (=_X))$. We have a functor $\Delta^{\Gamma} : \operatorname{Coalg}(\mathbf{Set}, F) \longrightarrow \operatorname{Coalg}(\mathbf{Preord}, QF_{\Gamma})$ mapping $M = (M^{\cdot}, \zeta_M)$ to the coalgebra with • carrier ΔM^{\cdot}

• behaviour $\Delta M^{\cdot} \xrightarrow{\zeta_M} F_{\Gamma} \Delta M^{\cdot} \xrightarrow{p_{F_{\Gamma} \Delta M^{\cdot}}} QF_{\Gamma} \Delta M^{\cdot}$

We have a functor $\Delta : \mathbf{Set} \longrightarrow \mathbf{Preord}$ mapping X to $(X, (=_X))$. We have a functor $\Delta^{\Gamma} : \operatorname{Coalg}(\mathbf{Set}, F) \longrightarrow \operatorname{Coalg}(\mathbf{Preord}, QF_{\Gamma})$ mapping $M = (M^{\cdot}, \zeta_M)$ to the coalgebra with • carrier ΔM^{\cdot}

• behaviour
$$\Delta M^{-} \xrightarrow{\zeta_M} F_{\Gamma} \Delta M^{-} \xrightarrow{P_{F_{\Gamma}} \Delta M^{-}} QF_{\Gamma} \Delta M^{-}$$

Simulation is unchanged

Let *M* and *N* be *F*-coalgebras. Then $x \in M$ is Γ -similar to $y \in N$ iff $(\Delta^{\Gamma} M)x$ is similar to $(\Delta^{\Gamma} N)y$.

A QF_{Γ} -coalgebra P is final iff it is extensional and all-encompassing.

A QF_{Γ} -coalgebra P is final iff it is extensional and all-encompassing. We can use it to characterize similarity on QF_{Γ} -coalgebras. So we can use it to characterize Γ -similarity on F-coalgebras.

- A QF_{Γ} -coalgebra P is final iff it is extensional and all-encompassing.
- We can use it to characterize similarity on QF_{Γ} -coalgebras.
- So we can use it to characterize Γ -similarity on F-coalgebras.
- The only elements of P that matter for this task are anamorphic images of $(\Delta^{\Gamma} M)x$.
- Are there any others?

Key Theorem

Given a QF_{Γ} -coalgebra Nthere is an F-coalgebra Mand a surjective coalgebra morphism $\Delta^{\Gamma}M \longrightarrow N$.

Key Theorem

Given a QF_{Γ} -coalgebra Nthere is an F-coalgebra Mand a surjective coalgebra morphism $\Delta^{\Gamma}M \longrightarrow N$.

Beyond Set?

- Proof uses the Axiom of Choice.
- Nevertheless, we can generalize from **Set** to presheaf categories and sheaf categories, provided *F* preserves epimorphisms.

 If M is an all-Γ-encompassing F-coalgebra, the extensional quotient of Δ^ΓM is a final QF_Γ-coalgebra. If M is an all-Γ-encompassing F-coalgebra,
the extensional quotient of Δ^ΓM is a final QF_Γ-coalgebra.
Any final QF_Γ-coalgebra must arise in this way.

Let M and N be countably branching transition systems.

A 2-nested simulation from M to N is a simulation contained in the converse of a simulation.

Let M and N be countably branching transition systems.

A 2-nested simulation from M to N is a simulation contained in the converse of a simulation.

Can we characerize 2-nested similarity using a final coalgebra?

- $\bullet \, \leqslant_n \quad \text{think 2-nested similarity} \,$
- \leq_{o} think converse of similarity

subject to the constraints

$$\begin{array}{rcl} (\leqslant_n) &\subseteq & (\leqslant_o) \\ (\leqslant_n) &\subseteq & (\geqslant_o) \end{array}$$

- $\bullet \, \leqslant_n \quad \text{think 2-nested similarity} \,$
- \leq_{o} think converse of similarity

subject to the constraints

$$\begin{array}{rcl} (\leqslant_n) & \subseteq & (\leqslant_o) \\ (\leqslant_n) & \subseteq & (\geqslant_o) \end{array}$$

It is a nested poset when the intersection $(\leqslant_n) \cap (\leqslant_o)$ actually (\leqslant_n) is a partial order.

- $\bullet \, \leqslant_n \quad \text{think 2-nested similarity} \,$
- \leq_{o} think converse of similarity

subject to the constraints

$$\begin{array}{rcl} (\leqslant_n) &\subseteq & (\leqslant_o) \\ (\leqslant_n) &\subseteq & (\geqslant_o) \end{array}$$

It is a nested poset when the intersection $(\leqslant_n) \cap (\leqslant_o)$ actually (\leqslant_n) is a partial order.

A monotone function $A \xrightarrow{f} B$ must preserve both preorders.

- $\bullet \, \leqslant_n \quad \text{think 2-nested similarity} \,$
- \leq_{o} think converse of similarity

subject to the constraints

$$\begin{array}{rcl} (\leqslant_n) & \subseteq & (\leqslant_o) \\ (\leqslant_n) & \subseteq & (\geqslant_o) \end{array}$$

It is a nested poset when the intersection $(\leq_n) \cap (\leq_o)$ actually (\leq_n) is a partial order.

A monotone function $A \xrightarrow{f} B$ must preserve both preorders. **NestPoset** is a reflective replete subcategory of **NestPreord**. A double relation $X \xrightarrow{\mathcal{R}} Y$ consists of two relations \mathcal{R}_n and \mathcal{R}_o .

Double relations

A double relation $X \xrightarrow{\mathcal{R}} Y$ consists of two relations \mathcal{R}_n and \mathcal{R}_o . We have a $\mathcal{P}^{[0,\aleph_0]}$ -relator matrix TwoSim

Double relations

A double relation $X \xrightarrow{\mathcal{R}} Y$ consists of two relations \mathcal{R}_n and \mathcal{R}_o . We have a $\mathcal{P}^{[0,\aleph_0]}$ -relator matrix TwoSim

This maps a double relation $X \xrightarrow{\mathcal{R}} Y$ to a double relation $\mathcal{P}^{[0,\aleph_0]}X \xrightarrow{\operatorname{TwoSim}\mathcal{R}} \mathcal{P}^{[0,\aleph_0]}Y$

 $\begin{array}{rcl} (\mathrm{TwoSim}\mathcal{R})_n &=& \mathrm{Sim}\mathcal{R}_n \cap \mathrm{Sim}^c \mathcal{R}_o \\ (\mathrm{TwoSim}\mathcal{R})_o &=& \mathrm{Sim}_o^c \end{array}$

This operation behaves like a relator and does not preserve binary composition.

We obtain a functor

giving an endofunctor on **NestPreord** and on **NestPoset**. Its final coalgebra characterizes 2-nested simulation.

Instead of working with relations, we work with I-relations. I a fixed set

Instead of working with relations, we work with *I*-relations. *I* a fixed set Instead of a relator, we use a relator *I*-matrix.

- Instead of working with relations, we work with *I*-relations. *I* a fixed set Instead of a relator, we use a relator *I*-matrix.
- Need positive and negative constraints on the preorders.

- Instead of working with relations, we work with *I*-relations. *I* a fixed set Instead of a relator, we use a relator *I*-matrix.
- Need positive and negative constraints on the preorders.
- More generally, we can work with $\mathcal Q\text{-relations, where }\mathcal Q$ is a quantale.
- We can treat bisimulation, many notions of simulation and nested simulation.
- We can use a final coalgebra to characterize similarity.
- Conversely, we can construct a final coalgebra by taking an all-encompassing transition system and quotienting by similarity.