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Coalgebras and Bisimulation

Consider the countable powerset functor P [0,ℵ0].

A countably branching transition system M is a P [0,ℵ0]-coalgebra (M ·, ζM).

Bisimulations

Let M and N be countably branching transition systems.

A bisimulation is a relation M · pR // N · such that x R x ′ implies
ζMx BisimR ζNx ′.

U BisimR V means ∀y ∈ U. ∃y ′ ∈ V . y R y ′ ∧∀y ′ ∈ V . ∃y ∈ U. y R y ′.

The greatest bisimulation is bisimilarity.

This is closely related to final P [0,ℵ0]-coalgebras.
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Bisimilarity: Using A Final Coalgebra

Let P be a final F -coalgebra, and σM the anamorphism from M.

Theorem: characterizing bisimilarity

x ∈ M is bisimilar to y ∈ N iff σMx = σNy .
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Bisimilarity: Constructing A Final Coalgebra

Encompassment

We define a preorder on countably branching transition systems.

M is encompassed by N when for every x ∈ M there is bisimilar y ∈ N.

The Theorem

Let M be a countably branching transition system that is all-encompassing.
Then M modulo bisimilarity is a final P [0,ℵ0]-coalgebra.

All-Encompassing Example

Take the disjoint union of every transition system carried by a countable
cardinal.
It’s all-encompassing because every node of a countably branching
transition system has countably many successors.
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Simulation

Simulations

Let M and N be countably branching transition systems.

A simulation is a relation M · pR // N · such that x R x ′ implies
ζMx SimR ζNx ′.
U SimR V means ∀y ∈ U. ∃y ′ ∈ V . y R y ′.

The greatest simulation is similarity.
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Relators

Bisim and Sim are both P [0,ℵ0]-relators.
Let F be an endofunctor on Set.

An F -relator maps each relation X pR // Y to a relation FX pΓR // FY .

Monotonicity

X pR,R
′
// Y

R ⊆ R′ ⇒ ΓR ⊆ ΓR′

Stability (Hughes and Jacobs)

X ′
f // X

−R
��

Y ′ g
// Y

Γ((f , g)−1R) = (Ff ,Fg)−1ΓR
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Properties of relational extension (2)

Lax functoriality

idΓX ⊆ ΓidX

(ΓR); (ΓS) ⊆ Γ(R;S)

X
R // Y

S // Z

Hesselink and Thijs required strict preservation of binary composition, lax
preservation of identities.
But Bisim as a P [0,3]-relator does not preserve binary composition.

Conversive Relator

Γ(Rc) = (ΓR)c
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Γ-simulation

Definition of Γ-simulation

A Γ-simulation M pR // N is a relation such that

R ⊆ (ζM , ζN)−1ΓR

The greatest one is Γ-similarity.

Properties of Γ-similarity

Reflexive and transitive.

Symmetric if Γ is conversive.

For M
f // N a coalgebra morphism, x ∈ M and f (x) ∈ N are

mutually Γ-similar.
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Encompassment

Definition

M is Γ-encompassed by N when every x ∈ M is mutually Γ-similar to some
y ∈ N.

This is reflexive and transitive.

If there is a coalgebra morphism M // N
then M is Γ-encompassed by N.

If there is a surjective coalgebra morphism M // N
then M and N are mutually Γ-encompassed.
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Lower and Upper Simulations (Ulidowski)

A countably branching transition system with divergence is a coalgebra for
X 7→ P [0,ℵ0](X + 1).

We write x ⇑ to mean that x may diverge.

Lower simulation

A lower simulation M pR // N is a relation such that for x R x ′

x  y implies there is y ′ such that x ′  y ′ and y R y ′.

Upper simulation

An upper simulation M pR // N is a relation such that for x R x ′ with
x 6⇑

x ′ 6⇑
x ′  y ′ implies that there is y such that x  y and y R y ′.

Many variants, each given by a relator preserving binary composition.

Paul Blain Levy (University of Birmingham) Similarity quotients as final coalgebras June 24, 2011 11 / 29



Lower and Upper Simulations (Ulidowski)

A countably branching transition system with divergence is a coalgebra for
X 7→ P [0,ℵ0](X + 1).
We write x ⇑ to mean that x may diverge.

Lower simulation

A lower simulation M pR // N is a relation such that for x R x ′

x  y implies there is y ′ such that x ′  y ′ and y R y ′.

Upper simulation

An upper simulation M pR // N is a relation such that for x R x ′ with
x 6⇑

x ′ 6⇑
x ′  y ′ implies that there is y such that x  y and y R y ′.

Many variants, each given by a relator preserving binary composition.

Paul Blain Levy (University of Birmingham) Similarity quotients as final coalgebras June 24, 2011 11 / 29



Lower and Upper Simulations (Ulidowski)

A countably branching transition system with divergence is a coalgebra for
X 7→ P [0,ℵ0](X + 1).
We write x ⇑ to mean that x may diverge.

Lower simulation

A lower simulation M pR // N is a relation such that for x R x ′

x  y implies there is y ′ such that x ′  y ′ and y R y ′.

Upper simulation

An upper simulation M pR // N is a relation such that for x R x ′ with
x 6⇑

x ′ 6⇑
x ′  y ′ implies that there is y such that x  y and y R y ′.

Many variants, each given by a relator preserving binary composition.

Paul Blain Levy (University of Birmingham) Similarity quotients as final coalgebras June 24, 2011 11 / 29



Lower and Upper Simulations (Ulidowski)

A countably branching transition system with divergence is a coalgebra for
X 7→ P [0,ℵ0](X + 1).
We write x ⇑ to mean that x may diverge.

Lower simulation

A lower simulation M pR // N is a relation such that for x R x ′

x  y implies there is y ′ such that x ′  y ′ and y R y ′.

Upper simulation

An upper simulation M pR // N is a relation such that for x R x ′ with
x 6⇑

x ′ 6⇑
x ′  y ′ implies that there is y such that x  y and y R y ′.

Many variants, each given by a relator preserving binary composition.

Paul Blain Levy (University of Birmingham) Similarity quotients as final coalgebras June 24, 2011 11 / 29



Lower and Upper Simulations (Ulidowski)

A countably branching transition system with divergence is a coalgebra for
X 7→ P [0,ℵ0](X + 1).
We write x ⇑ to mean that x may diverge.

Lower simulation

A lower simulation M pR // N is a relation such that for x R x ′

x  y implies there is y ′ such that x ′  y ′ and y R y ′.

Upper simulation

An upper simulation M pR // N is a relation such that for x R x ′ with
x 6⇑

x ′ 6⇑
x ′  y ′ implies that there is y such that x  y and y R y ′.

Many variants, each given by a relator preserving binary composition.
Paul Blain Levy (University of Birmingham) Similarity quotients as final coalgebras June 24, 2011 11 / 29



Probabilistic Systems

DX is the set of discrete subprobability distributions on X , i.e. functions
d : X → [0, 1] such that

∑
x∈Xd(x) 6 1.

A partial Markov chain is a D coalgebra.

Probabilistic simulation

A simulation M pR // N is a relation such that for x R x ′

ζMx(U) 6 ζNy(R(U)) for all U ⊆ X

It’s a bisimulation when also

(ζMx) ⇑ 6 (ζNx ′) ⇑

Given by relators ProbSim and conversive ProbBisim.
They both preserve binary composition.
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The endofunctor FΓ

FΓ is an endofunctor on Preord

A = (A0,6A) is mapped to (FA0, Γ(6A))

A
f // B is mapped to Ff .

Consider a final P [0,ℵ0]
Sim coalgebra M.

Equality on M · is bisimilarity

The preorder 6M· is similarity.

What if we only care about similarity?
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Preord and Poset

Poset is a replete subcategory of Preord, i.e. full and isomorphism-closed.
It is also reflective.

Quotient of a Preordered Set A

The principal lower set of x ∈ A is [x ]
def
= {y ∈ A | y 6A x}.

The quotient poset QA = {[x ] | x ∈ A}, ordered by inclusion.

The quotienting map A
pA // QA is x 7→ [x ].

Alternatively quotient A by the symmetrization of 6A.
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The Endofunctor QFΓ

We obtain a composite

Preord
FΓ // Preord

Q // Poset

In our example, it maps A to the set of countably generated lower sets,
ordered by inclusion.

QFΓ is an endofunctor on Preord.

QFΓ restricts to an endofunctor on Poset.

A final coalgebra for the one must be a final coalgebra for the other.

If Γ is conversive, it restricts to Setoid or DiscSetoid ∼= Set.
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Bimodules

Let A and B be preordered sets.

A bimodule A pR // B is a relation such that

a′ 6A a R b 6B b′ implies a′ R b′

We can quotient it to obtain a bimodule QA pQR // QB .

[a] QR [b] when a R b
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QFΓ-coalgebras

Let M and N be QFΓ-coalgebras.

A simulation M pR // N is a bimodule such that

R ⊆ (ζM , ζN)−1QΓR

The greatest simulation is similarity.

Same properties as Γ-similarity between F -coalgebras.

Also encompassment.
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Extensional QFΓ-coalgebras

A QFΓ-coalgebra N = (N ·, ζN) is extensional when 6N· is

a partial order

similarity on N.

Key property

If M is encompassed by N, there is a unique coalgebra morphism

M // N .
Otherwise there is none.
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Extensional quotient

Let M be a QFΓ-coalgebra.

Let A be M · quotiented by similarity.

There is a unique QFΓ-coalgebra N carried by M ·/ .,

such that M
p // N is a coalgebra morphism.

Moreover N is extensional.
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From F -coalgebra to QFΓ-coalgebra

We have a functor ∆ : Set −→ Preord mapping X to (X , (=X )).

We have a functor ∆Γ : Coalg(Set,F ) −→ Coalg(Preord,QFΓ)

mapping M = (M ·, ζM) to the coalgebra with

carrier ∆M ·

behaviour ∆M ·
ζM // FΓ∆M ·

pFΓ∆M·// QFΓ∆M ·

Simulation is unchanged

Let M and N be F -coalgebras. Then x ∈ M is Γ-similar to y ∈ N
iff (∆ΓM)x is similar to (∆ΓN)y .
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Using A Final Coalgebra

A QFΓ-coalgebra P is final iff it is extensional and all-encompassing.

We can use it to characterize similarity on QFΓ-coalgebras.

So we can use it to characterize Γ-similarity on F -coalgebras.

The only elements of P that matter for this task are anamorphic images of
(∆ΓM)x .

Are there any others?
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From QFΓ-coalgebra to F -coalgebra

Key Theorem

Given a QFΓ-coalgebra N
there is an F -coalgebra M
and a surjective coalgebra morphism ∆ΓM // N .

Beyond Set?

Proof uses the Axiom of Choice.

Nevertheless, we can generalize from Set to presheaf categories and
sheaf categories, provided F preserves epimorphisms.
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Constructing a Final Coalgebra

If M is an all-Γ-encompassing F -coalgebra,

the extensional quotient of ∆ΓM is a final QFΓ-coalgebra.

Any final QFΓ-coalgebra must arise in this way.
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2-nested simulation

Let M and N be countably branching transition systems.

A 2-nested simulation from M to N is a simulation contained in the
converse of a simulation.

Can we characerize 2-nested similarity using a final coalgebra?
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Nested Preordered Sets

A nested preordered set is a set X with two preorders

6n think 2-nested similarity

6o think converse of similarity

subject to the constraints

(6n) ⊆ (6o)

(6n) ⊆ (>o)

It is a nested poset when the intersection (6n) ∩ (6o) actually (6n) is a
partial order.

A monotone function A
f // B must preserve both preorders.

NestPoset is a reflective replete subcategory of NestPreord.
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Double relations

A double relation X pR // Y consists of two relations Rn and Ro.

We have a P [0,ℵ0]-relator matrix TwoSim

TwoSimn,n
def
= Sim TwoSimn,o

def
= Simc

TwoSimo,n
def
= > TwoSimo,o

def
= Simc

This maps a double relation X pR // Y

to a double relation P [0,ℵ0]X pTwoSimR // P [0,ℵ0]Y

(TwoSimR)n = SimRn ∩ SimcRo

(TwoSimR)o = Simc
o

This operation behaves like a relator and does not preserve binary
composition.
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Endofunctor for Nested Simulation

We obtain a functor

NestPreord
P [0,ℵ0]

TwoSim // NestPreord
Q // NestPoset

giving an endofunctor on NestPreord and on NestPoset.
Its final coalgebra characterizes 2-nested simulation.
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Multiple Relations

Instead of working with relations, we work with I -relations. I a fixed set

Instead of a relator, we use a relator I -matrix.

Need positive and negative constraints on the preorders.

More generally, we can work with Q-relations, where Q is a quantale.
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Conclusions

We can treat bisimulation, many notions of simulation and nested
simulation.

We can use a final coalgebra to characterize similarity.

Conversely, we can construct a final coalgebra by taking an
all-encompassing transition system and quotienting by similarity.
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