Conservativity of Boolean algebras with operators over semilattices with operators

A. Kurucz, Y. Tanaka*, F. Wolter and M. Zakharyaschev

*Kyushu Sangyo University

August 11, 2011

Table of contents

Introduction

Background and motivation Algebraic semantics for \mathcal{EL}

Conservativity and completeness

Conservativity, completeness and embedding Some completeness and incompleteness results \mathcal{EL} -theories over S5

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Undecidability of completeness

Undecidability of completeness Further research

Description logic \mathcal{EL}

In this talk, we develop an algebraic semantics for \mathcal{EL} .

- *EL* is a tractable description logic, and is used for representing large scale ontologies in medicine and other life sciences.
- The profile OWL 2 EL of OWL 2 Web Ontology Language is based on EL.

Example: SNOMED CT – Comprehensive health care terminology with approximately 400,000 definitions.

Examples of concept inclusions of \mathcal{EL} :

- ▶ Pericardium ⊑ Tissue ⊓ ∃contained_in.Heart
- Pericarditis ⊑ Inflammation ⊓ ∃has_location.Pericardium
- Inflammation ⊑ Disease ⊓ ∃acts_on.Tissue

Concept and Theory of \mathcal{EL}

Concepts of $\mathcal{EL}:$

- Two disjoint countably infinite sets NC of *concept names* and NR of *role names*.
- *EL-concepts C* are defined inductively as follows:

 $C ::= \top \mid \perp \mid A \mid C_1 \sqcap C_2 \mid \exists r.C,$

where $A \in NC$, $r \in NR$ and C_1 , C_2 and C are \mathcal{EL} -concepts.

Concept inclusions and theories of \mathcal{EL} :

- A concept inclusion is an expression C ⊑ D, where C and D are *EL*-concepts.
- An \mathcal{EL} -theory is a set of \mathcal{EL} concept inclusions.

 $\sharp \mathcal{EL}$ can be regarded as a fragment of modal logic constructed from propositional variables, \top , \bot , \land and \diamondsuit_r for each $r \in NR$.

Interpretation of \mathcal{EL}

An *interpretation* of \mathcal{EL} is a structure $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where

- $\Delta^{\mathcal{I}} \neq \emptyset$ is the *domain* of interpretation and
- $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for each $A \in \mathsf{NC}$ and $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for each $r \in \mathsf{NR}$.
- $\mathsf{T}^{\mathcal{I}} = \Delta^{\mathcal{I}}, \ \bot^{\mathcal{I}} = \emptyset.$
- $\bullet \ (C_1 \sqcap C_2)^{\mathcal{I}} = C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}}.$
- $\bullet \ (\exists r.C)^{\mathcal{I}} = \{ x \in \Delta^{\mathcal{I}} \mid \exists y \in C^{\mathcal{I}}((x,y) \in r^{\mathcal{I}}) \}.$

We say that \mathcal{I} satisfies $C \subseteq D$ and write $\mathcal{I} \models C \subseteq D$, if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.

Certain constraints could be put on binary relations $r^{\mathcal{I}}$. Standard constraints on *OWL2EL* are transitivity and reflexivity as well as symmetry and functionality.

 \sharp Interpretation of \mathcal{EL} can be regarded as a Kripke model, equivalently, a model on a complex Boolean algebra with operators.

Model of \mathcal{EL} -theories and quasi-equations

Let \mathcal{X} be an \mathcal{EL} -theory. An interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ is a model of \mathcal{X} if it satisfies $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for every $C \subseteq D \in \mathcal{X}$.

Theorem

(Sofronie-Stokkermans 08). For any finite \mathcal{EL} -theory \mathcal{X} and any concept inclusion $C \subseteq D$, the following two conditions are equivalent:

- $C \subseteq D$ is valid in every models of \mathcal{X} .
- BAO $\models \land X \rightarrow C \sqsubseteq D$, where BAO is the class of Boolean algebras with operators.

 \sharp Validity of concept inclusions in the models of an \mathcal{EL} -theory corresponds to validity of quasi-equations in BAOs.

< ロ > < 同 > < E > < E > < E > < 0 < 0</p>

 \sharp What is a proof system, or, in other words, an algebraic semantics for \mathcal{EL} ?

Algebraic semantics of \mathcal{EL}

An algebraic semantics of \mathcal{EL} :

- The underlying algebras are bounded meet-semilattices with monotone operators f_r for each $r \in NR$ (SLOs, for short).
- An *EL* concept is interpreted as a term of the language of SLOs.
- A concept inclusion $C \subseteq D$ is interpreted as an equation $C \leq D$.
- Relational constraints of original interpretation are given by equational theories of SLO. For example, x ≤ fx for reflexivity.

 \sharp Is the SLO semantics equivalent to original interpretation for \mathcal{EL} ?

Conservativity and completeness

Let ${\cal C}$ denotes the class of algebras, ${\cal T}$ a set of equations of SLO and q a quasi-equation of SLO. We say

- $\mathcal{T} \vDash_{\mathcal{C}} \mathbf{q}$ if $\mathfrak{A} \vDash \mathbf{q}$ for every $\mathfrak{A} \in \mathcal{C}$ with $\mathfrak{A} \vDash \mathcal{T}$;
- \mathcal{T} is *C*-conservative if $\mathcal{T} \vDash_{\mathcal{C}} \mathbf{q}$ implies $\mathcal{T} \vDash_{\mathsf{SLO}} \mathbf{q}$ for every \mathbf{q} ;
- ➤ T is complete if it is CA-conservative, where CA is the set of all complex Boolean algebras with operators.

Theorem

(Sofronie-Stokkermans 08). Any subset of the following theory is complete:

 $\{f_{r_2} \circ f_{r_1}(x) \le f_r(x) \mid r_1, r_2, r \in NR\} \cup \{f_r(x) \le f_s(x) \mid r, s \in NR\}$

Completeness of $\{ffx \le fx\}$ for transitivity follows from the above theorem.

Which relational constraints are complete?

Completeness and embedding

We give relational constraints of original interpretation by equational theories \mathcal{T} of SLO. Is it complete with respect to the original interpretation?

Let $V(\mathcal{T})$ be the variety of SLOs axiomatized by \mathcal{T} . We say that \mathcal{T} is *complex* if every $\mathfrak{A} \in V(\mathcal{T})$ is *embeddable* in a complex BAO \mathfrak{B} whose reduct to SLO is in $V(\mathcal{T})$.

Theorem

For every T, the following conditions are equivalent:

- 1. T is complex.
- 2. \mathcal{T} is complete. $(\mathcal{T} \vDash_{\mathsf{CA}} \mathbf{q} \Rightarrow \mathcal{T} \vDash_{\mathsf{SLO}} \mathbf{q}.)$
- 3. \mathcal{T} is BAO-conservative. $(\mathcal{T} \vDash_{\mathsf{BAO}} \mathbf{q} \Rightarrow \mathcal{T} \vDash_{\mathsf{SLO}} \mathbf{q}.)$

[#] So, if we find an appropriate embedding, we get completeness.

Constructing embeddings

We construct an embedding via two steps:

 Embed any SLO validating T into a DLO validating T: This is equivalent to prove DLO-conservativity, that is,

$$\mathcal{T} \vDash_{\mathsf{DLO}} \mathbf{q} \Rightarrow \mathcal{T} \vDash_{\mathsf{SLO}} \mathbf{q}.$$

2. Embed any DLO validating T into a BAO validating T: This is equivalent to prove DLO-BAO-conservativity, that is,

$$\mathcal{T} \vDash_{\mathsf{BAO}} \mathbf{q} \Rightarrow \mathcal{T} \vDash_{\mathsf{DLO}} \mathbf{q}.$$

Embedding SLO into DLO

As concerns for embedding from SLOs into DLOs, we have the following result:

Theorem

Every \mathcal{EL} -theory containing only equations where each variable occurs at most once in the left-hand side is DLO-conservative.

Example: An \mathcal{EL} -theory \mathcal{T}_{S5} satisfies the condition of the theorem, but $\mathcal{T}_{S4.3}$ does not, where

$$\mathcal{T}_{S5} = \{ x \le fx, \ ffx \le fx, \ x \land fy \le f(fx \land y) \}$$

$$\mathcal{T}_{\mathcal{S}4.3} = \{ x \le fx, \ ffx \le fx, \ f(x \land y) \land f(x \land z) \le f(x \land fy \land fz) \}.$$

As we will see later, $\mathcal{T}_{S4.3}$ is not DLO-conservative.

Embedding DLO into BAO

Embedding from a DLO \mathfrak{D} to a BAO is given by defining appropriate binary relation R on the set $\mathcal{F}(\mathfrak{D})$ of prime filters of \mathfrak{D} .

Let \mathfrak{B} be the complex BA defined on the set $\mathscr{P}(\mathcal{F}(\mathfrak{D}))$. Let $f_{\mathfrak{D}}$ be the operator on \mathfrak{D} and $f_{\mathfrak{B}}$ an operator on \mathfrak{B} defined by $f_{\mathfrak{B}}(U) = \{F \mid \exists G \in U \ (F, G) \in R\}.$

Example:

• If $f_{\mathfrak{D}}$ is functional and $(F, G) \in R \Leftrightarrow G = f_{\mathfrak{D}}^{-1}(F)$, then $f_{\mathfrak{B}}$ is functional.

• If $f_{\mathfrak{D}}$ is symmetry and $(F, G) \in R \Leftrightarrow f_{\mathfrak{D}}(G) \subseteq F$ and $f_{\mathfrak{D}}(F) \subseteq G$, then $f_{\mathfrak{B}}$ is symmetry.

Unfortunately, we don't know any general way to define R.

Complete theories

As a consequence, we have following completeness results:

Theorem

The following \mathcal{EL} -theories are complete:

• Symmetry:

$$\{x \wedge fy \leq f(fx \wedge y)\}$$

Functionality:

$$\{fx \wedge fy \leq f(x \wedge y)\}$$

Reflexivity, transitivity and symmetry:

$$\mathcal{T}_{S5} = \{x \le fx, \, ffx \le fx, \, x \land fy \le f(fx \land y)\}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Let \mathcal{T}_1 and \mathcal{T}_2 be \mathcal{EL} -theories. We call $\mathcal{T}_1 \cup \mathcal{T}_2$ a *fusion* of \mathcal{T}_1 and \mathcal{T}_2 if the set of *f*-operators occurring in \mathcal{T}_1 and \mathcal{T}_2 are disjoint.

Theorem The fusions of complete \mathcal{EL} -theories are also complete.

Union of complete theories is not complete in general, as we will see later.

Incompleteness

There are \mathcal{EL} theories \mathcal{T} which are incomplete. That is, there exists quasi-equation **q** such that

 $\mathcal{T} \vDash_{\mathsf{CA}} \mathbf{q}, \ \mathcal{T} \not\models_{\mathsf{SLO}} \mathbf{q}.$

Some incomplete \mathcal{EL} theories are DLO-nonconservative. That is, there exists quasi-equation **q** such that

 $\mathcal{T} \vDash_{\mathsf{DLO}} \mathbf{q}, \ \mathcal{T} \not\models_{\mathsf{SLO}} \mathbf{q}.$

BAO-nonconservative incomplete \mathcal{EL} theory

Example: Both $\{x \le fx\}$ and $\{fx \land fy \le f(x \land y)\}$ are complete, but their union is not. Let $\mathfrak{S} = \{0, a, 1\}$, f0 = 0 and fa = f1 = 1. Then, $fa \le a$. However, in BAO

$$\{x \le fx, fx \land fy \le f(x \land y)\} \vDash_{\mathsf{BAO}} fx \le x$$

Figure: *fa* ≰ *a*

< ロ > < 同 > < E > < E > < E > < 0 < 0</p>

On the other hand, the above theory is DLO-conservative.
Union of complete theories is not complete, in general.

DLO-nonconservative incomplete \mathcal{EL} theory

Example: $\mathcal{T}_{S4.3}$ is DLO-nonconservative and hence incomplete. Let \mathfrak{S} be the following SLO, where fa = d, fc = e and fx = x for the remaining x. Then, $a \wedge fc = fa \wedge c$ and $fa \wedge fc \notin f(a \wedge c)$. However, in DLO

$$\mathcal{T}_{\mathcal{S}4.3} \vDash_{\mathsf{DLO}} x \land fy = fx \land y \Rightarrow fx \land fy \leq f(x \land y).$$

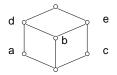


Figure: $a \wedge fc = fa \wedge c$, $fa \wedge fc \nleq f(a \wedge c)$

Is there any SLO equation e such that

 $\mathcal{T}_{S4.3} \vDash_{\mathsf{DLO}} \mathbf{e} \text{ and } \mathcal{T}_{S4.3} \not\models_{\mathsf{SLO}} \mathbf{e}?$

イロト 不得 トイヨト イヨト 三日

Subvarieties of $\mathcal{S}5$

It is known that the lattice of subvarieties of V(\mathcal{T}_{S5}) is the following (Jackson 04), where

$$\mathcal{T}_{\mathcal{S}5} = \{ x \leq fx, \ ffx \leq fx, \ x \wedge fy \leq f(fx \wedge y) \}.$$

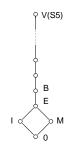


Figure: Lattice of subvarieties of V(\mathcal{T}_{S5})

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Subvarieties of S5

The only incomplete one is \mathcal{E} , which is defined by

 $\mathcal{T}_{\mathcal{S}5} \cup \{ fx \wedge fy \leq f(x \wedge y) \}.$

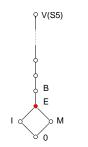


Figure: Lattice of subvarieties of V(\mathcal{T}_{S5})

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Completeness problem for \mathcal{EL} -theories

- We have observed that some theories of *EL* are complete and some are not.
- So, it is a natural question that whether we can decide a given *EL*-theory is complete or not.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• The last topic of this presentation is undecidability of this completeness problem for \mathcal{EL} -theories.

Undecidability of completeness

By reducing the halting problem for Turing machines, we can show the following:

Theorem

No algorithm can decide, given a finite set T of \mathcal{EL} -equations, whether $T \models_{\mathsf{SLO}} 0 = 1$.

We also have the following:

Theorem

For every \mathcal{EL} -theory \mathcal{T} , the following two conditions are equivalent:

- the fusion of \mathcal{T} and $\{f(x) \leq x\}$ is complete;
- $\mathcal{T} \models_{\mathsf{SLO}} 0 = 1.$

Undecidability of completeness

Hence, we have undecidability of completeness:

Theorem It is undecidable whether a finite set T of \mathcal{EL} -equations is complete.

- · General sufficient syntactic criteria for completeness.
- Discuss conservativity for equations, instead of quasi-equations.
- Relation between quasi-varieties of SLOs and varieties of SLOs defined by *EL* theories.

Thank you for your attention.

<□ > < @ > < E > < E > E のQ @