
Electronic Communications of the EASST
Pre-proceedings

Proceedings of the
Eighth International Workshop on

Graph Transformation and Visual Modeling Techniques
(GT-VMT 2009)

Ten good reasons why structured graphs can be better than flat ones

Roberto Bruni

5 pages

Guest Editors: Artur Boronat, Reiko Heckel
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Ten good reasons why structured graphs can be better than flat ones

Roberto Bruni1

1bruni@di.unipi.it
Dipartimento di Informatica, Università di Pisa

Abstract: This talk presents our proposal, called ADR, for the design of recon-
figurable software systems. ADR is based on hierarchical graphs with interfaces
and it has been conceived in the attempt of reconciling software architectures and
process calculi by means of graphical methods. We illustrate the main motivations
behind ADR and the current advancements on its foundations, applications and tool
support.

Keywords: Hierarchical graphs, ADR, Maude, graphical encoding

If you can find something everyone agrees on, it’s wrong — M. Udall

1 Rationale

Graph-based notation, techniques and tools play a fundamental role for the formal analysis of
complex systems. However, the complexity of modern software systems like those emerging in
global computing and in service oriented architectures is such that the “representation distance”
w.r.t. ordinary graph transformation methodologies has grown larger and larger and poses serious
problems in terms of issues such as, e.g., scalability, open endedness, dynamicity or distribution.
Furthermore, the same kind of complication hampers indiscriminately all phases involved in the
modeling process (specification, design, validation and verification).

As old remedies should always be attempted first, we would like to show that one good way to
tackle complexity and to enhance efficient formal reasoning is to superimpose some structure on
complex graphs, whatever their nature is (e.g., Petri nets, BPEL-like workflow models, reference
modeling languages, process calculi encodings). In other words, we propose to consider (a
special kind of) structured graphs instead of flat graphs.

In the following we sketch some motivation to sustain our claim and then we shortly discuss
our proposal called Architectural Design Rewriting (ADR). We assume the reader has some fa-
miliarity with the way in which typed (hyper)graphs are used to represent software architectures
composed by components and connectors.

2 Ten Good Reasons

In this section we list some sample limitations of flat graphs. In all cases the use of structured
graphs provides evident improvements.

GT-VMT’09

mailto:bruni@di.unipi.it


Ten virtues of structured graphs

2.1 Requirements

Type graphs are a convenient way to limit the way in which components can be connected to-
gether. However, there are some simple structural constraints that cannot be accounted for di-
rectly and need instead additional logic-based languages to be expressed properly. One such
example is a pipeline architecture, where components are composed sequentially to form arbi-
trarily long sequences.

2.2 Model construction

Graph grammars, like those based on hyperedge replacement, can offer a convenient way to
build properly shaped systems, but once the information about the generation process is lost
then we are left with possibly large, flat, unstructured graphs that are not as representative of the
modelled architectures as they could be. One such example is a tree-like architecture, where the
information about the root is lost together with any logical dependency between components. A
similar example is that of a ring architecture, where the components are generated sequentially
by the rules of the grammar, but the information about leadership (the first generated component)
is not encoded in the flat graph itself.

2.3 Parsing and browsing

Once a large graph has been constructed, it is important, for efficiency reasons, to have conve-
nient ways to browse it, e.g. some sort of “blueprint” would help to identify and predicate over
certain relevant subgraphs. One such example is a large loosely coupled network composed of
local clique-shaped subnetworks, where characterizing such subnetworks is important for mod-
eling software updates or load balancing.

2.4 Model conformance

Analogously, the “blueprint” offers an immediate witness that the undelying graph is conformant
to a certain architectural style or to certain constraints required by the original specification.
Recovering the analogous guarantee on the underlying graph from scratch is certainly more
difficult.

2.5 Compositionality

The correct composition of software systems is often constrained by the way in which their inter-
faces can be connected. When flat graphs are considered, the information about their interfaces
can be missing at all (i.e. suitable extensions need to be considered) or encoded ad hoc (but then
possibly hard to recover).

2.6 Abstraction and refinement

The same system can be considered at different levels of abstraction, e.g. depending on the
granularity of its components. For example, in the specification phase it can be the case that

GT-VMT’09



ECEASST

certain details are omitted in a first, rough modeling for fast prototyping but then they need to be
inserted or reconsidered in a subsequent phase. If the graph is flat then it is more difficult to move
from one level of abstraction to the other in a sound way. For example, consider a workflow of
activities composed in series and in parallel at different degree of granularity: if the graph is flat
then the grouping of subactivities must be encoded ad hoc to avoid confusion.

2.7 Graphical encoding

One important advantage of graphical encodings is the intuitive visual modeling of complex
systems, where the graph itself should offer an immediate characterization of the represented
system. This fact has been exploited with success, e.g., in the modeling of process calculi. In
the case of process calculi for global computing and service oriented computing, there are some
notions like sessions, transactions and nested compensations that require logical grouping of
components or some notion of containment. For example, when a transaction is aborted it is
important that every participant undertakes timely counteractions. Again, when flat graphs are
considered, some ad hoc encoding of containment is necessary.

2.8 Evolution

Graph-based models are often equipped with graph rewrite rules in suitable formats that can
account for complex reconfigurations by exploiting negative application conditions and sophis-
ticated synchronization mechanisms. One big advantage is the availability of their solid theories
related to concurrency and distribution. However, the graph matching problems arising for rule
applicability are computationally more expensive than the pattern matching problems arising
when a more structured approach is considered.

2.9 Reconfiguration

When reconfiguration rules are considered, like in self-repairing and self-adaptive systems, then
it is important: 1) to guarantee the conformance of the reconfigured system; 2) to keep the
reconfiguration as local as possible. In the case of flat graphs and ordinary graph transformation
approaches these two features are often hard to match and need to be studied case by case. For
example, consider the case of a global network that connect several star-shaped, local networks,
whose servers are the components at the center of the star. Then, when a server goes down, a
valid reconfiguration could consist of migrating all its peers to a different server, which is not
easy to accomplish with ordinary SPO or DPO rules.

2.10 Logical specification and verification

Last but not least, the representation distance between the structural and behavioural properties
of the modelled systems and the logical formulas needed to express them. Moreover, in the case
of automatic verification it is crucial to limit state explosion and to guarantee efficient analysis.
For example, when spatial logics are considered, then verification can be sensibly improved by
exploiting some superimposed strucure over graphs.

GT-VMT’09



Ten virtues of structured graphs

3 Architectural Design Rewriting

Architectural Design Rewriting (ADR) is a proposal for the design of complex software systems.
The key features of ADR are: 1) hierarchical graphs with interfaces; 2) algebraic presentation;
3) inductively-defined reconfigurations.

Roughly, the underlying model consists of some kind of interfaced graphs whose inner items
represent the architectural units and their interconnections and whose interface expresses the
overall type and its connection capabilites. Architectures are designed inductively by a set of
productions which enable: top-down refinement, like replacing an abstract components with a
possibly partial realisation; bottom-up typing, like inferring the type of an actual architecture;
well-formed composition, like composing some well-typed actual architectures together so to
guarantee that the result is still well-typed. In the functional reading, the set of productions de-
fines an algebra of terms, each providing a proof of style conformance. Hence, the interpretation
of a proof term is the actual architecture.

The dynamics is then expressed by term rewrite rules acting over proof terms rather than over
actual architectures. This has many advantages, like guaranteeing that all reconfiguration are
style-preserving by construction.

The flexibility of ADR has been validated over heterogeneous models such as network topolo-
gies, architectural styles and modelling languages. A prototypical implementation of ADR has
also being developed using Maude, together with a simple visualisator of term-like specifications
of hierarchical graphs. The web site of ADR (http://www.albertolluch.com/research/adr) makes
both tools available and provides links to several additional resources.

Acknowledgements: The work on ADR has been done in collaboration with several col-
leagues, with whom I have been honoured to exchange many ideas, compare different perspec-
tives and approaches, share stress and friendship and whose contribution has been fundamental
for the topics of this talk: my best thanks for that to Alberto Lluch Lafuente, Ugo Montanari,
Emilio Tuosto, Fabio Gadducci, Antonio Bucchiarone, Stefania Gnesi and Dan Hirsch.

I would also like to thank Artur Boronat and Reiko Heckel for inviting me to give this talk at
GT-VMT 2009.

Research on ADR is supported by EU FET-GC2 IP project SENSORIA, IST-2005-016004.

Bibliography

[BBG+08] R. Bruni, A. Bucchiarone, S. Gnesi, D. Hirsch, A. Lluch Lafuente. Graph-Based
Design and Analysis of Dynamic Software Architectures. In Degano et al. (eds.),
Concurrency, Graphs and Models, Essays Dedicated to Ugo Montanari on the Oc-
casion of His 65th Birthday. Lect. Notes in Comput. Sci. 5065, pp. 37–56. Springer
Verlag, 2008.

[BGL09] R. Bruni, F. Gadducci, A. Lluch Lafuente. Graphical Representation of Process
Calculi via an Algebra of Hierarchical Graphs. 2009. Manuscript submitted to a
conference. Available at http://www.albertolluch.com/papers/adr.algebra.pdf.

GT-VMT’09

http://www.albertolluch.com/research/adr
http://www.albertolluch.com/papers/adr.algebra.pdf


ECEASST

[BLM09] R. Bruni, A. Lluch Lafuente, U. Montanari. Hierarchical Design Rewriting with
Maude. In Rosu (ed.), Proceedings of WRLA 2008, 7th International Workshop on
Rewriting Logic and its Applications. Elect. Notes in Th. Comput. Sci. Elsevier
Science, 2009. To appear.

[BLMT08a] R. Bruni, A. Lluch Lafuente, U. Montanari, E. Tuosto. Architectural Design
Rewriting as an Architecture Description Language (position paper). In Bhargavan
et al. (eds.), Proceedings of R2D2 2008, Workshop on the Rise and Rise of Declar-
ative Datacentre. Pp. 15–16. 2008. Technical Report MSR-TR-2008-61, Microsoft
Research Cambridge.

[BLMT08b] R. Bruni, A. Lluch Lafuente, U. Montanari, E. Tuosto. Service Oriented Architec-
tural Design. In Barthe and Fournet (eds.), Proceedings of TGC 2007, 3rd Inter-
national Symposium on Trustworthy Global Computing. Lect. Notes in Comput.
Sci. 4912, pp. 186–203. Springer Verlag, 2008.

[BLMT08c] R. Bruni, A. Lluch Lafuente, U. Montanari, E. Tuosto. Style-Based Architectural
Reconfigurations. Bulletin of the EATCS 94:161–180, 2008.

GT-VMT’09


	Rationale
	Ten Good Reasons
	Requirements
	Model construction
	Parsing and browsing
	Model conformance
	Compositionality
	Abstraction and refinement
	Graphical encoding
	Evolution
	Reconfiguration
	Logical specification and verification

	Architectural Design Rewriting

