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Preface 
 

This volume contains the proceedings of the Eighth International Workshop on Graph 

Transformation and Visual Modeling Techniques (GT-VMT 2009), held in York (UK) on 

March 28-29, 2009, as a satellite event to the European Joint Conference on Theory and 

Practice of Software (ETAPS’09).   

 The GT-VMT workshop series serves as a forum for all researchers and practitioners 

interested in the use of graph-based notation, techniques and tools for the specification, 

modeling, validation, manipulation and verification of complex systems. Previous workshops 

have been organized in Geneva (2000), Crete (2001), Barcelona (2002 and 2004), Vienna 

(2006), Braga (2007) and Budapest (2008).  

The aim of the workshop is to promote engineering approaches that provide effective sound 

tool support for visual modeling languages, enhancing formal reasoning at the semantic level 

(e.g., for model analysis, transformation, and consistency management) in different domains, 

such as UML, Petri nets, Graph Transformation or Business Process/Workflow Models.  

This year's workshop will have a special focus on visualisation, simulation, and verification 

of domain-specific languages (DSLs) to improve the automation and quality in model-driven 

and/or service-oriented processes. This year we received 21 submissions, from which 10 were 

accepted and 4 are subject to a second review process after the workshop. Accepted papers 

balance theoretical and applied concepts, including tool support. The workshop program has 

been organized in five technical sessions, in two days:  

 

Saturday, March 28, 2009 Sunday, March 29, 2008 

Pattern Matching and Verification Evolution 

Simulation Visual DSLs 

Visual Transformations  

 

The final proceedings will be published in the Electronic Communications of the EASST after 

the workshop. ECEASST is a fully refereed online journal and provides a forum for 

practitioners, educators and researchers for disseminating innovative research in the area of 

software and system technology. The volumes in the ECEASST series are available online at 

http://www.easst.org/eceasst.  

The organizers acknowledge the support by the European Association of Software Science 

and Technology (EASST) and the IST Integrated Project SENSORIA (Software Engineering 

for Service-Oriented Overlay Computers) funded by the European Union in the 6th framework  

program as part of the Global Computing Initiative.  

We would like to thank the members of the Program Committee and the secondary 

reviewers for their excellent work in selecting the papers of this workshop, they are listed 

below. We would also like to thank the organizing committee of ETAPS for their constant 

support.  
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Completeness and Correctness of Model Transformations based on
Triple Graph Grammars with Negative Application Conditions

Hartmut Ehrig1 , Frank Hermann1 and Christoph Sartorius1

1 [ehrig, frank, csart](at)cs.tu-berlin.de
Institut für Softwaretechnik und Theoretische Informatik

Technische Universität Berlin, Germany

Abstract: Model transformations are a key concept for modular and distributed
model driven development. In this context, triple graph grammars have been inves-
tigated and applied to several case studies and they show a convenient combination
of formal and intuitive specification abilities. Especially the automatic derivation
of forward and backward transformations out of just one specified set of rules for
the integrated model simplifies the specification and enhances usability as well as
consistency.

Since negative application conditions (NACs) are key ingredient for many model
transformations based on graph transformation we embed them in the concept
of triple graph grammars. As a first main result we can extend the composi-
tion/decomposition result for triple graph grammars to the case with NACs. This
allows us to show completeness and correctness of model transformations based on
rules with NACs and furthermore, we can extend the characterization of information
preserving model transformations to the case with NACs.

The presented results are applicable to several model transformations and in partic-
ular to the well known model transformation from class diagrams to relational data
bases, which we present as running example with NACs.

Keywords: model transformation, triple graph grammars, completeness, correct-
ness, negative application conditions

1 Introduction

Model transformations based on triple graph grammars have been introduced in [Sch94, KS06].
In order to define a general framework independent of the specific domain and target language
the correspondences between source and target models are defined as relational mappings, where
forward and backward transformation rules are derived automatically.

In [EEE+07] we showed how to analyze bi-directional model transformations based on triple
graph grammars with respect to information preservation, which is based on a decomposition and
composition result for triple graph grammar sequences. Moreover, completeness and correctness
of model transformations have been studied on this basis in [EEH08b, EEH08c]. All formal
results in these papers, however, do not consider negative application conditions (NACs), which
are very important for several practical applications (see [SK08]). The main purpose of this
paper is to extend TGGs with NACs on a formal basis.
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Correctness and Completeness of Model Transformation

As a main result we show completeness, correctness and information preservation of model
transformations with NACs. Our new result can be used to check, whether a model transforma-
tion performed by an algorithm using triple graph transformations with NACs such as [SK08] is
correct (see Section 7). The relationship between forward and backward model transformation
sequences was analyzed already in [EEE+07] based on a canonical decomposition and compo-
sition result for triple transformations and this paper extends it to the case with NACs.

In Section 2 we review triple graphs and introduce the case study for a model transformation
from class models to relational data base models. Section 3 reviews triple rules and triple graph
transformations as introduced in [Sch94] and extends them to the case with NACs showing that
the composition and decomposition result is also valid for this extension. The second main re-
sult of correctness and completeness of model transformations based on source consistent model
transformations with NACs is presented in Section 4 and explained on a concrete model trans-
formation sequence of the example. Section 5 shows how the characterization of information
preserving bidirectional model transformations is extended to the case with NACs. Related and
future work are discussed in sections 6 and 7, respectively.

2 Review of Triple Graphs

Triple graph grammars [Sch94] are a well known approach for bidirectional model transfor-
mations. Models are defined as pairs of source and target graphs which are connected via an
intermediate correspondence graph together with its embeddings into these graphs. In [KS06],
Königs and Schürr formalize the basic concepts of triple graph grammars in a set-theoretical way,
which was generalized and extended by Ehrig et. el. in [EEE+07] to typed, attributed graphs. In
this section, we shortly review triple graphs, while triple rules are defined in Sec. 3 together with
the extension to negative application conditions (NACs).

Definition 1 (Triple Graph and Triple Graph Morphism) Three graphs GS, GC, and GT , called
source, connection, and target graphs, together with two graph morphisms sG : GC → GS and
tG : GC → GT form a triple graph G = (GS

sG← GC
tG→ GT ). G is called empty, if GS, GC, and GT

are empty graphs.
A triple graph morphism m =(s,c, t) : G→H between two triple graphs G =(GS

sG← GC
tG→ GT )

and H = (HS
sH← HC

tH→ HT ) consists of three graph morphisms s : GS → HS, c : GC → HC and
t : GT →HT such that s◦ sG = sH ◦c and t ◦ tG = tH ◦c. It is injective, if morphisms s, c and t are
injective. A typed triple graph G is typed over a triple graph TG = (TGS ← TGC → TGT ) by a
triple graph morphism tG : G→ TG.

Example 1 The type graph of the ex-
ample is given in Fig. 1 showing the
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Figure 1: Triple type graph for CD2RDBM

structure of class diagrams in the source
component and relational databases in
the target component. Classes corre-
spond to tables and attributes to columns.
Throughout the example, originating from
[SK08] and [EEE+07], elements are arranged left, center, and right according to the component
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types source, correspondence and target. Morphisms starting at a connection part are given by
dotted arrow lines. Note that the case study is equipped with attribution, which is based on the
concept of E-graphs [EEPT06].

The extension of the results of this paper to the case with attributes shall be straight forward,
all results can be shown in the framework of weak adhesive HLR categories and hence, also for
the category AGraphsAT G of attributed graphs.

3 Triple Graph Grammars with NACs

Many model transformations use the concept of negative application conditions (NACs) intro-
duced in [HHT96]. NACs can ensure termination and they can control the application of model
transformation rules by defining forbidden structures as extensions of left hand sides of rules. If a
forbidden structure is present around the selected match, the corresponding rule is not applicable
and the match is invalid, i.e. NACs restrict the applicability of model transformation rules.

While triple graph grammars (TGGS) are an elegant way to descriptively define model trans-
formations by defining triple rules that specify the synchronous creation of source and target
model, formal results are mainly given for the case of TGGs without NACs. In this section we
review triple rules, derivation of transformation rules and we define NACs for triple rules. The
case study presents rules with NACs motivated by a similar model transformation in [SK08],
where NACs are used to ensure well formed list structures.

A triple rule is used to build up source and target graphs as well as their connection graph, i.e.
they are non-deleting. Structure filtering which deletes parts of triple graphs, is performed by
projection operations only, i.e. structure deletion is not done by rule applications.

Definition 2 (Triple Rule tr and Triple Transformation Step)
A triple rule tr consists of triple graphs L and R, called left-
hand and right-hand sides, and an injective triple graph mor-
phism tr = (s,c, t) : L→ R. Given a triple rule tr = (s,c, t) :
L→ R, a triple graph G and an injective triple graph morphism
m = (sm,cm, tm) : L→G, called triple match m, a triple graph
transformation step (TGT-step) G =tr,m==⇒ H from G to a triple
graph H is given by three pushouts (HS,s′,sn), (HC,c′,cn) and
(HT , t ′, tn) in category Graph with induced morphisms sH :

L = (LS
tr !! s !!

LC
sL""

c !!

tL ## LT )
t!!

R = (RS RCsR
""

tR
## RT )

LS

!!

sm $$!!
LC"" ##

!!

cm %%
LT

!!

tm &&
G = (GS

tr
'' s′ !!

GC"" ##

c′ !!

GT )

t ′ !!
RS

sn$$
RC"" ##

cn%%
RT
tn&&

H = (HS HCsH
""

tH
## HT )

HC → HS and tH : HC → HT . Morphism n = (sn,cn, tn) is called comatch.

Moreover, we obtain a triple graph morphism d : G→H with d = (s′,c′, t ′) called transforma-
tion morphism. A sequence of triple graph transformation steps is called triple (graph) transfor-
mation sequence, short: TGT-sequence. Furthermore, a triple graph grammar TGG = (S,T R)
consists of a triple start graph S and a set T R of triple rules. Given a triple rule tr we refer by
L(tr) to its left and by R(tr) to its right hand side.

Definition 3 (Triple, Source and Target Language) A set of triple rules T R defines the triple
language VL = {G | /0⇒∗ G via TR} of triple graphs. Source language V LS and target language
are derived by projection to the triple components, i.e. V LS = pro jS(V L) and V LT = pro jT (V L),

GT-VMT’09
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Correctness and Completeness of Model Transformation

where pro jX is a projection defined by restriction to one of the triple components, i.e. X ∈
{S,C,T}.

Definition 4 (Derived Triple Rules) From each triple rule tr = L → R we have the following
source, forward, target and backward rules:

(LS
s !!

/0""

!!

## /0)
!!

(RS /0"" ## /0)
source rule trS

( /0
!!

/0""

!!

## LT )
t !!

( /0 /0"" ## RT )
target rule trT

(RS
id !!

LC
s◦sL""

c !!

tL ## LT )
t!!

(RS RC
sR"" tR ## RT )

forward rule trF

(LS
s !!

LC
sL""

c !!

t◦tL ## RT )
id !!

(RS RC
sR"" tR ## RT )

backward rule trB

Source rules allow to create all elements of V LS as restriction of VL, but they contain less
restrictions for matches during transformation in comparison to their corresponding complete
triple rules. Thus, they possibly allow to generate more elements than V LS contains. This means
that in general we have inclusion V LS ⊆ V LS0 = {GS | /0 =⇒∗ GS via TRS} resp. V LT ⊆ V LT 0 =
{GT | /0 =⇒∗ GT via TRT}, where T RS and T RT are the sets of source resp. target rules derived
from T R.

Definition 5 (General Negative Application Condition) Given a triple rule tr = (L tr→ R), a
general negative application condition (NAC) (N,n) consists of a triple graph N and an injective
triple graph morphism n : L→ N.
A match m : L→ G is NAC consistent if there is no injective q : N → G such that q ◦n = m. A
triple transformation G ∗⇒ H is NAC consistent if all matches are NAC consistent.

Definition 6 (Source-Target Negative Application Condition) A source-target NAC (N,n)
is a NAC with injective triple graph morphism n : L → N with n = (nS, idLC , idLT ) or n =
(idLS , idLC ,nT ).
This means a source-target NAC is a NAC which only prohibits the existence of certain structures
either in the source (source NAC) or in the target part (target NAC).

!"#$%%

&$'()&
!"*
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&$'()&

"#$%%,*$+#(-&!./01&23

!4$0(&/

!"#$%%

!"#$%%
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!!
!!

!!

!!!!

!!

Figure 2: Rules for transforming classes to tables

In most usecases we encounter only source-target NACs, therefore we regard them as the
standard case. In the following when speaking of NACs we always mean source-target NACs. If
this is not the case we will explicitly refer to the term general NAC.

Definition 7 (Derived Triple Rules with NACs) Given a triple rule tr with NACs and let tr be
its underlying triple rule without NACs. Let trS, trT , trF and trB be the derived rules from tr
according to Def. 4. Then, source rule trS, target rule trT , forward rule trF and backward rule
trB are given by the underlying rules trS, trT , trF and trB, where additionally trS as well as trB
contain all source NACs of tr and trT as well as trF contain all target NACs of tr.

GT-VMT’09
12



ECEASST

!"#$
!"#%

!&'("(()%!&'(#*+,-./.01()2.345(01()2.36

07*+8

0"#

0#+988

0"(()

0"(()

.9-&:.

(;<&:(

09(()8

09(()8
0#= ($0=9>+&

0#*+,-.

07*+8

!!

!!
!!

!!
!!

0#*+,-.

.9-&:.

(;<&:(
!!

07*+8

0.&'(

0.&'(
0#*+,-.

!!

0"(()

09(()8

0.&'(

0.&'(

!"#$
!"#%

07*+8

0"#

0#+988

0"(()

0"(()

.9-&:.

(;<&:(

09(()8

09(()8
0#= ($0=9>+&

0#*+,-.

07*+8

!!

!!
!!

!!
!!

0#*+,-.

.9-&:.

(;<&:(

07*+8

0.&'(

0.&'(
0#*+,-.

!!

"(()%!&'(#*+,-./.01()2.345(01()2.36

!"#$
!"#%

07*+8

0"#

0#+988

0"(()

0"(()

.9-&:.

(;<&:(

09(()8

09(()8
0#= ($0=9>+&

0#*+,-.

07*+8

!!

!!
!!

!!
!!

0#*+,-.

.9-&:.

(;<&:(

"(()%#*+,-./.01()2.345(01()2.36

!"#$
0#+988

0"(()

0"(()

.9-&:.

(;<&:(

09(()8

09(()8

!!
!!

1*,)7&5),+&05"(()%#*+,-.1/.01()2.345(01()2.36

!"#$

07*+8

0"#

0#+988

0"(()

.9-&:.

(;<&:(

09(()8

0#= ($0=9>+&

0#*+,-.

07*+8

!!

!!
!!

0#*+,-.

.9-&:.

(;<&:(

?*)@9)A5),+&05"(()%#*+,-.?/.01()2.345(01()2.36

Figure 3: Rules for transforming attributes to columns and derived source and forward rule

Example 2 (Triple Rules) Examples for triple rules are given in Fig. 2 and Fig. 3 in short
notation. Left and right hand side of a rule are depicted in one triple graph. Elements, which
are created by the rule, are labeled with green ”++” and marked by green line coloring. Rule
”Class2Table” synchronously creates a class in a class diagram with its corresponding table in
the relational database. Accordingly the other rules create parts in all components. NACs are
indicated by red frames with label “NAC” around the extension of the left hand side of a rule.
Each forward rule is derived from a triple tr rule as follows: The source components which are
created in tr are preserved by trF , i.e. they are in the left hand side. The source NAC is omitted
and the rest of tr keeps the same. For example the forward rule of “Attr2Colum” is derived by
omitting “NAC1” and adding to the left hand side the attribute node with its connecting edge to
the class node shown on the right part of Fig. 3.

Theorem 1 as a main technical result of the paper shows that TGT-sequences can be decom-
posed to source and forward sequences and composed out of them. All together this correspon-
dence is bijective. The result uses the following notion of match consistency.

Definition 8 (Match and Source Consistency) Let tr∗S and tr∗F be sequences of source rules triS
and forward rules triF , which are derived from the same triple rules tri for i = 1, . . . ,n. Let
further G00 =

tr∗S=⇒ Gn0 =
tr∗F=⇒ Gnn be a TGT-sequence with (miS,niS) being match and comatch of

triS (respectively (miF ,niF) for triF ) then match consistency of G00 =
tr∗S=⇒ Gn0 =

tr∗F=⇒ Gnn means
that the S-component of the match mi is uniquely determined by the comatch niS (i = 1, . . . ,n).

GT-VMT’09
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Correctness and Completeness of Model Transformation

A TGT-sequence Gn0 =
tr∗F=⇒ Gnn is source consistent, if there is a match consistent sequence

/0 =
tr∗S=⇒ Gn0 =

tr∗F=⇒ Gnn. Note that by source consistency the application of the forward rules is
controlled by the source sequence, which generates the given source model.

Theorem 1 (Decomposition and Composition of TGT-Sequences with NACs)

1. Decomposition: For each TGT-sequence
G0 =tr1=⇒ G1 =⇒ . . . =trn=⇒ Gn (1)

with NACs there is a corresponding match consistent TGT-sequence

G0 = G00 =tr1S=⇒ G10 =⇒ . . . =trnS=⇒ Gn0 =tr1F==⇒ Gn1 =⇒ . . . =trnF==⇒ Gnn = Gn (2)

with NACs.

2. Composition: For each match consistent transformation sequence (2) with NACs there is
a canonical transformation sequence (1) with NACs.

3. Bijective Correspondence: Composition and decomposition are inverse to each other.

Remark 1 (Injective matches) Opposed to the version without NACs in [EEE+07] the matches
of the triple rules are required to be injective. If we allow non-injective matches, then we must
allow n and q in definition 5 to be non-injective as well.

Proof of Theorem 1. This proof is based on the proof without NACs in [EEE+07] and Lemmas
1 and 2 below proven in [EHS09]. In a first step we want to decompose the match consistent
NAC-consistent TGT-sequence (1) with injective matches into an intermediate version

G0 = G00 =tr1S=⇒ G10 =tr1F==⇒ G11 =tr2S=⇒ . . . =trnS=⇒ Gn(n−1) =trnF==⇒ Gnn = Gn (3)

which is match consistent and NAC-consistent.
In [EEE+07] it has been shown that any tr is equal to the E-concurrent rule trS !E trF without

NACs with E = LF - the left hand side of the forward rule. Using this result following Lemma 1
multiple times we are able to split the triple rules with NACs until we obtain sequence (3).

Lemma 1 The injective match of a triple rule tr is NAC-consistent if and only if the injective
matches of the derived rules trS and trF are NAC-consistent.

Now we want to reorder the rules until we have sequence (2). In [EEE+07] it has been shown
that triS and tr jF are sequentially independent for i > j without NACs. Following Lemma 2
multiple times finally leads to sequence (2) which is still match consistent and NAC-consistent.

Lemma 2 Given sequentially independent rules tr2S and tr1F with NACs the following holds:
The injective matches of G10 =

(tr1F ,m1)=====⇒ G11 =
(tr2S,m2)====⇒ G21 are NAC consistent if and only if the

injective matches of G10 =
(tr2S,m2′ )=====⇒ G20 =

(tr1F ,m1′ )=====⇒ G21 are NAC consistent too.

Analogously we can transform sequence (2) back into sequence (1). The bijective correspon-
dence follows from the bijective correspondence of the Concurrency Theorem and the Local

GT-VMT’09
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Church-Rosser Theorem in conjunction with the equivalence of the NAC-consistency according
to Lemma 1 and 2.

4 Completeness and Correctness of Model Transformations with
NACs

Model transformations with NACs from models of the source language VLS0 to models of the
target language VLT 0 can be defined on the basis of forward rules as shown in [EEE+07] without
NACs. Vice versa, it is also possible to define backward transformations from target to source
graphs using derived backward rules leading to bidirectional model transformations. In this
section we analyze completeness and correctness of model transformations. Main results are
based on the composition and decomposition result in Thm. 1 in Sec. 3.

Definition 9 (Model Transformation) MT = (GS,G =
tr∗F=⇒ H,HT ) is a model transformation

from GS to HT , if G =
tr∗F=⇒ H is source consistent with NACs, where GS and HT are the source and

target graphs of G and H, respectively.

As pointed out already source consistency with NACs of G =
tr∗F=⇒ H means that the forward

sequence is controlled by the corresponding source sequence /0 =
tr∗S=⇒ G which generates G. Model

transformations are correct and complete with respect to the source and target language V LS =
pro jS(V L) and V LT = pro jT (V L) (see Def. 3).

Theorem 2 (Correctness with NACs) Each model transformation MT = (GS,G =
tr∗F=⇒ H,HT )

is correct, i.e. GS ∈V LS and HT ∈V LT .

Proof. (G =tr∗=⇒ H) source consistent ⇒ ∃ ( /0 =
tr∗S=⇒ G =

tr∗F=⇒ H) match consistent and GS = HS

⇒ ∃ ( /0 =tr∗=⇒ H) by Thm. 1 ⇒ H ∈V L and HT ∈V LT and GS = HS ∈ VLS.

Theorem 3 (Completeness with NACs) For each H ∈ VL : ∃ model transformation MT =
(GS,G =

tr∗F=⇒ H,HT ) with GS ∈V LS, HT ∈V LT . This means in particular:

• For each HT ∈V LT : ∃ GS ∈V LS and model transformation MT = (GS,G =
tr∗F=⇒ H,HT ),

• For each GS ∈V LS : ∃ HT ∈V LT and model transformation MT = (GS,G =
tr∗F=⇒ H,HT ).

Proof. H ∈V L ⇒ ∃ ( /0 =tr∗=⇒ H) =T hm.1===⇒ ∃ match consistent ( /0 =
tr∗S=⇒ G =

tr∗F=⇒ H) and GS = HS ⇒
GS ∈ V LS,HT ∈ VLT and G =

tr∗F=⇒ H is source consistent ⇒ MT = (GS,G =
tr∗F=⇒ H,HT ) is model

transformation.

Coming back to the example of a model transformation from class diagrams to database mod-
els, the relevance and value of the given theorems can be described from the more practical view.
The resulting data base of the following model transformation is correctly typed and completely
corresponds to the class diagram, which is the source model of the transformation.
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Forward Sequence Elements Backward Sequence Elements
Step Matched Created Matched Created
1 s1 c1,t1 t1 s1,c1
2 s1,c1,t1,s4,s9 c4 s1,c1,t1 s4,s9,c4
3 s1,s2,s7,c1,t1 c2,t2,t5 s1,c1,t1,t2,t5 s2,s7,c2
4 s1-s3,s6-s8,c1,t1,t2,t5 c3,t3,t6,t7 s1,c1,t1-t3,s2,c2,s7,t5-t7 c3,s3,s6,s8
5 s4,s5,s10,c4,t1,t3,t6 c5,t4,t8,t9 s4,c4,t1,t3,t4,t8,t9 c5,s5,s10

Table 1: Steps forward and backward model transformation

Example 3 Fig. 4 shows triple graph G5 of the model transformation (GS = G0,S,G0 =
tr∗F=⇒

G5,GT = G5,T ) with the following forward sequence: G0 =Class2Table======⇒G1 =Subclass2Table========⇒G2 =Attr2Col====⇒
G3 =NextAttr2NextCol=========⇒ G4 =Attr2NextCol=======⇒ G5,
where G0 is generated by the corre-

t5:cols

s9:parent

c2:

AC

s8:next

s1:Class

name=!"#$%&'!

s5:Attr

name=!()%*&+#$_,-!

type=Integer

t2:Column

name=!.-/0!

type=String

t7:next

s4:Class

name=!1)%*&+#$!

s3:Attr

name=!2,$*3!

type=String

s2:Attr

name=!.-/0!

type=String

s7:attrss6:attrs

s10:attrs

c3:

AC

c5:

AC

c1:

CT

t1:Table

name=!"#$%&'!

t3:Column

name=!2,$*3!

type=String

t4:Column

name=!()%*&+#$_,-!

type=Integer

c4:

CT

t6:cols

t8:cols
t9:next

Figure 4: G5 of Forward Sequence

sponding source sequence /0 =
tr∗S=⇒ G0.

All elements are labeled with numbers
specifying the matches and the created
objects for each transformation step ac-
cording to the left part of Table 1. GS
is given by G5 restricted to elements of
the class diagram part. After creating
the table and building up the correspon-
dences to the class nodes in the first
two derivation steps, rules for translat-
ing attributes are applied. All steps
of the sequence respect the NACs and
furthermore, they correspond to a suit-
able source sequence making the for-
ward transformation source consistent.
In the third step, rule “Attr2Column” is
applied and translates attribute “s2” to column “t2”. Attribute s3 is generated after s2 in the
source sequence, which is required by the source NAC of “NextAttr2NextColumn”. Thus, the
corresponding forward transformation translates s3 after s2. The remaining two attributes are
translated by “NextAttr2NextColumn” and “Attr2NextColumn”, where the target NACs ensure
that the created columns are inserted after the last existing one of table “t1”. Thus, the ordering
of the created columns is not completely determined by the source model itself, but depends on
the chosen source sequence. The nodes and edges of correspondence and target component as
well as the morphisms (G5,S ← G5,C → G5,T ) are created during the forward transformation.

5 Information Preserving Model Transformations

In [EEE+07] we have shown that there is an equivalence between corresponding forward and
backward TGT sequences. This equivalence is based on the canonical decomposition and com-
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position result, which is extended to the case with NACs in this paper (see Theorem 1).
Theorem 1 and its dual version lead to the following equivalence of forward and backward

TGT-sequences with source-target NACs, which can be derived from the same general TGT-
sequence.

Theorem 4 (Equivalence of Forward and Backward TGT-sequences with source-target NACs)
Each of the following TGT-sequences with source-target NACs implies the other ones where the
matches are uniquely determined by each other.

1. G0
tr1=⇒ G1

tr2=⇒ G2 =⇒ ...
trn=⇒ Gn (1)

2. G0 = G00
tr1S=⇒ G10 =⇒ ...

trnS=⇒ Gn0
tr1F=⇒ Gn1 =⇒ ...

trnF=⇒ Gnn = Gn, (2)
which is match consistent. In this case we have: G00,T = Gn0,T , Gn0,S = Gnn,S.

3. G0 = G00
tr1T=⇒ G01 =⇒ ...

trnT=⇒ G0n
tr1B=⇒ G1n =⇒ ...

trnB=⇒ Gnn = Gn, (3)
which is match consistent. In this case we have: G00,S = G0n,S, G0n,T = Gnn,T .

Proof. Theorem 4 is a direct consequence of Theorem 1 concerning decomposition and com-
position of forward TGT-sequences with NACs and its dual version for target rules triT and
backward rules triB where match consistency in Part 3 is defined by the T-components of the
matches.

Theorem 5 (Information Preserving Forward Transformation)
Each source consistent forward TGT-sequence G =

tr∗F=⇒ H is backward information preserving,
i.e. for K = ( /0← /0→ HT ), there is a backward TGT-sequence K =

tr∗B=⇒ H, which means that the
source model GS can be reconstructed from the target model HT :

G =
tr∗F=⇒ H −pro jT−−−→ K =

tr∗B=⇒ H with GS = HS.

Proof. G =
tr∗F=⇒ H is source consistent which implies the existence of (2) /0 =

tr∗S=⇒ G =
tr∗F=⇒ H being

match consistent with GS = HS. By Theorem 4 with G0 = /0, Gn0 = G, G0n = K and Gn = H
we obtain (3) /0 =

tr∗T=⇒ K =
tr∗B=⇒ H being match consistent with KT = HT and HS = GS leading to

G =
tr∗F=⇒ H −pro jT−−−→ K =

tr∗B=⇒ H. Hence, G =
tr∗F=⇒ H is backward information preserving.

Example 4 Example 3 Table 1 shows that for the given model transformation G0 =
tr∗F=⇒ G5 ac-

cording to Thm. 5 there is an inverse backward transformation G5|T =
tr∗B=⇒ G5, i.e. the source

model can be reconstructed. However, there are also target consistent backward transformations
G5|T =

tr∗B=⇒ G′5 with G′5,S '= G0,S, because there are some class models with different inheritance
relations corresponding to the given data base model.

6 Related Work

Correctness of model transformations can be analyzed from different perspectives. Baleani et.
al. motivate in [BFM+05] that correctness of model transformations for industrial tools should

GT-VMT’09
17



Correctness and Completeness of Model Transformation

be based on formal models in order to ensure correctness by construction. For this purpose they
suggest to use a block diagram formalism, called synchronous reactive model of computation
(SR MoC). However, correct interpretation of the model transformation rules does not imply a
correct result, such that it is a model of the target language. Semantical correctness is discussed
by Karsai et. al. in [KN06], where specific behavior properties of the source model shall be
reflected in the target model. This property can be checked for a restricted class of models. In
[EE08] semantical correctness is ensured by using the rules for the model transformation also
for the transformation of the operational semantics, which is given by graph rules. This way the
behaviour of the source model can be compared with the one of the target model by checking
mixed confluence. However, this paper concentrates on syntactical correctness based on the
integrated language generated by the triple rules.

Our example in this paper presents a model transformation with NACs from class diagrams
to relational data bases and it is based on the grammars defined in [EEE+07] and especially on
[SK08]. In contrast to the presented algorithm in [SK08] for controlling the model transfor-
mations we introduced NAC consistency based on source consistent forward sequences. In this
way we could extend several important results to the case of TGGs with NACs. In particular,
model transformations given by source consistent forward transformations are correct and com-
plete with respect to V L by Theorems 2 and 3. While a formal proof of correctness for the above
mentioned algorithm is not given in [SK08], completeness of the algorithm is effectively not
ensured, because recursion calls may cause transformations that produce structures forbidden by
other necessary rule applications.

But still the algorithm in [SK08] convinces to be an elegant approach for a restricted class of
relations to efficiently detect correct rule orderings for a subset of model transformations. This
opens the possibility to combine efficiency with the here presented results in the following way:
Each model transformation with NACs given by an efficient algorithm can be checked to be
correct by performing the test of source consistency presented as Fact 2 in [EEH08c], which is
now also valid for model transformations with NACs according to Thm. 1.

Model transformations based on triple rules with NACs were also analyzed in [EP08] for a
restricted class of triple rules with distinct kernel elements. Special NACs of forward rules ensure
that kernels are not translated twice and kernel typing guarantees that each rule produces exactly
one kernel. For this restricted class of triple graph grammars local confluence and termination
can be analyzed and thus, model transformations can be checked for functional behaviour.

7 Conclusion

This paper focusses on syntactical correctness and completeness. In order to analyze these impor-
tant properties we extended the composition and decomposition result for triple graph transfor-
mations in [EEE+07] to the case with NACs, i.e. TGT sequences with NACs can be decomposed
into source and forward as well as target and backward transformations, respectively, and vice
versa. Based on this fundamental property we have shown that source consistent model transfor-
mations are correct and complete with respect to the language given by the original triple rules.
This extends the result in [EEH08a] to triple rules with NACs.

Source consistency of model transformations guarantees that each element of the source model
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was matched by a model transformation rule and correspondences to target model elements were
created. A suitable source sequence can be calculated by parsing the source model using the
source rules and the corresponding forward transformation can be checked to be source consis-
tent. Alternatively, forward transformations can be created by an arbitrary strategy and checked
afterwards using the algorithm for checking source consistency presented in [EEH08c]. Source
consistency is not restricted to cases, where all source nodes have to be connected via corre-
spondence nodes. Therefore, correctness of many algorithms for model transformations based
on triple rules with NACs can be checked using the source consistency check.

According to [EEH08a] model integration sequences can be characterized as special model
transformation sequences, such that the results of this paper for model transformation can be
transferred to model integrations based on triple rules in a next step.

In this paper we focused on NACs which specify conditions on separately source and target
elements. They are sufficient to most model transformations, which were considered by case
studies so far. However, future work will include the analysis of how to handle general NACs
and their relevance for language specification. An interesting problem - which could be solved
with general NACs - is termination, where a parsing of the source model is omitted. A possibility
may be to introduce additional NACs for the forward rules, such that source elements, which are
already in correspondence with target elements, cannot be matched again for translation. In this
way termination for a restricted class of rules could be ensured automatically. But note that
NACs, which are equal to the right hand side of a forward rule, are not sufficient, because in this
case matches of the transformation are required to be essential.
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Abstract: We propose a scheme for rule amalgamation based on nested graph pred-
icates. Essentially, we extend all the graphs in such a predicate with right hand sides.
Whenever such an enriched nested predicate matches (i.e., is satisfied by) a given
host graph, this results in many individual match morphisms, and thus many “small”
rule applications. The total effect is described by the amalgamated rule. This makes
for a smooth, uniform and very powerful amalgamation scheme, which we demon-
strate on a number of examples. Among the examples is the following, which we
believe to be inexpressible in very few other parallel rule formalism proposed in the
literature: repot all flowering geraniums whose pots have cracked.

Keywords: Geraniums, Graph Transformation, Rule Amalgamation, Quantified
Rules, Nested Rules, Parallel Rules

1 Introduction

Standard graph transformation rules are existential. By this we mean that a rule applies wherever
there exists a matching of its left hand side into the host graph, and the effect of its application is
limited to the homomorphic image of its left hand side under the matching.1

The existentiality of rules certainly has advantages, such as their reversibility (at least in a DPO
setting). However, there are certain types of transformation where this is clearly a limitation. For
instance, if a certain change has to applied universally, that is, to all sub-graphs with a certain
structure, then this can be quite cumbersome to model using existential rules.

This limitation has been recognised especially by tool builders, who after all are in the business
of using graph transformations for practical cases; hence, virtually all graph transformation tools
have some way to define rule schemes or parallel rules. (A thorough overview and comparison
of related work follows later.) Not all of the solutions have a firm theoretical justification, but the
work of Taentzer [28, 26] is ground-breaking in explaining the effect of parallel rule application
in a general setting, namely as rule amalgamation.

In this paper we describe a way to specify rule amalgamation, based on the concept of nested
graph predicates of [21, 11]. The basic idea is a very simple one: where a nested graph predicate
1 An exception to this is the dangling edge deletion by SPO rules; indeed, the fact that this is not existential in the
current sense is the reason why such rules cannot be mimicked by single DPO rules.
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is essentially a diagram of graphs and graph morphisms, a nested rule is a similar diagram of
“simple” rules and morphisms. The application of such a rule to a given host graph consists of
first matching the graph predicate consisting of the left hand sides of the rule diagram (which will
result in a set of match morphisms, each of which goes from a left hand side of one of the simple
rules to the host graph), and then using the structure of the rule diagram as interaction scheme in
terms of rule amalgamation. The interaction scheme synchronises the atomic rule applications
according to the match morphisms.

We described a preliminary version of this idea in [22]. This has now been improved and
implemented [13], so that we can report on some implementation and performance details. Fur-
thermore, we give some more examples which show the expressiveness of the approach.

The geraniums in the title and abstract refer to the following challenge. We have a number of
flower pots, each of which contains a number of geranium plants. These tend to fill all available
space with their roots, and so some of the pots have cracked. For each of the cracked pots that
contains a geranium that is currently in flower, we want to create a new one, and moreover,
to move all flowering plants from the old to the new pot. Create a single parallel rule that
achieves this in a single application, without the use of control expressions. The complexity
of this example stems from the fact that it involves a nested universal quantification, which (as
far as we are aware) cannot be expressed in other declarative rule formalisms proposed in the
literature, with the possible exception of [9, 14].

The remainder of this paper is structured as follows. In Section 2 we recall the relevant concepts
of rule amalgamation; in Section 3 we give a new presentation of nested graph predicates, and
we show how these can be used to generate amalgamated rules, which we call nested rules in this
paper. In Section 4 we discuss implementation issues, and demonstrate the use of nested rules,
including the geraniums as well as some examples encountered in practice. Finally, in Section 5
we discuss related work, draw conclusions and discuss future work.

2 Rule amalgamation

We will first (briefly) recall the concepts of amalgamated graph transformation in the Single
Pushout approach from [5], generalising from two rules along the lines of [27], resulting in a
setup very similar to [12].

Definition 1 (Graph) A graph G is a tuple 〈V,E,src, tgt〉 consisting of a set of nodes V , a set
of edges E, and source and target mappings src, tgt : E→V . G is called labelled if there is also
a function lab : E→L to a global set of labels L, and simple if E ⊆V ×L×E such that src, lab
and tgt are projections to the three components.

The examples in this paper are set in the category of simple labelled graphs, but for the purpose
of the definitions one can imagine any pair of graph categories Gtot,G such that G has an initial
object 0 and coproducts, and Gtot is a full subcategory of G with initial object and coproducts
which are preserved by the inclusion functor. We refer to the arrows in G as partial morphisms
and to those in Gtot as total morphisms.

Recall that a diagram D over a category C is a mapping from the nodes and edges of a graph
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GD to the objects and arrows of C , such that D(e) : D(src(e))→D(tgt(e)) for all edges e. Di-
agram D commutes if for all parallel paths in GD, the composition (in C ) of the edge images
give rise to the same C -arrow. As usual, we will often identify the elements of GD with their
images under D. In this paper we frequently use tree-shaped diagrams, in which GD is a tree
rooted in the initial object, i.e., has no cycles, no sharing (no distinct edges with the same target)
and exactly one root rtD (a node without incoming edge) such that D(rtD) = 0. Note that a tree-
shaped diagram trivially commutes. A tree-shaped diagram D is said to be en instance of another
tree-shaped diagram D′ if there exists a root-preserving graph morphism i : GD→GD′ (called the
instantiation morphism) such that D′ = D◦ i. (So an instance may copy or ignore parts of D.)

Definition 2 (Rule and Sub-rule) A rule is a morphism p : L→R in G . A rule p′ is called
a sub-rule of p if there exists a pair of total morphisms eL : L′ → L and eR : R′ →R such that
p′ ◦ eL = eR ◦ p, i.e., the following diagram commutes:

L′ R′

L R

p′

eL eR
p

The pair e = e(eL,eR) is called a sub-rule embedding.

Rules give rise to derivations in the usual way of the single-pushout approach.

Definition 3 (Match and Derivation) A match of a rule p in a graph G is a total morphism
m : L→G. Given a rule and a match, a derivation is a pushout in G , depicted by the diagram

L R

G H

p

m m′

d

PO

m′ is called the comatch and d the derivation morphism. Note that m′ is in general not total.

We write G −p,m−→ H if a derivation as in the above diagram exists. Sub-rules and sub-rule
embeddings form a category R (with the natural definition of identities and arrow composition)
with an initial object and coproducts. Below we will sometimes call the objects of R simple
rules, to contrast them with the notion of composite rule that we are about to define.

Definition 4 (Composite Rule) A composite rule schema S is a tree-shaped diagram over R.

For instance, Figure 1 shows a composite rule schema that can be used to model the firing of
a Petri Net transition. The rule morphisms are left implicit. In general, a composite rule schema
corresponds to a synchronisation rule, and a composite rule instance (i.e., a tree-shaped diagram
P that is an instance of S, in the sense discussed above) to a component production set in terms
of [27], except that in that paper both kinds of diagrams are required to be bipartite graphs, and
the component production set satisfies a certain completeness property.

Every diagram P over R induces several diagrams over G , among which we will use:
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select

remove−in

root

add−out

Figure 1: Composite rule schema for firing a Petri Net transition.

• The rule diagram DP, consisting of the rule morphisms p for all objects p of P and the
individual embedding morphisms eL and eR for all arrows e of D;

• The “left-hand-side” diagram LP over Gtot consisting of all the left hand sides Lp and the
corresponding total morphisms eL.

To define the derivations generated by a composite rule, first we extend the notion of a match.

Definition 5 (Composite Rule Match) Let S be a composite rule schema. A composite rule
match of S in G consists of an instance P of S together with a set of matches mp : Lp→G for all
p in P, which, when added to LP, make the resulting diagram commute.

A match of a composite rule schema S in a graph G is called a (partial) covering of G in [27].
Given such a match, as usual one can define the composite derivation (star-parallel derivation in
[27]) either by taking the coproduct q of the rule diagram DP and applying that as an ordinary rule
(with respect to the unique match of q in G that is guaranteed by the coproduct construction), or
by building the coproduct of the diagram consisting of the targets Hp of the individual derivations
G−p,mp−−→ Hp together with the comatches m′

p. Due to the universal properties of coproducts, these
two constructions are guaranteed to yield isomorphic results.

In order to get a useful notion of parallel transformation, the allowed rule schema matches
have to be restricted. [27] identifies a number of possible criteria. The main contribution of
this paper is to propose yet another criterion, which uses the theory of nested graph predicates
introduced by us in [21] and later, independently, in [11].

3 Nested Graph Predicates

We give a new presentation of nested graph predicates, to make the connection with rule amal-
gamation clearer. A predicate will be a pair consisting of a tree-shaped graph diagram D over
Gtot and a formula generated by the following grammar, L :

φ ::= tt | ¬φ | φ ∨φ | ∃x.φ
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outin

trans

root

out−tokenin−token

out−in

Figure 2: Graph diagram on which transition enabledness can be expressed

Here x denotes one of the non-root nodes of the graph GD. Apart from the basic logic operators
defined above, we also use ∧,⇒, ∀ etc., defined in the standard way. Furthermore, we abbreviate
∃x.tt to x. Every such non-root node x has a unique incoming edge; we will denote this edge inx.

For instance, some formulae over the diagram in Figure 2 are:

1. ¬out-in (which is an abbreviation of ¬∃out-in.tt), expressing that a given Petri Net does
not have a loop;

2. ∀trans.∀in.in-token, expressing that every transition of a Petri Net can fire;
3. ∃trans.(∀in.in-token∧ ∀out.(out-token ⇒ out-in)), expressing that there is an enabled

transition according to the Condition/Event interpretation (in which all output places have
to be empty, unless they are also input places).

Formulae are typed over the nodes of GD. The type of a formula is a graph in D for which we
need a matching into the subject graph before we can evaluate the formula; in other words, it
represents the “free variables” of the formula. We write φ : t to denote that t is a type of φ . We
only deal with formulae that are well-typed according to the following rules:

• tt : t for all nodes t of GD;
• ¬φ : t if φ : t;
• φ1∨φ2 : t if φ1 : t and φ2 : t;
• ∃x.φ : t if t = src(inx) and φ : x.

φ is called ground if φ : 0 (where 0 is the initial object of G ). For instance, we have ¬∃out-in.tt :
out, whereas the other two example formulae above are ground.

In principle, formulae are evaluated over a given graph G; however, to define this properly we
actually have to evaluate them over a given morphism f : L→G, where L is one of the graphs
in the diagram D. f in fact represents a matching of L in G that we have built up “so far” while
establishing the validity of a larger formula ψ of which φ is a sub-formula. The meaning of ∃x.φ
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G

Figure 3: Proof of ∃trans.(∀in.in-token∧∀out.(out-token⇒ out-in)). The dotted
lines indicate some of the relevant node mappings.

is that the matching f can be decomposed into g◦D(inx) (where inx is the unique edge in D with
tgt(inx) = x).

Formally, the semantics of the logic is expressed by a relation f |= φ where φ : t and f : D(t)→
G is a total morphism in G :

• f |= tt always holds;

• f |= ¬φ if f '|= φ ;

• f |= φq∨φ2 if f |= φ1 or f |= φ2;

• f |= ∃x : φ if g |= φ for some g such that f = g◦D(inx).

If φ is ground, we also write tgt( f ) |= φ instead of f |= φ . For instance, if G is the Petri Net
depicted on the right of Figure 3, then the figure shows that there is an enabled Condition/Event
transition, as expressed by the example formula 3 above.

A formula φ is in positive form if it does not contain negations (but may contain ff, ∧ and ∀).
Every formula is equivalent to a positive form formula, which can be obtained easily by “push-
ing” negations inward. For instance, formula 3 above is equivalent to ∃trans.(∀in.∃in-token.tt∧
∀out.(∃out-in.tt∨∀out-token.ff)).

If φ is a ground positive form formula, then a proof diagram of G |= φ is defined to be a
commuting diagram P over Gtot, consisting of an instance Q of D with instantiation morphism
i : GQ→GD, augmented with a graph G and for all nodes v of Q a morphism fv : Q(v)→G.
Furthermore, for every node v of Q there is a set Ψv of sub-formulae of φ such that φ ∈ΨrtQ , and
for all ψ ∈Ψv, ψ : i(v) and the following conditions are satisfied:

• ψ '= ff
• If ψ = ψ1∨ψ2, then either ψ1 ∈Ψv or ψ2 ∈Ψv;

• If ψ = ψ1∧ψ2, then ψ1 ∈Ψv and ψ2 ∈Ψv;
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• If ψ = ∃x.ψ ′, then v has an outgoing edge e with i(e) = inx and ψ ′ ∈Ψtgt(e).
• If ψ = ∀x.ψ ′, then for all g : D(x)→G such that fv = g◦D(inx), v has an outgoing edge e

with i(e) = inx, ftgt(e) = g and ψ ′ ∈Ψtgt(e).

A proof diagram is called minimal if it does not have spurious edges; i.e., the only edges are those
necessitated by the last two bullets above. For instance, Figure 3 is a minimal proof diagram,
if v and w are the two occurrences of out in the diagram then Ψv = {∃out-in.tt} and Ψw =
{∀out-token.ff}.

Predicate-driven amalgamation. The step from nested graph predicates to amalgamated rules
is very small: rather than interpreting formulae over diagrams over Gtot, we use tree-shaped
diagrams over R, i.e., composite rule schemas. The interpretation of φ over S is defined to be its
interpretation over the left-hand-side diagram LS. The following is a key insight:

Proposition 1 Given a composite rule schema S, a closed formula φ interpreted over S, and a
graph G, a minimal proof diagram of G |= φ is a composite match of S in G.

For instance, we can turn the diagram in Figure 2 into a diagram over R by replacing the
graph in-token by the rule remove-in of Figure 1, replacing out by add-out, and turning all
other graphs into identity rules (i.e., based on identity production morphisms). The resulting
diagram “refines” Figure 1. The formula ∃trans.(∀in.in-token∧∀out.(out-token ⇒ out-in)),
which previously just expressed the existence of an enabled transition in a Condition/Event net,
now encodes the firing of such a transition under the condition that it is enabled.

The developments in this section culminate in the following definition, which we will use in
the remainder of the paper:

Definition 6 (Nested Rule) A nested graph transformation rule is a tree-shaped diagram S over
R with a formula φ ∈L over S. A match of such a rule is a minimal proof diagram of φ over LS,
and a rule derivation is the composite derivation with respect to such a minimal proof diagram.

4 Implementation and examples

The theory of nested rules has been implemented in GROOVE [20], with some restrictions.
Nested rules in GROOVE have been used and shown their value in several applications. In this
section we discuss some of the implementation choices and show some applications.

4.1 GROOVE implementation

The main functionality of GROOVE is to explore the complete state space of a graph transforma-
tion system. Every derivation gives rise to a transition, and independent derivations interleave,
giving rise to a size blow-up that is at worst exponential in the number of independent derivations.

A composite rule derivation can combine a large number of simple rule derivations. Apart
from the ease of specification, this has the advantage that the number of transitions as well as the
number of interleaving points between transitions decreases, in some cases quite dramatically.

For the purposes of practical use, we have made the following choices.
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Modified positive form formulae. Rather than the full logic defined above, GROOVE only
supports restricted positive form formulae, as defined by the following syntax:

φ ::= ∃x.(
∧

k∈K¬xk)∧ (
∧

i∈I ψi)
ψ ::= ∀x.(

∧
k∈K¬xk)∧ (

∨
j∈J φ j)

where ¬xk abbreviates ∀xk.ff, and I,J,K are arbitrary index sets. Thus, disjunction is restricted
to existentially quantified sub-formulae and conjunction to universally quantified sub-formulae.
It can be proved (in fact, it indirectly follows from [21]) that this is no real restriction, in the
sense that every formula is equivalent to a “normal form” formula in this restricted syntax, but
we will not elaborate on this point here.

Single-graph representation. One of the disadvantages of nested rules as formulated in Def-
inition 6 is that they consist of two parts, a rule diagram and a formula. In GROOVE, we have
chosen to include all of these into a single graph representation. For this purpose, we introduce
special quantifier nodes that stand for the ∀- and ∃-quantifiers of the formula and are arranged
(using special in-labelled edges) in a tree of alternating quantifiers. The root of this tree is an
∃-node which is left implicit, so that a simple rule is just a special case of a composite rule.

The “fresh” nodes of the quantified graphs, i.e., those nodes that are not in the codomain of the
incoming morphisms, are attached to the corresponding quantifier nodes using special at-labelled
edges. For fresh edges of the quantified graph, this solution does not work since GROOVE does
not support edges on edges; instead, if such a fresh edge does not have fresh end nodes, we
include the name of the quantifier as a prefix of the edge label.

As an example, Figure 4 shows the firing rule of Condition/Event nets in this one-graph rep-
resentation. As usual in the GROOVE notation, non-RHS elements (which are to be deleted) are
dashed thin blue (or dark grey), non-LHS elements (which are to be created) are wider solid
green (or light grey), and NAC elements are wide, closely dashed red (or dark grey). The dotted
nodes and edges form the tree of quantifiers (where the root is omitted); to make the connection
with the diagram in Figure 2 explicit, we have named all quantifier nodes. For the existential
out-in-quantifier this name is in fact necessary as it occurs as a prefix in one of the in-edges, to
associate this edge with the quantifier.

Non-vacuous universal quantification. If no match of x exists in a given host graph, the
formula ψ = ∀x.φ is true irregardless of φ . In this case, ψ is said to be vacuously true. Con-
sequently, a universally quantified nested (sub-)rule may be vacuously applicable, in which case
the rule has no effect. Sometimes this may be just what one wants, as in the firing rule of Fig-
ure 4: for a transition with no input places, the sub-rule in is always enabled and has no effect.
However, quite often vacuous derivations are not intended. Though non-vacuity can always be
enforced through an application condition, we have included a special quantifier node, denoted
∀>0, which guarantees that the sub-rule is matched at least once. Thus, ∀>0x.φ is equivalent to
∃x.φ ∧∀x.φ .2

2 Thus, the difference between ∀ and ∀>0 is very similar to that between optional and obligatory set nodes in
PROGRES.
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root

outToken

outin

inToken

trans

outIn

Created (R\L)

Deleted (L\R)

NAC

Figure 4: Nested C/E firing rule in GROOVE syntax, with the explicit tree structure
shown to the right

4.2 Examples

We now show some other applications of nested rules.

Geraniums. The title challenge of this paper is to create a new pot for every cracked flower pot
with at least one flowering geranium, and to transfer all flowering geraniums in the cracked pot
to the new one. This is an example of a rule that needs two nested universal quantifiers: an outer
quantifier for the pots, and an inner quantifier for the plants in the pots. This puts the rule beyond
what can be formulated in other approaches to parallel graph transformation rules, such as the
cloning rules of [18] or the set nodes and star rules in PROGRES [24], except in the extension
recently proposed in [9] — see Section 5 for a more extensive discussion.

In GROOVE, a first attempt is given on the left side of Figure 5. An example derivation is
shown in Figure 6. However, this rule is incorrect as it also creates new pots for cracked pots
that do not contain any flowering geraniums. To rule this out, we need the non-vacuous universal
quantifier discussed above. However, we cannot simply replace the plants-quantifier by ∀>0,
since then the rule requires that all cracked pots have at least one flowering geranium, hence it
would become inapplicable for a graph like the one in Figure 6. To resolve this, we have to add

Figure 5: Incorrect and corrected versions of the geranium rule.
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Figure 6: Example derivation of the left hand rule of Figure 5

a disjunct to the pots-quantifier, resulting in the rule on the right hand side of Figure 5.

Sierpinski Triangles Another example that is very suited to specification in nested rules is
the Sierpinski case described in [29]. This involves a challenge to give a graph grammar that
generates all Sierpinski triangles (a certain fractal shape) up to an arbitrary depth. One step of
the generation process involves replacing all up-pointing sub-triangles by a more involved graph
(which contains three new up-pointing triangles). A nested GROOVE rule that specifies this given
in Figure 7.

In [29], we have described a sequential GROOVE solution to the Sierpinski case, and we have
remarked that the above parallel rule has (only) slightly better performance. This may be surpris-
ing in the light of the fact that the sequential solution generates many more intermediate states.
However, in this particular case no real state space exploration is needed: instead, a “linear”
exploration strategy is used that selects a single rule application and never backtracks. In this
type of exploration, generating the intermediate states causes only little overhead.

Figure 7: Nested rule specifying one Sierpinski triangle generation step.
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Figure 8: One of the rules of the ad-hoc network connectivity protocol in [3]. The
=-labelled NAC-edges are injectivity constraints.

Network gossipping protocol. In [3] we describe a GROOVE model of an ad-hoc network
connectivity protocol. The paper shows that this model gives rise to a large symmetry reduction,
so that larger network instances can be modelled than with other specification methods (although
the size of the state space is still exponential in the size of the network). Nested rules have been
used here in several places, to reduce the number of derivation steps and especially the number of
interleavings of steps. In contrast to the previous example, in this case it is important to explore
the state space in full, and indeed without the use of nested rules the advantage with respect to
other methods to some degree disappears. An example rule where nesting has been exploited is
shown in Figure 8: this specifies that all but two outgoing link-edges have to be removed from
every network node.

5 Evaluation

We have shown how to integrate the concepts of nested graph predicates and rule amalgamation.
It turns out that these concepts mesh together quite well, and give rise to a usable specification
formalism for parallel rules. This formalism has been implemented in GROOVE; we have given
several practical examples where this type of rule has been very useful.

On the downside, it turns out that nested rules can be complicated to write. This is mainly
due to the chosen single-graph representation: especially when the rules become larger, the fact
that all nesting levels are combined in a single graph makes the resulting figure hard to read. An
alternative is to use a hierarchical graph syntax, where the quantifier nodes are containers for the
graph elements associated with them.

Related work. We briefly review alternative approaches to parallel rule specification.
First of all, node replacement systems [7] have a natural notion of parallelism due to the fact

that, when a node is replaced, all incident edges, no matter how many, are modified as well. For
the star grammars [4] this is generalised so that not only incident edges but their opposite nodes
can be duplicated as often as necessary. This roughly corresponds a single universal quantifica-
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tion in terms of our nested rules; in fact, every adaptive star rule can easily be formulated as a
nested rule with a single universal quantifier.

PROGRES [24] and also FuJaBA [19] feature so-called set nodes, which are essentially single
universally quantified nodes. Furthermore, PROGRES has star rules, which are essentially rules
that are entirely universally quantified. An interesting extension to set nodes can be found in
[9], which allows to specify set regions rather than just set nodes. Since these set regions can
be nested, this comes close to our notion of nested quantifiers, and we conjecture that this for-
malism can in fact specify the geranium rule. Unfortunately, the paper does not provide enough
information to be sure.

Some approaches are based on rule schemas with sub-graphs that can be cloned or copied
before applying the rule: for instance, [18, 1, 17]. The latter two have the interesting option of
specifying connections between the clones, which may for instance be ordered in a linear list.
This is outside the capabilities of our nested rules. On the other hand, each of these approaches
deals with a single level of (universal) quantification only, and so we believe that they cannot
solve the geranium challenge.

As we have made clear, our nested rules are built on the principle of rule amalgamation. Other
papers that have shown the power of amalgamation for specifying parallel rules (in particular,
the Petri net firing rule) are [15, 8].

Another approach that needs mentioning in this context is that of synchonised hyperedge re-
placement; see, e.g., [14]. A central concept in this formalism is to combine “local” rules into
larger ones, using synchonisation algebras to determine how rules are to be combined. It is
claimed in [30] that this is powerful enough to repot the geraniums.

Finally, another method altogether for repotting the geraniums is by using control expressions
rather than a single parallel rule or rule schema. There have been many proposals for powerful
control languages; we would like to mention PROGRES, FuJaBA’s storyboards, but also the
recent notions of recursive rules [10, 32], which in fact have no extraneous control conditions
but rather integrate them with the rules themselves. We would also categorise the use of the (very
powerful) pattern definitions in model transformation tools such as TEFKAT [16] and VIATRA2
[31] as control expressions, though admitedly the dividing line grows thin in these cases.

Future work. We see nested rules as a first step towards the ability to specify an arbitrary
transformation as a single transaction with atomic execution. The planned next step is to en-
hance the GROOVE control language with an atomicity statement that turns an arbitrary control
statement into such a transaction.

Another potentially useful extension is the introduction of counting quantifiers, being exis-
tential quantifiers that assert the existence of a given, fixed number of distinct instances of a
sub-graph (other than 1, which is the default meaning of existential quantification). For instance,
the rule in Fig. 8 could be simplified using such a feature.
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Abstract: Graph transformation based on incremental pattern matching explicitly
stores all occurrences of patterns (left-hand side of rules) and updates this result
cache upon model changes. This allows instantaneous pattern queries at the expense
of costlier model manipulation and higher memory consumption.

Up to now, this incremental approach has considered only sequential execution de-
spite the inherently distributed structure of the underlying match caching mecha-
nism. The paper explores various possibilities of parallelizing graph transformation
to harness the power of modern multi-core, multi-processor computing environ-
ments: (i) incremental pattern matching enables the concurrent execution of model
manipulation and pattern matching; moreover, (ii) pattern matching itself can be
parallelized along caches.

Keywords: graph transformation, incremental pattern matching, parallelization

1 Introduction

Nowadays, a main challenge of software engineering is the adaptation to parallel computing
architectures. In order to increase execution speed, algorithm designers need to think of new
ways to exploit the computing power of multi core processors instead of purely relying on more
efficient processor designs. Experience has shown that this is a complicated task, and no general
solution exists; whether parallel execution can actually be effectively applied depends largely on
the problem itself.

Model transformation is an application domain where speed optimization based on parallel
execution has a lot of potential, especially in case of large, industrial models. In fact, model
transformations seem to be an ideal target for parallel execution as in practical transformations,
many similar, or almost identical model structures need to be traversed and transformed. Fre-
quently, these model manipulation sequences are non-conflicting, which naturally calls for an
execution model where these sequences are executed on the available processors in parallel.

Using a graph transformation (GT) [EEKR99] based approach for model transformations,
there are even more possibilities for the exploitation of parallelism. Besides model manipulation
sequences, graph transformations involve a graph searching phase, which is targeted at finding
the matches of a graph pattern. However, despite the recent optimization activities in the graph
transformation community, which have been reported at tool contests [SNZ08, Gra08], GT tools
rarely exploit parallel execution for further improvement both in terms of execution speed and
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scalability with model sizes.
Incremental pattern matching [BÖR+08] offers an entirely different execution model com-

pared to local search-based implementations. The match sets for all patterns involved in the
graph transformation are computed in an initialization phase prior to execution (e.g. when the
model itself is loaded into memory), and as the transformation progresses, this match set cache is
incrementally updated as the model graph changes (update phases). Thus, model search phases
are reduced to fast read-from-cache operations, in exchange for the overhead imposed by cache
update phases which occur synchronously with model manipulation operations. Benchmark-
ing [BHRV08] has shown that in certain scenarios, this approach leads to several orders-of-
magnitude increases in speed.

In the current paper, we introduce novel extensions to the incremental pattern matcher of the
VIATRA2 framework, which is based on RETE networks [For82], to exploit parallelism based
on asynchronous model updates and multi-threaded match set caching.

First, update phases may be executed concurrently to the model transformation’s main execu-
tion thread. In this case, the cache validation thread of the match set may execute concurrently
with model manipulation sequences or textual output emission, e.g. in the case of code genera-
tion transformations. This approach aims to reduce the overhead imposed by update phases, in
the case when parallel computing power is available.

Then, if further scaling up is required, the implementation of the match set cache updating
can be multi-threaded. It is important to point out that both of these approaches are significantly
different from parallelized pattern search. Finally, as incremental pattern matching provides fast
cache-reading operations, it supports parallel transformation execution by allowing simultane-
ous access to caches from multiple threads. By improving this scenario with concurrent update
phases, model manipulation protected by locks will no longer force other transformation threads
to wait for the termination of the time-consuming update. As a consequence, read-intensive
transformations are expected to scale well with parallel computational capacity.

The rest of the paper is structured as follows. Section 2 gives a brief introduction on graph
transformations. Section 3 describes RETE, and its implementation in the VIATRA2 model trans-
formation framework. The main contributions of the paper are presented in Section 4, where we
present ways of parallelizing both pattern matching and model manipulation. Finally, we discuss
related work in Section 5 and conclude the paper in Section 6.

2 Foundations of model transformation

This section gives an overview on the foundations of the specification and simulation of model-
ing languages. In order to specify the abstract syntax of the modeling language, the concept of
metamodeling is used. For transforming models to other models or generated code, and simulat-
ing the behaviour of models, the paradigm of graph transformation [Roz97] is applied.

2.1 Model transformation example: Petri nets

In this paper, we will use the transformation of Petri nets as a demonstration for parallelization
concepts. These demonstrating Petri net transformations include Petri net firing as a model
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simulation example.

Figure 1: A sample Petri net.

Petri nets (Figure 1) are widely used to formally capture the
dynamic semantics of concurrent systems due to their easy-
to-understand visual notation and the wide range of available
analysis tools. Petri nets are bipartite graphs, with two disjoint
sets of nodes: Places and Transitions. Places may contain an
arbitrary number of Tokens. A token distribution (marking)
defines the state of the modelled system. The state of the net
can be changed by firing enabled transitions. A transition is
enabled if each of its input places contains at least one token
and no place connected with an inhibitor arc contains a token

(if no arc weights are considered). When firing a transition, we remove a token from all input
places (connected to the transition by Input Arcs) and add a token to all output places (as defined
by Output Arcs).

2.2 Foundations of metamodeling

Figure 2: Petri net metamodel.

A metamodel describes the abstract syntax of a mod-
eling language. Formally, it can be represented by
a type graph. Nodes of the type graph are called
classes. A class may have attributes that define
some kind of properties of the specific class. Inher-
itance may be defined between classes, which means
that the inherited class has all the properties its par-
ent has, but it may further contain some extra at-
tributes. Associations define connections between
classes. Figure 2 shows a simple Petri net meta-
model.

2.3 Graph patterns and graph transformation

Graph patterns are frequently considered as the atomic units of model transformations [VB07].
They represent conditions (or constraints) that have to be fulfilled by a part of the instance model
in order to execute some manipulation steps on the model. A basic graph pattern consists of graph
elements corresponding to the metamodel. A negative application condition (NAC) prescribes
contextual conditions for the original pattern which are forbidden in order to find a successful
match. Figure 3 presents a simple graph pattern consisting of a Place P, a Transition T and an
OutArc A to enumerate the source places connected to a given transition.

Graph transformation (GT) [EEKR99] provides a high-level rule and pattern-based ma-
nipulation language for graph models. Graph transformation rules can be specified by using a
left-hand side – LHS (or precondition) graph (pattern) determining the applicability of the rule,
and a right-hand side – RHS (postcondition) graph (pattern) which declaratively specifies the
result model after rule application. Elements that are present only in (the image of) the LHS are
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+.0)&'#$%&'"2(3#4 pattern sourcePlace(T, P) = {
transition(T);
place(P);
outArc(A, P, T);

}

Figure 3: Matcher for the sourcePlace pattern

deleted, elements that are present only in the RHS are created, and other model elements remain
unchanged (in accordance with the single-pushout approach in VIATRA2). For instance, a GT
rule may specify how to remove (or add) a token from a place, as shown in Figure 4.

// Removes a token from the place ’Place’.
gtrule removeToken(in Transition, in Place) = {
precondition find sourcePlaceWithToken

(Transition, Place, Token);
postcondition find sourcePlaceWithoutToken

(Transition, Place, Token);
}
// Adds a token from the place ’Place’.
gtrule addToken(in Transition, in Place) = {
precondition find targetPlaceWithoutToken

(Transition, Place);
postcondition find targetPlaceWithToken

(Transition, Place, Token);
}

Figure 4: Graph transformation rules for firing a transition

Complex model transformation can be assembled from elementary graph patterns and graph
transformation rules using some kind of control language. In our examples, we use abstract state
machine (ASM) [BS03] for this purpose as available in the VIATRA2 framework. The following
transformation simulates the firing of a transition, i.e. the removal of tokens from input places
and the addition of tokens to output places (see Figure 5).

rule fireTransition(in T) = seq {
if (find isTransitionFireable(T)) // confirm that the transition is fireable
seq {
forall Place with find sourcePlace(T, Place) // remove tokens from all source places
do apply removeToken(T, Place); // GT rule invocation

forall Place with find targetPlace(T, Place) // add tokens to all target places
do apply addToken(T, Place);

}
}

Figure 5: Transformation program for firing a transition
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3 RETE-based incremental graph pattern matching

The incremental graph pattern matcher of the VIATRA2 framework adapts [BÖR+08] the RETE
algorithm, which is a well-known technique in the field of rule-based systems.

RETE network for graph pattern matching RETE-based pattern matching relies on a net-
work of nodes storing partial matches of a graph pattern. A partial match enumerates those
model elements which satisfy a subset of the constraints described by the graph pattern. In a
relational database analogy, each node stores a view. Matches of a pattern are readily available
at any time, and they will be incrementally updated whenever model changes occur.

Input nodes serve as the underlying knowledge base representing a model. There is a separate
input node for each entity type (class), containing a view representing all the instances that
conform to the type. Similarly, there is an input node for each relation type, containing a view
consisting of tuples with source and target in addition to the identifier of the edge instance.

Figure 6: Simple RETE matcher

At each intermediate node, set operations (e.g. filter-
ing, projection, join, etc.) can be executed on the match
sets stored at input nodes to compute the match set which
is stored at the intermediate node. The match set for the
entire pattern can be retrieved from the output production
node. One kind of intermediate node is the join node,
which performs a natural join on its parent nodes in terms
of relational algebra; whereas a negative node contains
the set of tuples stored at the primary input which do not
match any tuple from the secondary input (which corre-
sponds to anti-joins in relational databases).

As an illustration, Figure 6 shows a RETE network
matcher built for the sourcePlace (see Figure 3) pattern
illustrating the use of join nodes. By joining three in-
put nodes (the top-most nodes on Figure 6), this sample
RETE net enforces two entity type constraints (’Place’

and ’Transition’ entity types on the left and right input nodes) and an edge (connectivity) con-
straint (corresponding to the relation connecting the ’Place’ and ’Transition’ entity types), to find
pairs of Places and Transitions connected by an out-arc.

Updates after model changes. Input nodes receive notifications about each elementary model
change (i.e. when a new model element is created or deleted) and release an update token on each
of their outgoing edges. Such an update token represents changes in the partial matches stored
by the RETE node. Positive update tokens reflect newly added tuples, and negative updates refer
to tuples being removed from the set. Upon receiving an update token, a RETE node determines
how the set of stored tuples will change, and release update tokens of its own to signal these
changes to its child nodes. This way, the effects of an update will propagate through the network,
eventually influencing the result sets stored in production nodes.

The match set can be retrieved from the network instantly without re-computation, which
makes pattern matching very efficient. As a trade-off, there is increased memory consumption,
and update operations become more complex.
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4 Parallel transformation with incremental pattern matching

This section presents our conceptual contributions to the parallel execution of model transforma-
tions. First, Subsection 4.1 will discuss in detail how the asynchronous RETE approach allows
the update phases to be executed in the background, while the transformation continues unin-
terrupted. In Subsection 4.2, we generalise this approach to multiple RETE threads for systems
with more than two CPU cores, based on the multi-threaded RETE maching set cache. The
proposed pattern matcher is applied to a multi-threaded model manipulation context in Subsec-
tion 4.3 to let the model manipulation phase take advantage of the number of CPU cores. Finally,
the resulting system is evaluated in Subsection 4.4.

4.1 Concurrent pattern matching and model manipulation

Contrary to our previous work, the RETE net implementation used throughout this paper relies
on asynchronous message passing. This involves a message queue attached to the network, con-
taining update messages manifested as objects. Each message object specifies a recipient node,
the tuple representing the update, and the sign (insertion or deletion). The message consump-
tion cycle fetches the first message from the queue and delivers it to the appropriate node; the
node will place any propagated output messages to the end of the queue, thereby achieving asyn-
chronous messaging. Change notifications issued by model manipulation are simply put into the
queue; then the update propagation phase consists of looping the message consumption cycle
until the queue becomes empty.
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(a) General concept
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(b) fireTransition concurrently (c) Petri net states

Figure 7: Concurrent pattern matching

Using asynchronous messaging, the load on the main thread of the transformation can be re-
duced by executing the incremental pattern matcher (which consumes change messages from the
queue) in a separate thread. When the transformation manipulates the model (see Figure 7(a)),
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it only has to send the new update message to the message queue, and continue its operation.
The thread of the pattern matcher will execute the update propagation in the background, ideally,
without imposing a performance penalty on the transformation thread. When the message queue
becomes empty, the RETE network has reached a fixpoint; the pattern matcher thread then goes
to sleep and will not resume its operation until a new update message is posted.

When the transformation initiates pattern matching, it has to assure that background update
propagations have terminated and the matches stored at the production nodes are up-to-date; so
if necessary, it will have to sleep until RETE reaches its fixpoint.

Figure 7(b) shows how the Petri net firing rule fireTransition (defined in Figure 5) may behave
in such a concurrent system. (i) First, the set of source places is fetched instantaneously from the
pattern matcher. (ii) Then, one token is deleted in every source place, each of them issueing a
notification to the pattern matcher thread that results in some update propagation in the RETE net.
(iii) Next, the list of target places is retrieved after update propagation is finished. (iv) Finally,
a new token is created at each target place, resulting in subsequent notifications. Figure 7(c)
displays the corresponding states of the Petri net model.

Performance expectations and initial results. While the local search based pattern match-
ers operate with cheap model changes and costly pattern queries, the sequential RETE-based
matcher [BÖR+08] has a moderate overhead on model change balanced by instant pattern queries.
This novel concurrent incremental pattern matching approach combines the advantages of the
former two: it has cheap model manipulation costs, and potentially instant pattern queries.
Although the transformation might have to wait for the termination of the background pattern
matcher thread, the worst case of this time loss is still comparable to the update overhead of the
original RETE approach.

This concurrent approach is expected to improve performance over a non-concurrent im-
plementation (as described in Section 3) if there are comparatively infrequent pattern matcher
queries and complex model changes between them. This would correspond to a forall style con-
trol flow when all matches of a pattern are obtained first, and then each of them is processed (po-
tentially) simultaneously, which is common in model-to-model transformation scenarios. This
complements the traditional advantage of incremental pattern matching, which manifested espe-
cially on as long as possible style control flows: when single matches are selected and processed
one by one until there are no matches of the pattern. Initial experiments1 have shown that the con-
current approach improves performance by up to 20% on the Sierpinsky benchmark of [SNZ08].
For building a Sierpinsky-triangle of 8, 9 and 10 generations, our original RETE ran for 2.6s,
8.3s, and 26.2s, while the concurrent solution took 2.2s, 6.9s, 22.8s to terminate, respectively.

4.2 Multi-threaded pattern matching with RETE

The concurrent patten matching approach can be improved further given that the hardware ar-
chitecture is capable of running multiple threads efficiently. There are various approaches of
parallelizing the RETE algorithm, see Section 5 for details. Here we present our simple solution,
mostly for illustration purposes.

1 Environment: 2.2GHz Intel Core 2 Duo processor, Windows Vista, Sun Java 1.6.0 11, 1GB heap memory
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The basic idea is to employ multiple pattern matcher threads to consume update messages.
However, if these threads share the same message queue and RETE nodes, and multiple threads
could access the same node simultaneously, this could easily lead to complex inconsistency
problems, which could not be easily avoided by locks.

Our proposal splits the network into separate RETE containers, each of which is responsible
for matching a set of subpatterns. A container has its own distinct set of nodes, and assigns each
RETE container to a dedicated pattern matcher thread consuming update messages of a dedicated
queue. Each container is responsible for forwarding messages to its nodes using the dedicated
message queue. This way, two threads are not allowed to operate on the same RETE node, thus
maintaining mutual exclusions is not necessary.

Forwarding messages between two containers is accomplished by enqueueing the message in
the target container. Figure 8(a) depicts a parallel version version of Figure 6 illustrating how a
RETE net can be split into several containers for parallel execution.
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Figure 8: Multi-threaded pattern matching

If a container runs out of update messages to process, it reaches a local fixpoint, otherwise
it remains active. The global fixpoint is reached when all containers are in a local fixpoint. In
order to retrieve up-to-date and consistent match sets, the transformation thread has to wait for
a global fixpoint; see Figure 8(b) for illustration. This thread synchronisation goal, however, is
not trivial to accomplish, since a container can leave its local fixpoint and become active again
before a global fixpoint is reached due to incoming messages from other, still active containers.
To address this issue, we have developed a termination algorithm based on logical clocks that is
able to determine global fixpoints [Ber08], which is not presented here for space considerations.

Performance expectations. It is important to point out that the performance of such a system
may depend highly on the amount of synchronization and replication that is necessary when
messages are passed between the containers. In theory, it would seem beneficial if the subpat-
terns (deployed to separate RETE containers) had a low number of interconnections, but further
research is necessitated to achieve this in practice. An ideal application scenario would be sev-
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eral transformations or parts of the same transformation that are known to use different patterns;
allowing easy, straightforward splitting and parallelisation of the RETE net, with a low amount
of inter-connectedness. By partitioning the patterns into relatively independent containers, a
multi-threaded RETE pattern matcher may achieve high performance.

4.3 Multi-threaded model manipulation

In case of incremental pattern matching, the usefulness of optimizing the pattern matcher has
its limitations, as significant CPU time is spent on the rule application itself. Further gains in
performance can only be achieved by accelerating the execution of rule application and model
manipulation. For this purpose, we exploit multi-core architectures to provide multi-threading
for the model manipulation component as well.

Several approaches aim to achieve serializable (i.e. thread-safe) parallelisation of graph trans-
formation rule applications, either for rule instances within one transformation sequence, or for
separate transformation runs. Most advanced solutions exploit the declarative nature and con-
currency theory of graph transformation to execute non-conflicting rules in parallel [Mez07].

Unfortunately, in many practical cases, model transformations are complemented intertwined
with hard-to-analyze imperative actions, or simply, there are too many conflicts. In this case,
low-level solutions are required for parallel execution by using a locking system on the model
(in analogy with how locks are used for scheduling imperative transactions). The lock system
can have, for instance, a model-level, an element-level, or hierarchy-based lock granularity; also,
a read lock / write lock model is preferable.

Multi-threading for model manipulation can be achieved easier if pattern matching is per-
formed in a separate thread, as described in Subsection 4.1 (or multiple threads, as in Subsec-
tion 4.2). When model manipulation threads change the model, they send update notifications
atomically, which involves inserting an update message addressed to the appropriate input node
into the message queue of the node’s container. When a transformation thread requires the set of
matches for a certain pattern, the pattern matcher call returns them immediately if the network is
in a global fixpoint, or suspends the thread (but not others) until that fixpoint state is reached.

Performance expectations. A high amount of synchronization can diminsh performance both
through waiting and overhead. Parallel execution of read-intensive transformations is relatively
conflict-free, therefore it does not heavily suffer from waiting, and can scale up to multiple CPU
cores efficiently. A suggested application scenario would be parallel code generation, with each
thread producing a separate output file from a corresponding aspect of the source model. Code
generation is usually a read-only operation; we also believe that using different aspects of the
model aids in the partitioning of the RETE net.

4.4 Initial evaluation of parallel transformation

For evaluation purposes, we have extended VIATRA2 with multiple transformation threads, con-
current pattern matching, and model-level R/W locking. We used this system to measure the
performance of parallel code generation, namely generating PNML [JKW02] descriptions of
several Petri nets within the model space. This application scenario has the advantage that trans-
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formation jobs are entirely read-only. However, since all generation jobs basically follow the
same algorithm and use similar Petri-nets, it does not easily lead to partitioning the RETE net;
therefore, we used concurrent pattern matching, but with a single RETE container. The initial
expriments2 show that this system has a quasi-linear scalability. A Petri-net generated by the
procedure in [BHRV08] as “Size 50000” was used as a sample input. Two PNML code genera-
tors in sequence ran for 2.9s each, 5.8s altogether. Two code generators in parallel ran for 3.7s
each, but they took only 3.9s altogether. Due to the complexity (and sometimes strange charac-
teristics) of parallel algorithms, further measurements are required to compare its performance
with non-incremental approaches.

5 Related work

Incremental pattern matching. Incremental updating techniques have been widely used in
different fields of computer science (including view updates in relational databases [GMS93]).
In graph/model transformation tools, PROGRES [SWZ99] supports incremental attribute update
performing immediate invalidation of partial matchings, while the validation of partial matchings
are only computed on request (i.e., when a matching for the LHS is requested). The transforma-
tion engine of TefKat [LS05] performs an SLD resolution based interpretation to construct and
incrementally maintain a search space tree representing the trace of transformation execution
[HLR06]. The uniform, incremental handling of model elements and patterns can be considered
a unique, advanced feature of the approach. [VVS06] proposes to store a tree for the partial
matches of a pattern, and incrementally updates it upon model changes.

RETE networks. RETE networks [For82], which stem from rule-based expert systems, have
already been used as an incremental graph pattern matching technique in several application sce-
narios including the recognition of structures in images [BGT90], and the co-operative guidance
of multiple uninhabited aerial vehicles in assistant systems as suggested by [MMS08]. Our con-
tribution extends this approach by supporting a more expressive and complex pattern language.

Parallel RETE. There is also some work in literature in the context of parallel or distributed
RETE implementations. For instance, [AT98] focuses on parallelizing rule applications, [MK90]
parallelizes pattern matching. Unfortunately, certain approaches focusing on expert systems are
hard to be accessed, e.g. due to vague patent descriptions [Lin05], and certain industrial solutions
might not be published at all. Anyhow, these approaches rarely provide proofs to guarantee the
global termination of local updates as mentioned in Subsection 4.2, which is specific to our
model transformation context.

Parallel graph transformations. In addition to large amount of theoretical work on concur-
rent and parallel aspects of graph transformation, relatively little practical work has been carried
out. Some advanced solutions were proposed by G. Mezei [Mez07] who analyses pattern con-
flicts and groups executable rules into independence blocks to execute them in parallel. Further
contributions also introduced parallel pattern search for first occurence and all occurrences. Our
current work is complementary to his work, as it offers parallelization with a different pattern
matching paradigm. Future research shall be conducted to identify how to combine the strength
of the two approaches.

2 Environment: 2.2GHz Intel Core 2 Duo processor, Ubuntu 8.10, x64 OpenJDK 1.6.0 0, 1.5GB heap memory
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6 Conclusion

The paper introduced various techniques for parallelizing graph transformation systems using
incremental pattern matching. More specifically, we discussed how to exploit the power of mod-
ern computers with multiple processor cores, tailored to the specialities of incremental pattern
matching. Our approach decouples model manipulation and pattern matching, and then paral-
lelizes each of these phases.

We also sketched conditions when the proposed solutions are expected to perform best: (i)
transformations with longer model manipulation sequences, (ii) transformation runs accessing
different patterns, and (iii) transformation runs that are read-intensive.

Finally, an initial implementation of all the three presented ideas has been integrated to the
VIATRA2 model transformation framework, and an initial performance evaluation of these par-
allelization techniques was carried out.

Acknowledgements: This work was partially supported by EU projects SENSORIA (IST-3-
016004) and SecureChange (ICT-FET-231101), and the László Schnell Foundation.
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Abstract: Implementing behavioral modeling languages, i.e. those describing the
processing of data rather than data structures, is a challenging task. Domain specific
languages especially suffer from this fact, as their initial realization as well as later
evolution should be enabled in a rapid way. Existing solutions frequently found
in the DSL community often apply code generation mechanisms for this purpose.
These solutions are usually not restricted to specific kinds of DSLs, but their support
is often rather rudimentary.

In our project, we explicitly target behavioral languages operating on graph-based,
hence discrete data structures. Consequently, we can offer improved realization
support for a restricted set of DSLs. To this end, the present paper introduces a
simple transformation language tailored to build DSL compilers. Starting from a
DSL’s abstract syntax representation, the created compilers generate graph queries
or transformation rules for further processing by the provided machinery.

Keywords: execution framework, behavioral modeling languages, graph transfor-
mations

1 Introduction

Employing specialized or domain-specific languages (DSLs) in software development processes
promises higher developer productivity by easing specific tasks during development. During
the past years, numerous projects have consequently proposed such languages and surrounding
toolchains for various application areas. Representatives tackle very different aspects of pro-
gramming such as numerical algorithms, software architectures, and web applications1.

DSLs are often designed as a company’s auxiliary means rather than a leading product, there-
fore their development should only require restricted amounts of resources. Therefore, there is
need to aid the design and implementation of DSLs, which is addressed by specific frameworks
and meta-languages. Behavioral DSLs describing inspection or manipulation of data, rather
than data itself, are especially challenging with this regard: The modeled specification docu-
ments need to be evaluated according to the language’s semantics. A common approach for this
task is to derive code for general purpose languages (GPLs) using source-to-source transforma-
tions. Tools to model such transformations are readily available, e.g. Stratego/XT [Vis03] for
DSLs with textual concrete syntax. However, depending on the conceptual gap between source

1 The Annotated Bibliography hosts numerous examples, see http://homepages.cwi.nl/∼arie/papers/dslbib/
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DSL and target GPL, this can result in complex translations being hard to develop and to main-
tain. Furthermore, means to technically access data storages have to be incorporated into the
generated code.

In our project, we support the development of specialized behavioral languages related to the
processing of discrete models. Such languages can describe querying, editing, and translation
of models using specially tailored language constructs and pragmatics. In the following, these
are referred to as graph languages. In contrast, we do not explicitly support static modeling lan-
guages, e.g. to describe data structures. Furthermore, we provide a graph-oriented view on data
e.g. stored in a relational database or in a model repository. A basic yet extensible language and
execution engine for graph transformations, which can be considered a very-high-level virtual
machine for declarative “machine code”, supports the evaluation of behavioral specification doc-
uments. Behavioral DSLs can thus be implemented by compilation on a high level of abstraction,
therefore leveraging the aforementioned conceptual gap.

Compilation in our case requires the translation from abstract syntax models of a DSL’s spec-
ification documents into graph transformation rules. This can be naturally achieved through
model transformations, which allow to capture the functionality required for this purpose. More
specifically, a compiler needs to implement uni-directional translations, while keeping trace in-
formations for later debugging. Though our initial aim was to re-use existing model transfor-
mation languages for this purpose, numerous ones showed to yield inconveniently verbose spec-
ifications in our scenario. Therefore, a specialized translation mechanism has been developed
to enable more concise solutions. This mechanism being introduced in the present paper of-
fers constructs from a fixed translation target domain, and eases its use by certain (overridable)
heuristics.

Structure of the remaining paper: Section 2 gives a concise architectural overview on the
proposed approach to show the projects “big picture”. Afterwards, Section 3 introduces a running
example before Section 4 presents the transformation tooling. Section 5 discusses related fields
in the literature, and Section 6 concludes.

2 Overview

Figure 1 shows a coarse-grained overview on the presented approach as introduced above. From
the figure’s left side, one can note that DSLs are integrated with our framework based on their
abstract syntax model. However, the construction of editing environments or processing tools
like parsers is not considered in this project, which therefore need to be supplied externally. The
abstract syntax models of specifications need to be exported from such tools to the graph-oriented
database system DRAGOS, which we apply as model repository. Consequently, specifications
are stored as graph structure instantiating a DSL-specific graph schema (i.e. metamodel).

The middle column depicts the specification after translation into the framework’s core lan-
guage, called DRAGULA. Although details on this language are out of the scope of the present
paper, more insights are given in [Wei08a, Wei08b]. Based on this second representation, the
DRAGULA Execution Engine is able to evaluate a given specification through a sequence of
graph transformations. For this purpose, the execution engine operates on a host graph constitut-
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Figure 1: Architectural overview

ing the system’s runtime data structures. This third graph structure, which might be visualized
by graph browsers or suitable UI frameworks, is shown as right column in the figure.

The transition from the specification’s DSL-specific model to its DRAGULA counterpart is
related to the compilation of source code to executable byte code, as followed e.g. by Java or
the ATL. Unlike these two languages’ backends, DRAGULA does not settle at a low-level of ab-
straction comparable to stack machines. Instead, DRAGULA constitutes a high-level declarative
language itself based on graph transformation concepts. Implementing compilers from behav-
ioral DSLs to this core language therefore is a comparatively easy task, which needs to be aided
by proper tool support, nevertheless. A transformation language dedicated to this specific task
has been developed in the context of the proposed framework, which will be introduced in the
following.

For its main contribution, this paper uses an example-oriented approach instead of a rigorous
formal definition. This is motivated by space restrictions and the main goal to present an under-
standable, yet realistic scenario. An elaborated language definition will be subject of a future
publication.

3 Example Graph Language

To illustrate the use of the framework introduced above, this section presents a concrete example
language for querying graph structures. In the following, the compilation of this language to
DRAGULA is explained. Figure 2 illustrates a query conceptually related to GReQL [KW99], a
query language originally developed for a reengineering environment. As host graph schema, we
assume a data model related to project management applications. Specifically, the query should
report all projects and the total labor time spent on the respective one by all of its programmers.

The textual concrete syntax depicted in Figure 2a side comprises two parts, namely entities and
values being queried (upper part), and predicates that need to be fulfilled by these entities (lower
part). The grouped keyword indicates that entities found for per and wo do not yield distinct
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query
pro: Project,
grouped per: Person,
grouped wo: WorksOn,
sum( wo.share

* per.totalTime )
where
pro <-on- wo -by-> per,
wo.as = "Programmer"

(a) Concrete DSL syntax
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(c) DRAGULA compilation derived from Figure 2b

Figure 2: Sample graph query in DSL and DRAGULA syntax

results, but all of their valid assignments should be grouped together for further processing2.
These grouped variables are used in the scalar expression below to sum up the multiplication’s
results. The query’s lower part checks connectivity of entities, e.g. wo having a directed link
towards pro of type on. Also, the attribute as of wo is compared to the depicted value.

Figure 2b shows the query’s abstract syntax, which will be used for compilation to DRAG-
ULA. Considering the query language’s static semantics, applied identifiers have been resolved
to cross-references, e.g. for the left and right legs of path conditions. Therefore, this structure
constitutes a (abstract semantics) graph instead of an (abstract syntax) tree.

The third part Figure 2c finally shows the same query expressed in DRAGULA core language.
The basic building blocks of DRAGULA rules are called Patterns, depicted as rounded boxes
in the figure. The outer pattern contains a NodeVariable, for which a value is retrieved from the
underlying data storage. By attaching a TypeConstraint, this value is restricted to a specific type,
Project in this case. Another NodeVariable is used to store the scalar value calculated by the
aggregation expression. Due to the fundamentally graph-oriented paradigm of DRAGULA, no
dedicated scalar variables are available. Therefore, a new node is created after pattern matching,
using the depicted CreationOperator. Afterwards, its value attribute is set to the resulting total labor
time spent on the matched project entity using an AttributeSetOperator. This value is calculated by
evaluating a tree of expression elements (gray circles) representing predefined functions (FunCl)
and accesses to entity attributes (Acc). For the latter purpose, the referred entity variables must

2 In terms of SQL, this construct is the inverse notation of GROUP BY, which enumerates all non-grouped elements.
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be attached to the respective AttributeSetOperator.
A second, nested pattern contains all variables and related constraints representing grouped

elements in the concrete syntax. In this example, it therefore comprises NodeVariables for wo and
per, as well as EdgeVariables to match their respective connectivity. Incidence between nodes
and edges is expressed using IncidenceConstraints, whilst additional TypeConstraints ensure that
traversed edges are of the desired type (on resp. by). An AttributeConstraint compares the as
attribute of the attached variable’s value to the literal Programmer. The nested pattern’s aggre-
gation annotation3. causes the execution engine to find all valid assignments for its variables. To
the surrounding pattern, these results are returned as one vector of entities for each variable.

Conclusion: This example shows a basic usage scenario for our framework, the implemen-
tation of a language specialized on graph queries4. The DRAGULA language embraces sepa-
ration of concerns, which is achieved by distinguishing between variables to be assigned, and
constraints that have to be fulfilled for these assignments. Pattern matching can therefore han-
dle both typed and untyped models, check incidence between nodes and edges considering or
neglecting direction, etc. Though not required in this example, DRAGULA supports nested
graph structures and hypergraphs, too. Manipulations of graph structures are expressed by semi-
imperative (since order-independent) operators. The relatively verbose modeling style, though
impeding readability, eases automated processing, as different language aspects are expressed
using distinct entities. Furthermore, DRAGULA can easily be extended by additional language
constructs in form of new entity types.

4 Simple Visual Transformations

Up to now, we have seen a single example for expressing a query in the DRAGULA graph
language. Consequently, the question how to handle such translations in general arises. Model
transformations are the natural choice to compile specialized languages or DSLs to DRAGULA,
as their according documents are represented by graph-based models. Although the literature
hosts numerous languages suitable for this purpose such as triple-graph-grammars [Sch94], these
have shown to be too generic for convenient and concise modeling of the required translations
– as will be discussed in Section 5. Therefore, we propose a novel language especially focused
on using the DRAGULA language as target meta-model. The achieved results, however, can be
transfered to other target graph languages as well, albeit presumably not to low-level machine
code.

The Simple Visual Transformation Language (SViTL) is a rule-based declarative language to
relate source- and target-side specification fragments to each other. For disambiguation, SViTL
rules are therefore referred to as SViTL pairs or simply pairs in the following. In addition to a
DSL’s abstract syntax elements, the source-side may comprise more advanced constructs found
in many graph transformation languages, namely NACs and path expressions. PROGRES-like
optional or set-valued elements are not supported, neither are nested or recursive patterns as

3 In addition, nested patterns can also model boolean composition of queries, e.g. using or, not
4 In a wider definition of domain, it could be considered a DSL as well.
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e.g. offered by VIATRA2. The target-side only supports elements of the DRAGULA language,
without any “advanced” constructs.

4.1 Translation of basic language constructs

As initial SViTL pairs, we consider the variable concept in both languages of Figure 2. First,
Figure 3a relates EntityVariables to pairs of DRAGULA variables and constraints. Evaluating
this pair creates the depicted DRAGULA elements for each match of the pair’s source-side, as
suggested by the adjoining host graph fragments (surrounded by the dotted box). Furthermore,
the pair’s target-side comprises so-called anchor definitions (the balloon-shaped elements in the
figure) attached to the DRAGULA elements. These constructs anchor the created DRAGULA
elements to source-side elements or scalar values. As can be seen in the figure, NodeVariables
are anchored to the respective objects’ identifiers from Figure 2b, whereas TypeConstraints refer
to the source-side element’s type attribute. Anchor definitions must be unique for each pair’s
target-side, only one definition referring to a given source-side element is allowed.
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(b) Scalar Variables

Figure 3: SViTL pairs handling variable declarations

Second, as discussed in Section 3, a dedicated ScalarHolder node must be created at runtime
to return a scalar value from a query. The SViTL pair shown in Figure 3b provides the required
elements, including an Expression object on both sides. The of-anchor’s purpose in this pair is to
associate all elements of the DRAGULA expression tree being constructed with the AttributeSet-
Operator by means of common anchors. Note, that the present pair does not consider the actual
type of the source-side’s expression node (Sum, c.f. Figure 2b), nor does it specify a correspond-
ing type at the DRAGULA-side. Instead, concrete type informations are provided by other pairs
later on. Figure 3b additionally presents the use of anchor labels to distinguish anchor definitions
for the same source-side object. Formally, the uniqueness constraint of anchor definitions stated
above applies to equally labelled ones only. Assigning no label at all represents a “default” label,
but is not treated specially in any way.

The further processing of expression trees is depicted in Figure 4, starting with arithmetic
operations in Figure 4a. Note, that this pair does not refer to an AttributeSetOperator directly, but
to the general type PatternElement instead. This way, expression trees used by set-operators and
constraints can be handled uniformly. Figure 4b finally handles access to attributes of entity
variables. For this purpose, the container needs to be connected to the respective entity variable.
The created edge as well as the Access expressions receive the requested attribute’s name. This
is a simplified depiction: In reality, a unique combination of the entity variable’s identifier and
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the requested attribute are used as alias for the collected value, to avoid ambiguities.
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(b) Access to entity attributes

Figure 4: SViTL pairs handling expression trees (created fragments restricted to the outer pat-
tern)

Up to now, we have examined SViTL pairs to represent variables and scalar expressions based
on DRAGULA elements. When executing these pairs to compile the query from Figure 2, con-
ceptually all target-sides are created independently, and in arbitrary order for all source-side
matches. Afterwards, all anchored elements referring to the same anchor are glued together. For
this purpose, all incident edges and attribute values are diverted to a single element. Furthermore,
if the elements being glued are of different types, then one must be a direct or indirect subtype
of the other. In this case, the more specific type “wins” in that it is taken for the glueing result.
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Figure 5: Glued DRAGULA elements

Considering the host graph fragments of the two
previous figures, the following Figure 5 shows the
result after glueing. For instance, both node vari-
ables anchored to the source-side object 3 are glued
together. The resulting variable is therefore con-
nected to a TypeConstraint and to the AttributeSetOp-
erator. Likewise, the Expression construct anchored
to 8 in Figure 4a is refined to an Access by Fig-
ure 4b. As one can see, processing SViTL pairs
is not limited to tree-like structures on the source-
side, as no explicit traversal strategy needs to be defined. Therefore, graph-based specifications
like the ASG of our example query can be processed without additional means like e.g. explicit
rule ordering.

4.2 Translation of Scope-effecting constructs

Up to now, all DRAGULA fragments on a pair’s right side are placed into a single common
Pattern. However, as can be seen in Figure 2, it is crucial to support the creation of nested
structures and to select the proper container for each created element, as this effects the pattern’s
semantics. At the same time, translations should only be concerned with this issue if required,
so that complexity of basic translation rules does not increase. Furthermore, we cannot assume
a tree-like structure of the source model, which would allow to pass containers of target-side
elements along this hierarchy. SViTL handles containment informations implicitly whereever
possible, giving developers means to override this behavior if required.
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The basic idea to assign the desired container pattern to DRAGULA elements is to record
their respective neighborhoods. Unless stated otherwise, a neighborhood comprises all elements
created simultaneously when applying a SViTL pair. When glueing equally anchored elements
together, their respective neighborhood informations are combined as well, such that the glued
element is possibly contained in multiple neighborhoods. If a neighborhood contains a pattern,
then it is used as container for all remaining elements. Otherwise, container informations are
propagated between neighborhoods, as will be discussed below.

Modeling container-related informations. Concerning the pattern structure of Figure 2c, we
need to specify that non-grouped variables belong to an outer pattern, whilst all grouped ones are
assembled in a nested pattern. These requirements need to be modeled explicitly using additional
SViTL pairs. The remaining elements, e.g. constraints and attribute expressions, should however
be assigned to the most suitable container automatically. Otherwise, SViTL specifications would
need to verbosely specify containers for each created element. Neighborhoods, together with
heuristics-based propagation of container informations, solve this problem.

The two additional SViTL pairs depicted in Figure 6 provide the required informations regard-
ing the variables’ containers. In contrast to previous pairs, the target-side container is explicitly
anchored to the source-side, query q in this case. This notation includes the created pattern into
the target-side neighborhood, which thus comprises the pattern and the variable in Figure 6a.
Likewise, Figure 3b applied these means to relate all elements concerning scalar variables to
the same container, anchored to the query object 1. All other patterns presented before do not
relate target-side elements to any container, as no anchor definition is given for the respectively
depicted pattern.
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(b) Grouped variables

Figure 6: Grouping specification for variables

Finally, Figure 6b explicitly creates a nested pattern, and a variable contained therein. Neigh-
borhoods do not span pattern boundaries. Instead, separate neighborhoods are created for each
target-side pattern, including all of its contained elements. In the present case, the target-side
node variable is therefore neighbored to the inner pattern, but not to the outer one. In addition,
the hierarchy relation between the two patterns is recorded.

Relating neighborhoods to containers. Having discussed means to specify container hierar-
chies, we now examine how these additional informations effect the processing of the example
query. Figure 7a depicts the created data structures after applying all SViTL pairs for all possible
matches, and after glueing their respective results. In principle, it comprises the same infor-
mations as the resulting pattern in Figure 2c, except for containment properties. In addition,
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all neighborhoods are labeled and visualized by filled curves in the figure. Each neighborhood
stems from exactly one match of a SViTL pair, e.g. 1 to 3 from applying the pair in Figure 3a,
4 from Figure 3b, etc. Pairs modeling connectivity constraints (being omitted in this paper due
to the lack of space) yield the neighborhoods 12 to 15. The two pairs from Figure 6 create the
neighborhoods 16 to 18.
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tions graph

Figure 7: Resulting neighborhoods and their interrelations

Due to subsequent glueing of target-side elements, each one can participate in multiple neigh-
borhoods. By examining which neighborhoods share common elements, we can directly derive
the neighborhood relations graph from Figure 7b as follows: Neighborhoods are represented by
nodes, and undirected edges indicate those neighborhoods sharing at least one created element.
Nodes with thick borders especially denote neighborhoods comprising a pattern, as these are
treated specially in the following.

Using the neighborhood relations graph, we can relate each neighborhood to a suitable pattern.
From a given neighborhood, we determine the shortest path to any neighborhood containing a
pattern, i.e. 4, 16, 17, or 18. The considered neighborhood is then associated with the pattern
of the neighborhood reachable by the shortest available path. If this pattern is not uniquely
determined, we require the patterns in question to be in hierarchical order, i.e. one of them is
transitively contained within the other. In case this condition is fulfilled, we use the innermost
pattern as heuristic solution. In the present example, only two patterns with direct hierarchical
order occur. The resulting mapping of neighborhoods to patterns is indicated in Figure 7b: White
nodes belong to the outer pattern in Figure 7a, whereas gray ones belong to the inner pattern.

Assigning created elements to containers. In the previous subsection, we identified proper
containers for each neighborhood. To finally create and fill the desired target pattern, the acquired
informations still have to be propagated to the respective DRAGULA elements. Again, we follow
a heuristic approach here: Each DRAGULA element is placed into the outermost pattern any
of its neighborhoods is associated with. Again, we assume that a hierarchical order between
possible containers exists.

Using this algorithm, it is possible to derive the final pattern structure for the example query
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as shown in Figure 2c. For example, the upper variable and its attached constraint are placed
into the outer pattern due to neighborhood 1. In contrast, the connectivity check in 14 is moved
to the inner pattern, as the inner one dominates in the abovementioned algorithm. Furthermore,
the expression tree for the scalar variable is placed into the outer pattern. This is caused by
neighborhood 6, although the Access expressions are also related to the inner pattern’s variables.

Design-rational of the SViTL heuristics. Having introduced SViTL and its heuristics to treat
containment properties, we shortly discuss the rational behind these design decisions.

• Neighborhoods are associated with the innermost related pattern. This way, entities not
concerned with pattern hierarchies are placed into more deeply nested patterns whenever
possible. For example, the connectivity check attached to the outer variable comprises
several elements not being contained in any other neighborhood. This pattern fragment is
therefore “pushed” into the hierarchy to the level of its deepest related neighborhood, i.e.
the pattern holding grouped variables as defined by the explicitly anchored variable. In
case this behavior is not intended, a SViTL pair can define an explicit anchoring to place
this check into the outer pattern instead.

• Having determined all neighborhoods’ possible containers, each DRAGULA element is
placed into the outermost candidate. This decision is derived from the observation that
an outer pattern’s elements are more likely referenced from an inner one than in reverse.
Therefore, the outer pattern is considered as declaring scope for all of its neighborhoods
and their respective elements.

Besides these two heuristics, explicit anchoring can always be applied to denote an element’s
container manually. For example, if the container anchoring would have been omitted in Fig-
ure 3b, neighborhoods 4 to 6 would have been assigned to the inner pattern instead of the outer
one.

4.3 Formal properties

Having introduced SViTL as formalism for language translation, two of its formal properties
should be discussed in the remainder of this section, namely termination and confluence. Al-
though we cannot give a formal proof for these aspects, intuitive arguments are provided.

Termination. Termination guarantees that a translation result is obtained in finite time, as-
suming a finite input model. To ensure this property, the calculation of matches, the control of
individual translation steps, and the post processing need to be considered.

SViTL pairs are always executed for all of the source side’s matches. These can be determined
a priori, as the translation process does not alter the input model. Using only basic language con-
structs on the LHS, as applied in the present case study, always yields a finite number of matches.
For path expressions, the language definition has to ensure that cycles in the source model are
detected (and broken) when evaluating transitive closures. Translation control obviously termi-
nates, as each pair is processed only once for all of its matches. Post processing, comprising the
glueing of elements and assigning containers, only considers a finite number of elements. For
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each of these, a finite number of properties, comprising edges and attribute values are modified.
To conclude, the termination of SViTL translations can be derived from these arguments.

Confluence. Besides termination, all alternative translations of a given input model should
yield semantically equivalent results. This property is sufficiently guaranteed if the translation
can be shown to be confluent, such that all obtainable target structures are (syntactically) equiv-
alent up to isomorphism. To show this property, we examine possibly arising non-determinisms
in the translation process, as these state the decision points where evaluations may diverge.

In SViTL, non-determinism is caused by the matches of a given pair’s LHS, which may be
processed in random order by the execution engine. This ordering, however, does not effect
the outcome of the translation, as all results are created independently of each other. Due to
the same reason, application order of individual SViTL pairs does not effect the translation’s
outcome. Hence, all non-deterministic choices up to this point yield equal result states.

Furthermore, the effect of the post processing steps need to be taken into account. Here, rule
application order again does influence the result, as all priority decisions are based on inter-
element dependencies. These dependencies comprise type hierarchy for the glueing of elements,
and mutual containment properties for the selection of container patterns, both of which are not
influenced by non-deterministic decisions.

Conclusion. To conclude, this paper gives an informal and, from the viewpoint of theory, ad-
mittedly unsatisfying argumentation of termination and confluence. At least for the considered
query language and the example query, existence and uniqueness of the resulting DRAGULA
rule has been validated using the GROOVE system [Ren03]. Of course, this neither confirms
these properties for other queries or even other language translations. Due to SViTL’s close re-
lation to triple-graph-grammars, however, formal foundations such as presented in [EP08] might
be a suitable starting point for further analysis.

5 Related Work

Besides SViTL, there are numerous established transformation languages readily available. The
probably most prominent approach among the graph transformation community are triple graph
grammars (TGGs) as introduced by Schürr [Sch94] in the nineties. TGGs are a general frame-
work for translation purposes, and hence cannot take specifics of the source or target model into
account. SViTL in contrast has been explicitly tailored for using DRAGULA as target language,
supporting nested structures and an automated, heuristics-based container assignment strategy.
Propagation of container informations would have to be specified manually in each TGG rule,
whereas they can be omitted in most SViTL pairs in the provided case study.

As second difference, the rule application strategy of SViTL is not driven by context patterns
like in TGGs. Instead, developers can safely neglect rule dependencies, as each SViTL pair is
evaluated independently of the rest. For example, concatenation of path expressions can there-
fore be specified independently of whether a variable being traversed is explicitly given (as in
Figure 2), or an anonymous variable should be created instead. For the explicit case, an addi-
tional pair relating the concatenation element to the selected variable needs to be given. Using
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TGGs, a third rule creating the anonymous variable is needed plus either rule priorities or neg-
ative application conditions to control its applicability – this rule and especially the required
control elements are not needed in SViTL.

A benefit of TGGs vital for many application scenarios [Ste08] is their bidirectional appli-
cability. In the application scenario followed by SViTL, bidirectionality is not required, as this
would resemble a (seldomly needed) decompiler directly integrated into the compiler. Therefore,
SViTL excludes this feature.

Being conceptually very close to TGGs, the abovementioned arguments also hold for the
OMG’s standard on model transformations QVT5.

BOTL [BM03] follows a slightly different approach by treating all objects created during
rule application separate from their context. Similar to SViTL, objects with equal identifiers
are merged afterwards. However, SViTL is not tied to a singular and globally known identifier,
but uses common anchors to combine related model fragments. Therefore, SViTL pairs can be
modeled by focussing on cross-cutting aspects of the processed ASG, rather than its identified
elements. As remarked in [KS06], both approaches cannot be applied in cases where user-
interactive selection of competing rules is needed. In the case of compiler construction, user-
interactiveness can be neglected, though.

[LG08] uses patterns instead of rules for declarative model transformations. In contrast to
BOTL and SViTL, it performs static analysis of the transformation specification, and infers de-
pendencies between patterns. From these, operational rules are created. Compared to our work,
the purely static information derivation is advantageous concerning pattern analyzability. How-
ever, we can provide more complex constructs like path expressions, which presumable are hard
to provide in the cited work.

6 Conclusion

This paper proposes an approach to construct DSL compilers from declarative specifications. Al-
though there are numerous approaches with similar mechanics, we offer tools for easy adaptation
to specific domains. To this end, the present paper discusses SViTL as language for declaratively
mapping DSLs to the provided core language. On the technical side, the DRAGULA language
has been implemented based on the DRAGOS graph database system, as introduced in Sec-
tion 2. An editing environment for SViTL specifications has been implemented based on the
Eclipse framework. Currently, we are finalizing a transformation-based implementation using
the DRAGULA language.

The major advantage of SViTL over existing solutions is its strong integration with the pre-
sented framework, which is achieved through backend-specific language constructs and an ac-
cording execution mechanism. Explicit support for hierarchical structures is usually not found in
existing transformation approaches. In SViTL, this is achieved through an automated, heuristics-
based solution specific for the targetted DRAGULA language. Furthermore, the quasi-parallel
application strategy allows to abstract from rule orderings, which are otherwise modeled through
priorities or NACs.

5 Query/View/Transformation, see http://www.omg.org/docs/ptc/05-11-01.pdf
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Future Work. In the future, we would like to determine completeness of model transformation
rules, i.e. that a DSL’s constructs are appropriately covered by SViTL pairs. As result, developers
could be better guided in constructing DSL compilers if they identify concepts not covered by
the constructed compiler yet.
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Abstract: In this paper, we present an interpreter for Story Diagrams working on
Eclipse Modeling Framework (EMF) models. The interpreter provides a more flex-
ible and, under certain circumstances, a more scalable solution than the compiled
Java code generated from Story Diagrams by Fujaba. Story Diagrams can now be
modeled and executed within Eclipse. They can be modified and re-executed by
the Story Diagram interpreter immediately without recompiling the source code and
restarting the application. Our implementation also supports higher-order transfor-
mations by using Story Diagrams to modify other Story Diagrams. While interpre-
tation obviously results in performance drawbacks, we demonstrate that the Story
Diagram interpreter is able to improve the performance in certain worst-case sit-
uations compared to the average generated code. This is achieved by a dynamic
ordering of the matching process, which considers the actual number of elements in
an association at runtime. Such a dynamic ordering can minimize the matching ef-
fort considerably. In contrast, Fujaba generated code uses a static matching strategy.
Whereas the Fujaba Story Diagrams have potentially high performance fluctuations,
the performance of the Story Diagram interpreter is more steady and more scalable
compared to the generated Java code.

Keywords: Graph Transformation Systems, Interpreter, Story Diagram

1 Introduction
Story Diagrams [FNTZ00], as supported by the Fujaba Tool Suite1, are an established graph
transformation approach. They have been employed in several applications ranging from be-
havior specification [FNTZ00], reverse engineering [NSW+02], consistency checking [WGN03,
GMW06], and as an implementation technique for model transformations with Triple Graph
Grammars [GW09, GH08] (TGG).

In this paper, we present our new interpreter for Story Diagrams, which works directly on
Eclipse Modeling Framework (EMF)2 models. It allows to directly execute Story Diagrams
to access and modify arbitrary EMF-based models. This leads to a higher flexibility. On the
one hand, because Story Diagrams are now available in Eclipse and EMF. This streamlines our
workflows. Currently, EMF models are imported into Fujaba, Story Diagrams are modeled with
Fujaba, code is generated, and the code is exported back to Eclipse. One the other hand, Story

1 http://www.fujaba.de
2 http://www.eclipse.org/modeling/emf/
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Diagrams can be modified and re-executed by the Story Diagram interpreter immediately with-
out recompiling the source code and restarting the application. The additional steps of generat-
ing code, compiling code and integrating it into the runtime environment disappear. Modeling
Story Diagrams within EMF leverages higher-order transformations [MCG05] because Story
Diagrams can be used to modify other Story Diagrams.

Furthermore, the interpreter also supports Dynamic EMF. Dynamic EMF objects are not in-
stantiated from specifically generated code classes but from a generic class. This allows to create
and modify meta models and their instances in runtime environments where the application of
code generation is not feasible.

During the development of a model transformation system based on Triple Graph Grammars,
we encountered performance issues when executing code generated from Story Diagrams by
Fujaba. The reason is the static pattern matching strategy used by the generated code, which is
occasionally not the optimal pattern matching strategy. The interpreter uses a dynamic pattern
matching strategy, that tries to find matches using those instance links with the lowest number
of elements, first. This is also the optimal matching strategy in many cases and results in a
better scalability compared to Java code with a non-optimal static matching strategy. We have
conducted an evaluation that compares the runtime performance of the interpreter with the com-
piled Java code of Fujaba. As outlined in [VSV05] and [TBB+08], Fujaba has been shown to be
one of the most efficient graph transformation engines in comparison to AGG [T0̈0], PROGRES
[REEK99], GReAT [BNBK06], and other approaches. Because of that observation, we restrict
our analysis to a direct comparison between the new Story Diagram interpreter and the compiled
Java code of Fujaba.

The paper is structured as follows: We first describe Story Diagrams as supported by Fujaba
in Section 2. Then, we describe our EMF-based meta model of Story Diagrams and the Story
Diagram interpreter in Section 3. In Section 4 we discuss the benefits of interpreting Story
Diagrams implying a higher flexibility (Section 4.1) and scalability (Section 4.2). The paper
closes with some final remarks and an outlook on planned future work in Section 5.

2 Story Diagrams in Fujaba
Story Diagrams extend UML Activity Diagrams by so-called Story Activities to model the be-
havior of a method of a UML Class. Therefore, they are usually used in conjunction with a UML
Class Diagram that describes the structure of a software application. Fujaba is a UML CASE
tool that supports Story Driven Modeling (SDM), which is the modeling of Story Diagrams and
the generation of Java code from UML Class Diagrams and their accompanying Story Diagrams.
This way, it is possible to completely create Java applications using the models provided by Fu-
jaba. Besides Story Activities, Story Diagrams can also contain other kinds of activities like
Statement Activities. These activities contain plain Java code. User defined code is inserted
into the code which is generated by Fujaba. The user defined code can access objects matched
and created in previous Story Pattern executions and it can create objects that can be used in
following Story Patterns. More details on Story Diagrams can be found in [FNTZ00].

Figure 1 shows a meta model that reflects a simplified UML Class Diagram and Figure 2 shows
an example Story Diagram that describes the doSomething() method of the StoryDiagramTester
class. It operates on instances of the meta model of Figure 2.

Story Activities contain a Story Pattern. A Story Pattern describes a graph transformation rule

GT-VMT’09
62



ECEASST

Figure 1: Example meta model of a simplified UML Class Diagram

Figure 2: Example Story Diagram

that is executed on the object graph of a running application. Story Patterns can match existing
objects, create new objects or delete objects of the running application. For example, the Story
Pattern in Figure 2 searches for a UMLClass object that is connected to the umlClassDiagram via
the elements link, and to a UMLStereotype object (stereotype) via a stereotypes link. The Story
Pattern object umlClassDiagram is already bound to the object that was supplied as the method’s
parameter. The other two Story Pattern objects are unbound. When the Story Pattern is executed,
matches for these Story Pattern objects are searched for in the application’s object graph. If all
Story Pattern objects can be bound to an instance object, a new UMLStereotype object is created
(indicated by <<create>>) and connected to the umlClass and the umlClassDiagram objects.

3 Story Diagram Interpreter Based on EMF
In this section, we will describe the developed Story Diagram interpreter and briefly describe the
meta model of our Story Diagrams, which is based on EMF. The interpreter is implemented as a
plug in for the Eclipse framework.

Ecore Meta
Meta Model

StoryDiagram
Meta Model

Meta Model
MM1

StoryDiagram
Model

Model M1

«instance» «instance»

«instance»«instance»

«references»

StoryDiagram Interpreter

execute Story Diagram on

Figure 3: Models used by the Story Diagram interpreter.

EMF provides Ecore as a common meta meta model. All EMF-based meta models are in-
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stances of the Ecore meta meta model. This includes the meta model of Story Diagrams. Figure 3
shows these relationships. Story Diagram models are in turn instances of the Story Diagram meta
model. Another meta model (MM1 in Figure 3) is required that defines the elements that can be
matched and modified by a Story Diagram, e.g., classes, operations and associations. Especially,
the definition of the operation is required, whose behavior is modeled by the Story Diagram.
Therefore, a Story Diagram model references this meta model. Of course, it is also possible, that
a Story Diagram references multiple meta models, including its own meta model.

To execute a Story Diagram, the interpreter needs that Story Diagram, as well as an instance of
the meta model that is referenced by the Story Diagram (M1). These are supplied as parameters
to the interpreter. During the execution, that model may be modified, depending on the behavior
modeled by the Story Diagram. If the operation defined in the meta model (MM1) also has
parameters and a return value, these additional parameters can be supplied to the interpreter. The
return value is returned when the interpretation is finished.

The use of the common meta meta model Ecore allows to access all EMF-based models in
a uniform way. All instance objects provide a generic interface to access their properties and
have a reference to their meta class, that provides information about the properties of that object.
This allows to work on any EMF-based models without knowing their meta models at design
time. Dynamic EMF objects push that concept even further. Usually, code is generated by EMF
and objects at runtime are instances of these generated classes. Dynamic EMF objects are not
instantiated from specifically generated code classes but from a generic class. Their attributes
and associations can only be accessed via the generic interface mentioned above. The Story
Diagram interpreter uses only this generic interface to access and modify objects and, therefore,
can execute Story Diagrams defined on any EMF-based meta model and can handle normal and
dynamic EMF objects.

3.1 Story Diagram Meta Model
Before explaining the interpreter in more detail, we will look at the meta model of Story Dia-
grams. While Fujaba’s meta model of Story Diagrams is intended to be used to generate code,
it is unsuitable for interpreting a Story Diagram. This is mainly due to the fact, that statement
activities contain plain Java code but Java code cannot be executed directly by our interpreter.
We also support OCL for constraints which also requires changes to the meta model. Further-
more, Fujaba uses a proprietary meta meta model that makes integration with other tools difficult.
Therefore, we built a new Story Diagram meta model based on EMF.

This meta model is shown in Figure 4. The root node of a diagram, ActivityDiagram, contains
several Activities, each models a method’s behavior. Each Activity contains several ActivityNodes
that are connected by ActivityEdges. These edges can have guards to conditionally branch the
control flow. There are several types of ActivityNodes to model the entry and exit points of
the method, branches, Story Patterns and imperative calls. This follows the notion of Activity
Diagrams of UML 2.0.

InitialNodes, ActivityFinalNodes, DecisionNodes and MergeNodes describe the control flow
inside an Activity. CallActionNodes can be used for imperative calls, StoryActionNodes describe
Story Patterns.

A StoryPattern contains StoryPatternObjects that are connected by StoryPatternLinks. Story-
PatternObjects represent an instance object of a meta class. Similarly, StoryPatternLinks repre-
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Figure 4: EMF-based Story Diagram meta model

sent instance links of associations. StoryPatternObjects can be augmented by Constraints and
AttributeAssignments. Constraints define conditions that must be met in order to match that Sto-
ryPatternObject to an instance object. AttributeAssignments assign a new value to an attribute.
They are only executed after a valid match for the whole StoryPattern could be found. The val-
ues of AttributeAssignments are calculated by Constraints. The StoryPattern itself can also have
a Constraint that is checked when matches for all StoryPatternElements could be found. This
is useful to specify constraints that include multiple StoryPatternObjects. Constraints on Sto-
ryPatternObjects may not include other elements of the same StoryPattern because these other
elements might not be bound when the constraint is evaluated.

Constraints are uniformly handled by Constraint objects. They contain the constraint expres-
sion and the type of the constraint language. Currently, only OCL is supported. Constraints can
either evaluate to a Boolean value or an object. The latter case is used for AttributeAssignments
to compute values.

CallActionNodes try to resemble Fujaba’s capability to use arbitrary Java code in statement
activities. There are several types of CallActions, that can create a new variable and assign a
value to it, reference an existing variable, create a new object, define a literal of a primitive
type, evaluate an OCL expression and, most importantly, call arbitrary Java methods via Java’s
reflection mechanism (MethodCallAction). This way, user defined code can be integrated into
the execution of the Story Diagram.

3.2 Story Diagram Interpreter
Our tool support for modeling Story Diagrams is currently limited to the tree-based editor gen-
erated by EMF from the Story Diagram meta model. We are working on a graphical editor using
GMF to ease modeling Story Diagrams. Furthermore, we provide a set of basic validation rules
using openArchitectureWare’s3 Check language.

The Story Diagram interpreter is also based on Eclipse. It consists of four major parts (cf. meta
model in Figure 5): The StoryDiagramInterpreter, that manages the interpretation of an activity,
the StoryPatternMatcher, responsible for executing a single Story Pattern, the CallActionNodeIn-
terpreter, responsible for executing call action nodes, and the InterpreterVariablesManager, that
stores the variables used in the activity along with their instance values. It is also used to evaluate

3 http://www.openarchitectureware.org
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Figure 5: Meta model of the Story Diagram interpreter

OCL constraints using an OCL interpreter.4

InterpreterVariables are used to store information about the variables used in a Story Diagram
at runtime. They are created for used every variable. These are especially StoryPatternObjects
but also the parameters of the operation.

To start the interpretation of an activity, the method executeStoryActivity() of the StoryDia-
gramInterpreter is called. The parameters of the method are the activity to interpret, a list of
values that are used as parameters for the operation modeled by the activity, and the this object
in whose context the activity will be executed.

The interpreter traverses the activity starting at the InitialNode. If a CallActionNode or a Sto-
ryActionNode is encountered, the CallActionIntepreter or the StoryPatternMatcher are called to
execute that node. In case of DecisionNodes, constraints on outgoing activity edges are evaluated
and the interpreter branches accordingly. If a final node is reached, the execution ends and the
return value of the Story Diagram is returned to the caller.

Figure 6: Story Activity of the method doSomething()

Figure 7: Example instance class diagram
The StoryPatternMatcher uses a dynamic pattern matching approach. It tries to find matches

for StoryPatternObjects using those associations first, that contain the lowest number of ele-
ments. Figure 6 shows an example Story Diagram and Figure 7 an instance situation. All refer-
ences are bidirectional. The instance object cd is supplied as a parameter to the activity.

4 We use the OCL interpreter available at http://www.eclipse.org/modeling/mdt/?project=ocl.
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Starting from umlClassDiagram, the first story pattern object has to be bound by iterating the
elements association. Assume, the interpreter matches stereotype to s1. Now, umlClass can be
bound by either iterating elements a second time, or by following the stereotypes link from s1.
Because the latter contains fewer elements, it is preferred. Also, a match for the last story pattern
object stereotype2 is searched for by following the stereotypes link from c1. But because the only
element s1 is already bound to another story pattern object, no match can be found. Therefore,
the matches for umlClass and stereotype are discarded and the interpreter tries to find another
match for stereotype. But this attempt also fails in the example.

To perform this dynamic matching process, the story pattern is analyzed prior execution and
StoryPatternLinks are grouped into to-one and to-many links. When the interpretation starts, it is
checked if a to-one link exists, that starts at a bound StoryPatternObject and ends at an unbound
one. If such a link exists, it is used to bind the target StoryPatternObject of the link. Otherwise,
the to-many links are searched. Now, the actual number of elements in the instance association is
also checked and the link with the lowest number is followed to bind the next StoryPatternObject.
After a StoryPatternObject was bound, constraints on that object are evaluated and all links are
checked, that now have a bound source and target. If these conditions are not met, the match
is discarded and another is sought. If they are met, the next link to bind objects is looked up.
When all StoryPatternObjects could be bound, constraints on the StoryPattern are evaluated. If
these are fulfilled, StoryPatternObjects marked as delete or create are deleted and created, and
AttributeAssignments are executed.

To keep track of matches, a stack is used. Every time, a story pattern object is bound, an
element is put on the stack, that contains lists of all bound and unbound objects, and checked
and unchecked to-one and to-many links. If no match can be found for a story pattern object, the
top-most stack element is removed and the pattern matching continues using the state of the now
top-most stack element. If the stack runs empty, no match could be found for the story pattern.

For debugging purposes, adapters can be registered at the interpreter. Each time, the interpreter
performs an action, a notification is send to the adapters. This can be used to print messages to a
log or to implement a graphical debugger for Story Diagrams.

The dynamic pattern matching strategy allows to adapt the matching strategy to the instance
situation. This is useful, if the optimal matching strategy for a story pattern differs depending
on the instance situation. However, the interpreter’s matching strategy is not optimal in every
case. Cases can be constructed, where traversing a link with many target elements first results in
a lower overall execution time. But these cases are rather the exception than the rule.

4 Benefits of the Interpreter
In this section, we outline the benefits of the introduced Story Diagram interpreter. We discuss
the improved flexibility in Section 4.1 and the steadier and improved scalability in Section 4.2.
On both aspects, we discuss the impact on projects we are currently working on.

4.1 Flexibility
In this section, we discuss the flexibility benefits of the Story Diagram interpreter by means of
application areas that we already gained experience from. The main improvements in flexibility
are due to the following facts:
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• We can improve our workflow because we completely ported SDM to the EMF-based
Eclipse platform. Thus, we are able to model and maintain Story Diagrams and further
execute them within the same environment.

• We do not need to generate source code from Story Diagrams, which entails the compila-
tion of Story Diagrams and further the integration of the compiled code into the environ-
ment for execution.

• We can use other EMF-based tools on Story Diagrams. For example, openArchitecture-
Ware’s Check language is used to check well-formedness of Story Diagrams. EMF com-
pare5 could be applied to compare different versions of Story Diagrams etc.

• We have an explicitly defined meta model of Story Diagrams (Ecore) within Eclipse. This
enables to integrate Story Diagrams in the definition of Story Diagrams, which is the
prerequisite for higher-order transformations. Fujaba does not allow to reference the Story
Diagram meta model within Story Diagrams.

• The support of Dynamic EMF enables to do transformations on meta models without
generating code of the mega models. This is most desirable in runtime environments when
code generation is not applicable.

Currently, we are working on two projects, where Story Diagrams are frequently used, which are
briefly explained in the following. Both projects benefits from the first to facts in the previous
listing.

The first project deals with traceability management in an Eclipse-based Model-Driven En-
gineering (MDE) environment.6 We have developed a prototypical MDE environment, which
is able to model the deployment of software products provided by a company into a model of
an IT infrastructure reflecting a customer’s IT. Furthermore, the software products, which are
modeled in the deployment models, are configured variants of reference models, which contain
details of the software product necessary for the deployment domain. Between these models, we
have several kinds of relationships tracing certain aspects, which are required to be managed and
maintained. The management/maintenance operations for these traceability relationships are ex-
pressed by means of Story Diagrams (create and delete operations). Thus, if specific situations in
a certain model instantiation exist, there will be Story Diagrams in order to create new relation-
ships between models/model elements and delete existing relationships, which became invalid
because of unsatisfied constraints expressed in Story Diagrams.

The first prototype suffered from an uncomfortable workflow we were forced to use. Story
Diagrams had to be specified within the CASE tool Fujaba. This required to re-model the meta
models of the MDE models in Fujaba in order to specify the Story Diagrams. Further, code for
each Story Diagram had to be generated, the code had to be complied and finally integrated into
the Eclipse MDE environment. Furthermore, once the MDE environment is deployed to end-
users, adding or updating existing Story Diagrams requires an additional mechanism to generate
Story Diagram code, compile the code and integrate it into the running MDE environment.

5 http://wiki.eclipse.org/index.php/EMF Compare
6 This project is funded by CA Labs Inc.

GT-VMT’09
68



ECEASST

In a subsequent implementation we encountered that the integration of SDM into Eclipse
fixed all these issues. We can model Story Diagrams within the same environment, and instantly
execute them after specification which safes a lot of time to the user of the environment. Thus,
the whole SDM integration brings more flexibility to the user in this project.

In the other project, a model transformation and synchronization system based on Triple Graph
Grammars [GH08] (TGG) was developed. The system is also based on Eclipse and EMF. The
user specifies a set of declarative TGG rules that describe the model transformation. These rules
are translated into Story Diagrams to make them operational. In this step, some operational logic
is integrated into the Story Diagrams to support features like incremental transformation and
synchronization of the models. Next, Java code is generated from the Story Diagrams. This code
is executed by a transformation engine to perform model transformations.

The SDM integration could now improve the usability of the system because it would improve
the workflow. After the TGG rules are created by the user and transformed to Story Diagrams,
these could be executed instantly without the need to generate code and restart the transformation
system. This saves a lot of time when a new set of transformation rules needs to be tested and
debugged.

4.2 Scalability
During the development of the TGG-based model transformation system in Eclipse, we discov-
ered that the static matching strategy of the generated code can have a severe impact on the
performance of the overall transformation system. The Story Patterns in the Story Diagrams are
quite complex and the code generator seldom chooses the optimal matching strategy. Especially
in case of large models, this leads to bad scalability of the transformation system. We tried to
avoid the problem by splitting complex Story Patterns into simpler ones to guide the code gen-
erator in choosing the best strategy. However, this does not work in all cases and it increases the
complexity of the overall Story Diagrams making debugging and testing of the transformation
system more difficult. Therefore, the dynamic matching strategy of the Story Diagram Inter-
preter would improve the situation. We could use complex Story Patterns (and simpler Story
Diagrams) and still be sure to have the best matching strategy in most cases.

To compare the dynamic matching strategy to the fixed matching strategies of compiled code
generated by Fujaba, we have conducted a small benchmark7. Of course, this is not meant to
be an exhaustive performance evaluation. It is only limited to the pattern matching parts. Other
performance bottlenecks, like the OCL interpreter, are not considered.

For the benchmark, a simple class diagram model was created conforming to the meta model
in Figure 1. In the test models, each UMLClass is connected to exactly one UMLStereotype
object and vice versa, i.e. the number of classes and stereotypes is the same. Figure 7 shows the
general scheme. Test models of different sizes ranging from 200 to 100,000 UMLClass objects
were created, which means a total number of 401 to 200,001 elements. On these test models,
the Story Diagram shown in Figure 6 was executed and the time was measured. The test was
repeated ten times for each model size and the mean time was calculated. Because the Story
Pattern cannot find a match in the instance models, the whole instance models must be traversed.
7 The benchmarks were run on a PC running on an Intel T5500 Core2 Duo Processor with 1.66 GHz and 2.5
GB RAM under Windows XP SP3. We used Fujaba 5.1 with CodeGen2 5.5 to generate Java code from the Story
Diagram. The Story Diagram interpreter runs on Eclipse 3.4.1 and uses EMF 2.4.0. The Java Runtime version is 1.6.
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We tested three versions of Java code generated by Fujaba from the Story Diagram, and the
interpreter. The interpreter was tested one time using the implementation code generated from
the class diagram meta model, the other time using only dynamic objects. This will show the
performance penalty when dynamic objects are used.

The code generated by Fujaba uses a fixed matching strategy, that is defined at generation time.
The code generator prefers to-one associations to match Story Pattern objects. Surprisingly, the
matching order is also influenced by the order in which the links of the Story Pattern are created
when the Story Diagram is modeled.

For the example Story Diagram, there are three major categories of matching strategies. The
first strategy iterates a single time over the elements association to bind the first Story Pattern
object (e.g. stereotype). The remaining two Story Pattern objects are bound via the stereotype
links. This order is depicted in Figure 6 by the numbers. It is the most efficient strategy for the
instance models used in the benchmark and is also used by the Story Diagram interpreter. The
second strategy iterates the elements link two times, the third strategy iterates even three times.
Because the iteration over the elements association dominates the processing effort, the impact of
the model size on the performance can be expected to be much higher than for the first strategy.
For each of these categories, we generated code with Fujaba by varying the order in which the
Story Pattern links were created.8

No. of Interpreter Fujaba generated code
classes compiled code dynamic objects strategy 1 strategy 2 strategy 3 Arithmetic Average Weighted Average

200 6 12 6 34 4,590 1,543 402
400 12 6 1 121 37,450 12,524 3,182
600 12 12 3 271 126,874 42,383 10,710
800 15 22 6 468 300,781 100,418 25,302

1000 24 25 1 728 587,790 196,173 49,347
2000 59 51 7 2,689 n.a. n.a. n.a.
4000 106 110 11 10,703 n.a. n.a. n.a.
6000 156 165 11 24,592 n.a. n.a. n.a.
8000 236 221 14 43,535 n.a. n.a. n.a.

10000 283 276 24 70,393 n.a. n.a. n.a.
20000 481 570 28 n.a. n.a. n.a. n.a.
40000 974 1,119 62 n.a. n.a. n.a. n.a.
60000 1,526 1,615 93 n.a. n.a. n.a. n.a.
80000 1,964 2,187 121 n.a. n.a. n.a. n.a.

100000 2,475 2,717 156 n.a. n.a. n.a. n.a.

Table 1: Average execution time of the interpreter and generated code in msec.

The results of the benchmarks are shown in Table 1 and Figure 8. Note the logarithmic scale of
the diagram. We also calculated the arithmetic and a weighted average9 of the Fujaba generated
code versions. The weighted average can be seen as the expected value for the execution time of
the generated code if the links in the example Story Diagram are created in a random order.

As expected, the performance of the second and third strategies heavily depends on the number
of elements in the model. The execution time grows exponentially. The interpreter is generally
slower than the first Fujaba code version, but the execution time is still acceptable. The perfor-

8 An exception is the first strategy. For some reason, Fujaba only generated code that uses the second or third
strategies. Therefore, we had to ”force” the code generator by removing two elements links from the Story Pattern
and inserting the existence check for these links in the generated code manually. This is probably a bug in the code
generator.
9 The weighted average is calculated by giving the first strategy a weight of 0.417, the second a weight of 0.5 and
the third strategy a weight of 0.083. These values stem from the theoretical probability that the code generator would
choose this matching strategy.
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Figure 8: Average execution time of the interpreter and generated code (logarithmic scale)

mance of the interpreter and the first Fujaba generated code strategy depend almost linearly on
the model size.

The dynamic pattern matching guarantees a good, and in many cases also optimal, matching
strategy. Therefore, the interpreter can make up the performance drawback if the generated
code does not use an optimal pattern matching strategy. This is especially useful, if there is no
generally optimal matching strategy for a given Story Pattern, but the optimal strategy varies
depending on the instance objects. This will definitely be a benefit for the model transformation
system mentioned above.

Surprisingly, the use of dynamic objects instead of compiled implementation code does not
affect the performance very much. For models up to 10,000 classes the difference to using
compiled implementation code for the model elements is not even significant. So the additional
flexibility of dynamic objects does almost not come at the expense of performance.

5 Conclusion and Future Work
In this paper, we presented an interpreter for Story Diagrams based on EMF models and Eclipse.
The whole SDM implementation improved the flexibility in our research projects because of an
improved workflow, the lapse of generating Java code and applying the interpreter for executing
Story Diagrams. It further enables the application of EMF-based tools for further validation
purposes, as well as higher-order transformations.

Furthermore, the interpreter uses a dynamic matching strategy, which makes the performance
of the interpreter scale more steadily. Although the interpreter is generally slower than compiled
code, it can be faster in cases where the static matching strategy of compiled code is not optimal.
In future work, a dynamic matching strategy may be incorporated into generated code to combine
the advantages of both approaches.

Moreover, we want to enhance the usability by improving the visual representation of Story
Diagrams using GMF diagrams. We also want to complement concepts from the Story Diagrams
in Fujaba that are currently not supported by the Story Diagram interpreter, e.g., object sets
and path expressions. Additionally, we plan to improve the control flow in Story Diagrams by
supporting the concepts fork and join to model parallelism in Story Diagrams.
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Gene Expression with General Purpose Graph Rewriting Systems
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Abstract: We show that a general purpose graph rewriting system (GRS) nowadays
is capable of simulating gene expression, the intra-cellular synthesis of proteins.
The model organism we use is one of the best-studied prokaryotic life-forms in
genetics, the E. coli bacteria. Our graph representation of the E. coli DNA consists
of 23 million graph elements. In our case study we correctly synthesize the proteins
of 30 consecutive genes. In this paper we describe our approach as well as our
observations. Further on, we discuss some potential extensions to GRSs that would
support more sophisticated simulations.

Keywords: Graph Rewriting, Biology, Genetics, Gene Expression

1 Introduction

Current life science research aims at understanding the life cycle process of a human cell1. Today,
highly optimized string-based approaches exist to compute gene expression products. Since more
sophisticated simulations considering chemical behavior can effectively not be done with string-
based representations, several authors propose graph-based techniques. The recently increased
performance of graph rewriting systems suggests the applicability of this alternative.

In this paper, we present a case study in which we investigated the simulation of gene ex-
pression using the general purpose graph rewriting system GrGen.NET [GBG+06]. Simulating
the human genome is beyond the capabilities of graph rewriting on current PCs. Therefore, our
subject was the (considerably smaller) DNA of E. coli – the simulation steps are similar. In
comparison with the natural archetype, our simulation has several simplifications. In fact, our
simulation does not outperform the string-based approaches in terms of ‘functionality’. However,
the intent of this case study was to investigate whether and how such simulations are feasible us-
ing graph rewriting techniques. The results show that the graph-based approach is appropriate
and performs sufficiently well.

2 Gene Expression Basics

All life forms are based on a large macro molecule called deoxyribonucleic acid (DNA). Gene
expression is the biological process of creating proteins using the information stored in the DNA
as a blueprint. The DNA itself is a concatenation of molecules called nucleotides. Four different
types of nucleotides occur in the DNA: Adenin (A), Cytosin (C), Guanin (G) and Thymin (T).
DNA is double stranded: The nucleotides of two strands are kept together by a chemical binding.

1 For instance, the possibility to entirely simulate the genetic processes within a human cell is expected with the
computing power of one ExaFLOP. Intel expects computers with this processing power around the year 2017 [Gel08].
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Figure 1: Gene expression depicted5.

In opposing strands, Adenin binds to Thymin, while Cytosin binds to Guanin. Therefore, the
nucleic sequence of one strand can easily be deduced from the other.

Another molecule that is involved in gene expression is the ribonucleic acid (RNA). It has the
same structure as DNA, except that Thymin is replaced by the nucleotide Uracil (U). RNA is
(usually) single-stranded.

A protein is built from molecules called amino acids. Twenty different types of amino acids
exist, which can form to large strings. Such an amino acid sequence is called a protein’s primary
structure. For the protein to be fully functional, the three-dimensional layout of the amino acid
chain matters. The three-dimensional layout of a protein is called its secondary (and tertiary)
structure. In this study, we only simulate the primary structure2.

To store the primary structure, each amino acid is encoded using three nucleotides (so called
triplets of A, C, G, or T). Three consecutive nucleotides enable 64 different combinations,
whereas only 20 amino acids exist: Several triplets represent the same amino acid, while others
are reserved as special ‘commands’3. In fact, the additional combinations are chosen in such a
way that a) a possible mutation (i. e. alteration of a nucleotide) is likely to represent the original
amino acid, or b) the mutation is at least likely to represent an amino acid with a similar chemical
behavior, preserving the functionality of the encoded protein. A DNA subsequence that encodes
a protein is called a gene4.

The process of actually creating a protein from a gene is called gene expression and is done
in two steps, transcription and translation, as depicted in Figure 1. Both will be digested in the
following sections.

2.1 Transcription

In order to create a protein from a gene, the gene’s code has to be copied. This is performed by an
enzyme called polymerase. The polymerase attaches to the start of the gene and slides along the

2 The process of bringing proteins into their correct three-dimensional order is called folding. It is not yet
thoroughly understood how this process works. A well-known research project in this area is Folding@home
(http://folding.stanford.edu/).
3 Computer scientists would call them ‘escape sequences’.
4 Not all parts of the DNA are genes.
5 Image from Wikipedia, http://en.wikipedia.org/w/index.php?title=Gene expression&oldid=258825410.
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Figure 3: A hairpin structure with a stem-loop7.

DNA molecule towards the gene’s end. In this process, the polymerase creates an RNA molecule
that contains the same information as the gene (see Figure 2).

To enable a polymerase to find the exact starting location of a gene, each gene is preceded by a
sequence called promoter. The promoter sequence has the chemical ability to attract polymerase
enzymes and bind them to the DNA. In order to control which genes are transcribed in a cell, a
multitude of proteins can attach to promoters: Some proteins enhance the binding behavior of a
promoter while others disable a promoter. (However, such proteins are not part of our simula-
tion.) The sequences of different promoters have a common structure, the most obvious one is
a region called TATA-Box, as its sequence is Thymin-Adenin-Thymin-Adenin. Unfortunately,
each promoter differs slightly. As we will show later, this fact is important for simulation with
graph rewriting.

One option to terminate the transcription process is the rho-independent termination. Here, the
last copied nucleotides have an ‘inverted’ palindromic order. Therefore, the corresponding nu-
cleotides can form a chemical binding which leads to a hairpin structure. These nucleotides stick
together to form a stem-loop as shown in Figure 3. This stem-loop can slide into the polymerase
enzyme and detach it from the DNA. The newly created RNA molecule is then set free.

6 Image from Wikipedia, http://de.wikipedia.org/w/index.php?title=RNA-Polymerase&oldid=52619006.
7 Image from Wikipedia, http://de.wikipedia.org/w/index.php?title=Haarnadelstruktur&oldid=39180278.
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2.2 Translation

The RNA molecule produced in the preceding transcription step serves as a blueprint for the
protein. Like a polymerase attaches to DNA, a ribosome enzyme attaches to RNA during trans-
lation. As soon as the ribosome detects the triplet ‘AUG’, it starts to concatenate amino acids
according to the triplet pattern found on the RNA strand (c. f. Section 2). The mapping from
triplets to amino acids is shown in Figure 4. The translation process stops as soon as the ribo-
some detects one of the three stop-sequences: ‘UAG’, ‘UAA’, or ‘UGA’. Together with the start
sequence AUG, these are all of the ‘special commands’ mentioned above.
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Figure 4: Mapping between amino acids and nucleotide triplets [Lew08]. Each triplet is mapped
to the amino acid in the first cell of the corresponding column.

3 Implementation

In this section we describe our model of the gene expression process using the GrGen.NET
graph rewriting system [GBG+06]. This section can also serve as a guide for implementations on
other graph rewriting systems. Even though our simulation considerably simplifies the biological
processes, it still produces the proteins found in the natural archetype.

In our graph model, nodes represent molecules or sets of molecules like enzymes. We use
the hierarchical node type system of GrGen.NET to express similarities between nodes. For
example, Adenin, Guanin, Cytosin, Thymin, and Uracil are represented by node types that extend
the abstract node type Nucleotide.

Edges represent chemical bindings between molecules or the attachment of enzymes. In our
simulation, we simplify complex chemical reactions by introducing special nodes that mark loca-
tions of pending reactions. For example, we connect promoters found during our simulation with
a marker node in order to abstract and simplify the process of polymerase binding. Furthermore,
these promoter marker nodes contain a field that stores the associated gene’s length.

Graph rewriting rules represent chemical reactions (processing uses the SPO-approach). The
rewriting rules as well as the model can be obtained from http://www.grgen.net/gxb/. The rules
we use in our simulation fall in three categories: promoter-identification, RNA-synthesis, and
protein-synthesis.

Promoter-Identification. We created a rule for each promoter: These rules add marker nodes
at each occurrence of the promoter they search for. A rule matches a promoter’s nucleic sequence
against the DNA and places a marker node at the first nucleotide of the associated gene. As the
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(a) Graph representation of a single DNA
strand.

(b) The first nucleotide of a gene has been
marked.

(c) A polymerase attaches to the gene. The
marker node is removed.

(d) In a single rewriting step, a nucleotide gets
read and a corresponding RNA node created.

(e) At the end of the gene, transcription stops. (f) The polymerase is dissected from the DNA
and RNA.

Figure 5: Simulation steps for transcription.

promoter sequences are rather long, we developed a tool to generate these graph rewrite rules.
The tool can be used to prepare promoter rules for arbitrary genes of arbitrary species.

RNA-Synthesis (Transcription). After inserting the marker nodes, the RNA synthesis pro-
cess starts and attaches a free polymerase enzyme (i. e. an isolated polymerase node) at a marked
nucleotide. Furthermore, the polymerase copies and stores the gene’s length from the marker
node for the termination of the transcription process. Further rewriting rules move the attached
polymerase node along the DNA strand while they create enchained nucleotide nodes that rep-
resent the synthesized RNA strand. Each transcription step increments an internal counter of
the polymerase node. The transcription process stops as soon as this counter equals the gene’s
length. The polymerase node detaches from the DNA and the newly created RNA strand. After-
wards, the polymerase node may initiate further transcription processes. This implies, that the
total number of available polymerase nodes determines the maximal number of genes that can
be transcribed concurrently in our simulation. It is also possible, that several polymerase nodes
transcribe a single gene at the same time. Multiple transcription corresponds perfectly to the
biological process. The RNA-synthesis is depicted in Figure 5. Listing 1 shows the GrGen.NET
Code to detach the polymerase from a DNA strand.

Protein-Synthesis (Translation). The protein-synthesis starts with the application of a rule
that accepts as input an RNA strand and a ribosome node that does not yet participate in a
translation process. It attaches the ribosome node at the starting sequence (AUG) of an RNA
molecule. RNA processing rules match an attached ribosome together with the next three nodes
of the RNA strand. They emit and enchain the corresponding amino acids. These rules are
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(a) Graph representation of a single RNA
strand.

(b) Ribosome attached to the AUG sequence.

(c) Ribosome sliding along the RNA, enchain-
ing amino acids.

(d) After synthesis, the ribosome releases the
RNA and the protein.

Figure 6: Simulation steps for translation.

sensitive for the stop sequences ‘UAG’, ‘UAA’, and ‘UGA’. If an RNA processing rule finds a
stop sequence, the process terminates and the ribosome node gets disconnected from the RNA
strand and the amino acid chain (i. e. the protein). The protein-synthesis is depicted in Figure 6.
A sample screenshot of a simulation result can be found in Figure 7.

3.1 The Sample Organism

As sample data we used the genome of Escherichia Coli (E. coli), a bacterium that is well under-
stood and frequently used as model organism. The genome of E. coli has a length of 4.6 million
base pairs. As each base pair is modeled as two nodes that are connected by an edge, the graph
representation takes 13.8 million graph objects. The interconnections of the two strands add two
more edges per base pair, summing up to a total of 23 million graph objects. Other life forms
may have much larger genomes. Table 1 lists some genome lengths of other organisms. The
E. coli genome is available at [KRS+02].

To identify genes on the E. coli genome, we used 30 consecutive promoter sequences. The
promoter sequences have been extracted using the gene data available at [KRS+02]. They have
a length of 50 to 200 nucleotides.

4 Runtime Observations

For a long time, graph rewriting systems have not been an option to simulate complex biological
processes, though the benefits of the formal representation of biochemical reactions are widely
accepted. Performance is one of the main reasons for the lack of simulation implementations. In
this section we present our experiences with GrGen.NET.

As described in Section 3, promoter search is one important part of the gene expression simula-
tion. Our promoter search rules seek large nucleotide node sequences in the graph representation
of a DNA molecule. It is obvious, that string based implementations can perform such search
tasks faster. A simple string implementation using regular expression takes 0.3 seconds on a

GT-VMT’09
78



ECEASST

Table 1: Genomes of several viruses, bacteria and organisms.

Name Basepairs (bp) Genes
Simian virus 40 5243 6
M13 phage 6407 10
Lambda phage 48502 ca. 50
Helicobacter pylori 1667867 1590
Mycobacterium tuberculosis 4411529 3924
Escherichia coli 4639211 4288
Yeast 12 million 6240
Pinworm 97 million 18240
Fly 180 million 13600
Mouse 3000 million 25000
Human 3000 million 25000
Corn 2400 million 30 - 40000
Rice 440 million 30 - 40000

common PC. GrGen.NET took about 8 seconds on the same PC. The execution time shrinks to
3.5 seconds on an 8-core PC using a preliminary multi threaded implementation of GrGen.NET.
Although being slower, this is still fast enough to use graph rewriting approaches.

The generated graph rewriting rules for promoter search are rather large. GrGen.NET trans-
lates each rewriting rule into C# source code. The generated C# file for all 30 promoter patterns
has a size of about 700 megabytes. This is unwieldy, even for generated code. A solution to this
problem could be a generation mode that optimizes code size.

A problem that still persists is memory consumption. Nodes as well as edges are represented
as .NET objects. A node requires 28 bytes, while an edge requires 44 bytes. Therefore, the
graph representation of the E. coli genome requires 824 megabytes. This is acceptable on current
workstation PCs. For a similar graph representation of the human genome 525 gigabytes of
memory would be required8. As the current representation is very coarse grained the memory
consumption for advanced genetic applications will be even higher.

5 Improvements of the Simulation

Even though our simulation produces the correct proteins from the real genes, our simulation
relies on several simplifications. In this section, we discuss these simplifications in an attempt to
give an outline for the next steps required to reach a more realistic simulation.

A major simplification is the omission of spacial relations. In a real environment, an unbound
enzyme and the availability of reactants is not sufficient for most reactions to happen: All reac-
tants need to be physically close to each other and in a certain angle for the reaction to happen.
Unfortunately, graph elements do not provide a notion of locality. Locality could be simulated
by connecting the nodes of our graph to a three-dimensional grid of nodes representing posi-

8 Current workstation PCs have about 8 gigabytes of main memory.
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tions in an euclidean space. The resulting effort would be immense. However, if the GRS itself
had a notion of spatial positioning, internal data representation could possibly benefit from op-
timizing data structures such as octrees [YKFT84]. An octree is a tree data structure that stores
hierarchical three-dimensional data in a compact way.

Another simplification concerns timely relations. No known graph rewriting system imple-
ments time constraints, although theoretical approaches exist [GHV02]. The synthesis of an
RNA strand in E. coli proceeds with 50 to 100 polymerisation steps per second. Molecules lo-
cated on the DNA may slow down the process. The speed of current graph rewriting systems
depends on the processing speed of software and hardware. For a realtime simulation graph
rewriting rules have to be extended by timely relations.

During implementation of the study, we realized that not all details of the gene expression pro-
cess can be simulated using GrGen.NET. As stated in Section 3, a graph rewriting system needs
to know the specific sequence of a promoter in order to attach a polymerase to the corresponding
gene. Unfortunately, in reality, this pattern is only imprecisely known and its nucleic sequence
differs slightly from instance to instance. Current graph rewriting systems are not able to detect
such fuzzy patterns. A fuzzy matching mode would be a helpful extension. For instance, if a
search pattern consists of fifty nodes and a match candidate has 48 correctly identified nodes, it
could be considered as a valid match.

The inability to fuzzy-match also prevents a more realistic termination of the RNA synthesis:
As stated in Section 2, a stem-loop in the newly created RNA-strand initiates the rho-independent
transcription termination. The rho-independent transcription termination requires a palindromic
sequence. Current graph rewriting systems are in fact able to detect perfect palindromic se-
quences, but nature is a little more tolerant in this concern.

To circumvent the following simplification, additional genetic and software engineering re-
search is required. Our simulation only uses known promoters, so only known genes can be
found. In real cells, polymerases react with promoters because of the chemical properties of
the promoters’ nucleic sequences. Simulating such chemical reactions requires a DNA repre-
sentation at molecular level and an accurate description (in terms of graph rewriting rules) of
organic chemistry. This requires in-depth knowledge of chemistry and is subject to further stud-
ies. In [YKS04] a first approach is presented. Nevertheless, rewriting rules could be able to
identify new promoters during runtime, as the sequence of a promoter follows a certain pattern.

6 Related Work

Simulating gene expression using graph rewriting systems has already been proposed by Mc-
Caskill and Niemann [MN01]. While in their work a graph rewriting system has been created
solely for the purpose of genetic simulation, we use a standard multipurpose graph rewriting
system. For example, McCaskill and Niemann implemented a specialized mechanism to differ-
entiate between molecules of different types, whereas we can use typed attributed graphs. We
see the future of genetic graph rewriting in multi purpose systems, as we can easily benefit from
further improvements in graph rewriting technology. Yadav, Kelley, and Silverman propose to
simulate chemical reactions at the molecular level [YKS04], too. They provide hints on extend-
ing graph rewriting systems for that purpose but their work lacks an implementation. Rosselló
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and Valiente propose the computation of signal transduction in cells using graph transforma-
tion [RV04]. One can sum up approaches like these to the goal of simulating the inner workings
of biological cells as a whole. Rosselló and Valiente give an overview on more approaches to
simulate different parts of these fundamentals in [RV05]. We propose to sum up all these ap-
proaches into an integrated simulation based on graph rewriting systems. Currently available
tools focus on static computation or data storage rather than simulation. Gene expression prod-
ucts, as they are generated in the application presented in this paper, are stored in the ecocyc
database [KRS+02]. However no tool tries to simulate the genetic processes as a whole. We
propose that graph rewriting may lead to such a software at some point in the future.

7 Conclusion

Even though the processing of string representations is considerably faster, we see the future of
genetic simulations in graph representation and graph rewriting. String representations are in-
flexible in handling multidimensional structures: A polymerase binding simulation at a detailed
level involves hundreds of RNA and protein molecules and needs to consider their three dimen-
sional layout and position. Graphs can easily represent multi-dimensional relations containing
large numbers of objects.

All genetics simulation approaches aim at simulating the whole life cycle process of a cell
at some point. As the size of the human genome does not grow, we are confronted with a
fixed problem size. Therefore, we may concentrate on simulation approaches offering a good
abstraction level such as graph rewriting. The loss of performance will be overcome by better
computing devices in the future. The trend towards parallel computing systems can be used to
advantage, as genetic processes offer ample parallelism by nature.

Listing 1: Rule to detach a polymerase from DNA
1 rule RNA_Pol_Finish {
2 pattern {
3 pol:Polymerase -cur_conn:PolymeraseToDna->cur_nuc:Nucleotide
4 -:DNA_Backbone-> next_nuc:Nucleotide;
5 pol -rna_conn:PolymeraseToRna->cur_rna_nuc:Nucleotide;
6 if { pol.MaxNucleotide > 0 &&
7 pol.CurrentNucleotide == pol.MaxNucleotide;
8 }
9 }

10 modify {
11 delete(cur_conn); delete(rna_conn);
12 eval { pol.MaxNucleotide = 0; pol.CurrentNucleotide = 0; }
13 }
14 }
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Table 2: Simulation summary.

Sample organism Escherichia coli
Total number of DNA base pairs 4,639,211
Total number of DNA base pairs in simulation 4,639,211
Total number of promoters/genes 4,288
Average size of promoters 50-200 nucleotides
Genes used in benchmark 30
Graph rewriting system GrGen.NET (version 1.4)
Max. number of nodes in simulation 9.3 million
Max. number of edges in simulation 13.9 million
Number of rules 69
Total size of rewriting-rules source code 700 megabytes
Total size of rewriting-rules object code (MSIL-DLL) 13 megabytes
Memory consumption of graph elements 824 megabytes
Runtime (only promoter search), string-based implementation 0.3 seconds
Runtime (only promoter search), GrGen.NET 7.7 seconds
Runtime (only promoter search), parallel GrGen.NET 3.5 seconds
Total runtime of the simulation, GrGen.NET 7.9 seconds

Figure 7: A yComp-visualization of the result graph of our simulation process.
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Abstract: Euler diagrams are a visual language which are used for purposes such as
the presentation of set-based data or as the basis of visual logical languages which
can be utilised for software specification and reasoning. Such Euler diagram rea-
soning systems tend to be defined at an abstract level, and the concrete level is
simply a visualisation of an abstract model, thereby capturing some subset of the
usual boolean logic. The visualisation process tends to be divorced from the data
transformation process thereby affecting the user’s mental map and reducing the
effectiveness of the diagrammatic notation. Furthermore, geometric and topologi-
cal constraints, called wellformedness conditions, are often placed on the concrete
diagrams to try to reduce human comprehension errors, and the effects of these con-
ditions are not modelled in these systems.

We view Euler diagrams as a type of graph, where the faces that are present are
the key features that convey information and we provide transformations at the dual
graph level that correspond to transformations of Euler diagrams, both in terms of
editing moves and logical reasoning moves. This gives a correspondence between
manipulations of diagrams at an abstract level (such as logical reasoning steps, or
simply an update of information) and the manipulation at a concrete level. Thus
we facilitate the presentation of diagram changes in a manner that preserves the
mental map. It also provides the ability to realise reasoning systems at the concrete
level, thereby providing us with diagrammatic reasoning systems that are inherently
different from symbolic logics due to natural geometric constraints. We provide a
particular concrete transformation system which preserves the important criteria of
planarity and connectivity, which may form part of a framework encompassing mul-
tiple concrete systems each adhering to different sets of wellformedness conditions.

Keywords: Euler Diagrams, Graph Transformations, Logical Reasoning

1 Introduction

Euler diagrams are used as the underlying structures in many application areas for the represen-
tation of set-based information, such as: non-hierarchical directories [DES03, DF07], complex
genetic set relations [KMGB05], ontologies in semantic web applications [HES+05], statistical
data [CR03], and as the basis of logical specification and reasoning systems which can be used
in software systems development (e.g. Constraint diagrams [FFH05, Ken97]). Logical reasoning
systems based on Euler diagrams (e.g. Spider diagrams [HST05]) tend to apply to the abstract
level, with the concrete level simply being a visualisation of the abstract level where one exists.
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This avoids the complexities of concrete level reasoning, but accordingly denies us the develop-
ment of a truly diagrammatic reasoning system affected by geometric and topological constraints
rather than a visualisation of some natural subset of boolean logical. If we are to define transfor-
mation rules at the concrete level then they should lift to the abstract level (in the sense that they
can be viewed as an instantiation of an application of the abstract rules to their abstract models,
but the constraints imposed at the concrete level can restrict the application of the rules). The
development of broader transformation systems with more generic manipulations than logical
reasoning rules will enable wider applicability of the systems.

We present a brief outline of the methodology used upfront, using Figure 1, for reference
purposes; details and explanations of terminology will follow. The left hand part of Figure 1
depicts the generation process for wellformed Euler diagrams (see [FFH08] for details) which
involves constructing an abstract labelled graph (called the superdual in [FFH08], or a closeness
graph in [Cho]) from an abstract diagram d1, finding a planar spanning subgraph that satisfies
connectivity conditions and embedding it in the plane so that it satisfies certain face conditions,
yielding the “dual” of an appropriate concrete diagram. Varying the wellformedness conditions
that are imposed on the system affects the conditions imposed on the graphs but the same general
approach can be taken (this relaxation of some conditions was performed in [Cho]).

Figure 1: An overview of the generation process and the transformation systems involved.

Transformations of diagrams at the abstract level can only alter the abstract sets of zones and
contours, and these are straightforward to describe (typically they would be add or remove ab-
stract contours or zones). However, transformations of diagrams at the concrete level would
involve geometric transformations which can be hard to describe (see Section 3 for an example).
Also, one must ensure that the transformations do not cause the violation of the wellformedness
conditions that are imposed on the system. Therefore, we define a transformation system on
the labelled dual graphs of the concrete diagrams1. So, as depicted in Figure 1, given an ab-
stract diagram d1 and a generated concrete diagram d̂1 with labelled dual graph d̂1

∗, we apply
transformations which take d̂1

∗ and return d̂2
∗, which is the dual of concrete diagram d̂2. We

show that these transformations lift to the abstract level transformations in the sense that the ab-
straction of the concrete diagram d̂2 is the abstract diagram d2 obtainable from the abstract level
transformation.

In Section 2 we recall background definitions of Euler diagrams at both concrete and abstract

1 Note that we perform operations on the embedded labelled dual graphs because we want to preserve the mental
map, but a similar approach can be taken at an abstract dual graph level; this may provide a system in which rules are
more often applicable, but will lose some of the geometric information contained in the concrete dual graphs.
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levels, the notion of wellformedness conditions imposed on concrete diagrams, and develop fur-
ther the notions of the graph of an Euler diagram and its labelled dual graph. We develop trans-
formation systems at the abstract diagram level and then at the concrete dual graph level (cor-
responding to concrete diagram transformations that lift to abstract diagram transformations), in
Section 3; note that some proofs have been sketched or omitted for space reasons. Conclusions
and future work plans are discussed in Section 4.

2 Euler Diagrams and Graphs

First of all we recall the definitions of Euler diagrams, separating the abstract and concrete mod-
els as usual, and then we provide a set of wellformedness conditions that are often imposed with
the intention of reducing human comprehension errors; Definitions 1 and 2 are adapted from
those in [FFH08].

Definition 1 An abstract Euler diagram is a pair: d = 〈C(d),Z(d)〉 where: C(d) is a finite set
whose members are called (abstract) contours, Z(d) ⊆PC(d) is the set of (abstract) zones of
d, where PX denotes the powerset of set X , and

⋃

z∈Z(d)
z = C(d). If Z(d) %= PC(d) then the

elements of PC(d)−Z(d) are called missing zones.

Definition 2 A concrete Euler diagram is a pair d̂ = 〈C(d̂),Fd̂〉 where: C(d̂) is a finite set
of closed curves, called (concrete) contours, in the plane, and Fd̂ : C(d̂) → L is a function
associating with each contour a label drawn from an infinite alphabet of labels L . The label set
L (d̂) of d̂ is the set of labels associated with d̂: L (d̂) = {Fd̂(ĉ) | ĉ ∈C(d̂)}. A minimal region
of a concrete Euler diagram d̂ is a connected component of R2−

⋃

ĉ∈C(d̂)
ĉ. Let X ⊆C(d̂) be a set

of contours. If the set ẑ =
⋂

ĉ∈X
interior (ĉ) ∩

⋂

ĉ∈C(d̂)−X
exterior (ĉ) is non-empty, then ẑ is a zone of

d̂ (note that a zone is a union of minimal regions); the set of labels associated with the contours
in X is the zone label set L (ẑ) of ẑ: L (ẑ) = {Fd̂(ĉ) | ĉ ∈ X}.

We say d̂ is wellformed 2 if all of the following wellformedness conditions (WFCs) hold:
WFC 1 Simple contours: The contours are simple closed curves.
WFC 2 Unique contour labels: Each contour has a unique label; that is, Fd̂ is injective.
WFC 3 Transverse intersections: Contours meet transversely. This can be subdivided into:

WFC 3a No tangential intersections.
WFC 3b No concurrency; that is contours meet at a discrete set of points.

WFC 4 No multiple points: At most two contours meet at a single point.
WFC 5 Connected concrete zones: Each concrete zone is a minimal region.

Example 1 The left of Figure 2 shows a concrete Euler diagram d̂ with three contours labelled
A, B and C, and six zones which can be informally described as: outside all contours; inside A
and outside B and C; inside B and outside A and C; inside A and B but outside C, inside A and C
2 These are the most commonly considered conditions but other constraints could be imposed, such as using fixed
geometric shapes like circles or ellipses (for example, the generation of area proportional Euler diagrams with small
numbers of circles was investigated in [Cho]).
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Figure 2: An Euler diagram (left), its graph together with an unlabelled dual graph overlaid in
grey (middle) and the labelled dual graph (right) where the vertex labels sets and the induced
edge labels are shown (with set brackets on edge labels omitted for readability purposes).

but outside B; inside A,B and C. The associated abstract diagram d is a set of abstract contours,
together with a set of abstract zones: 〈{A,B,C},{{}, {A}, {B}, {A,B}, {A,C}, {A,B,C}}〉,
where the abstract zones correspond to the set of contours that the concrete zone is “inside”.
The concrete diagram d̂ fails WFC 3a and WFC 4 since it has a point of intersection of the
three curves (i.e. a multiple point) where the contours labelled A and C meet tangentially. The
diagram d̂ forms a single component and has three branch points (see Definition 4), giving rise to
the graph G(d) shown in the middle of the figure. An unlabelled dual graph of G(d) is overlaid,
shown in grey, whilst the right of the figure shows d̂∗, the dual of the diagram d̂.

Definition 3 Let L be an alphabet of labels. An abstract labelled graph G is a vertex-labelled
graph, whose vertex labels are set of labels drawn from L . The label set of G, denoted L (G),
is the union of the vertex label sets of G. An abstract labelled graph which has been embedded
in the plane is called a concrete labelled graph (i.e. this is a drawing in the plane with no edge
crossings, which is sometimes called a plane labelled graph). A labelling on the edges of the
graph is induced by taking the symmetric difference of the label sets of the incident vertices.

One can view a concrete diagram as a graph as follows; this definition generalises the cases
given in [Cho, FFH08]: the intuition is that branch points are either points of intersection of the
curves or places where concurrent curves separate.

Definition 4 Let C = {C1, . . . ,Cn} be a set of curves in the plane, where we also refer to Ci as
the images of the curves, as usual. Let x be a point on any curve in C and let Bε(x) = {y ∈ R2 :
|x− y| < ε} denote a ball of radius ε around x. If ∃ε > 0 and i ∈ {1, . . . ,n} such that Bε(x)∩Ci
is (topologically) a line, but Bε(x)∩Cj = /0 for any j (= i then x is a non-singular point. If
∃ε > 0, k > 1 and i1 (= . . . (= ik ∈ {1, . . . ,n} such that Bε(x)∩Ci1 = . . . = Bε(x)∩Cik is a line but
Bε(x)∩Cj = /0 for any j (= i1, . . . , ik then x is a point of k-concurrency. If x is not a non-singular
point nor a point of k-concurrency then x is a branch point.

Let d be concrete diagram. Then a graph of d is a plane graph G(d) whose vertex set consists
precisely of one vertex at every branch point, together with one vertex on each component 3 that
has no branch points; and whose edges are the images of the curves joining these vertices. A
dual of d, denoted d∗, is a concrete labelled graph that is a geometric dual graph of G(d) such
that: if vertex v of d∗ is placed in zone ẑ of d then v is labelled by L (ẑ).

3 i.e. a maximal set of (images of) curves that is connected.
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The Euler diagram generation process, in [FFH08], takes an abstract diagram and creates a
concrete diagram realising it, utilising a “dual graph” of the Euler diagram as part of the con-
struction process; Definition 5 and Theorem 1 are rephrased from [FFH08].

Definition 5 Let G be a labelled graph. For l ∈L , let G+(l) and G−(l) denote the subgraphs of
G induced by deleting any vertices whose labels contain l, and induced by deleting any vertices
whose labels exclude l, respectively. Then G satisfies the connectivity conditions if G is con-
nected, and G+(l) and G−(l) are connected for all l ∈ L (G). We say that G is well connected
or passes the connectivity conditions.

Let G be a well connected plane labelled graph. Then G passes the face conditions if each
face cycle of G (with distinct vertices and edges) of length 2n has crossing index n− 1, where
the crossing index of a face is the number of pairs of labels that appear non-nested in the edge-
word around the face, read cyclically.

Example 2 The dual graph shown on the right of Figure 2 has three faces with edge words
BABA, CBCB and BACBCA. All three of these have crossing index 2, with the only non-nested
pair of labels being A and C in the outside face word, BACBCA. Therefore the two internal faces
pass the face conditions but the outer face fails it, and so there is a multiple point incident with
the outer zone of the Euler diagram, as shown.

Theorem 1 Let d be an abstract diagram. Then there is a concrete diagram d̂ which satisfies
all of the WFCs and whose abstraction 4 is d if and only if there exists a concrete labelled graph
G that has the vertex labeled {} incident with the outer face, and the properties that: G is well
connected (P1), G has unique vertex labels (P2); vertices of G whose label sets differ by more
than one label are not adjacent (P3); and G passes the face-conditions (P4).

The construction used in [FFH08] did not allow multiple edges between pairs of vertices, and
such a concrete labelled graph G may require the addition of extra edges in order to construct the
labelled dual graph d∗. In [Cho] a dual graph approach to the generation problem was adopted
and similar existence theorems provided.

Proposition 1 Let d be a concrete diagram and let d∗ be a dual of d. If d satisfies (WFC1,2
and 5) then d∗ satisfies (P1 and 2). If d∗ satisfies (P1 and 2) then there is a concrete diagram d′

which has dual d∗ and which satisfies (WFC1,2 and 5).

3 Transformation Systems

We first provide paramaterised transformation rules which enable both the generation and ma-
nipulation of diagrams at the abstract level, generalising the logical reasoning rules in [FHJT08].

Definition 6 Let d = 〈C(d),Z(d)〉 be an abstract Euler diagram. Define:

1. RemoveContour(l,d): If ! ∈C(d), then d with ! removed is d′ where C(d′) = C(d)−{!}
and Z(d′) = {Y −{l} : Y ∈ Z(d)}.

4 This is the natural mapping from concrete to abstract diagrams; see [FFH08] for details if required.
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2. AddContour(l,Zc,Zs,d): Let Zc and Zs denote (possibly empty) disjoint subsets of Z(d),
and suppose that ! /∈C(d). Then, d with ! added, zones Zc covered and zones Zs split is
d′ where C(d′) = C(d)∪{l} and Z(d′) = (Z(d)−Zc)∪{x∪ ! : x ∈ Zs∪Zc}.

3. AddZone(z,d): If z ∈PC(d)−Z(d) then d with z added is d′ where C(d′) = C(d) and
Z(d′) = Z(d)∪{z}.

4. RemoveZone(z,d): Let z ∈ Z(d)− {} (so z is not the zone outside all contours). Let
X ⊆ Z(d) be the set of contours which are in zone z but are not in any other zone in Z(d).
Then d with z removed is d′ where C(d′) = C(d)−X and Z(d′) = Z(d)−{z}.

Remark 1 In settings where Euler diagrams represent propositional logic (e.g. see [FHJT08])
such transformations can be restricted to those that induce logical inferences to provide a reason-
ing system (the transformations are then often called reasoning rules). For instance, the addition
of a new contour by AddContour(l,Zc,Zs,d) is a reasoning rule if Zs = Z(d) and Zc = /0; if shad-
ing is used in the system, then the reasoning rule for zone removal has the extra precondition that
the zone is shaded, whilst zone addition has the extra postcondition that any missing zone that is
added is shaded. The effects of altering rule sets within an automated reasoning environment for
Euler diagram systems were investigated in [SMF+07].

Corresponding (geometric) transformations at the concrete level are harder to realise consis-
tently. For example, there are different possible ways of attempting to realise zone removal: if
the zone has nice properties such as being star-shaped (i.e. that there is a point p in the region
for which every other point is connected to p via a straight line) then one could use radial con-
traction. More generally, an operation to squash the zone to a point could be used if the region is
simply connected, but if the zone is not simply connected (e.g. an annulus) then one may desire
a transformation that does not identify all of the boundary of the zone to a point. The applica-
tion of these operations may cause the violation of some wellformedness constraints (such as
the simplicity of the contours), thereby either preventing their application at the concrete level
or requiring a different concrete representation to be recreated, if one exists, destroying the men-
tal map and the utility of the visualisation even in the case that such a recreation exists. This
contrasts with the effect of zone removal at the abstract level which can always be applied to a
(non-outside) zone z in the syntactic transformation system.

Therefore, we wish to build concrete level transformation systems for Euler diagram based on
concrete dual graphs manipulations; any instance of a concrete transformation should lift to the
appropriate instance of an abstract transformation of Definition 6. Accordingly, we develop a
concrete dual graph transformation system in which all of the plane graphs satisfy the connectiv-
ity conditions and the vertex label set are unique 5 ; there are many other variations at the plane
graph level that could be adopted, or one could consider abstract dual graph level transformations
if one is willing to sacrifice some geometric information.

5 Any abstract diagram has a representation as a concrete diagram which are unions of regions with holes [MF94,
RZF08], or Euler-like [Cho]. However, commonly, one wishes to keep the system as straightforward as possible for
the users, and here we choose to enforce the use of uniquely labelled simple closed curves and connected zones.
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3.1 Adding and removing contours

We define operations at the dual graph level in order to realise contour addition at the concrete
level. Intuitively a collar of a path, or a cycle, is a thickening of that path or cycle. However, in
this context we incorporate the use of labels and we choose to alter the resulting graph so that
we retain planarity, connectivity and uniqueness of vertex label sets.

Definition 7 Let d be a concrete diagram and let d∗ be a dual of d. Let p be a path of distinct
vertices and edges, except possibly for the first and last vertex (i.e. p can be a simple cycle),
in d∗. Let p′ be a new path (or cycle) which is a copy of p but which has an additional label l
added to has all of its vertex label sets. Suppose that p1, . . . , pn is the vertex sequence of p and
p′1, . . . , p′n is the vertex sequence of p′, where the label of pi differs from the label of p′i by the
label l. Then collar(p;d∗, l), the collaring 6 of p, is the graph obtained from d∗ by:

1. embedding p′ in the plane such that:
(a) for each i, the vertex p′i is disjoint from every vertex and edge in d∗.
(b) the edges of p′ are disjoint from the edges of p and the vertices of d∗.
(c) each vertex p′i is in a neighbourhood of vertex pi (that is, if pi has coordinates (ai,bi),

then ∃ε > 0 such that p′i ∈ Bε(pi) = {(x,y) ∈ R2 |(x−ai)2 +(y−bi)2 < ε}), and
(d) if p is a cycle then p′ is in the interior of the bounded region that is bounded by p 7.
(e) if p is not a cycle, then there is a vertex of d∗, labelled by {}, which is not in any

region of the plane bounded by p′ and d∗.

2. adding an edge labelled l between vertex pi and vertex p′i, for each i ∈ {1, . . . ,n}.
3. for each edge e = (pi,v) ∈ d∗ which crosses the path p′,

(a) if v ∈V (d∗)−{p1, . . . pn} then delete e and add an edge from the vertex p′i to v.
(b) if v = p j ∈ {p1, . . . pn} then delete e and add an edge from the vertex p′i to p′j.

Example 3 The dual graph d∗1 at the top left of Figure 3 has a simple cycle p highlighted using
dashed edges. The effect of collaring p is shown in the middle dual graph d∗2 ; in this case no
edges of d∗1 were crossed by the insertion of p′ and so no edges of d∗1 were deleted. The effect
of the application of collaring on the highlighted cycle in d∗2 is shown by d∗3 at the bottom right;
three edges of d∗2 were crossed by the insertion of the path p′ and so these were deleted and three
new edges were added (the alterations are shown in grey). However, note that the label D has also
been added to the vertex labelled {A,B,C}, which was in the interior of the cycle p in d∗2 , after
the collaring operation described; this corresponds to the new contour covering the zone in the
diagram (see Theorem 2). The corresponding Euler diagrams are shown, starting at the top left
with d1, performing a transformation that lifts to AddContour(C, /0,Z(d1),d1) to give d2, shown
in the top right, and then performing a transformation that lifts to AddContour(D,{{A,B,C}},
{{A}, {A,C}, {C},{B,C}, {B},{A,B}},d2) to give d3 shown at the bottom left.
6 note that, as stated this operation is non-deterministic; any choices involved when edges are to be crossed by the
insertion of the collar can lead to different diagram layouts, but here we concentrate on the fundamental properties of
planarity and connectivity.
7 note that d∗ is embedded in the plane and so the cycle p splits the plane into two regions by the Jordan curve
theorem; of course, one can adapt the theory to the non-embedded dual graph level.
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Figure 3: Transformations of the dual graph, and the corresponding Euler diagrams.
Theorem 2 Let d∗ be a well connected plane labelled graph with unique vertex label sets
which is the dual of a concrete Euler diagram d, let p be a path of distinct vertices and edges, or
a simple cycle, in d∗, l be a label which is not in L (d∗) and let H denote collar(p;d∗; l). Then:

1. if no edge of d∗ is missing from H, then H is a well connected plane labelled graph.
2. if there are edges of d∗ that are missing from H, then collaring p yields a labelled plane

graph which is wellconnected if and only if H−(l) is connected.
3. if c is a simple cycle of d∗ with no vertices in int(c), the interior of the bounded region

bounded by c, and the path p lies entirely on the cycle c 8, then collaring p yields a well
connected plane labelled graph.

4. Let Zs denote the set of vertex label sets of p and let Zc denote the set of vertex label sets of
the vertices in int(p) if p is a cycle (and Zc = {} otherwise). Then collar(p;d∗; l) followed
by the addition of label l to all vertices in int(p), if p is a cycle, yields a graph K which
is the dual of a concrete diagram d′ that differs from d by the addition of the new contour
labelled l, covering zones Zc and splitting zones Zs; that is, the composite transformation
lifts to AddContour(l,Zc,Zs,d). In particular, if p is not a cycle then collaring p lifts to
AddContour(l, /0,Zs,d).

Proof. A path p of distinct edges and vertices in d∗ corresponds to a sequence of adjacent zones
in d. Adding a collar of p splits each of these zones into two adjacent zones, one inside l and one
outside l, where l is the new label. The definition of collaring ensures that the resultant graph is
planar. If no edges of d∗ were removed upon collaring then the connectivity conditions also hold:
the subgraphs H+(l) = p and H−(l) = d∗ are connected, whilst the other induced subgraphs do
not become disconnected by the addition of the collar, and case 1 holds.

However, if any edges of d∗ were removed during collaring then the connectivity conditions
for H could be broken. Now H+(l) = p is connected by definition, but H−(l) could be discon-
nected. The extra edges added during collaring ensure that there are no other obstructions to H
8 this includes the case that p is the entire cycle c.
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being wellconnected, as follows. Suppose that we have a vertex labelled x adjacent to a vertex
labelled y in d∗ and this edge is removed by the collaring operation. Then, without loss of gen-
erality, there is either a path x−xl−y or a path x−xl−yl−y in H. Thus, if x and y had a label k
in common in d∗, then all of the vertices in this new path in H have label k, and similarly if they
both exclude a label m in d∗ then so do all of the vertices in this new path in H. Therefore, the
connectivity of G+(k) and G−(m) are preserved upon collaring, and part 2 holds.

Part 3 follows since if p lies entirely on a simple cycle c which has no vertices in its interior
then H−(l) is connected. In fact, since the only obstruction to the collaring operation preserving
the connectivity conditions is the connectivity of H−(l), we can ensure that it is preserved in the
case of the path being a simple cycle by adding the new label l to any vertices in int(p); this
operation does not affect the other connectivity conditions. This composite transformation of
dual graphs corresponds to the addition of a new contour, where the zones to be split into two
correspond to vertices in the simple cycle p, whilst those to be covered lie in int(p). The effect
of lifting to the abstract level can be checked by considering the label sets of the vertices that
were present before and are present after the transformation, and so part 4 follows.

Definition 8 Let G be a concrete labelled graph, and let l be a label in L (G). Define the
operation RemoveLabel(l) to be the contraction of every edge labelled by exactly l, together
with the identification of the corresponding vertices 9, followed by the removal of the label l
from all vertex label sets.

Proposition 2 Let d∗ be a well connected plane labelled graph with unique vertex label sets
which is the dual of a concrete diagram d, and suppose that c is a contour of d with label l. Then
the operation RemoveLabel(l) on d∗ corresponds 10 to the removal of the contour c from d.

Proof. (sketch). Contraction of edges labelled by exactly l corresponds to the merging of each
pair of adjacent zones whose label sets differ by the label l. The removal of the label l from all
vertex label sets suitably updates all vertices.

Example 4 The dual graphs in Figure 3 from the bottom right to top left show the removal of
labels D and C corresponding to Euler diagram contour deletion. In this case the RemoveLabel
operation actually leaves multiple edges between vertices such that there are no other vertices
in the interior of the region bounded by these vertices and edges. However, since such multiple
edges have no significant effect on the diagrams constructed we can assume that these excess
edges can be discarded.

3.2 Adding and removing zones

When considering the operations of adding or removing zones at the concrete level, the natural
addition or deletion of vertices of the dual graph may break the connectivity conditions. Since

9 The label set taken is the union of the two label sets; the intuition is that this edge contraction then corresponds
to stretching the contour labelled l so that it also covers the zones that it previously split.
10 Note that the remove contour operation in our system is not applicable if the removal of the contour leaves a
disconnected zone. This corresponds to the existence of vertices differing by label l which are not adjacent in d∗.
Relaxing the zone connectedness condition would mean that contour removal is always applicable.
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we wish to ensure that planarity and wellconnectedness are preserved, we consider extra edge
additions on the neighbourhood of the vertices to be added or removed.

Definition 9 Let G be a labelled graph and let E be a set of edges in the complement of G.
Then E is a wellconnecting edge set for G if G together with the edges in E is wellconnected. If
G is a plane labelled graph then a plane wellconnecting edge set for G is a wellconnecting edge
set E for G together with an embedding of E such that G∪E is a plane graph.

Definition 10 Let G be a well connected plane labelled graph, let v be a vertex of G, and let
G− v denote G with v removed. Suppose that E is a plane wellconnecting edge set for G− v.
Then let RemoveVertex(v,G) denote the operation of removing vertex v from G and adding E 11.

Lemma 1 If v is a vertex of a well connected plane labelled graph, G, and v has vertex degree
at most 3, then the edges of a complete graph on the set of vertices incident with v in G is a plane
wellconnecting edge set for G− v.

Definition 11 Let G be a well connected plane labelled graph and let Y be a set of labels which
is not the label set of any vertex of G 12. Suppose that G has a face F whose incident vertices
have label sets that contain all of the labels of Y , and there is a plane wellconnecting edge set E
for G∪ v, where v is a new vertex labelled by Y embedded in the interior of the face F . Then
define AddVertex(Y,G) to be the operation which inserts the vertex v with label Y in face F , and
adds E.

Remark 2 There is flexibility in the choice of rules developed, which could be chosen according
to system requirements or user preference. The rule RemoveVertex(v,G) is not applicable if there
is no plane wellconnecting edge set for G− v, but if it is applicable then it preserves planarity
and wellconnectivity. If one wanted a more relaxed system which always enabled the application
of the rule then one could alter the rule so that the vertex v is always deleted. Furthermore, to
attempt to improve the layout one could add a subgraph of the clique on the vertices incident
with v that maintains planarity whilst minimsing the number of connectivity conditions that are
broken. Similarly, one could generalise the AddVertex(Y,G) rule to be always applicable and to
attempt to preserve the connectivity conditions for as many labels as possible.

Proposition 3 Let d∗ be a well connected plane labelled graph with unique vertex label sets
which is the dual of a concrete diagram d. Let Y be a set of labels corresponding to a zone
z which is missing from d and let w be a vertex of d∗. Suppose that there is a face F which
has every label of Y appearing in its incident vertices and there is a plane wellconnecting edge
set E for G∪ v, where v is a new vertex labelled by Y embedded in the interior of the face F.
Then AddVertex(Y,d∗) is a well connected plane labelled graph with unique vertex label sets,
and the operation corresponds to the addition of zone z with label set Y to d yielding d′; i.e.
when applicable, this lifts to the operation AddZone(z,d). Also, RemoveVertex(w,G) is a well
connected plane labelled graph with unique vertex label sets and the operation corresponds to

11 The choice of edge set used effects the layout but we are primarily concerned with planarity and connectivity.
12 This condition can be relaxed if the system allowed disconnected zones.

GT-VMT’09
94



ECEASST

the removal of zone z with label set Y from d; this lifts to the operation RemoveZone(z,d).

Figure 4: Left/middle: Addition/removal of a vertex to the dual graph and a zone to the diagram.
Middle/Right: a post-processing graph transformation step for removing tangential intersections.

Example 5 In Figure 4, the middle dual graph d∗
2 shows the effect of AddVertex({A,B,C},d∗

1)
applied to the left hand dual graph d∗

1 , using the outer face F and wellconnecting edge set as
shown. This corresponds to the addition of the zone {A,B,C} to d1 to give d2. Since d∗

1 is
wellconnected, the application of RemoveVertex(v,G∗) where v is labelled by {A,B,C}, to d∗

2
returns d∗

1 corresponding to the removal of the zone {A,B,C} of the diagram d2 giving d1.
The incorporation of techniques to alter the dual graph to remove various breaks in well-

formedness conditions, or to exchange them, would facilitate the construction of different sys-
tems. For instance, in the right hand side of Figure 4, we see the insertion of an extra edge into
the dual graph between {A} and {A,B} surrounding {A,C} and {A,B,C}. Since we obtain ex-
actly one vertex in each face when taking a dual, this has the effect of moving the contour C away
from the intersection point of A and B in the Euler diagram, thereby removing the tangentiality
and the multiple point.

4 Conclusion

Logical reasoning systems based on Euler diagrams are commonly constructed at an abstract
level, and the concrete level is merely a visualisation of the abstract level. Then, changes at
the abstract level are not consistently reflected by changes at the concrete level that preserve
the mental map (i.e. the usual approach is the regeneration of new diagrams after some trans-
formation that do not take into account of the previous diagrams prior to the transformation).
Building transformation systems at the concrete level which are realisations of the abstract level
transformations addresses this concern, enabling the presentation of diagrams that reflect change
in a local manner when it is possible to do so. This enables strong control of the topological
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and geometric properties of the diagrams allowed in order to assist with user comprehension and
preferences. In this paper we have viewed concrete diagrams as graphs and provided a concrete
level dual graph transformation system which can be utilised to transform concrete diagrams.
Altering the graph theoretic properties of the system will enable the realisation of transformation
systems of concrete diagrams satisfying different sets of wellformedness conditions and should
facilitate interplay between such systems. Furthermore, abstract level dual graph transformation
systems could also be constructed; these will enable rules to be applicable more often than at the
concrete level, but they will lose some geometric information.

In the future, specialisations of this theory could be used to provide fast computations of
restricted classes of diagram transformations. This could be utilised in a graph transformation
based library system for generation and manipulation of diagrams for instance, where a collection
of initial graphs together with a set of transformation rules is used to attempt to generate a
diagram requested by a user, whether that user be human or a system request.

Acknowledgements: Funded by UK EPSRC grant EP/E011160: Visualisation with Euler
Diagrams. Thanks to the anonymous reviewers and to John Taylor for their helpful comments.
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Abstract: Graph transformation, visualisation, and editing are useful in many con-
texts, and require domain-specific customisation. However, many general-purpose
graph solutions lack customisability in at least one area.

We present a framework that aims to allow polished customisation in all three ar-
eas, using the powerful abstraction capabilities of the pure functional programming
language Haskell. The design of our framework integrates and adapts time-tested
object-oriented designs into a purely functional framework, and uses current user-
interface libraries (GTK+ and Cairo) to achieve polished presentation.

Our framework provides both a low-level programmed approach to graph transfor-
mation, and, on top of this, high-level approaches including SPO and DPO, which
are implemented using categorical abstractions in an intuitive and flexible way.

Keywords: Programmed graph transformation, Algebraic graph transformation,
Pure functional programming, Generic graph editor

1 Introduction

Although graphs are a mathematically simple concept, the pragmatics of providing tool sup-
port for graph manipulation is surprisingly complex. The lack of general frameworks for graph
manipulation tools has as a consequence that even successful tools for special-purpose graph
manipulation get away with surprisingly poor user interfaces.

The more widely known graph transformation tools, such as AGG, DIAGEN, Progress, and
DAVINCI (now uDraw) tend to concentrate on the particular aspects that are related to the re-
search direction they have grown out of. This means that these tools frequently introduce limita-
tions in other aspects that cannot be overcome by a reasonable effort on the side of the framework
user, i.e., of the developer who implements a more customised application.

In our framework, we strive to implement the following requirements:

(1) Visual presentation of and interaction with graphs must be customisable to an extremely
large degree, and in a “natural” way.

(2) Arbitrary graph transformation needs to be programmable.

(3) High-level graph transformation approaches need to be expressible in a natural way, and
in a way that results in reasonably efficient implementations.

(4) A programmer willing to invest more effort into optimisation should have the tools avail-
able to implement more efficient transformations by reverting to lower-level primitives.
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The problem here is that requirement (3) implies, in particular, availability of categorical abstrac-
tions, which tend to be blissfully unaware of efficiency concerns, and is also normally understood
to contradict (2), or tends to accommodate (2) in an only partial way that, however, still compro-
mises the principled and declarative nature of the high-level approaches. That apparent conflict
is best resolved by embedding the transformation capabilities into a language that provides pow-
erful abstraction mechanisms, and allows abstraction barriers to be enforced. The latter strongly
suggests the use of a pure programming language that controls side effects via its type system; to-
gether with the former, and with general availability and library support requirements, essentially
only the pure functional programming language Haskell fits this bill.

However, for visual presentation of and interaction with graphs (requirement 1) there is no
good functional paradigm available yet, while it is essentially the case study of object-oriented
design [Joh92]. Therefore it is natural to satisfy requirement (1) by exposing an object-oriented
interface for visual interaction purposes. This does not even contradict the choice of Haskell
— Kiselyov and Lämmel have recently catalogued [KL05] a number of ways to satisfactorily
implement object-oriented abstractions in Haskell. Using this, we created a framework that, in
its kernel (Sections 3 and 4), encapsulates the presentational and interactive aspects of graphs and
graph items (i.e., nodes and edges) in an object-oriented class hierarchy closely emulating that of
[Joh92], but still provides a purely functional interface to item-level read-only graph access, and
also provides a safe monadic interface to item-level graph manipulation, enabling a programmed
graph transformation approach not too different from that of PROGRESS [SWZ99].

On top of this kernel, we use the abstraction mechanisms of Haskell to provide a high-level
interface that includes an abstract datatype of partial graph homomorphisms with both algebraic
and item-level access functions (Sect. 5), and basic category-theoretic constructions, and stan-
dard algebraic approaches to graph transformation (DPO and SPO) implemented on top of those
(Sect. 6). In Sect. 7, we discuss some related work.

2 A Few Quick Haskell Notes

The pure functional programming language Haskell [P+03] features a relatively lean, mathe-
matical syntax; it uses indention to indicate components which are part of the same term, case

alternatives, and utilises monadic do statements to program “with an imperative flavour”.
Function application is normally denoted by juxtaposition, as in “f x”, has highest precedence,

and associates to the left. To avoid parentheses, there is also a low-priority infix operator $ for
function application; this allows to write e.g. “f $g x” instead of “f (g x)”. Another infix operator
stands for function composition: (f ◦g) x = f (g x).

Binary functions in Haskell can be converted to infix operators using a pair of back-ticks; for
example, “x ‘someFunction‘y” is just another notation for “someFunction x y”.

Haskell features of type classes, which are similar to Java interfaces. In the Eq (equality) type
class, instances must supply at least one of ≡ and #≡ to be override the default implementation.

class Eq a where (≡),( #≡) :: a → a → Bool

a ≡ b = ¬ (a #≡ b)
a #≡ b = ¬ (a ≡ b)

Type classes may have class constraints, such as class Eq a ⇒ Ord a where..., which specifies
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that instances of Ord must necessarily also be instances of Eq. The typing annotation

lookup ::Eq a ⇒ a → [(a,b)] → Maybe b

specifies that the function lookup is to be applied to a value of some type, a, for which equality
must be implemented (type class constraints appearing to the left of the ⇒), and to a list of pairs
as second argument; results are then of type Maybe b, which contains the value Nothing and the
values Just y for each value y ::b.

Monads, which are often used to model sequential instructions in the otherwise functional
language, are a very versatile concept. The related idea of monad transformers is used in this
work to provide a clear definition of the sequential context in which we are operating in.

If we operate in the Maybe monad, we know that the results of the computation will either be
success (Just) or failure (Nothing). To add some integer-variable lookup environment such as a
Map String Integer to the Maybe monad, we could use the ReaderT monad transformer to con-
struct a new monad instance. This new instance would have an underlying read-only state which
can be accessed by using the ask function anywhere within the monad. When the computation
is run, the results are still of type Maybe. Similar write-only and read-write transformers are
defined as WriterT and StateT transformers — explicitly composing complex monads in this
way has the advantage that imperative effects are precisely constrained by the type system.

3 Object-Oriented Abstractions for Interaction and Visualisation

The framework presented in this paper strives to make generating fully-featured graph editors
very simple. The built-in features include the ability to select and drag nodes around, as well as
resize the extents of the nodes. Edges are represented as Bezier curves, allowing for smooth tran-
sitions between nodes. Additionally, the view can be modified by using linear transformations
such as zooming and panning.

At a low-level, these abilities are implemented in an object-oriented manner, as there are
known, working solutions in the object-oriented world [Joh92]. We realist this in Haskell using
a method of translating OO designs into a functional setting which is largely inspired by [KL05].

In Haskell, programming to a concept of updatable state is one instance of the use of monads,
which allows an imperative programming style embedded into pure functional programs. Since
object-oriented designs naturally employ also the concepts of object creation, we essentially
have the choice between the two predefined monads providing dynamic creation of references to
updatable memory, namely ST, in which reference allocation and updates are the only possible
side effects, and IO, which also allows input and output as side-effects. We implement our
object-oriented data structures parametrised over such monads, will always use the type variable
m for this monad parameter. As far as objects are used to support a GUI, we will be compelled
to use IO for m, but the possibility of using an ST monad instead makes it feasible to create and
transform graphs within pure functional computations.

A canvas for us is an area for graphical representation that is not unlike a magnet-board: Ob-
jects can be placed, moved, and modified in an interactive way. This is unlike a drawing-surface
which allows write-only operation, i.e., where marks, once made, cannot be easily changed or
deleted. The classes supporting our canvas abstraction include Figure for elements placed on the
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canvas, ConnectionFigures that form connections between other figures, aggregations of figures
called Drawings, and DrawingView, the visualisation of the drawing as it appears on-screen.

For deep changes to the way the framework operates interactively and visually by default,
appropriate subclasses to these classes will need to be defined. For more superficial changes,
much can be accomplished through the use of node and edge labels. In our setting, we use labels
to define particular kinds of graphs. For example, a Petri net can be considered as a graph with
node labels that indicate whether a node is a place (with some number of tokens) or a transition.

data Petri = Place Integer | Transition deriving (Show,Typeable)

To allow these elements to be used in an interactive and visual setting, we demand that labels
support type reı̈fication via Typeable (necessary for the class casting mechanisms) and provide
an instance of the FigureLabel type class:

class (Show label,Typeable label) ⇒ FigureLabel label where

draw :: label → Rect → Render ()
size :: label → Maybe Point

parseLabel ::Parser label

interfaceIO ::LabelFig label IO → DView IO → IO ()

The members of this type-class should provide the following functionality:

• draw – The visual representation of the label adapted to its physical size, specified as a
rectangle. The resulting drawing operations are encapsulated in the Render monad.

• size – Specify that the label should be drawn either with variable size (Nothing), or with
fixed size by producing Just pt for a Point value pt which will be interpreted as a size.

• parseLabel – The framework also handles the saving and loading of graphs in files, and
uses the Parsec [LM01] parser combinator library. To allow the labels to be restored from a
string, a parsing function needs to be implemented that acts as inverse to the Show instance
required by the superclass constraint.

• interfaceIO – We can additionally allow interactive actions to be performed when the
node carrying the label is activated (currently by double-clicking) through a GUI view.
These actions could be anything including popping up a dialog-box to modify the label, or
performing a graph transformation.

Using about two pages of literate Haskell code, we defined a FigureLabel instance for the Petri

label type introduced above, and with two additional pages defining the GUI wrapper around
the drawing canvas, we created the editor and animator shown in Figure 1, where interfaceIO

will fire the clicked transition if possible — this is implemented using the programmed approach
described in Sect. 4.

Since the framework’s visual and interactive components aim to be cross-platform and ap-
pealing to the eye, they use a Haskell binding to the well-known and portable GTK+ library.
Graph display uses a vector graphics library associated with GTK+, the Cairo rendering en-
gine (http://cairographics.org), which can draw on various kinds of “surfaces”. Aside from the
“screen” surface, one can also draw on more abstract surfaces, such as PDF and PostScript sur-
faces. The result is that any graph drawings produced in the editing framework can be easily
reproduced in a high-quality format for use in printable documents.
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Figure 1: Petri net editor and animator, defined using labels of type Petri.

4 Programmed Transformations

Graph transformation steps typically divide into two parts: A matching phase, which does not
need more than read-only access to the graph that is to be transformed, and a modification phase.
Haskell programmers will naturally expect that the type system can prevent modification steps
to be used during the matching phase — this makes reasoning about graph transformation pro-
grams, and activities like code refactoring much easier. Since matching is conceptually non-
side-effecting, it is only natural to expect that matching can be programmed without performing
monadic computations. However, one of the problems of programming to a graph view built
on the object-oriented programming principles outlined above is that all graph access has to be
performed as part of a monadic computation.

Therefore we start graph transformations by adding a “pure view” to the object-oriented view
of a drawing representing a graph. This “pure view” allows pure functions to access the graph
for matching and analysis purposes, but also connects to the object-web in a way that monadic
updates can be performed on both together. For both purposes we provide low-level and higher-
level interfaces, described in the remainder of this section.

4.1 Low-Level Interfaces

All the graph transformation machinery in our framework is built on top of two interfaces.
A graph inspection interface ReadLGraph provides pure (i.e., non-monadic) functions for

read-only access to the graph structure, including node and edge sets, edge incidence, node and
edge labels. This interface not only includes basic functions, but also more advanced facilities,
as for example a function calculating strongly connected components — although such functions
could be implemented on top of the basic functions, in general only custom implementations by
the interface instances can achieve satisfactory performance.

A monadic graph modification interface MonadLGraph, containing item-level graph update
functions, like addition and deletion of labelled nodes and edges, label updates, updates of source
or target of edges, etc. The unusual aspect of the modification interface is the typing of the
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exposed functions: A pure node addition function would typically have the type1 a→ g→ (n,g),
meaning that given a node label and a graph, a new graph is produced that differs from the
argument graph only by including a new, appropriately labelled node, which is returned together
with the new graph. (Our inspection interface contains no functions with graph results.)

A typical monadic interface would instead use the type a → g → m n, for a monad type
constructor m, i.e., the function would produce a computation of type m n, that is, a computation
returning the new node, with the understanding that the graph reference passed in as argument
now refers to the updated graph when it is be used in subsequent computations.

For our graph modification interface, we intentionally allow “the worst of both worlds” in
order to give the implementation more liberties:

grNewLNode ::a → g → m (n,g)

At first sight, this appears to imply a very awkward style of programming to this interface.
However, the ordering of arguments and results has been chosen so that this function can be
embedded directly into a standard-library state monad transformer [Jon95], so that we obtain
StateT◦grNewLNode ::a → StateT g m n. From this typing, we see that this is now a function
that, given a node label, returns a computation in the “state-enriched” monad StateT g m, which
keeps a current graph (of type g) as its state while performing computations in monad m. This
StateT view of the modification interface then allows a normal imperative programming style,
and also forms the basis for the primitive operations of the GraTra monad, see Sect. 4.3 below.

4.2 The Select Monad

Matching, i.e., identifying redexes for graph transformation rules, has two aspects that invite ap-
plication of “pre-fabricated abstractions”: All matching activity happens in the context of a fixed,
“current” graph, and matching steps are frequently non-deterministic, and failure requires back-
tracking. The first can be implemented using a Reader monad, while the second is most easily
handled by a list monad; using monad transformers [Jon95, LHJ95], the two can be combined:

type Select g = ListT (Reader g)

This is automatically a monad, and allows an intuitive programming style for matching purposes,
as the following utility operator demonstrates: starting from a node selector sel :: Select g n, the
selector sel ˜˜> p finds nodes that sel generates whose outgoing edges target nodes which have a
label satisfying the node label predicate p ::a → Bool.

( ˜˜> ) :: (ReadLGraph g n e a b) ⇒ Select g n → (a → Bool) → Select g (e,(n,n))
sel ˜˜> p = do

n1 ← sel -- select a first node
e ← sel out1 n1 -- select an outgoing edge
n2 ← sel trg e -- obtain target node of that edge
sel node label n2>>=guard p -- backtrack if target node label does not satisfy p

return (e,(n1,n2))

1 In the Haskell code fragments in the remainder of this paper, we use the type variables g for graphs, n for nodes,
e for edges, a for node labels, and b for edge labels.
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4.3 The GraTra Monad

For higher-level graph modification, we have to start from the monad m required by the low-level
modification interface, and we add backtracking as for Select, and an updatable state containing
the current graph together with its “history” represented as a chain of graph homomorphisms.
The history is necessary for cases where, for example, a lot of information is collected during
matching, and then applied in separate modification steps: Nodes used in later steps may have
been identified with other nodes, and taken on their identity; the history is used to implement
the necessary indirection in a modular way that mixes well with backtracking. The history also
allows to form an overall partial graph morphism as a result of a series of operations.

Due to the necessity of history concatenation, the standard StateT monad transformer [Jon95]
is not sufficient here, so the GraTra monad is implemented directly, and exported abstractly, so
that its state invariants can be guaranteed.

The GraTra monad provides primitive operations such as adding and removing graph ele-
ments, as well as updating the node labels. In addition, inside GraTra computations, Select

computations can be performed by embedding them using the following function:

select :: (MonadLGraph m g n e a b) ⇒ Select g x → GraTra g n e m x

All these, together with the abstraction capabilities of Haskell, constitute a powerful toolkit to
express graph transformations in a programmatic way.

5 Abstractions for Categorical Rewriting Approaches

Low-level graph transformations in a high-level programming language are of course unsatis-
factory, so we provide a number of abstractions to enable programming of and with high-level
graph transformations approaches.

For any graph type g implementing the ReadLGraph g n e a b interface, the data type
SubGraph g n e encapsulates a graph of type g together with the node and edge sets of a sub-
graph (so the node set includes all nodes incident to edges in the edge set). On such SubGraphs,
both item-level operations, like insertion, deletion, membership test, are available, and lattice
operations like join (union), meet (intersection), and pseudo-complement (the subgraph lattice
of a non-discrete graph is not complemented).

Similarly, a GraphMor g n e encapsulates two graphs and two finite maps representing a partial
graph homomorphism between these graphs. Again, item-level operations are provided, includ-
ing membership tests, and insertion and deletion of item pairs from the maps. More importantly,
a categorical interface is provided, including morphism source, target, composition ∗∗∗, identi-
ties, and also operations returning domain and range of a morphism as SubGraphs, and restricting
a morphism on either side with a (compatible) SubGraph.

Categorical constructions involve creation of new graphs, and therefore require access to the
monadic modification interface MonadGraph; we provide for example production of isomor-
phic copies via copyGraph, disjoint union of graphs via directSum, and division modulo graph
congruences via quotientProj, which is used to implement co-equalisers of total graph homo-
morphisms — we just list the type signatures for these:

copyGraph :: g → m (GraphMor g n e)
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directSum ::g → g → m (GraphMor g n e,GraphMor g n e)
quotientProj :: [ [n] ] → [ [e ] ] → g → m (GraphMor g n e)
coEqualiser ::GraphMor g n e → GraphMor g n e → m (GraphMor g n e)

It is well-known that pushouts of total graph homomorphisms can be calculated from direct sums
and co-equalisers where those exist; in Haskell, the category-theoretic diagram can be almost
directly transliterated for this purpose:

pushout ::GraphMor g n e → GraphMor g n e → m (GraphMor g n e,GraphMor g n e)
pushout xi phi = do

(iota,kappa) ← Mor.directSum (Mor.trg xi) (Mor.trg phi)
proj ← coEqualiser (xi∗∗∗ iota) (phi∗∗∗kappa)
return (iota∗∗∗proj,kappa∗∗∗proj)

G !
φ R

ξ

"
κ

"

#
#

##$

χ

H
ι!H +R

π! B

In the next section we show how to use these abstractions to program DPO and SPO graph
rewriting at the level of categorical descriptions.

6 Implementing DPO and SPO Graph Transformation

The double-pushout approach is the “classical” variant of the “algebraic approach” to graph

rewriting, going back to [EPS73]. In this approach, a rewriting rule is a span L
φL% G

φR!R

of morphisms, which we represent using a record datatype:

data Span g n e = Span{spanLMor,spanRMor ::GraphMor g n e}

Performing a DPO rewrite step on an application graph A involves identifying a redex, i.e., a
suitable “matching” morphism χL from the left-hand side L into the source graph, completing
the left square via the construction of a pushout complement, including the host morphism ξ
from the gluing graph G to the host graph H , and completing the right square by constructing a
pushout.

L %
φL

G !
φR

R

χL

"
ξ

"
χR

"
A

ψL% H
ψR! B

One of the two parts of the “gluing condition” necessary for the existence of a pushout comple-
ment is the “dangling condition”, which is conventionally given as follows:

Definition 6.1 For two graph morphisms φ : G → L and χ : L → A , the dangling condition
holds iff whenever an edge connects a node outside the image of χ with a node x inside the image
of χ , then x has in its pre-image via χ only nodes in the image of φ .

Kawahara has shown that the gluing condition can be formulated directly in the language of re-
lations in the topos of graphs [Kaw90]; the following equivalent definitions [Kah01, Def. 5.4.1],
all for morphisms φ : G ↔ L and χ : L ↔ A , directly use the setting of relational graph ho-
momorphisms, and can easily be implemented using our Morphism and SubGraph libraries:
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• The identification condition holds for φ and χ iff χ is almost-injective besides ranφ :

χ ; χ!⊆ I∪ (ranφ) ; χ ; χ!
; ranφ .

For almost-injectivity, we have a morphism predicate:

identCond ranPhi chi = Mor.almostInjectiveBesides chi ranPhi

• The dangling condition holds for φ and χ iff χ ; ranχ∼ ⊆ (ranφ) ; χ .

The dangling condition uses semicomplement S∼ of a subgraph S of G. This is the least
subgraph C such that S∪C = G. The subgraph S∼ therefore overlaps with S exactly in the
nodes inside S that are connected to nodes outside S.

danglingCond ranPhi chi =
(chi ‘Mor.ranRestr‘SubGraph.semiComplement (Mor.ran chi))

‘Mor.leq‘ (ranPhi ‘Mor.domRestr‘ chi)

gluingCond phi chi = danglingCond ranPhi chi ∧ identCond ranPhi chi

where ranPhi = Mor.ran phi

• χ is called conflict-free for φ iff ran(φ ; χ ; χ!) ⊆ ranφ .

This property is important in the single-pushout approach; we can replace the occurrence
of a conversion with a pre-image operator, since ran(φ ; χ ; χ!) = ran(ran(φ ; χ) ; χ!).

conflictFree phi chi = Mor.preImg chi (Mor.ran (phi∗∗∗chi)) ‘SubGraph.leq‘Mor.ran phi

For implementing the low-level Def. 6.18 of the dangling condition directly, one may pre-
calculate the pre-images via χ , by calculating the converse of χ considered as a relation; with
that, it should be straight-forward to see how the following code implements the above definition
(a more concise danglingCond is defined below):

danglingCond′ :: forall g n e◦ReadGraph g n e ⇒ GraphMor g n e → SubGraph g n e → Bool

danglingCond′ chi ranPhi = let

g = Mor.trg chi -- the target of the matching
ranChi = SubGraph.nodeSet$Mor.ran chi -- the node range of chi

chiConverse ::MRel n n -- a relation represented as set-valued map
chiConverse = converseToMRel$Mor.nodeMap chi

safeNode ::n → Bool -- holds iff x has in its χ-pre-image only nodes in the image of φ .
safeNode x = lookupMRel x chiConverse ‘Set.isSubsetOf‘SubGraph.nodeSet ranPhi

-- Remember that the ordering " on Bool is implication:
safeEdge (s, t) = if s ‘Set.member‘ ranChi

then t ‘Set.notMember‘ ranChi " safeNode s

else t ‘Set.member‘ ranChi " safeNode t

in all safeEdge$mapMaybe (grIncidence g) (grEdges g)

This serves to show how categorical abstractions can lead to more concise code, but also how
concepts that break the categorical abstraction (like Def. 6.18) can still be implemented in a
mathematically accessible way.
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The host graph H in a DPO rewriting step is always a subgraph of the application graph A ;
Kawahara’s construction for the DPO approach is also useful for the SPO approach. We also
provide a variant that preserves nodes incident to dangling edges and can be used for Parisi-
Presicce’s “restricting derivations” [PP93]; both variants directly transliterate [Kah01, Def. 5.4.6]:

straightHostSG phi chi = Mor.ran chi ‘SubGraph.implication‘Mor.ran (phi∗∗∗chi)
sloppyHostSG phi chi =

SubGraph.semiComplement (Mor.ran chi) ‘SubGraph.join‘Mor.ran (phi∗∗∗chi)

While SubGraph denotes a subgraph via subsets of the carrier sets of the underlying graph,
the function Mor.subGraph produces an independent graph resulting from restriction to these
subsets, and returns a pair consisting of a total injection morphism from the newly constructed
subgraph to the original graph, and it converse, which is a partial (univalent) homomorphism,
and which can be used to calculate the host morphism ξ .

constructHost chiL sp = do

psi@( ,psiLC) ← Mor.subGraph$ straightHostSG phiL chiL

return (psi,phiL∗∗∗chiL∗∗∗psiLC)
where phiL = spanLMor sp

For reducing a DPO redex, we just need to put this together with the pushout construction for
the right-hand side. We choose to return, together with the embedding of the right-hand side, the
partial morphism (ψ!

L
; ψR) : A → B along the bottom of the DPO diagram; one could of course

also choose to return the constituant morphisms, or even the whole diagram.

reduceDPOredex rule chiL = do

(( psiL,psiLconv),xi) ← constructHost chiL rule

(psiR, chiR) ← pushout xi$ spanRMor rule

return (psiLconv∗∗∗psiR,xi)

This redex reduction is an essentially deterministic computation (in the monad m for which
no backtracking capabilities are assumed). A DPO rule induces a non-deterministic reduction
relation by permitting arbitrary redexes; we implement this as a backtracking computation into
which we lift the redex reduction:

applyDPO rule = do

let phiL = spanLMor rule

chiL ← select◦matchSel$Mor.trg phiL -- backtrack over possible matchings
guard$gluingCond phiL chiL -- prunes illegal redexes
(m,xi) ← lift$ reduceDPOredex rule chiL -- DPO construction
doMorphism m -- updates “current” graph
return xi -- return RHS embedding

For many applications, matchSel will not be an appropriate choice for determining redexes, ei-
ther for efficiency reasons, or because of the presence of some strategy. The function applyDPO

is therefore only an example how our building blocks can be assembled at a high level to easily
produce reasonable implementations of high-level graph transformation approaches.

For a further example, we re-use some of the material above to implement the single-pushout
approach. A partial morphism is easily converted into a span of total morphisms:
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spanFromPMor mor = do

inj ← Mor.subGraphInj$Mor.dom mor

return$Span inj (inj∗∗∗mor)

With that, we can use [Kah01, Thm. 5.4.11] (which is a generalised version of the result by
Löwe [Löw90, Cor. 3.18.5] that single-pushout squares for conflict-free matchings have total
embeddings of the right-hand side) to employ reduceDPOredex to implement single-pushout
rewriting for conflict-free matchings.

applySPO rule = do

chiL ← select◦matchSel$Mor.src rule

guard$ conflictFree rule chiL

(m,xi) ← lift$ spanFromPMor rule>>=flip reduceDPOredex chiL

doMorphism m

return xi

7 Related Work

The DiaGen diagram generation tool [MK00, Min02] aims in a similar direction as our frame-
work. The similarities include the idea of combining graph transformation and visualisation into
a single framework, to generate interactive editors. However, the DiaGen system uses a different
fundamental transformation system, namely hyper-edge grammars. Our approach is not limited
in this way, offering a programmed approach that can be expanded upon to utilise DPO and SPO
if required. Also, our approach does not require the preprocessing that DiaGen does to generate
the templates for developers to expand upon to create their editor.

Another influential graph rewriting system is the PROgrammed Graph REwriting SyStem
(PROGRESS) [SWZ99]. PROGRESS combines textual and graphical representations to specify
graph productions, tests and paths. Simple productions can be used to construct more compli-
cated programmed transformations by using the PROGRESS control structures. The organisa-
tion of PROGRESS is similar to our approach, including the ability to backtrack programmed
transformations in the case of failure. However, the inclusion of a graphical language to specify
graph transformations is one large difference. Also, PROGRESS seems to be less concerned
with user-interaction, customisability, and algebraic approaches.

In the same spirit as our framework, the AToM3 tool [LVM03] offers an environment to create
interactive editors for graphs. AToM3 is able to generate Python scripts which can then be loaded
back into AToM3 to offer customised model creation. For example, the base-tool offers a Petri
net model that can be loaded at runtime to start editing Petri nets. The AToM3 approach differs
from ours in a few fundamental ways. Firstly, the visualisations are markedly more primitive,
not offering any compositing of graphical primitives, nor any high-quality rendering options like
anti-aliasing and PDF and PostScript export. We do not yet match the export facilities of AToM3
to GXL and GML, but these would be easy to add even for a user of our framework.

Tiger [EEHT04] is an ambitious project offering full graphical descriptions of editors. It is
built on top of the Eclipse IDE framework, extended by Eclipse GEF (Graphical Editing Frame-
work) as well as the EMF (Eclipse Modeling Framework); graph transformation facilities are
handled by the AGG-engine. The heavy usage of the Eclipse framework leads to some UI confu-
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sion, as the custom editors still sport many of the default Eclipse menus and interface elements,
leading to an arguably less focused user experience. Transformation rules and the appearance of
nodes and edges are customisable visually.

On the Haskell side, the most notable graph abstractions are the inductive graph interfaces of
Erwig’s Functional Graph Library FGL [Erw97]. These interfaces allow to decompose non-
empty graphs by separating from the remaining graph the context (label, and incoming and
outgoing edges) for an either given or arbitrary node. Since edges are simply triples of source
node, target node, and edge label, these interfaces do not directly support the concept of edge
identity essential for most categorical approaches. Our implementation actually uses FGL for
the “pure view” explained in Sect. 4, and therefore has to embed edge identity information in the
FGL edge labels.

The depth-first search tree abstraction of King and Launchbury [KL95] is entirely geared
towards graph analysis, where it provides a collection of useful tools. It provides an array-based
representation for unlabelled graphs, and includes no facilities for graph modification.

8 Conclusion

We have outlined a framework that allows developers to easily create interactive graph editors
that offer polished user interfaces and include powerful graph transformation capabilities.

Graph transformations can be expressed in different ways, with primary support offered for a
programmed approach to graph transformation, and derived implementations of the categorical
DPO and SPO approaches.

In addition to the graph transformation abilities, the framework has progressed far enough that
the direct interaction mechanism works in an reasonably intuitive manner. Several small editors
have been constructed for models including Petri nets and Hasse diagrams, and some preliminary
work has started on a code-graph editor as well. The project is still in an early stage, but already
offers interactive resizing and positioning of canvas items, diagrams can be exported to PDF and
PostScript, some rudimentary layout facilities are offered by way of GraphViz, with all of these
features available to any graphs which the framework produces. A prototype of functionality for
undoing basic operations is also available.

The ease with which the high-level approaches are implemented on top of the low-level pro-
grammed approach owes much to the power of the abstraction mechanisms provided by Haskell.
The result is a unique environment both for experimentation with novel approaches to graph
transformation and interaction, and for easy creation of polished high-quality graph manipula-
tion applications.
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Abstract: Aspect-oriented programming (AOP) is an extension to the object ori-

ented paradigm that aims to provide better modularity for code that is scattered

across object oriented systems, such as logging, authentication and distributed ob-

ject handling. Aspect weaving is a novel way to compose systems, focusing on the

integration of system-wide policies through pattern-action rules. While there are

several semantic proposals for representing aspects over source code and programs,

aspect weaving for visual models such as graph rewriting systems are still not estab-

lished. In this work, we propose the definition of aspect-oriented graph grammars,

an extension to conventional graph grammar where aspects are represented as trans-

formations rules over the structure of a base graph grammar.

Keywords: aspect-oriented software development, graph grammars, double-

pushout approach.

1 Introduction

Aspect-oriented programming (AOP) [KLM+97] is an extension to the object oriented paradigm

that aims to provide better modularity for code that is scattered across object-oriented systems,

such as logging, authentication and distributed object handling. The main idea of the paradigm

is to encapsulate the statements that deal with such situations in a module called aspect. Inside

the aspect there are rules (advices) that describe how these statements should be weaved into the

base code. Every advice actuates over a specific set (pointcut) of system execution points (join

points), executing some action before, after and/or in place of the join point.

Aspect-orientation can be seen as a kind of meta-programming that allows one to describe

system-wide behaviors in a compact notation. Since its proposal in the late 90’s, the paradigm

has been gaining acceptance and development tools. Although there are several proposals to

describe the operational effect of aspect weaving over programs, visual models such as graph

rewriting systems are still not established.

The fact that several visual languages can be naturally modeled using graphs makes graph

grammars an appealing formalism to define the semantical models for such languages. A graph

grammar (GG) [Roz97] is a model in which the state is represented by a graph and system evo-

lution is represented by graph rewriting productions. Several interesting models for computation

and software development, such as UML diagrams [HET08], have a natural graph-based inter-

pretation, and thus can be modeled by means of GGs.
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In this work we address the issue of crosscutting concerns in graph grammars, and propose the

definition of graph aspects to modularise their treatment. Our main contribution is the definition

of aspect-oriented graph grammars (AOGG), where aspects are represented by a second-order

transformation over the productions of a base GG. We also specify how aspects are combined to

a base grammar, resulting in aweaved graph grammar. By defining formally aspects and aspect

weaving over graph grammars, we also provide a semantic interpretation for aspect-oriented

concepts over other models that are specific instances of GGs.

The rest of the text is organized as follows. Initially, in Section 2, we informally present the

main concepts of the aspect-oriented paradigm. In Section 3, we review graph grammars and

introduce our working example. Then, in Section 4, we discuss how to modify the example in

order to implement system-wide policies such as logging. In Section 5, we provide a description

of aspects over graph grammars and formally define aspect-oriented graph grammars. Finally,

in Section 6, we compare our approach to other proposals, state our final remarks and present

future work.

2 Aspect-Oriented Paradigm

The main purpose of using AOP is to spread some behavior automatically over the whole source

code (or bytecode) of the application. The fundamental abstractions of the paradigm are the

following: i) join points: execution points that can be affected by aspects; ii) pointcuts: specific

sets of join points; iii) advices: rules that, given a pointcut, define some behavior to be triggered

when the system reaches some of its join points; iv) inter-type declarations: extensions to the

static structure of the system, which may be needed by the behavior introduced by the advices.

v) aspects: modules containing all advices and inter-type declarations for dealing with a specific

crosscutting concern.

In aspect-oriented programming languages, join points are generally defined has a subset of

the system named transitions, like method calls and attribute accesses. Pointcuts are specific

sets of join points usually defined by means of a pointcut language, which defines expressions

for join point matching. Advices substitute the join points that match its associated pointcut

with some programmed behavior, which can also include the original behavior. The module that

combines the aspects over the original base code is calledaspect weaver. As a simple example

of aspect weaving, consider the AspectJ source code depicted in Figure 1 (AspectJ is the most

popular AOP extension for the Java programming language). The AspectJ weaver receives both

the base code and the aspect code. Then, it applies the advices within the aspect, inserting the

commands provided in the advices every time it finds their pointcuts in the base code. In the

example of Figure 1, the aspects simply introduces a print command right before the start of the

execution of any method without parameters sent to an object of class A. Although the result

of the combination is shown as a source-code transformation, the AspectJ compiler actually

performs byte-code level weaving, i.e. the aspect weaving occurs after the compilation of both

base code and aspects.
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Figure 1: Example of aspect weaving in AspectJ

3 Graph Grammars

A graph grammar (GG) is a visual model to represent systems. In a GG, the states of the system

are graphs and the system behavior is defined by an starting graph together with a set of graph

rewriting rules. In this section, we recall the basic concepts of GGs, according to the DPO

(double-pushout) approach [C+97], and provide the working example to be used in the rest of

the paper. We will use typed graph grammars, i.e. grammars where all states and rules are typed.

Definition 1 ((Typed) Graph and Graph Morphisms) A graph is a tuple G = 〈VG, EG,sG, tG〉,
where VG and EG are sets of vertices and edges, and s

G
, tG : EG → VG are the source and target

function. A (total) graph morphism f : G→ G′ is a pair of functions ( fV :VG →VG′ , fE : EG →
EG′) such that fV ◦ sG = sG

′
◦ fE and fV ◦ tG = tG

′
◦ fE . The category of graphs and total graph

morphisms is called Graph. Let T ∈ Graph be a fixed graph, called type graph, a T -typed
graph GT is given by a graph G and a (total) graph morphism tG : G→ T . A morphism of T -

typed graphs f : GT → G′T is a (total) graph morphism f : G→ G′ that satisfies tG′ ◦ f = tG. A

typed graphGT is called injective if the typing morphism tG is injective. The category ofT -typed

graphs and T -typed graph morphisms is the comma categoryGraph↓T , shortened by T -Graph.

Definition 2 (Graph Productions and Graph Grammars) A T-typed (graph) production (or

graph rule) is a tuple q : Lq
lq
! Kq

rq
" Rq, where q is the name of the production, Lq, Kq and

Rq are T -typed graph, lq and rq are injective morphisms. The class of all T -typed graph pro-

duction is denoted by T -Prod. A T -typed graph grammar is a tuple G = 〈T,P,!,G0〉, where
T is a type graph, P is a set of production names, ! is a function mapping production names to

productions in T -Prod, and G0 is a T -typed graph, named the initial graph.
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Definition 3 (Direct derivation and Derivations) Given a T -typed graph G, a T -typed graph

production q = Lq
l
← Kq

r
→ Rq and a match (i.e. an injective T -typed graph morphism)

m : Lq → G, a direct derivation from G to H using q (based on m) exists if and only if the

diagram on the right can be constructed, where both squares are pushouts in T -Graph. In this

case the direct derivation is denoted by ! : G
q,m
⇒ H or ! : G

q
⇒ H if we do not make explicit m.

Elements in Lq which are not in the range of l are said to be deleted

by q, while elements in Rq which are not in the range of r are said

to be created by q. Given a graph grammar G = 〈T,P,",G0〉, a

derivation # : G0
p1,m1⇒ G1

p2,m2⇒ G2 · · · of G is a finite or infinite list

of direct derivations !i : Gi
pi,mi⇒ Hi, where Gi+1 = Hi and i ≥ 0. If a

derivation # :G0
p1,m1⇒ · · ·

pn,mn⇒ Gn is finite we callGn the final graph.

Lq

(1)

!!

m

!!

Kq""l"" ## r ##

k

!!

(2)

Rq

m∗

!!

G D
l∗

""
r∗

## H

Example 1 (Graph grammar) Figure 2 shows a graph grammar thats models a client-server

scenario. The type graph T represents the possible kinds of nodes: clients (stylized persons),

content servers (cylinders), addresses (pentagons), data (rectangles with sharp angles), signaling

messages (rectangles with rounded angles), and connections between clients and servers (circles

with the letter C). There are basically two kinds of interactions in this system: clients can recover

information from servers providing an address as parameter, and clients can store information in

servers, passing both the address and the desired information as parameters 1. In order to retrieve

or store information, the client must first connect with a server that provides the required ad-

dress. After the connection, the information is exchanged and, finally, the connection is released.

The graph productions ConnectGet, TransferGet and CloseGet perform the informa-

tion retrieval from servers, and the graph productions ConnectSend, TransferSend and

CloseSend perform the information update. Inside the rules, the items annotated with small

D’s are the ones being deleted, and the ones with smallC’s are the ones being created. The initial

graph of the system consists of two clients and three servers. One of the clients comes with

an initial send message for address A2 (the “updater” client), while the other one has two get

messages for addresses A2 and A3 (the “reader” client). According to the order in which the

productions are applied, the reader client can retrieve information about the addressA2 before

or after it is updated by the updater client. Also, the reader client can get connected to any server

that provides address A3, retrieving different results according to the server it connects to.

Graph grammars provide a natural and visual way to represent distributed and nondetermin-

istic systems, such as the one shown in Example 1. Distribution is naturally represented by the

graph topology. The semantics of graph grammars is based on production applications. If there

are matches for more than one production in one state (graph), they may all be applied in paral-

lel, if there are no conflicts. Conflicts exist if two (or more) productions try to delete the same

portion of a graph at the same time. In such a situation, the choice of which production will be

actually be applied is non-deterministic.

1 in this example, it would be necessary to have attributes in order to properly represent addresses and numeric data.

Since our main focus is in the crosscutting concerns, for now we left attributes out of the theoretical development.
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Figure 2: Example of graph grammar for clients and servers

4 Crosscutting Concerns in Graph Grammars

The aspect-oriented paradigm’s main purpose is to solve the problem of lack of modularity for

the code that handles crosscutting concerns. The classical examples of such requirements in

object-oriented systems are logging policies, authentication and distributed object handling. In

order to illustrate the concept of crosscutting concerns in the context of graph grammars, we

propose two simple modifications to the system of Figure2: the inclusion of a logging object (to

log executions) and of a security policy for server access.

4.1 Logging Execution Steps

Suppose we want to register every execution step within the system in order to have access to the

execution history. For instance, it is very common that servers store information about the start

and the end of each client connection, both for profiling and security reasons. In the context of
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GGs, this would mean that we have to record each production application, or derivation step. In

our example, the changes that have to be performed to introduce such a log object are:

1. the type graph would have to be extended to introduce the new kind(s) of element(s);

2. the initial graph should be populated with initial instances of the new elements (if any). In

the case of log, we must introduce one global instance of the log object;

3. all relevant productions must be modified in order to reflect the desired behavior. The

left-hand side of every rule should have an additional element (the log register), and some

information related to the effect of a production application on this log shall be included.

Figure 3: New type graph, initial graph and variations of the original rule ConnectGet to

implement log.

Figure 3 depicts the required modifications over the GG presented in Example 1 in order to

implement a simple log policy. The square node with anL represents the global log object. The

square node with an E represents a log entry, which carries information about the production

application. In order to keep the example simple, we omitted this information from log entries –

they actually only represent the number of applied productions (this abstraction is fine, since our

purpose is not to show how to model logs, but rather how to model transformation of specifica-

tions, that is, how one specification is transformed into another by considering an aspect). Log

entries are connected to each other in a way that resembles a linked list structure, represented by

the arrows begin, end and next. The empty list is represented by the endoarrowempty. The

modification to the initial graph would be only the addition of one empty log object, i.e. one with

a unique empty arrow. The modification that has the a bigger impact concerns the productions,

since all of them must be altered to cope with two different situations: when the log list is empty,

and when it has at least one element. For instance, the ruleConnectGetmust be rewritten as

a pair of productions, as shown in Figure 3. This should be done for every production, duplicat-

ing the total number of productions of the graph grammar. This very small example shows how

structural patterns for rules do not scale well in the usual definition of graph grammars.
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One interesting effect of this log model concerns the graph grammar execution. Since we have

a global log object which is updated by all productions, we lose the possibility of simultaneous

application of productions, even if they refer to different client and servers. Thus, this imple-

mentation of logging modifies the concurrent semantics of the system, although the sequential

semantics is not changed at all.

4.2 Security policy for server access

Another system requirement that is a crosscutting concern is the implementation ofsecurity poli-

cies. Suppose it is important to distinguish between two kinds of users: content administrators,

the ones that have write and read access to the servers, and ii) plain users, who can only read

information. Every time a user tries to connnect to a server, its type should be taken into account

to decide if the connection should be allowed. A very simple implementation of such policy is

depicted in Figure 4, which depicts a new type graph and new versions for rulesConnectGet

and ConnectSend. The user attribute R represents read privilege and W, write privilege. Both

user marks are preserved by the productions. Unlike the log policy, which affected all the pro-

ductions, these may be the only rules affected by the security policy, since the permissions may

be verified only when the connections are being made.

Figure 4: Modified rules and type graph for security policy.

Note that both the log and the security implementations are modelled as modifications of both

the structure (type graph) and the behavior (initial graph and graph productions) of the original

GG. If both crosscutting concerns are needed in our specification, the productions may become

excessively complex and difficult to understand, since theymay have to treat several crosscutting

concerns. One of the original motivations for using visual methods such as GG is its ease of use,

and such lack of modularity can difficult its adoption for modeling large systems. In the next

sections we introduce aspect-oriented graph grammars (AOGG) as an extension of traditional

graph grammars. In AOGGs, the modifications needed to treat every crosscutting concern is

encapsulated into an aspect, allowing clearer specifications.
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5 Aspect-Oriented Graph Grammars

In this section, we describe formally how to define aspects over graph grammars, leading to the

definition of aspect-oriented graph grammars (AOGG).

Graph advices may be seen as meta-productions defining how the original graph productions

should be modified in order to implement a given crosscutting concern. Therefore, we employ the

same mechanism for graph rewriting in order to describe production rewritings. First, we define

a notion of how to relate productions (production morphism), that will be used to formally define

graph advices.

Definition 4 (Production morphism) Let p : Lp
lp
!Kp

rp
" Rp and q : Lq

lq
!Kq

rq
" Rq be T -typed

graph productions. A production morphism f : p→ q is a triple 〈 fL, fK , fR〉 of T -typed graph
morphisms between the left-hand side, interface and right-hand

side of the productions such that the following diagram com-

mutes. The production morphism f = 〈 fL, fK , fR〉 is injective iff
all its components are injective. The category ofT -typed produc-

tions and T -typed production morphisms is denoted T -MSpan.

Lp

fL
!!

Kp

fK
!!

""
lp

"" ##
rp

## Rp

fR
!!

Lq Kq""
lq

"" ##
rq

## Rq

Definition 5 (Graph advice) A T -typed graph advice a is a production over T -typed produc-

tions, i.e. it is a monic span p! i" e in T -MSpan. In terms of T -typed graphs, a graph advice

has the structure depicted below, where all squares commute:

Li$$

$$!!!!!!!!!!!!!!!! %%

%%"""""""""""""""" Ki$$

$$!!!!!!!!!!!!!!!! %%

%%""""""""""""""""
"""" ## ## Ri$$

$$################ %%

%%$$$$$$$$$$$$$$$$

Lp Kp"""" ## ## Rp Le Ke"""" ## ## Re

Given a T -typed advice a : p!i"e, the production p is called the advice pointcut, i, the advice

interface, and e, the advice effect.

Definition 6 (Graph aspect) Given a graph grammarG = 〈T,P,!,G0〉, we define a graph aspect
A over G as a triple 〈D, t,g〉, where D is a set of T ′-typed graph advices (see Definition 5), and

t : T ↪→ T ′ and g :G0 ↪→G′
0 are graph inclusions. The graphsT

′ and G′
0 are called, respectivelly,

the type graph and initial graph of the aspect A.

Example 2 (Graph aspect) Figure 5 depicts a graph aspect for the graph grammar of Figure 2,

implementing an execution log. The regions T and G0 refer to the original type graph and

initial graph, respectively. The advicesa1 and a2 implement the modifications over the original

productions as presented in Section 4. The fact that the pointcut is empty makes them match all

the original productions, as will be shown later. Figure6 shows a graph aspect implementing the

security policy, which can be applied toConnectGet and ConnectSend productions, since

there is an occurrence of the pointcut in that productions.

Definition 7 (Aspect-oriented graph grammar) An aspect-oriented graph grammar (AOGG) is

a pair A = 〈G ,"〉, where G is a graph grammar, and " is a (possibly empty) finite sequence

[A1,A2, . . . ,An] of graph aspects over G .

GT-VMT’09
118



ECEASST

Figure 5: Example of a graph aspect implementing execution log.

Figure 6: Example of a graph aspect implementing security policy.

The behavior of an AOGGA = 〈G ,!〉 is given by its weaved graph grammar, i.e. the graph
grammar resulting from the combination of all aspects in! over G . We start by defining how

a single advice modifies one production (advice weaving), then how an aspect is weaved to a

graph grammar (aspect weaving), and finally how one obtains the weaved graph grammar from

a given aspect-oriented graph grammar (AOGG weaving).

Definition 8 (Advice weaving) Given a T -typed graph production q, a T -typed graph advice

a : p! i" e and a production monomorphismm : p" q (called a

production match), an advice weaving from q to q′ using a (based on

m) exists if and only if the diagram on the right can be constructed,

where both squares are pushouts in T -MSpan. In this case the ad-

vice weaving is denoted by q
a,m
⇒ q′.

p

(1)

!!

m
!!

i""l"" ## r ##

!!

!!
(2)

e
!!

!!

q d"""" ## ## q′

An advice applied to a production rewrites it to another one, if there is an occurrence of its

pointcut in the production. Then, the production is updated by a double pushout construction

applied componentwise in their left- and right-hand sides and in its interface. Intuitively, the

elements that are in the poitcut production (for each graph componentL, K and R) but not in the

effect production are consumed and those that are in the effect but not in the pointcut are created.

Definition 9 (Aspect weaving) Let G = 〈T,P,",G0〉 be a graph grammar, and

A= 〈D,T
t

↪→ T ′
,G0

g
↪→ G′〉 and aspect overG . Then the aspect weaving of A over G , denoted by

WASP(G ,A), is a graph grammar G ′ = 〈T ′
,P′

," ′
,G′〉, where P′ and " ′ are calculated as follows:
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1. all T -typed productions x ∈ range(!) are retyped for T ′ by composing their respective

typing morphisms with the inclusion t. This generates the setQT ′
of T ′-typed productions:

Lx

tLx !!!
!!!

!!!
!!!

!

t ′Lx """"""""""""""""""""""""""""""""""""""" Kx

tKx
##

t ′Kx

$$########################
%%%% && && Rx

tRx

''$$$$$
$$$$$

$

t ′Rx

!!!!!!!!!!!!!

T
! "

t
&& T ′

2. the set Q′ is defined as the smallest set which the following holds: for all y ∈ QT ′
,

(a) if does not exist an advice a ∈ D and a match m such that y
a,m
⇒ y′, then y ∈ Q′

(b) if y
a,m
⇒ y′ for some a and m, then y′ ∈ Q′

3. The set P′ of rule names and the function ! ′ : P′ → Q′ are chosen arbitrarily, respecting

the restriction that ! ′ must be a bijection.

The application of an aspect weaving in a AOGG generates a GG consisting of the type and

initial graph of the aspect and all productions obtained by applying all advices based on all

possible matches over all productions of the AOGG. The productions that are not updated by any

advice are kept in the resulting GG.

Definition 10 (AOGG weaving) LetA = 〈G ,"〉 be an AOGG, such that G = 〈T,P,!,G0〉 and

"= [〈Di,T
ti

↪→ Ti,G0
gi
↪→Gi〉 | 1≤ i≤ n]. The weaved graph grammarG "

W is calculated as follows:

1. the type graph TW of G
"
W is the object of the colimit (inGraph) of the diagrams containing

all type graph inclusions in", as shown in the diagram below in the left-hand side.

T# $

((%%
%
%
%%

%
" %

##

& '

))&
&

&
&

&&
&

T1

in j1
))

T2

in j2
##

... Tn

in jn
((

TW

G
TW
0(

)

''''
''''

" %

##

* +

!!!
!!!!

!

G
TW
1

**

G
TW
2

##

... GTW
n

++

GW

2. in order to relate the initial graphs and productions in all aspects, we need to re-

type the original graph grammar G and all aspects in " by composing all their typing

morphisms with the respective injections over TW . This generates the retyped AOGG

〈〈TW ,PTW ,!TW ,G
TW
0 〉,"TW 〉, where all type graph inclusions tTWi : TW ↪→ TW (in all aspects)

become identities.

3. the initial graph GW of G "
W is the object of the colimit (in TW -Graph) of the diagram

containing all TW -retyped initial graph inclusions in "
TW , as shown in the diagram above

in the right-hand side.
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4. the graph grammar G !
W is obtained as the result ofWAOGG(〈TW ,PTW ,"TW ,GW 〉,!TW ). The

operationWAOGG is defined inductively, combing all aspects in!
TW according to the order

they appear.

WAOGG(G ′
, []) = G ′

WAOGG(G ′
, [A1,A2, . . .An]) =WAOGG(WASP(G ′

,A1), [A2, . . . ,An])

Finally, the AOGGweaving is done applying all aspects in order of occurrence: the first aspect

is applied over the original grammar and the subsequent ones are applied over the grammar

resulting of the previous aspect weaving.

The AOGG weaving model has the following characteristics: i) positive pointcut match: the

pointcut matching is given by a single production monomorphism; ii) non-reentrant weaving:

our weaving model combines one advice and one rule at most once for every possible match; iii)

deterministic aspect combination: by using a sequence instead of a set, we enforce a canonical

ordering for the aspects in a AOGG. Although these properties allow us to easily express the

aspects for our example, they also may not be the most expressive choices. In aspect-oriented

languages, usually there is a rather complex expression language for defining pointcuts, which

also includes negative expressions such as “all methods whose return type isnot void”. Without

negative matches, we can not differ created elements from preserved elements in the pointcut,

since we can not test their absence from the interface of the production. It would also be of

interest to define how pointcuts should be composed in our graph-based setting. Concerning the

non-reentrant weaving, this brings both advantages and drawbacks. The positive effect is that

non-deleting advices (the ones where the left-hand side is isomorphic to the interface) pose no

problem to the weaving, since they will never start a non-terminating rewriting. On the other

hand, it may not suffice to describe more complex aspects.

6 Concluding Remarks

One of the first connections between graph rewriting systems and aspect-oriented programming

was made in [AL99], where graph rewriting mechanism was proposed has a tool for describing

aspects over graph based models. Some proposals, such as theMATA framework [WJ07], follow

this principle, characterizing aspect weaving as a special kind of model transformation. Most of

these works do not extend the theory of graph rewriting for aspects, employing it as a language

for specifying diagram transformations. As far as we know, there is no other formal approach

for defining aspects and aspect weaving over graph grammars.

In this work, we addressed the problem of the lack of modularity for crosscutting concerns

in graph-grammars, and claimed that aspects for graph grammars are an interesting approach

for the modularisation of such requirements. We provided a formal definition for aspects over

graph grammars, leading to the definition of aspect-oriented graph grammars (AOGG). We also

defined the aspect weaving process that combines all the aspects over the base grammar in an

AOGG, resulting in a (weaved) graph grammar. We showed by means of an example how the

use of AOGGs may reduce the size of GG-based specifications that must deal with crosscutting

concerns.
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Our approach differs from others that relate aspects and graph rewriting systems mainly be-

cause it propose the definition of aspects over graph grammars, and not graph grammars as

rewriting models for aspects. On the technical side, there is still room for improvements on

the proposed theory, such as extending the pointcut matching model and defining composition

operations for pointcuts and advices. It would be interesting to confirm that this theory holds

for other kinds of graph rewriting models, such as attributed graph grammars. Other topics of

investigation include the study of aspect interference over the execution of the base grammar and

the possible conflicts between aspects.
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Abstract: Model-to-model transformations between visual languages are often de-
fined by typed, attributed graph transformation systems. Here, the source and target
languages of the model transformation are given by type graphs (or meta models),
and the relation between source and target model elements is captured by graph
transformation rules. On the other hand, refactoring is a technique to improve the
structure of a model in order to make it easier to comprehend, more maintainable
and amenable to change. Refactoring can be defined by graph transformation rules,
too. In the context of model transformation, problems arise when models of the
source language of a model transformation become subject to refactoring. It may
well be the case that after the refactoring, the model transformation rules are no
longer applicable because the refactoring induced structural changes in the models.
In this paper, we consider a graph-transformation-based evolution of model trans-
formations which adapts the model transformation rules to the refactored models.
In the main result, we show that under suitable assumptions, the evolution leads to
an adapted model transformation which is compatible with refactoring of the source
and target models. In a small case study, we apply our techniques to a well-known
model transformation from statecharts to Petri nets.

Keywords: model transformation, graph transformation, model refactoring

1 Introduction

Model-driven software development (MDD) is a discipline that relies on models and that aims
to develop, maintain and evolve software by performing model transformations [BBG05]. The
basic idea of model transformations is to more or less automatically derive models of a certain
target language from models of a source language, e.g. by mapping the source language com-
ponents of a domain specific language to Petri nets, where model properties can be analyzed
formally.

An intrinsic property of software (and their models) in a real-world environment is their need
to evolve. As the model is enhanced, modified and adapted to new requirements, it becomes
more and more complex and drifts away from its original design. Refactoring [Fow99, MT04],
originally used in the industry for source code re-structuring, aims at reducing the software
complexity by “changing a software system in such a way that it does not alter the external
behavior of the code, yet improves its internal structure” [Fow99]. Recently, approaches for
refactoring have been lifted to the more abstract level of design models (model refactoring),
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supporting in particular the refactoring of UML diagrams like class diagrams, statecharts and
activity diagrams [BSF02, SPLJ01].

In this paper we tackle the problem which arises when model refactoring operations are ap-
plied to a model (or a modelling language) which is transformed by a model transformation.
Problems arise if the refactoring operations induce structural model changes which cannot be
handled by the model transformation. In order to solve this problem, we propose a strategy for
a systematic evolution of model transformation specifications in accordance to the refactoring
operations.

Model transformations between visual languages are conveniently defined in a formal way by
typed, attributed graph transformation [EEPT06, MVVK05, Kön05, EE05]. To execute model
transformation rules and to check functional properties of model transformations (termination
and confluence), the graph transformation engine AGG [AGG] is available.

On the other hand, various approaches exist using graph transformation to provide a formal
specification of model refactorings [MTM05, MTR07, GGZ+05]. Basically, a refactoring oper-
ation is defined by a set of graph transformation rules typed over the modelling language of the
models to be refactored.

In our approach, we consider a construction allowing us to apply the refactoring operation not
only to models of the source or target language of a model transformation, but also to the model
transformation rules. The approach is based on the work of Parisi-Presicce who defined the
transformation of graph grammars in [Par95]. In our main result, we show that under suitable
assumptions, such an evolution of the model transformation rules leads to an adapted model
transformation which is compatible with refactoring of the source and target models. In a small
case study, we apply our techniques to a well-known model transformation from statecharts to
Petri nets, when the statechart becomes subject to a refactoring.

The paper is structured as follows: After introducing our case study for refactoring and model
transformation in Section 2, we consider the notion of consistency of a model transformation
step and a refactoring step in Section 3, where the steps are defined as single rule applications
of the respective graph rules to a model state. In Section 4, we extend this basis to sequences of
rule applications and state our main result for the consistent evolution of model transformations.
Section 5 compares our approach to related work, and in Section 6 we conclude the paper with
an outlook to future work. Our technical report [EEE09] contains full proofs for the technical re-
sults, discusses possible extensions of our formal framework, and presents additional refactoring
operations applied to our sample model transformation.

2 Example: Transforming and Refactoring Statecharts

2.1 Model Transformation State2PN from Statecharts to Petri Nets

In this section, we review the model transformation from a simple version of statecharts into
Petri nets, given in [EEPT06].

Example 1 (Type Graph of the SC2PN Model Transformation) The statechart type graph T GS is
shown in the left part of Fig. 1 and explicitly introduces several ideas from the area of statecharts
that are only implicitly present in the standard UML metamodel (such as state configurations).
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We consider a network of state machines StateMachine. A single state machine captures the
behavior of any object of a specific class by flattening the state hierarchy into state configurations
and grouping parallel transitions into steps. A Configuration is composed of a set of States
that can be active at the same time. A Step is composed of non-conflicting Transitions (which
are, in turn, binary relations between states) that can be fired in parallel. A step between two
configurations is triggered by a common Event for all its transitions. The effect of a step is a set
of Actions.

Figure 1: Integration of Attributed Type Graphs for the Model Transformation SC2PN

The target modelling language are Petri nets. The Petri net type graph T GT is shown in the
right part of Fig. 1. In fact, we use elementary net systems [Rei85], where each place contains
at most one token. In order to interrelate the source and target modeling languages, we use
reference types to construct an integrated attributed type graph, as shown in Fig. 1. For instance,
the reference node type RefState relates the source type State to the target type Place.

The model transformation from statecharts into Petri nets is fully given by the transformation
rules defined in [EEPT06]. In this paper, we concentrate on the rules constructing the integrated
model which contains elements of both source and target language, and do not consider explicitly
the restriction of the integrated model to the target language of Petri nets.

The main model transformation rules are shown in Fig. 2. Note that we use a shortcut notation
for our rules where the left- and right-hand sides of each rule are depicted in one graph. Nodes
which exist only in the right-hand side (i.e. they are generated by the rule) are coloured, and their
adjacent arcs are also generated by the rule. Moreover, all model transformation rules are non-
deleting, and each rule has a negative application condition (NAC) which equals the right-hand
rule side and prevents the rule to be applied more than once at the same match as before.

Example 2 (SC2PN Model Transformation Rules) Each state in the statechart is transformed
to a corresponding place in the target Petri net model, where a token in such a place denotes that
the corresponding state is active initially (rules InitState2Place and State2Place). A separate place
is generated for each valid event in rule Event2Place. Each step in the statechart is transformed
into a Petri net transition (rule Step2Trans). Since the Petri net should simulate how to exit and
enter the corresponding states in the statechart, input and output arcs of the transition have to
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Figure 2: Model Transformation Rules for SC2PN

be generated accordingly (see rules StepFrom2PreArc and StepTo2PostArc). Furthermore, firing a
transition should consume the token of the trigger event (rule Trigger2PreArc), and should generate
tokens on (the places related to) the target event indicated as the action (Action2PostArc).

2.2 Refactoring Operation for Statecharts

Not all possible model refactorings make it necessary to adapt the model transformation rules.
One well-known refactoring is the so-called Pull-Up-Attribute which removes an attribute type
from all subtypes of a supertype and adds the attribute type to the common supertype, instead.
This kind of refactoring (changing only the inheritance relation of a meta model) does not induce
changes on the instance models which remain valid as they are. Hence, model transformation
rules remain applicable after the refactoring, too. On the other hand, there are refactorings which
induce structural changes of the instance models. This kind of critical refactorings make an
adaption of the model transformation rules necessary and are considered here.

We present a refactoring operation for statecharts, where the representation of initial states is
changed from an attribute to a new node type. The motivation for this refactoring is to simplify
the definition of a concrete syntax for statecharts, where node types are mapped to figures. We
use this example later on to illustrate the evolution of a model transformation from statecharts
to Petri nets when such a model refactoring on statecharts has taken place. Further refactor-
ing operations which induce model transformation adaptation are considered in our technical
report [EEE09] and concern e.g. the renaming of node or attribute types.

Example 3 (Refactoring Operation for Statecharts) Let the type graph for statecharts be the one
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depicted in the left part of Fig. 1. For the definition of our refactoring operation, this type graph
is extended by two new node types Initial and Normal, which are linked to the State node type. The
refactoring operation markState is modelled by the two graph rules in Fig. 3, where an Initial node
is added to a state whose isInit attribute is true (rule markInitial), and, vice versa, a Normal node
is added to a state whose isInit attribute is false (rule markNormal). Note that the isInit attribute is
deleted by the refactoring rules.

Figure 3: Rules for Statechart Refactoring Operation markState

3 Consistency of Stepwise Model Transformation and Refactoring

In this section, we give the formal definition how to adapt a model transformation to a refactoring
operation (Def. 1) and consider the relation of a model transformation step and a refactoring step
in Lemma 1.

A model transformation rule p1 ∈ P is adapted to a refactoring (given by refactoring rule
q∈Q), by applying refactoring rule q to all rule graphs of model transformation rule p1, resulting
in the adapted model transformation rule p2. Note that the construction of applying rules to rules
is based on [Par95] and extended to rules with NACs in [EE08].

Definition 1 (Application of Q -Productions to P -Productions) Production q = (Lq← Iq→ Rq)
is applicable to p1 : L1→ R1 with nac1 : L1→ N1 leading to p2 : L2→ R2 with nac2 : L2→ R2 if
we have m : Lq→ L1 leading to the following DPOs, written p1

q,m
!!! p2 , where all morphisms

are injective:

Lq

m
""

(1)

Iq## $$

""
(2)

Rq

""
L1 D## $$ L2

L1

p1

""
(3)

D## $$

""
(4)

L2

p2

""
R1 E## $$ R2

L1

nac1

""
(5)

D## $$

""
(6)

L2

nac2

""
N1 F## $$ N2

Example 4 (Applying a Refactoring Rule to a Model Transformation Rule) Fig. 4 shows the
application of refactoring rule markInitial from Fig. 3 to model transformation rule InitState2Place
from Fig. 2, according to Def. 1.

General Assumption: Let a visual modeling language V L be given by all models (graphs)
typed over a type graph. As basis for model transformation and refactoring, we assume a com-
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Figure 4: Applying Refactoring Rule markInitial to Model Transformation Rule InitState2Place

mon type graph T G which includes the type graphs for the source and the target languages of
the model transformation, as well as the extended type graph for the refactoring. Let (MT,P) :
V L1 →V L2 be a model transformation (with P non-deleting with NACs), (MR1,Q) : V L1 →V L∗1
be a model refactoring (with Q bijective on nodes, without NACs), and (MR,Q) : P → P∗ be
a model refactoring of rules according to Def. 1, and let T G be the common type graph for
V L1,V L2,V L∗1,P and Q. All over, we assume injective rules and injective matches. For simplic-
ity, we do not handle the corresponding refactorings of the different type graphs in this paper.

The following lemma shows the compatibility of a model transformation step transforming
source model G1 ∈ V L1 into target model G2 ∈ V L2 by applying rule p1 ∈ P, and a refactoring
step, changing G1 ∈V L1 to G′

1 ∈V L∗1 by applying rule q∈Q, where the refactored source model
G′

1 is transformed by the refactored model transformation rule p2 ∈ P∗, resulting in model G′
2.

Lemma 1 (Direct Transformation and Refactoring Steps)

Given G1
p1,m1=⇒ G2 with p1 ∈P and p1

q,m
!!! p2 with q∈Q,

we have G1
q=⇒ G′

1,G2
q=⇒ G′

2 and G′
1

p2=⇒ G′
2.

G1
p1,m1 ""

q
##

q,m
"
$$

G2

q
##

G′
1 p2

"" G′
2

Proof. Given p1 : L1 → R1 with nac1 : L1 → N1, we obtain p2 : L2 → R2 with nac2 : L2 → N2
with pushouts (1)− (6) as in Def. 1.

Furthermore, we obtain from G1
p1,m1=⇒ G2 the pushout in the left square in the diagram below,

with pushouts (1)− (4), as shown in Def. 1. Next, we construct D1 as pushout complement in
the left back square – using that Iq → Lq and hence D→ L1 is bijective on nodes, which implies
that the gluing condition is satisfied – and then G′

1 as pushout in the right back square. Then,
D2 and G′

2 are constructed as pushouts in the middle and right square, respectively, leading to
induced morphisms D2 → G2 and D2 → G′

2 such that all squares commute.
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In the left cube, the left, right, back and top squares are
pushouts by construction. This implies that also the front
and bottom squares are pushouts by pushout composition
and decomposition. Hence, all squares of the left cube and,
similarly, also of the right cube are pushouts. This leads to
the DPOs of the direct transformations G1

q=⇒G′
1, G2

q=⇒
G′

2 and G′
1

p2,m2=⇒ G′
2.

Lq
m !! (1)

Iq

!!

""##

(2)
Rq

!!
L1p1

$$!!
!

m1!!

(3)
D##

!!

$$!!
!!

""

(4)
L2

!!

p2
$$!!

!

R1

!!

E##

!!

"" R2

!!

G1
$$!!

!
D1##

$$!!
!

"" G′
1

$$!!

G2 D2## "" G′
2

It remains to show that m2 : L2 → G′
1 satisfies nac2 :

L2 → N2, defined by pushouts (5) and (6) in Def. 1, us-
ing that m1 : L1 → G1 satisfies nac1 : L1 → N1. Assume
that m2 $|= nac2, then we have injective q2 : N2 → G′

1 with
m2 = q2 ◦nac2. Pushout-pullback decomposition allows us
to construct pushouts (7) and (8) from the outer DPO, lead-
ing to an injective q1 with q1 ◦nac1 = m1. This contradicts
m1 |= nac1. Hence, we have m2 |= nac2.

L1

nac1
!!

m1

%%

(5)

D## ""

!!
(6)

L2

nac2
!!

m2

&&

N1

q1

!!
(7)

F## ""

!!
(8)

N2

q2

!!
G1 D1## "" G2

Example 5 (Model Transformation Step and Refactoring Step) Fig. 5 shows the diagram relat-
ing the source and target model of the model transformation step and the changed source and
target models of the refactoring step where p1 and p2 are given in Fig. 4.

Figure 5: Relating Refactoring and Model Transformation Step
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4 Sequences of Rule Applications

In this section, we extend our result from Lemma 1 on the compatibility of model transformation
and refactoring steps to sequences with rule sets Q, P and P∗ according to the general assumption
in Section 3. Our main result in Thm. 1 states that under certain compatibility assumptions
which can be decided at rule level, a complete model transformation sequence can be refactored,
leading to a compatibility diagram similar to the one in Lemma 1, but where now sequences
of rule applications are considered instead of single steps. For the proof of Thm. 1, we require
compatibility of model transformation and refactoring rules, defined in Def. 2. Furthermore,
we use a lemma stating that a terminating transformation at rule level leads to a terminating
transformation at model level, as well (Lemma 2). We say that graph G (resp. rule p∗) is terminal
wrt. Q if no rule q ∈ Q can be applied to G (resp. p∗).

Definition 2 (Q– (P, P∗–) Compatibility) Q is (P,P∗)-compatible if we have:

1. Independence Compatibility:
Given terminal p∗ wrt. Q, G1

p∗=⇒ G2 and G1
q=⇒ G′

1 (resp. G2
q=⇒ G′

2) with p∗ ∈ P∗

and q ∈ Q, we have parallel (resp. sequential) independence including NACs of G2
p∗⇐=

G1
q=⇒ G′

1 (resp. G1
p∗=⇒ G2

q=⇒ G′
2 for terminal G1 wrt. Q).

2. Termination Compatibility:
For each G terminal wrt. P and G Q!=⇒ G∗, also G∗ is terminal wrt. P∗, where Q! means to
apply rules in Q as long as possible.

Example 6 (Compatibility of the SC2PN Model Transformation and the markState Refactoring)
We continue our case study introduced in Examples 1 - 5. Fig. 6 shows the refactored model
transformation rules InitState2Place and State2Place. Note that all other model transformation
rules from Fig. 2 remain unchanged because the refactoring rules cannot be applied to them.

Figure 6: Refactored Model Transformation Rules for SC2PN

We now show that we have independence and termination compatibility as defined in Def. 2:

1. Independence compatibility: Given terminal p∗ wrt. Q and q ∈Q with G′
1

q⇐= G1
p∗=⇒G2,

we have parallel independence because the matches can only overlap in State which is
a gluing point for both rules. Moreover, we have NAC compatibility because the nodes
and edges generated by the rules in Q are of different types from those generated by p∗.
Analogously, we can show sequential independence.

2. Termination compatibility: Given terminal G wrt. P and G Q!=⇒ G∗, then the markState
refactoring rules have been applied to all initial state nodes occuring in a rule in P, and to
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all initial state nodes in G. So there is no match from a rule p∗ ∈ P∗ to G∗ where the NAC
of p∗ would not prevent its application, and hence, G∗ is terminal wrt. P∗.

The following lemma states that a terminating transformation at rule level leads to a terminat-
ing transformation at model level.

Lemma 2 (Direct Transformation and Terminating Refactoring) Given G1
p1,m1=⇒ G2 with p1 ∈

P and p1
Q! !!! p∗1 terminating, we construct G∗1

p∗1=⇒ G∗2 and terminating G1
Q!=⇒ G1∗ and

G2
Q!=⇒G∗2, provided that we have termination of (MR1,Q) and independence compatibility (see

Def. 2.1).

Proof. Let p1
Q! !!! p∗1 terminate via (q1, ..,qn) and G1

p1=⇒ G2, then we apply Lemma 1 in
each step, leading to diagrams (1) – (n).

G1
q1 ""

p1

##
(1)

G11
q2 ""

p11

##
(2)

G12

p12

##

qn ""

p1n−1

##

(n)

G1n
qn+1 ""

p1n p∗1
##

(n+1)

G1n+1

p∗1
##

qn+m ""

p∗1

##

(n+m)

G∗1
p∗1

##
G2 q1

"" G21 q2
"" G22 qn

"" G2n qn+1
"" G2n+1 qn+m

"" G∗2

If G1n is not yet terminal wrt. Q, we can extend G1
∗=⇒G1n by G1n

Q!=⇒G∗1 via (qn+1, ..,qn+m)

with terminal G∗1 wrt. Q, using termination of (MR1,Q). Parallel independence of G1n

p∗1=⇒
G2n

qn+1=⇒G1n+1 according to independence compatibility allows us to construct diagram (n+1) by
the Local Church-Rosser Theorem with NACs, and, similarly, diagrams (n+2), ..,(n+m). But
now also G2

∗=⇒G∗2 via (q1, ..,qn+m) is terminating because G∗2
q=⇒G∗∗2 would imply G∗1

q=⇒G∗∗1
by sequential independence of G∗1

p∗1=⇒G∗2
q=⇒G∗∗2 according to independence compatibility.

Now we state our main result saying that under certain compatibility assumptions which can
be decided at rule level, a complete model transformation sequence can be refactored, leading
to a compatibility diagram similar to the one in Lemma 1, but where now sequences of rule
applications are considered instead of single steps.

Theorem 1 (Evolution of Model Transformations by Model Refactoring) Given a model trans-
formation (MT,P) : V L1→V L2 (with P nondeleting with NACs), a model refactoring (MR1,Q) :
V L1 →V L∗1 (with Q bijective on nodes, without NACs), and a model refactoring (MR,Q) : P→
P∗ according to Def. 1 with common type graph T G for V L1,V L2,V L∗1,P and Q, such that

1. (MT,P),(MR1,Q) and (MR,Q) are terminating,

2. Q is locally confluent,

3. Q is (P,P∗)-compatible (see Def. 2),

GT-VMT’09
131



Evolution of Model Transformations by Model Refactoring

then we have V L∗2 typed over T G with extended

4. terminating model refactoring
(MR2,Q) : V L2 →V L∗2, and

5. terminating model transformation
(MT ∗,P∗) : V L∗1 →V L∗2 with

6. commutativity of the diagram to the right.

V L1
(MT,P)

!!

(MR1,Q)
""

V L2

(MR2,Q)
""

V L∗1 (MT ∗,P∗)
!! V L∗2

Proof. Given G1 ∈V L1, G1
Q!=⇒G∗1, G1

P!=⇒G2 via (p1, .., pn), and pi
Q! !## p∗i for (i = 1, ..,n),

where termination is given by assumption 1. Now, we use Lemma 2 above to construct the
following sequence (1)− (n):

G1
p1 $$

Q!
%%

(1)

G11
p2 $$

Q!
&&

Q!
''

(2)

G12 $$

Q!
&&

Q!
''

pn$$

(n)

G1n = G2

Q!
%%

G∗1 p∗1
$$ G∗11 = G+

11 p∗2
$$ G∗12 = G+

12
$$

p∗n
$$ G∗1n = G∗2

Note that G11
Q!=⇒ G∗11 and G11

Q!=⇒ G+
11 are in general defined by different Q-sequences in-

duced by p1
Q! !## p∗1 and p2

Q! !## p∗2 , respectively. But termination and local confluence of Q
by assumptions 1 and 2 implies unique normal forms and hence, G∗11 = G+

11 (up to isomorphism),
and similarly G∗12 = G+

12, ..,G
∗
1n−1

= G+
1n−1

. Finally, G∗1 =⇒ G∗2 via (p∗1, .., p∗n) is terminating by
termination compatibility according to assumption 3. Hence, we have diagram (A) for each
G1 ∈V L1, with G2 ∈V L2,G∗1 ∈V L∗1 and G∗2 ∈V L∗2, where V L∗2 = {G∗2|∃G2 ∈V L2 : G2

Q!=⇒G∗2},
which implies terminating (MR2,Q) : V L2 → V L∗2 and (MT ∗,P∗) : V L∗1 → V L∗2 with commuta-
tivity of diagram (B):

G1
P! $$

Q!
%%

(A)

G2

Q!
%%

G∗1 P∗!
$$ G∗2

V L1

(MR1,Q)
""

(MT,P)
!!

(B)

V L2

(MR2,Q)
""

V L∗1 (MT ∗,P∗)
!! V L∗2

Remark 1 If (MT,P) and (MT ∗,P∗) are not functional, then commutativity of diagram (B)
means that for each G1

P!=⇒ G2 exists a corresponding G∗1
P∗!=⇒ G∗2 such that diagram (A) com-

mutes.

Example 7 (Refactoring of the SC2PN Model Transformation) In order to apply Theorem 1,
we have to show the required properties:

1. The original model transformation (MT,P) = SC2PN is terminating by [EEPT06]. The
refactoring operation markState is terminating, because rules markInitial and markNormal
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delete one attribute each, and therefore each rule is only applicable once at a match to
a State node. The refactoring of the model transformation rules (MR,Q) is terminating,
because at most one rule q ∈ Q with Q = {markInitial,markNormal} is applicable once.

2. The refactoring rules in Q are locally confluent: rules markInitial and markNormal are parallel
independent because their left-hand sides overlap in gluing point State only. Moreover,
there is at most one match of markInitial resp. markNormal at the same State.

3. Q is (P,P∗)-compatible as shown in Example 6.

According to the application of Theorem 1, we obtain the terminating model refactoring
(MR2,Q), and the terminating model transformation (MT ∗,P∗) for each possible statechart
which is transformed to a Petri net using (MT,P), i.e. the rules in P, and which is refactored
using the refactoring (MR1,Q), i.e. the rules in Q. As result we have the commutative diagram
below, where V L1 is the visual language of statecharts,
V L∗1 is the statechart language, extended by the new node
types Initial and Normal for the markState refactoring, V L2
is the integrated language of statecharts and Petri nets (de-
fined by the type graph in Fig. 1), and V L∗2 is the integrated
language of extended statecharts and Petri nets.

V L1
(MT,P)

!!

(MR1,Q)
""

V L2

(MR2,Q)
""

V L∗1 (MT ∗,P∗)
!! V L∗2

5 Related Work

Refactoring of information systems is a common technique for software evolution through trans-
formation [LKPS06, MT04]. Automated transformation within domain specific languages in-
cluding version support has been considered in [Bel07, GSA07].

Refactoring by graph transformation rules plays an important role for software system refac-
toring by providing a graphical way for rule definition and an underlying algebraic framework
for analyzing refactoring dependencies [MTR07] and to assure behavior preservation in model
refactoring using transformations with borrowed contexts [RLK+08]. Moreover suitable verifi-
cation techniques are available, e.g. architectural refactoring by rule extraction [BHE08].

From a technical point of view, in this paper we apply model refactoring rules Q deleting
(on edges) to non-deleting transformation rules P, which is in some sense dual to the S2A-
construction of animation rules PA from simulation rules PS in [EE08], where non-deleting rules
Q are applied to deleting rules PS. Both kinds of rule transformations are based on the construc-
tion in [Par95] but have been extended by NACs and by the possibility to transform generated or
deleted rule objects, as well.

Within the Eclipse Modeling Framework [EMF08] model refactoring has already been imple-
mented using graph transformation concepts [BEK+06]. While software refactoring is a com-
mon technique, a general theory for refactoring of model transformations has still been missing.

6 Conclusion

In this paper, we consider a graph-transformation-based evolution of model transformations
which adapts model transformation rules to refactored models. In the main result, we show
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that under suitable assumptions, the evolution leads to an adapted model transformation which is
compatible with refactoring of the source and target models. In a small case study, we apply our
techniques to refactor a model transformation from statecharts to Petri nets. Further refactoring
examples and an extension of the presented theory to model refactoring rules with NACs are
given in our technical report [EEE09] which is available online.

As future research, we intend to consider refactoring operations at type graph level based on
our approach on transformations of type graphs with inheritance [EEH09]. Moreover, up to now,
we have studied model transformations resulting in an integrated model which contains both
source and target language elements. A restriction to the target model presently means that we
get the same target model as before refactoring the source model and the model transformation
rules. Additionally, we plan to handle target language refactorings analogously to refactorings
of the source language.
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Abstract: Workflow management deals with different types of dependencies among
tasks, in particular data- and policy-driven. The ability to reason on dependencies of
different types allows workflow designers to consider different alternatives, or to de-
fine customized flows, reducing non-determinism. We propose a resource-centered
view, in which both data-dependency between tasks and plan-dependent ordering
of tasks are expressed as production and consumption of resources. This view is
translated into a rule-based formalism, expressed in terms of multi-set rewriting for
workflow enactment. In turn, rules are themselves seen as resources, so that they are
prone to the same rewriting process, in order to redefine process schemas. We show
how workflows expressed as activity diagrams can be translated to the proposed for-
malism, exploiting enforced generative patterns applied to triple graph grammars,
and how redefinition of workflow processes can occur through typical patterns of
adaptation. We also discuss possible concrete syntaxes for the obtained rules.

Keywords: Workflow, Activity Diagrams, Resources, Multiset rewriting

1 Introduction

Workflow specifications increasingly have visual representations, either in some domain specific
language [Swe94], or exploiting general purpose languages for process specification, typically
Petri nets [EKR95, AM00a, AM00b, AH01, AB02]. In general, these diagrammatic notations
have to provide a precise syntax and semantics in order to allow the specification of correct
workflows and their translation to some enactment mechanisms.

The increasing popularity of UML, and the introduction of the action semantics, have made
activity diagrams a suitable notation for the precise specification of workflows [Dt01]. With
respect to Petri nets, activity diagrams offer the advantage of making the existence of distinct
control and data flows explicit, and of making parallelism more apparent, through the use of fork
and join nodes, thus gaining in expressivity. Activity diagrams also offer a more widely known
and general language for specification, without the need to acquire additional competence in
some language, and favoring interoperability and integration of independent specifications. On
the other hand, some aspects of the semantics of activity diagrams are not completely defined
and some syntactic variants are still allowed. For example, one can enforce pairing and correct
nesting of fork-join or choice-merge nodes, or allow several forked sequences to have indepen-
dent terminations or to be joined on single nodes. In this paper, we adopt a version of activity
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diagrams suitable for workflows, by assuming the existence of a single initial activity and a single
final activity, as in WF-nets. We propose a translation mechanism associating multiset rewriting
rules with activity nodes, according to an execution model where activities are defined by the
(multi)sets of resources they produce or consume. Separate translation processes can be defined
for control and data flows. This offers greater opportunities for independent reasoning on data
dependencies and synchronisation policies. For example, it could be possible to explore the par-
allelism allowed by causal data dependencies and to assess the compatibility of a control policy
with the induced partial order. Moreover, data and control rules can be formally composed, or
be kept separated. The translation is proposed towards an abstract syntax for multiset rewriting,
to which different concrete syntaxes, visual or textual, can be associated.

Under the additional assumption that all parallel activities are defined by paired and correctly
nested fork and join nodes, and that each fork (join) node has only two outgoing (incoming)
edges, a mechanism for dynamic reconfigurations of workflows can be defined, where workflow
changes are immediately reflected by changes in the set of rules. The class of activity diagrams
which can be manipulated in this way corresponds to well-structure workflows [KtB00].

The translation mechanism exploits triple graph grammars to establish the correspondence
between activity nodes and rules, while the reconfiguration process is based on the adoption of a
view of rules as resources on their own, subject to specific transformation processes.

The rest of the paper proceeds as follows. We explore related work on the use of activity
diagrams as workflow specifications and on adaptation processes in Section 2, and provide some
formal background on the types of rewriting involved in the paper in Section 3. Section 4 dis-
cusses the triple metamodel relating activity diagrams and multiset rewriting rules, and illustrates
the translation process, while Section 5 presents the basic mechanisms for coherent modification
of diagrams and rules. Finally, Section 6 illustrates two possible concrete syntaxes for the mul-
tiset rewriting model, and Section 7 draws conclusions and points to related work.

2 Related work

The use of activity diagrams as a way to specify workflows has been illustrated in [Dt01], show-
ing how some interesting workflow patterns can be captured by them, but also pointing to the
limitations of the then current definition of activities as a submodel of state machines.

A formal operational semantics for activity diagrams, still in the UML 1.4 version, is given in
terms of Abstract State Machines in [KLN+05], extending diagrams with timing information. In
this paper we do not consider the timing information and focus on a unifying concept of resource
to express pre- and post-conditions of activities.

In a series of papers, van der Aalst et al. propose several patterns for control [AHKB03]
and data [RHEA05] flows and for usage of resources [RvtE05] in workflows, specifying such
patterns thorugh Coloured Petri Nets. They do not deal with composition of patterns related to
different aspects, while we propose to treat it exploiting pushouts as described in [BMWY08].

A distinct advantage in the use of activity diagrams with respect to Petri nets for the expression
of workflows is pointed at in [EW03], with respect to the possibility of opening the workflow to
external signals. Our approach can indeed be augmented with the definition of specific commu-
nication resources, related to the presence of signals.
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The approach presented here only considers an abstract view of transitions, so that it can be
mapped to specific rule-based languages, with suitable translators. A quite straightforward trans-
lation can be devised to the WIPPOG language [BDD+04]. WIPPOG provides an operational
semantics and an executable language, based on production and consumption of resources. It has
been used to map different diagrammatic languages, based on some notion of transformation, to a
common language, thus allowing the interoperability of diagrammatic transformations expressed
with different notations. WIPPOG rules express rewriting of multisets of resources, distinguish-
ing between resources which are internally produced or consumed, and resources which can be
exchanged among different agents. Moreover, it is also possible to denote that some (contextual)
resources are required for a transformation to take place, but are not consumed, or that some
resources must not be present, thus expressing negative application conditions.

Multisets have been proposed as a way to express semantics of Petri Nets, viewing the marking
of a net as a multiset of elements corresponding to the places in it [MM90]. Hence, the abstract
definition of transformations proposed here could be mapped to a Petri Net specification.

3 Formal background

The approach followed here exploits three different rewriting models. On the one hand, we
consider attributed typed graph rewriting as a way to provide an abstract syntax and semantics
for activity diagrams. Second, we use multiset rewriting as the basis for the definition of an
enactment mechanism, modeling the production and consumption of data and synchronisation
resources. Finally, we exploit triple graph transformations [Sch94] as a formal device to relate
the two metamodels for activity diagrams and multiset rewriting, exploiting the recently pro-
posed notion of enforced generative pattern [BGL08] to automate the generation of operational
triple rules. In particular, we adopt a version of triple graphs where only nodes can be put in
correspondence, i.e. a triple graph TrG = (Gs,Gc,Gt ,cs,ct) has three graphs Gi, i ∈ {s,c, t}, and
two functions c j : VGc →VG j , j = s, t.

A multiset M over an alphabet Γ is defined by a characteristic function mM : Γ→N such that
only a finite number of elements from Γ is assigned a non-zero function value. Membership in M
is defined as a ∈M ⇔ mM(a) > 0. In the following, we omit the distinction between a multiset
and its characteristic function, when no ambiguity arises. An alternative way to represent a
multiset is as

⋃
a∈Γ{a}× {[m(a)]}, where [n] is the initial segment of the naturals of length n

and [0] = /0. Γ can thus be regarded as a (flat) type system, while the natural numbers identify
type instances. We are thus actually reduced to a particular type of set. We define a category
MSet with multisets as objects, while its morphisms are the monomorphisms between multisets
preserving the element types. In particular, let m and m′ be two multisets on Γ and µ : m→ m′

a morphism between them. Then we have µ((a,k)) = (a, j) for all a ∈ Γ, for some k ∈ [m(a)]
and j ∈ [m′(a)]. The case when m and m′ are defined on different alphabets can be managed by
taking their union. The pushout is then constructed in an analogous way to the construction of
the coproduct in Set. Although MSet is not weak adhesive (as Set is not), we can write rules in
DPO form, and adopt the MPOC approach to rewriting [BB08], where the pushout complement
K m′→ D l′→ G of K l→ L m→ G is taken as the minimal object (and associated pair of morphisms)
such that the resulting diagram is a pushout, while the pushout of D m′← K r→ R is constructed as
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before. By minimal, we intend that for any other D′ which defines a pushout complement for
K l→ L m→G, there is a unique monomorphism D→D′ making the resulting diagram to commute.

Actually, we use multisets of terms formed by attributed symbols on some finite alphabet Γ
with attributes taking values on simple domains. Given a collection of activities available to
the workflow, the set of admissible values for synchronisation is indeed finite, while for data
resources we consider that the values characterizing their descriptions are either finite or they are
string names, on which only equality or inequality can be checked.

4 Relating activity diagrams and multiset rewriting

The translation process from activity diagrams to rule-based rewriting exploits Triple Graph
Grammars and is based on the metamodel triple of Figure 1. The source metamodel is derived
from the metamodel of UML Activity Diagrams [OMG07], where we have introduced a new
type, called SynchNode, to provide a missing common abstraction for ControlNode and
ExecutableNode, keeping them distinct from ObjectNode1. Note that by inheriting from
NamedElement, an ActivityNode has a name to identify it.

Figure 1: The metamodel triple relating activity diagrams and multiset rewriting.

The target metamodel provides a definition of multiset rewriting rules based on the notion of
Resource as some distinguishable entity which can be produced or consumed in a transfor-
mation. Each resource is defined by a desc attribute, coding a suitable description of it. In
particular, in this context we are interested in SynchRes, used to model the flow of control, and
DataRes, used to model object flow. A Rule is composed of three collections of resources:
those which are consumed or produced by the rule execution and those which are simply read,
i.e. they must be present, but they are not consumed. Typically, data rules do not consume their

1 This can also be achieved without modifying the metamodel, by inserting type checks in the triple rules.

GT-VMT’09
140



ECEASST

input ObjectNodes, unless they explicitly transform data. Each rule is modelled as a resource
in turn, via the RuleRes type, so that rules are subject to transformation processes.

Finally, the correspondence metamodel identifies the relations between activity nodes and re-
sources, between control flow edges and synchronisation resources, and between synchronisation
nodes and rules. In particular, an ExecutableNode, besides being related to a SynchRule
through the correspondence with NodeRule inherited from SynchNode, will also be related to
a DataRule. Such correspondence element is mapped, in the metamodel for resource rewriting,
to a rule which is only concerned with the transformation of objects, but not with modification of
control flow. The advancement of the control flow as the effect of the completion of the activity
will be modelled, if need be, by a distinct Rule related to the SynchRule for that node. Not
indicated in Figure 1 is the restriction of ObjectNode to correspond to DataRes only.

In order to define the transformation rules, we exploit triple patterns [BGL08], as a mechanism
to generate triple graph operational rules, coupling syntactic and semantic roles, starting from
the definition of syntactic rules. Figure 2 presents the basic patterns relating nodes to rules
managing synchronisation or object transformation, while Figure 3 relates activity edges and
synchronization resources. This latter pattern states that for each control flow edge in the activity
diagram there is a synchronisation resource which is produced by the rule associated with the
activity node which is the source of the edge, and which is consumed by the target activity node.
In the following, we will use the name of the target rule as an attribute of the synchronisation
resource and derive the name of the rule from the name of the corresponding activity node.
Analogous patterns can be defined for object flow edges, so that an object at the end of the edge
will be produced and consumed, or simply read, by the rules corresponding to the nodes related
to the object.

Figure 2: The triple patterns relating activity nodes and rules.

Figure 4 illustrates the result of the application of the triple pattern of Figure 3 to an editing rule
adding a control flow between two existing SynchNodes (this is actually an abstract rule to be
instantiated for the different specializations of SynchNode), in order to produce an operational
triple graph rule which maintains the consistency between the activity diagram and the rule set.
A match from the editing rule to the triple pattern causes the construction of the L′ (and the
omitted identical K′) component of the rule, by creating the corresponding nodes, and then the
completion of the R′ component, according to the process described in [BGL08]. In order to
keep the figures illustrating the rules compact, we adopt the following convention. The L \K
component of the rule, i.e. those nodes and edges which have to be present for the match to
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Figure 3: The triple patterns relating activity edges and synchronization resources.

succeed, but which are deleted by rule application, is identified by drawing light grey regions
around them and tagging them with the {del} label. In an analogous way, the R\K component
of the rule, denoting the elements which are created by rule application, are surrounded by dark
grey regions tagged with {new}. As it is easy to see, the L = K part for the correspondence graph
contains only the RuleRes nodes, while the R part adds the SyncRes node and its associated
edges. The correspondence mappings are also generated according to the pattern.

In a similar way, the triple patterns of Figure 2 are used to create operational rules generating
the resource rewriting rules whenever a SynchNode is added to the diagram.

We can therefore assume that when the rule of Figure 4 is applied to a triple graph containing
two instances of SynchNode in its source graph, the correspondence and target graphs already
contain the corresponding RuleRes and Rule nodes, so that these rules are enriched with the
correct definition of production and consumption for SynchRes nodes. An analogous effect
updates the data rule associated with an ExecutionNode to reflect production or consumption
of data resources according to the direction of object flow edges,

Figure 4: Construction of a triple rule from an editing rule adding a control flow.

Whenever the rule of Figure 4 is applied to generate a control flow edge from a fork node,
the rule associated with the fork will accordingly be updated to produce a new ControlRes to
enable the rule corresponding to the target of the edge. Symmetrically, the addition of a control
flow leading to a join node will add a new resource to the L component of the rule for the join
node, which will therefore require that a sufficient number of such resources are produced by its
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predecessors.
Figure 5 shows the rule for inserting a fork-join pair between two existing nodes and the cor-

responding updates on the rules according to the triple pattern construction. The pair is identified
by an attribute pair, which is an addition to the activity diagram metamodel and is computed
to produce a unique new value with each pair creation. To show the effect on the set of rules,
we have used a specific representation of a RuleRes, listing the multisets of enabling resources
produced and consumed by each rule. The actual names in the rule description depend on the
values of the description attribute. The rule descriptions in the rule resources and the actual rules
are maintained consistent by the patterns.

Figure 5: Insertion of a fork-join pair and consequent modification of rules.

A similar construction holds for choice and merge nodes, where the rule for the merge node
will usually be connected also to a data resource which is simply queried (i.e. read without being
consumed). The abstract representation of resource rewriting rules can actually be translated to
several concrete rule-based languages, as discussed in Section 6.

The relation between synchronization and data transformation rules can be established fol-
lowing the construction presented in [BMWY08], to relate control and data flows on spatial
structures, and based on the composition of pushouts as shown in Figure 6. Note that, while
in [BMWY08] the construction was performed on typed attributed graph rules, we use here
triple graph rules, so that each L, K, or R component in Figure 6 is actually a triple graph.

L

!!

""Kl## r $$

!!

%%R

!!

""L1

!!

K1
l1## r1 $$

!!

R1

!!
L2 ""K2

l2## r2 $$ %%R2 ""L′ K′l## r $$ R′

Figure 6: The construction for rule composition.

In particular, the intersection will result from the identification of the ExecutableNodes
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involved both in the control and the data flow specification. As all other nodes and edges types
are different for control and data flows, the pushout will simply result by the union of all other
components of the rules and of their associations with the identified nodes.

5 Patterns of transformation

The transformation of control policies in workflows can redefine sequentialization or paralleliza-
tion of activities for which there is no specific order required by causal (data) dependency. Hence,
these modifications should not affect the definition of the data transformation part of the activi-
ties, but only the enabling mechanism.

From this point of view, it could be useful to redefine the synchronization enactment rules
in an incremental way, as the transformation of the activity diagram takes place. In particular,
one could thus maintain a continuous connection between the specification of the workflow and
its enactment mechanism. We do not address here the problem of dynamic change – occurring
when modifications are performed on workflow regions which are processing workflow instances
– which can be dealt with with standard methods [EKR95].

In particular, we consider the two basic adaptation patterns for control flows, i.e. sequential-
ization of parallel activities and parallelization of sequential activities, under the assumption that
forks and joins are paired and correctly nested. To this end, we supplement the metamodel for
activity diagrams with a pair of marker node types, called MoveMark and StayMark. The first
is used to follow a chain of activity nodes descending from the fork node for which we want to
sequentialize activities. The second marks the beginning of the second chain. Figure 7 shows
the rules in the transformation unit for sequentializing activities included in a fork-join pair.

In particular, rule I starts the transformation by marking the nodes immediately below the fork
node: one node is assumed to start the chain of activities, while the other will start a sequence of
activities to be performed after the first one. This rule removes the fork node and the control flows
associated with it and creates a ControlFlow to the node marked with a MovingMark from
the node which preceded the fork node. The marking nodes have an attribute which identifies the
fork node from which we have started. Rule II simply moves the marking down the chain. This
rule is equipped with a negative application condition (not shown here for simplicity), which
prevents the propagation of the marking if node 1 is the join node paired with the originating
fork node. Rule II is therefore performed as long as possible until this join node is reached, at
which moment Rule III is executed. This rule eliminates the join node and its associated control
flows, relates the terminal node for the chain which will have to end the sequence with the node
which descended from the join node, attaches the terminal node of the first sequence with the
initial node (marked with StayMark) of the second sequence, and removes the markings.

Only the modifications depending from rules I and III need be performed at the level of the en-
actment rules, while rule II does not have effect on the control structure. All in all, this results in
the removal of 6 control flows and the insertion of 3 new ones. By applying the synchronization
pattern of Figure 3 to these rules, one can specify the operational triple rules required to keep
the enactment rules consistent with the modified diagram. Note that the resulting transformation
unit can be equipped with parameters, to indicate the fork-join region to be sequentialized, or
modified so as to start new sequentialization processes if nested fork-join regions are present. In
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Figure 7: The three rules for sequentialization of activities.

this case the quest resumes for a fork from the node which is now starting the sequence.
The opposite process of parallelization can be specified through the rule of Figure 8. In this

case a pattern of 4 nodes in sequence has to be found (this is guaranteed by the presence of
the initial and final node and the requirement that at least two activities must be performed for
them to be parallelized). The rule removes all the existing control flows and inserts a fork-join
pair within which the two intermediate activities can now be performed concurrently. Again, the
process can be iterated, and a negative application condition can be used to check that no causal
dependency exists between the two activities. Similar to the case before, the operational triple
rules can be derived from the patterns to ensure the incremental update of the enactment rules.

6 From abstract to concrete syntax

The translation process introduced in Section 4 leaves us with a graph defining an abstract syntax,
which could be presented to the user or translated towards an executable syntax in several forms.

Figure 9(b) shows a possible visual representation of the rule derived from the fragment of
activity diagram in Figure 9(a) and associated with the Action node named makePayment by
combining the data and control parts. The representation of the rule is based on the containment
relation, so that a rule is a container with three compartments showing the context, equivalent to
the K component of a DPO rule, the left and right sides of the rule, with the usual interpretation,
a condition compartment and an assignment compartment, where values of the attributes in the
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Figure 8: The rule for parallelization of activities.

right-hand side can be evaluated. One can note that this representation is equivalent to a graph
rewriting rule for typed attributed discrete graphs, in which no edges exist between entity nodes.

Figure 9: A fragment of an activity diagram (a) and a visual rule derived from it (b).

This visual representation is equivalent to the WIPPOG rule given by:

CONTEXT: invoice(id=”inv1”)
PRODUCES: synchronize(desc=”acceptPayment”)

Note that this rule is specialized to fire only when the specific invoice with name inv1 has
been generated, hence the execution of a workflow coded through WIPPOG rules of this type
can exploit indexing of rules according to the required resources.

7 Conclusions

Activity diagrams are increasingly used to express workflows, exploiting users’ familiarity with
the use of UML for process specification. While some formal semantics have been provided for
activity diagrams, the generation of concrete enactment mechanisms ensuring the coherence of
the execution with the specification is still an area of research.
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In this paper, we have presented an approach to this problem, based on a simplified model of
activity diagrams, suitable for the expression of non-iterative workflows, where activity nodes
correspond to rules in a resource production-consumption setting.

The approach allows the separate specification of control and data flows, which results in
different types of rules, which can then be integrated exploiting pushouts. The correspondence
between nodes and rules, or between flows and enabling resources, is modelled through triple
graph grammars, thus allowing an incremental construction and maintenance of the rules, as the
diagram is edited or transformed. Although we have used patterns to generate operational rules
with source in the activity graph and target in the resource rewriting metamodel, the approach
could be used in a bidirectional way, so that modifications in the abstract representation of rules
could be reflected to the activity diagrams. Also, the possibility of seeing rules as resources
allows the execution of transformations via reflection.

While we have focused only on control and data flow, several dimensions of activity diagrams
could also be explored under the resource perspective. For example, distribution could be mod-
elled through the use of distribution resources associated with partition nodes, so that rules are
constrained to occur only at some locations or be executed by some organizational roles. Loops
could be modelled associating data resources, either already defined or suitably created, with
loop variables. Alternatively, transformation units, here exploited only to perform adaptation
tasks, could be extended to model some complex activities.
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Abstract: In previous work it has already been shown that syntax-directed and free-
hand editing can be gainfully integrated into a single diagram editor. That way, the
user can arrange diagram components on the screen without any restrictions in free-
hand editing mode, whereas syntax-directed editing operations provide powerful
assistance. So far, editing operations had to be specified or programmed by the
editor developer. In contrast, this paper proposes an approach where diagram-
specific editing operations are generated on the fly during the editing process and
without any additional specification effort. These operations provably preserve the
correctness of the diagram. The proposed approach requires a specification of the
visual language by a hypergraph grammar.

Keywords: syntax-directed editing operations, diagram editors, correctness preser-
vation, hypergraph grammars

1 Introduction

Generally, two kinds of diagram editors are distinguished: A structure editor offers the user
operations that transform correct diagrams into (other) correct diagrams. Users like this kind
of guidance, because that makes editing much easier. But they also like to draw their diagrams
freely just following the flow of their uninhibited associations. A free-hand editor allows them to
arrange diagram components on the screen without any restrictions. Using syntax analysis, the
free-hand editor decides whether the drawing conforms to the visual language and what structure
the user intended to define.

A method for the combination of free-hand and syntax-directed editing has already been pro-
posed and realized previously [Min02]. Thereby, free-hand editing is supported by a hyper-
graph parser [Min97], whereas syntax-directed editing is realized using hypergraph transforma-
tion [KM00]. That way, a wide range of operations can be implemented. For instance, operations
for diagram execution (like firing of a transition in a petri net or processing the input of a finite
state machine) can be defined. But one can also define more local operations, i.e. syntax-directed
editing operations in the narrower sense, which require the user to select certain diagram compo-
nents in advance (like adding a token to the selected place or connecting two selected states with
an arrow). These are the operations considered in the following. Concerning such operations,
the approach of [Min02] still has some weak points:
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• Specifying syntax-directed editing operations is a tedious task: For each operation an
additional hypergraph transformation rule has to be defined.

• Specifying correct syntax-directed editing operations is difficult: The editor developer has
to ensure that his operations do not destroy correct diagrams of the user, i.e. all operations
have to comply with the grammar.

• Specifying all possible syntax-directed editing operations is infeasible: In fact, there might
even be infinitely many possible editing operations – at least if the number of diagram
components that can be inserted at one go is not restricted. The editor developer might not
know which of them the users actually need.

The approach presented in this paper offers solutions for these three weak points. Users still
can draw their diagrams with maximal freedom. At the same time, they have access to powerful
syntactical assistance whenever required. The provided assistance provably cannot do harm, i.e.
the correctness of the user’s diagram is preserved. These benefits come for free, i.e., the editor
developer does not need to define the syntax-directed editing operations anymore.

Concretely, the editor user has to select the diagram components in whose context additional
components are to be inserted. On request, meaningful editing operations are computed as
follows: First, the selection-induced part of the diagram’s hypergraph representation is separated.
The resulting hypergraph is analyzed by an error-correcting hypergraph parser, which tries to
complete it again by adding hyperedges and gluing nodes. Only those completions are presented
to the user as editing operations that meet some language-independent relevance criteria.

Outline: The following sections 2 and 3 briefly introduce the running example and previous
work. Sect. 4 then presents the main result of this paper, i.e., how syntax-directed editing
operations can be generated on demand during the editing process. The proposed solution is
discussed in Sect. 5. Related work is reviewed in Sect. 6, and Sect. 7 concludes the paper.

2 Running Example

Throughout this paper, the simple visual language of Nassi-Shneiderman Diagrams (NSDs) is
used as a running example. However, the approach also has been applied successfully to several
other visual languages. Its overall applicability is discussed in Sect. 5.

Fig. 1 shows an example NSD and a corresponding Abstract Syntax (Hyper-)Graph (ASG).
Hyperedges are represented by boxes with the particular label inside. Nodes are represented
as black dots. Lines indicate that a hyperedge visits a node. The correspondence between the
diagram and the hypergraph is obvious: Components are mapped to hyperedges. Each corner of
a component is represented by an attachment node of the corresponding hyperedge. Hyperedges
visit the same node if the respective corners of their components touch each other.

The hypergraph language of NSDs can be recursively defined using a hyperedge replacement
grammar (HRG) [DHK97] as shown in Fig. 2. A BNF-like notation is used here. Nonterminal
symbols are highlighted. The first two rules (i.e., the upper row) basically state that an NSD is a
non-empty chain of successive statements. A statement in turn either is a primitive statement, a
condition, a while or an until loop. The body of a loop and the branches after a condition have
to be NSDs again.
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Figure 2: Hyperedge replacement grammar of NSDs

Syntax-directed editing operations are very handy in order to manipulate NSDs. For instance,
the user might want to insert a statement write x right before the statement n:=n+1 in the
NSD shown in Fig. 1. This task cannot be done conveniently in free-hand mode, because a lot
of editing is required to make room for the new statement. In this situation, a syntax-directed
editing operation would be preferable: The user could just select the statement n:=n+1 and call
an operation “insert statement before”.

3 Basic Formalism and Previous Work

Formally, a hypergraph H = (VH ,EH ,attH , labH) over a set C of labels consists of a set VH of
nodes, a set EH of hyperedges, a mapping attH : EH →V ∗H that assigns a sequence of attachment
nodes to the hyperedges of H, and a labeling function labH : EH →C for the hyperedges of H.
The HRG formalism as used in the following is extensively described in [DHK97].
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Figure 3: Application of hypergraph patches

Furthermore, this work relies on [MMM08a], where an algorithm for hypergraph completion
with respect to HRGs has been proposed. Given a hypergraph H and an HRG G, this algorithm
embeds additional hyperedges into H in a way, such that the resulting hypergraph H ′ is a member
of the language defined by G. Besides hyperedges it might also introduce some fresh nodes
(incident to these hyperedges). This is shown in Fig. 3 (top). The fresh nodes are highlighted by
an extra circle. Since there might be an infinite number of possible completions, their size (i.e.,
the number of additional hyperedges) has to be restricted though.

This algorithm has been extended recently, so that it (optionally) can also glue existing nodes
where required. This is also shown in Fig. 3 (bottom). As expectable, the two isolated statements
of the given hypergraph H can be combined in two different ways (orders). The extended
parsing algorithm returns so-called hypergraph patches as a result. Formally, a patch PH =
(∼,V,E,att, lab) for a hypergraph H consists of an equivalence relation ∼⊆ VH ×VH on the
nodes of H, a set V of additional nodes, and a set E of additional hyperedges with correspon-
ding attachment and labeling functions. Applying a patch then basically means to construct the
quotient hypergraph (a hypergraph whose nodes actually are equivalence classes of the original
nodes of H) and to embed the additional hyperedges. Note that all patches computed by the
parser can be used to transform the given hypergraph into a correct one.

Since hypergraphs have appeared to be well-suited as a model for diagrams [Min02], hyper-
graph patches can be naturally used in diagram editors. In this manner the DIAGEN toolkit has
been extended to support diagram correction and completion [MMM08b].

The conventional DIAGEN editing process (as marked in Fig. 4) consists of several steps
[Min02]: The modeler first creates a so-called Spatial Relationship (Hyper-)Graph (SRG) cor-
responding to the diagram. Thereafter, the reducer simplifies the SRG (similar to lexical analysis
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Figure 4: Extended DIAGEN editing process

in the string setting). This results in an abstract representation of the diagram, the ASG. The
parser analyzes the ASG and constructs the derivation structure (if any). Finally, the layouter
computes a layout for the diagram (using derivation information if required).

In [MMM08b] this process has been extended as follows (see also Fig. 4): If a user explicitly
asks for assistance, the parser is triggered with the desired size of completions as a parameter.
It computes all possible hypergraph patches up to this size [MMM08a]. From those, the user
has to choose. Next, the selected patch is applied and embedded into the SRG using a language-
specific update translator component. The editor then calls the reducer and parser again, so
that the layouter can arrange the new components within the actual diagram and adapt existing
components if necessary.

4 Generating Syntax-Directed Editing Operations

Since an editing operation might be applicable to several parts of a diagram, the user normally has
to select the context in which additional components are to be inserted. For instance, the already
mentioned operation “insert statement before” requires the selection of the statement where a
new statement should be inserted before. If operations are predefined by the editor developer it
is easy to specify as a precondition what has to be selected by the user. This approach cannot
be used if operations are to be generated at runtime. However, for a generic approach the user’s
selection can be interpreted as follows: A selection should induce editing operations that separate
the user-selected diagram part, add new diagram components, and finally paste the extended
diagram part back into the remaining diagram such that it is correct again.

Fig. 5 shows some example operations following this idea. On the left-hand side four example
NSDs are given. The components selected by the user are surrounded by a thick border. To
the right of the arrows, the figure shows extended diagrams resulting from the application of
certain editing operations to the input diagram. All new diagram components are highlighted.
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Figure 5: Example editing operations

The numbers above the arrows indicate the size of the operations, i.e. the number of components
to be added. Note that all shown operations preserve the correctness of the respective input NSD.
All of them can be generated following the approach presented next.

In Fig. 5a, the statement s1 is selected and one new component should be inserted. In this
case four different operations of size one are possible: s1 could either be enclosed by a while or
until loop or, alternatively, a primitive statement could be inserted below or above. In Fig. 5b, a
while component is selected. Four operations of size one are possible: Another while component
could be inserted outside or within the selected one. Alternatively a primitive statement could be
inserted within or above the selected while.

The selection in Fig. 5c is equal to Fig. 5a. However, this time operations of size two are
requested. Two useful operations are shown. Actually, both cannot be simulated by just repetitive
application of operations of size one, because intermediate results are required to be correct. This
means, each operation has to yield a correct diagram. Note that many more reasonable operations
of size two exist. However, in contrast to the insertion of a cond, these could also be constructed
successively. The last row, Fig. 5d, demonstrates that sometimes it is even necessary to allow the
selection of several diagram components at once. Otherwise, it would not be possible to insert
a while or an until component around a correct sub-NSD (here just two successive statements).
Again there are some more solutions, but those can already be realized by selecting just one of
the existing components and, hence, have been omitted.

In order to generate such syntax-directed editing operations the visual language’s hypergraph
grammar can be exploited. The basic idea is to reuse the patch-computing parsing algorithm
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described in Sect. 3. The intuition of a user selection on the diagram level has already been
described. On the level of a diagram’s ASG, the separation of the selection means breaking up
the ASG into two disjoint hypergraphs H1 and H2 where H2 corresponds to the user-selected
diagram part. Breaking up the ASG generally means splitting up some of its nodes (cf. Fig. 6).
Adding new diagram components and re-merging the diagram parts just means to find and apply
a hypergraph patch using the disjoint union of H1 and H2 as input. However, not every hyper-
graph patch constitutes a meaningful editing operation. Language-independent relevance criteria
can be used to discard hypergraph patches that are inappropriate as editing operations.

Next, the generation of editing operations is described more formally and the relevance criteria
are defined. Let H be the ASG of the diagram and Es ⊆ EH the set of selected hyperedges of H.
Let Hs and Hs̄ be the sub-hypergraphs of H induced by the sets Es resp. EH \Es of hyperedges.
Finally, let H ′ be the disjoint union of Hs and Hs̄. H ′ differs from H since nodes in H being
visited by selected as well as non-selected hyperedges are “split” in H ′. An epimorphism h maps
H ′ to H, cf. Fig. 6. Let Vsplit be the split nodes of H ′, i.e., those nodes that are merged by h (in
Fig. 6 there are 8 split nodes).

H ′ is incorrect in general, so that the application of the patch-generating parser normally
yields a wide range of solutions. Not all of them form meaningful editing operations though.
This issue is illustrated in Fig. 7 using the diagram of Fig. 5a as an example. The trivial patch
of size 0, which just glues the separated statement back to its original position, is omitted in
Fig. 7. Fig. 7 rather shows all patches of size 1 and their resulting hypergraphs. However,
only 4 of these 10 patches constitute meaningful editing operations; the other 6 are crossed
out. They are not meaningful since either the selected statement has been glued back to its
original position and a new component has been added at a remote position, or the selected
statement has been moved to a remote position and its original position has been “filled” by a
new component. Such a behavior is not meaningful for NSD or any other diagram language. This
observation motivates the definition of relevant hypergraph patches that describe meaningful
editing operations independent of the specific diagram language:

A patch PH ′ = (∼,VP,EP,attP, labP) is relevant if and only if

1. ∀e ∈ EP : sequenceToSet(attP(e))⊆Vsplit∪VP, i.e., additional hyperedges do not visit any
nodes that are not related to the selection, and

2. ∀n1,n2 ∈VH ′ : n1 ∼ n2 ⇒ h(n1) = h(n2), i.e., only the split nodes can be glued, but only to
the respective nodes they have been separated from.
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Figure 8: Intelligent component removal

Fig. 7 shows which criterion excludes a particular patch. This is indicated by numbers in the
upper right corners of the resulting hypergraphs.

Intelligent Remove and Replace

Syntax-directed editing operations generated by the previous process do not delete any diagram
component. However, generating intelligent remove operations (and replacement similarly) is
also straightforward. Conventional removal of one or more components does not modify the
remaining diagram which may become invalid after the removal. In contrast, intelligent remove
adjusts the remaining diagram so that it becomes valid again. It is performed in two steps:
First, a conventional remove of the selected components is performed. Subsequently, corrections
are computed. Again, not each correction of the remaining diagram is meaningful. A relevant
hypergraph patch here is neither allowed to add new hyperedges, nor is it allowed to glue remote
nodes, i.e., nodes that have not been visited by the hyperdeges deleted previously.

Fig. 8 shows four examples of intelligent removal. In Fig. 8a the middle stmt in a chain of
three successive stmts is selected. Intelligent removal deletes this stmt and glues the other stmts
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together preserving their order. In Fig. 8b, a stmt s1 is followed by a while component that
encloses another stmt, s2. Intelligently removing the while component glues the stmts s1 and
s2 together (again preserving their order). Fig. 8c shows an example where intelligent removal
cannot help. In this situation, intelligent removal corresponds to a conventional remove. Indeed,
a diagram cannot be kept correct when just a cond component is to be removed. However, if one
of the branches is selected, too, intelligent removal works as expected, cf. Fig. 8d.

All in all, intelligent removal is a useful function for such visual languages where the removal
of components is likely to yield incorrect diagrams. Otherwise, it just converges to the conven-
tional remove function, i.e. it simply removes the selected components.

5 Discussion

Following the presented approach, the user can quickly access local editing operations. In most
cases, selecting just a single component is sufficient already. In fact, the selection of several
components usually makes sense only if they “share nodes”. This behavior most likely conforms
to the user’s intuition. Nevertheless, there are still some challenges that are addressed next.

Performance: It is important to stress that the presented approach does not generate generic
operations at “compile time”. The generated operations are rather specific to the current diagram
and completely generated on the fly. As a consequence, each time the user asks for operations
the whole diagram needs to be analyzed again. This additional effort is not necessary if the
operations are predefined. However, a basic requirement for free-hand editors is an efficient
parser, since the diagram has to be reanalyzed after every single modification. The current
implementation of the patch-generating parser is a prototype with reasonable speed. For instance,
the computation of operations of size one for an NSD of size 20 takes less than a second on
standard hardware. Further performance improvements are subject of current work.

Information Overload: When increasing the possible size of operations their number might
explode. The problem is that the user can hardly distinguish between the really new solutions
and the solutions that he could also get by successively applying smaller operations. It might be
useful to apply a special filter to avoid this issue. But this has not been realized yet.

Understandability: In certain (rare) situations knowledge of the abstract syntax seems to be
necessary to understand why a particular operation currently is not possible. For instance, if a
cond is selected, a stmt can only be inserted above, but not in the branches below. However, we
have not found a meaningful operation yet that cannot be generated at all. The user just needs to
select the “right” components (in the example, the first statement in the respective branch).

Applicability: Since the patch-computing hypergraph parser relies on context-free HRGs, the
applicability of this approach naturally is restricted. However, the approach can also be applied
to hypergraph grammars that contain so-called embedding rules [Min02]. Indeed, all practically
relevant visual languages can be described that way. Operations then are only computed for the
context-free part of the particular diagram. So, if a language exhibits a significant context-free
core, the presented approach can still be used. For instance, it has been applied to sequence
diagrams where only the arrows need to be embedded. The generated syntax-directed editing
operations have appeared to be helpful even for this non-context-free diagram language. In
addition, the approach has been applied to other examples like flowcharts, logic gates, and trees.
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Figure 9: Screenshot of the user interface

The proposed approach has been integrated into the DIAGEN toolkit. Fig. 9 shows a screenshot
of a DIAGEN editor for NSDs. The user has selected a primitive statement and called the
assistance function (the “Content Assist” dialog). Here, he can set up the size of operations
he is interested in using the buttons at the bottom. There are already 21 operations of size two
as can be seen in the lower right corner. Selecting one of them updates the preview pane on the
left-hand side. Both the application of the operation and refocusing of the diagram are animated,
so that the user can easily see what is going on. Committing finally applies the selected operation
to the actual diagram. Intelligent remove of selected components can be invoked via a shortcut.

6 Related Work

In TIGER [EEHT05] editing operations are specified by means of graph transformation rules.
These operations directly define the language, so that the editor developer does not have to ensure
that they comply with a grammar. Unfortunately, TIGER does not support free-hand editing. The
predecessor of TIGER, GENGED [BST01], had supported some kind of free-hand editing. It
even had generated some initial editing operations from the type graph at compile time. Those,
however, only allowed the insertion of nodes and edges in graph-like languages. Recently, the
TIGER developers have extended the popular Eclipse GMF framework with support for complex
editing commands [TCSE08] – at the price of additional specification effort though.
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CIDER [JMM04] supports both free-hand and syntax-directed editing. Its transformation
mechanism is fully integrated with an incremental parser. Thus, transformations can be defined
in terms of high-level diagram components. Here, the basic idea behind a transformation is to
change the parse forest of a diagram from one valid state to a different valid state. This is similar
to the conventional DIAGEN approach to syntax-directed editing, where information from the
derivation can also be accessed. In CIDER all transformations have to be specified manually.

The grammar-based system VLDESK [CDPR05] provides support for so-called symbol prom-
pting. Here, the parsing table is exploited to extract information about possible contexts of a
particular symbol. That way, local suggestions can be computed without additional specification
effort (similar to our approach). This kind of assistance is efficient and permissive, but does not
ensure the correctness of the resulting diagram from an overall perspective.

For widely used and highly relevant languages specific tool support is still implemented by
hand. For instance, Gschwind et al. have proposed a set of powerful operations on business
process models [GKW08]. Their approach has been realized as a plugin for the well-known
WebSphere Business Modeler. As long as generic assistance mechanisms are not powerful
enough this is a reasonable approach to improve the usability of modeling tools. Our approach,
where applicable, can help to reduce the burden of implementing language-specific syntactical
assistance. Business process models are context-free to a large extent, so that our approach is
applicable.

7 Conclusion

The approach proposed in this paper can be used to generate powerful, correctness-preserving
editing operations for free-hand editors and, at the same time, is easy to apply and understand by
users: They just have to select one (or more) components and ask for assistance.

The editor user can trust the generated operations, because they provably cannot do harm. He
can use an animated preview to inspect all possible operations of a particular size. Thereby,
he is likely to get new insights into the visual language at hand. Although the improvement of
user support has been our primary goal, the burden for the editor developer is also significantly
reduced. He does not need to specify editing operations in compliance with the grammar any-
more. Rather he can focus on special-purpose operations and diagram execution. Since our
approach is just complementary, the previous flexibility of DIAGEN operations is fully preserved.

In the future we will try to relax the precondition “correctness of the input diagram” that has
been assumed throughout this paper. Indeed operations would be also very useful for correct
sub-diagrams. Furthermore, we want to improve the support for the non-context-free parts of
languages.

Screencasts of the NSD example editor can be found at http://www.unibw.de/inf2/DiaGen/
assistance/. The editor can be downloaded from there, too.
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Abstract: A free-hand diagram editor allows the user to place diagram components
on the pane without any restrictions. This increase in flexibility often comes at the
cost of editing performance, though. In particular it is tedious to manually establish
the spatial relations between diagram components that are required by the visual
language. Therefore, in this paper an approach is proposed that permits to deduce
the intended concise diagram from a rough arrangement of diagram components.
Such an arrangement actually looks like an exploded view and can be drawn much
more rapidly. The proposed feature, diagram contraction, considers and mostly
preserves the layout of the existing diagram components. An important special case
are (certain) graph-like visual languages, where diagram contraction corresponds
to linking the node components appropriately. Such auto-linking is considered
useful. It even has been integrated in first commercial modeling tools – by manual
programming, though. This effort can be avoided to a large extent.

The proposed approach can be applied to visual languages that are specified by
means of hypergraph grammars. For syntax analysis an error-tolerant hypergraph
parser is used, which computes a cost function by attribute evaluation. That way,
unfavorable derivation (sub-)trees can be excluded at an early stage, and combina-
torial explosion is mostly prevented.

Keywords: exploded diagram, diagram contraction, auto-link, least cost parsing

1 Introduction

Exploded views frequently occur in descriptive manuals. Normally, they are used to show the
components of a system and their placement relative to each other. Therefore, the components
of the system’s model are slightly separated by distance as if there had been a small, controlled
explosion emanating from the middle of the model. This technique is all the more effective
for the visualization of complex 3D systems. Given a model, existing tool support allows the
convenient creation of exploded views, e.g. [LACS08].

In the context of diagram editors, the other way round appears to be quite as interesting.
Given an exploded diagram, i.e., the exploded view of some (yet unknown) diagram, from
which concise diagram is it most likely an exploded view? This diagram can be deduced most
effectively, if there is an underlying visual language and a notion of syntactical correctness. In
the following, the language of Nassi-Shneiderman Diagrams (NSD) serves as a running example.
Fig. 1 shows an exploded NSD and the corresponding concise diagram of the language.
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y n

while x>1

Contraction

Figure 1: Exploded NSD and contraction

The process of finding the (concise) diagram corresponding to an exploded diagram is called
diagram contraction in the following. Diagram contraction is quite a useful operation in the
context of free-hand diagram editors. Such a free-hand editor allows the user to place the diagram
components on the pane without any restrictions. However, in order to create a correct diagram
the components have to be spatially related in a language-specific way. In case of NSDs the
respective corners of components have to touch each other. It is quite tedious though, to place
the components such that their corners indeed touch (at least without snap to grid). Therefore,
a lot of precision work is required (even if slight correction of geometric errors is provided as
in CIDER [CM03] or DIAGEN [Min02]). That way, the accessibility of the editor is restricted,
and both the editing performance and freedom suffer. With diagram contraction available the
editor user rather just roughly arranges the diagram components, so that it looks as if it had
been exploded (most likely in an imperfect way, though). Then he can invoke contraction and
the editor creates the corresponding concise diagram automatically. Initial experiments with a
prototypical NSD free-hand editor have shown that indeed an exploded NSD can be created more
than 1.5 times faster than a concise one, cf. Sect. 5.1

The method presented in this paper exploits least cost parsing in order to compute diagram
contractions in an efficient way. An error-tolerant hypergraph parser is used that computes costs
for all possible derivations. Therewith, unfavorable (sub-)derivations can be excluded at an early
stage. Combinatorial explosion is effectively prevented. At the same time, a flexible control of
the parsing process is possible via the cost function.

Finally, an important special case of contraction, namely auto-link, will be discussed. Thereby,
missing connectors are automatically derived from the layout of node components of a graph-like
visual language. Where applicable, auto-link can greatly increase the editing performance.

Outline: In Sect. 2 previous work is briefly reviewed. Sect. 3 presents the method for
contraction. The scope of this solution is discussed in Sect. 4. Empirical results of a user study
are presented in Sect. 5. Related work is discussed in Sect. 6, and Sect. 7 concludes the paper.

2 Previous Work

The proposed approach is based on hypergraphs as a model for diagrams [Min02], which have
proven to be well-suited for that purpose. The syntax of the particular visual language then can
1 Note, that by providing syntax-directed editing operations for frequent editing tasks a similar improvement can
be achieved. That way, however, the users are quite restricted while editing.
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be defined by a hyperedge replacement grammar (HRG) [DHK97]. Fig. 2 shows the HRG of
NSDs. Nonterminal symbols are highlighted. The first two rules (i.e., the upper row) basically
state that an NSD is a non-empty chain of successive statements. A statement in turn either is a
primitive statement, a condition, or a while loop. The body of a loop and the branches below a
condition have to be NSDs again, i.e. the language is recursively defined.

n1

NSD

n1 n2

::=

n3 n4

Stmt

n1 n2

n3 n4

Stmt

n1 n2

NSD

n3 n4

Stmt

n1 n2

::=

n3 n4

stmt

n1 n2

n3 n4
NSD

cond

NSD NSD

n2

n3 n4

n1 n2

n4n3

while

Figure 2: Hypergraph Grammar of NSDs

In [MMM08a] an algorithm for hypergraph completion with respect to HRGs has been pro-
posed. Given a hypergraph H and an HRG G, this algorithm embeds additional hyperedges into
H in a way, such that the resulting hypergraph H ′ is a member of the language defined by G. This
algorithm has been extended recently, so that it (optionally) can also glue existing nodes where
required. Technically, it constructs quotient hypergraphs whose nodes actually are equivalence
classes of the original nodes of H. This is shown in Fig. 3. The two isolated statements of
the given hypergraph H can be combined in two different ways. An equivalence relation on the
nodes of H together with a set of additional hyperedges is called a patch of H. The parser, hence,
computes hypergraph patches that, when applied to H, yield correct hypergraphs.

Such hypergraph patches can be naturally used in diagram editors [MMM08b]. In this manner
the DIAGEN toolkit has been extended to support diagram correction and completion. The
conventional DIAGEN editing process (as marked in Fig. 4) consists of several steps [Min02]:
The modeler first creates a so-called Spatial Relationship (Hyper-)Graph (SRG) corresponding
to the diagram. Thereafter, the reducer simplifies the SRG (similar to lexical analysis in the string
setting). This results in the Abstract Syntax (Hyper-)Graph (ASG), an abstract representation of

stmt

stmt

a b

c d

e f

g h

H
a~g b~h

c d

e f

stmt

stmt

stmt

stmt

a b

c~e d~f
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Figure 3: Application of hypergraph patches
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Figure 4: Extended DIAGEN editing process

the diagram. The parser analyzes the ASG and constructs the derivation structure. Finally, the
layouter uses this derivation information in order to compute a layout for the diagram.

In [MMM08b] this process has been extended as follows (cf. Fig. 4): If a user explicitly asks
for assistance, the parser is triggered again. It computes hypergraph patches of some user-defined
size (determining the number of additional components). From those, the user has to choose. The
selected patch is applied and embedded into the SRG using a language-specific update translator.
The editor then calls the reducer and parser again, so that the layouter can arrange the new
components within the actual diagram and adapt existing components if necessary.

In [MMM08c] a method has been suggested that supports – as a special case – a limited
form of diagram contraction. There, possible corrections are computed on the abstract syntax
level. The quality of these corrections is evaluated afterwards using the layout engine. Finally,
that correction is applied that causes minimal changes to existing diagram components. The
main challenge of this approach is the possible (likely) combinatorial explosion. For instance,
n NSD statements, where no two corners touch, can be arranged in n! ways. If other kinds of
components are also involved it can get even worse. The example diagram of Fig. 1 already
can be corrected in 1800 [sic!] different ways. Moreover, the assessment procedure (layout) is
also quite expensive. So, contraction of practical diagrams is infeasible that way. Nevertheless,
the editing performance has already been improved: Diagrams can be created incrementally by
sketching just a few diagram components a time and integrating them into the main diagram by
contraction. Following this process, precise spatial relations need not be established manually
anymore. On the other hand, such a restricted solution certainly is not desirable.

3 Realization of Diagram Contraction

This combinatorial explosion can be avoided if undesirable corrections are excluded as early as
possible in the parsing process. For instance, the user is unlikely to be interested in corrections
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Figure 5: Cost grammar of NSDs

where the vertical order of his NSD statements is not preserved. So, positional information of the
diagram components has to be considered while parsing the abstract representation. That way,
derivations that preserve the order of statements cross out derivations that don’t.

The approach proposed next exploits attribute evaluation, which is normally used to compute
a semantic representation, in order to compute a cost for each possible derivation. This cost is an
estimation of the changes that have to be performed when this correction should be applied. For
this purpose a cost attribute is assigned to each nonterminal hyperedge. Its value gets computed
bottom-up by evaluation rules that are assigned to the grammar’s productions.

An example of such a cost grammar is given in Fig. 5. In case of NSD nonterminal edges
additionally are characterized by attributes x1,y1,x2,y2 that describe the bounding box of
the respective sub-diagram. Whenever a reduction is performed during parsing, the attributes
x1,y1,x2,y2 and cost are set as indicated by the assignments below the used production.
The attributes xm,ym of the while edge describe the inner bend of a while component. Note,
that we address the edges in the assignment part using labels, e.g. a:Stmt.

The goal of a cost model is to punish undesirable contractions with high costs. In Fig. 5
distances between points (that ideally should coincide) are used (d(p1,p2) denotes the Eucli-
dean distance between p1 and p2). However, there is some freedom in choosing a cost function.
In general, it is not possible to define a cost function that precisely reflects the costs finally caused
by the layout engine. Indeed, this would lead to the combinatorial problem of [MMM08c] again.
A reasonable estimation already yields acceptable results in practical time instead.
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Figure 6: Example parser run

Let us recall the details of error-tolerant parsing as described in [MMM08a]. First, as in
the string setting, the HRG has to be transformed to Chomsky normalform. Thereby, chain
productions with a single nonterminal edge on the right-hand side are eliminated. For NSD an
additional terminal production NSD::=stmt is introduced. Then possible derivation trees are
constructed bottom up by reverse application of productions, i.e. reductions. Thereby, nodes
can be glued where required, i.e. an equivalence relation on nodes is computed successively.
Derivations are computed layer by layer where derivations of layer i result in hypergraphs of i
terminal hyperedges. The layers are constructed as follows:

• Layer 1 is created by reverse-application of terminal productions, i.e. productions with a
single terminal hyperedge as right-hand side.

• Layer i (i > 1) is created by selecting every pair of layers j ( j < i) and i− j, and combining
derivations thereof.

3.1 Extension of the Parser

This parser has been extended by attribute evaluation in a straightforward way in order to support
the computation of the cost attribute. Moreover, and this is the major improvement, a clean-up
phase has been incorporated that follows each time after a layer has been computed.
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layer old parser new parser
finally after processing of layer

1 2 3 4 5 6
1 10 10 10 10 10 10 10
2 24 24/19 14 8 8 8
3 112 87/29 10 5 5
4 468 135/12 6 5
5 1512 42/9 4
6 2760 13/1

Table 1: Savings due to cleaning up layers, number of elements in layers

Fig. 6 shows an example run of this extended parser. In the lower left corner an exploded
NSD is given. It consists of just three statements (whose intended order can easily be recognized
by a human observer). Sizes and distances relevant for the computation of the cost function are
marked. In the lower right corner the first derivation layer L1 is shown. The terminal productions
Stmt::=stmt and NSD::=stmt are applied three times each (their derivation nodes are
combined indicated by the label Stmt/NSD). In layer L2 there are six ways of combining a
Stmt and an NSD at a time. Thereby, nodes have to be glued appropriately as indicated by
∼. The numbers on top of the derivation nodes (a derivation node is a node of a derivation
tree) indicate which derivation nodes from layer L1 have been combined. The costs following
from the cost function and the distances in the input diagram are also shown. After layer L2
is computed those derivation nodes are filtered out that consume a subset of edges of another
derivation node and have the same root label, but cause higher costs. That way, 2+1, 3+1 and
3+2 can be directly removed from L2, but not 1+3, because the cheaper derivations consume
other edges. In the top layer L3 then there are only three valid combinations possible. The
best one is 1+(2+3). This derivation is even better than just 1+3. Consequently, for higher
layers, 1+3 and all derivation nodes that have 1+3 as a sub-tree would also be removed after the
computation of layer L3 is completed. In this simple example L3 is the top layer though.

So, in the clean-up phase undesirable derivation nodes are removed across lower (and equal)
layers, i.e., after layer i is processed, layers 1 to i are cleaned up. The savings thanks to this
improvement are significant. Reconsider the exploded NSD shown in Fig. 1. Tab. 1 opposes the
old and the extended parser regarding the filling level of layers. It can clearly be seen that after
processing a higher layer elements from lower layers are removed. The notation x/y is used for
the currently processed layer to also provide the number of elements in this layer before clean-up.
Removing derivation nodes in lower layers in turn further increases the performance for filling
higher layers. In the example this boils down to just a single derivation in layer 6.

3.2 Discussion

The proposed approach significantly reduces the effort for contracting diagrams compared to
[MMM08c]. However, for the contraction of large diagrams the performance is still not sufficient.
The reason is that lots of undesirable derivations are kept quite long, because a better derivation
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Figure 7: Undesirable contraction?

at a higher layer is found too late. There are two effective ways to deal with this issue:

• Introduce a special cost ∞ that directly triggers the removal of the respective derivation
node. For instance, in case of NSD it could be stated that way, that the order of primitive
statements must not be changed or that a condition always has to be above its branches.
As a positive effect of this approach unexpected contractions like the one shown in Fig. 7
are directly excluded. However, it has to be accepted that completeness of contractions is
lost that way, i.e. there might be a correction but contraction does not yield a result.

• Introduce a cost bound per component. This cost bound is multiplied with the number of
components processed by a derivation and has to be adhered in order to actually perform a
reduction. This is very effective. However, it might be a balancing act to set a reasonable
cost bound that improves performance but does not lose valuable solutions.

With either of these approaches (or a combination thereof) practical performance can be
achieved. Note that the presented parser still supports completion, i.e., the insertion of new
edges if required. Thus, a cost can also be assigned to the introduction of each new hyperedge.
In case of NSD, depending on this cost the parser would evaluate whether it is better to insert a
new statement or to relocate an existing one. However, this has not been investigated yet.

4 Scope

The proposed approach actually has a wider scope than just “NSD-like languages”. To understand
this one has to consider how (certain, context-free) graph-like diagrams can be modeled with
hypergraphs. In this context, connecting lines and arrows often can be reduced (in DIAGEN
by the reducer component, cf. Fig. 4) and, thus, are not part of the abstract syntax anymore.
As an example consider the flowchart shown in Fig. 8:1a. Its hypergraph model is shown in
Fig. 8:1b (for further information regarding this example consult [Min02], where flowcharts are
used as a running example to clarify the DIAGEN approach). The reduction of the arrows has
caused certain nodes to be glued. The same diagram without the connecting arrows is given in
Fig. 8:2a. Again, the corresponding ASG is shown in Fig. 8:2b. A low cost correcting patch
for this ASG would glue the nodes such that its application just results in Fig. 8:1b. Following
the extended editing process as shown in Fig. 4, the update translator then would introduce
new arrows between the respective components where nodes have to be glued. So, diagram
contraction here means, connecting particular components by lines or arrows.

Such contraction improves the editing performance even more. Whereas in case of NSD just
the precision work is saved, this time several new diagram components, i.e. the missing arrows,
are inserted automatically. Usually two (quite precise) mouse clicks are necessary for drawing
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a single arrow manually (bend points not even included). It is worthwhile to save those, at least
where possible. Unfortunately, this approach cannot be applied to context-sensitive languages
like class diagrams: First of all, such languages do not exhibit a recursive structure as required.
Furthermore, edges like associations are first-class citizens of the abstract syntax.

stmt

cond

cond

stmt stmt
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Figure 8: Flowchart with and without connectors plus corresponding abstract syntax hypergraphs

Such a feature has already been realized (by manual programming though) for the WebSphere
Business Modeler. There, it is called “auto-link” [WGK+08]2. It is described as “some magic
where you simply place the activities of your business process in some approximate arrangement
and your modeling tool connects them for you”. This transformation enables users to auto-
matically create connections between existing tasks and subprocesses. This means, the user
only places the desired tasks and subprocesses on the canvas following some simple layout
guidelines and the transformation does all the tedious connection drawing. It can be applied to
both unconnected and partially connected models to quickly create complex business processes.

DIAGEN editors for logic gates and flowcharts have already been realized that support this
kind of auto-linking as a special case of contraction. Indeed, this is absolutely the same editor
function. Business process models are context-free to a large extent, so that the proposed
approach to diagram contraction indeed should be applicable.

5 User Study

In this section the results of a first user study are provided. It has been conducted in order to
verify the assumption that it is much faster to draw an exploded diagram than a concise one. Test
users had to proceed as follows:

• learning stage: getting used to the NSD editor

• creation of the concise NSD given in Fig. 9 (left-hand side)

• creation of a corresponding exploded NSD and contraction thereof; the intermediate result
of one user is shown in Fig. 9 (right-hand side)

2 Unfortunately, this is an internal report. The auto-link feature has been demonstrated at the BPM 2008 conference
together with the results of [GKW08].
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Figure 9: NSD to be created and the one actually created by a user

The empirical results shown below indeed support the claim of this paper. The task perfor-
mance is increased by a factor of more than 1.5 (at least in this scenario). All drawn diagrams
had been contracted by the editor as intended. Remarkably, it can be observed that users even get
better in drawing exploded diagrams. For instance, in a second run several users had not created
the diagram from top to botton anymore, but rather by kind of component (i.e., many statements
had been added at once). That way, the time for switching the component kind had been saved.

User time (s) for concise NSD time (s) for exploded NSD improvement factor
1 80 45 1.78
2 55 33 1.67
3 63 33 1.91
4 58 32 1.81

average 64 35.75 1.79

Table 2: Empirical results

6 Related Work

Cost grammars in the context of diagram editors have been successfully used previously to
reason about the quality and interpretation of sketches, cf. [BM08]. There, the resolution of
disambiguities, which frequently occur in hand-drawn diagrams, is effectively supported by
syntax analysis in order to achieve a more reliable recognition. Since the authors achieved
practical performance straight away no clean-up phase as ours had to be introduced.
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Quite some research has been done regarding the creation and manipulation of exploded views.
Most of these approaches keep the original diagram as an internal model though, so that an
explosion can be collapsed again in an efficient way. In [LACS08] a powerful set of semi-
automatic authoring tools and an interactive viewing interface for exploded views have been
presented. The primary challenge there had been the specification how the parts of a system
interact with each other. For this purpose, so-called explosion graphs are used that encode how
parts explode with respect to each other. Furthermore, blocking constraints can be defined that
must not be violated. A part can explode as long as all of its descendants in the explosion graph
have been moved out of the way. Additionally, this graph stores the explosion direction of a part
and its current offset from its initial position. These graphs can be computed automatically to a
large extent using part hierarchies (to be defined by the user). In our approach, information from
the grammar is exploited to gain information how parts might interact. In contrast to [LACS08]
we can deal with whole classes of diagrams.

Finally, it has to be admitted that the practical importance of some kind of diagram contraction,
namely auto-link, has been recognized already in [WGK+08]. However, the corresponding tool
support most likely has been achieved by manual programming effort and, thus, cannot easily be
used beyond business process models.

7 Conclusion

The proposed approach to diagram contraction is promising for several reasons: First of all, it can
be used to improve the editing performance and accessibility of diagram editors. In addition the
attribution of the grammar with a cost function has also appeared to be very handy. By this means
the editor developer has much finer control of the parsing process. Undesirable derivations,
hence, can be excluded at an early stage, and the performance possibly can be improved.

An editor with support for diagram contraction allows even freer editing. The distraction
caused by the tedious precision work can be significantly reduced. First measurements have
been conducted and the results are very promising: The editing performance for drawing a given
NSD is improved by a factor of more than 1.5. The recognition rate is acceptable (there is the
typical trade-off with performance). No additional specification effort is required except for the
cost function. As an important special case of diagram contraction the auto-link feature has been
discussed. With it the diagram components of certain graph-like languages can be connected
automatically.

The proposed approach does not only support the contraction of a fully exploded diagram. It
also respects already correct sub-diagrams. That way, exploded fragments can be integrated into
the main diagram successively. All in all, diagram editing can be a more joyful task.

In the future this approach could be extended to 3D. Actually, most practically used exploded
views are 3D, so this is a logical next step. Extending the scope of the proposed approach beyond
context-free languages would also be important.

Screencasts of the NSD and flowchart example editors (including demonstrations of diagram
contraction and auto-link) can be found at http://www.unibw.de/inf2/DiaGen/assistance/. The
editor can be downloaded from there, too.
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Abstract: Meta-models are widely used for the specification of the internal struc-
ture of graphical modelling languages, and well-established standards (e.g. MOF)
exist for this. For the graphical representation there is not the same agreement and
no related standards. This paper presents a new meta-language for an independent
specification of graphical representations. A diagram from the domain-specific lan-
guage Service is used as a running example to show how this meta-model-based
approach is appropriate for specifying the graphical representation in a precise way,
but still on a high level of abstraction.

Keywords: language specification, graphical representations, meta-models, map-
ping descriptions

1 Introduction

Graphical modelling languages are an important part of information technology and in the soft-
ware development process as they are very suitable for visualising structures, compositions and
relationships between elements. Unfortunately, there is not the same broad understanding and
agreement of how these graphical languages are specified in a formal way. A formal language
specification for a graphical language normally consists of a structure definition (also known as
abstract syntax), a graphical representation definition (concrete syntax) and a definition of the
semantics. A formal specification of the language, including the graphical representation is im-
portant both for the users and for the tool developers that intend to build appropriate tool support
for the language.

Meta-models are well-known as specification approach for the structure of a language, and
there already exist standards like MOF [OMG03] for this purpose. MOF is a meta-language,
also called a meta-meta-model, and defines all the concepts that are necessary to specify the
structure of a language. A language structure that is specified based on the concepts in MOF
is said to conform to MOF. The UML 2.0 [OMG04] meta-model is an example of a language
structure definition that conforms to MOF. The structure meta-model is in turn instantiated when
models in the language are made. This kind of instance hierarchy is one of the fundamental
concept in a meta-model-based approach.

For graphical representations, there still does not exist any standards similar to MOF. This
paper presents a new meta-model-based approach defining a meta-language for specification of
graphical representations which based on the same principles as MOF, that is importing and

GT-VMT’09
173

mailto:merete.s.tveit@uia.no


Specification of Graphical Representations

reusing concepts from the UML Infrastructure [OMG07]. The approach follows the same three
levels in the meta-model hierarchy as the structure specification, with the meta-language for spec-
ification of graphical representations at the same level as MOF. The meta-language defines all
the concepts that are necessary to specify the representation of graphical languages at a very high
level of abstraction, but still in a precise way. The graphical representation in this approach is
treated and specified as a complete language aspect. The approach aims to describe the graphical
aspects, at both the language level and the diagram level, as complete constructions, in a similar
way that we know from structure specifications (i.e. the UML meta-model). The placement of
the approach in the hierarchy is illustrated at the left-hand side of Figure 1. It is important to note
that in this paper, the layers are not seen as absolute reference points, but relative to each other.

The main difference between the meta-language presented in this paper and already exist-
ing model-based approaches for specification of graphical representation is the combination of
independence, completeness and expressiveness. The independence implies that the graphical
representation is specified independent of the structure. This independence is a clear advantage
when the languages are complex and when it is necessary to have more than one graphical rep-
resentation for the structure. Because of this independence, it is important to have precisely
defined mapping relations between the representation and the structure description. In this ap-
proach, the mapping is defined based on a mapping meta-meta-model. In addition to this, the
meta-language gives the possibility to describe the graphical representation of both languages
and diagrams as complete constructions. Features to describe all kinds of spatial relationships
between elements in a graphical language also make the meta-language more expressive than
many other approaches. The approach that is most similar to ours regarding independence is
GMF [gmf], but this approach has weaknesses both regarding completeness and expressiveness.
Section 5 presents these differences in more details.

The focus in this paper is mainly on the conceptual parts of the approach, nevertheless, a
prototype that can be used to define graphical languages and generate graphical editors based on
the description is implemented on the GMF platform, and is outlined in Section 2. The following
sections will give a bottom-up description of the approach, starting at the diagram level. Section
3 presents the meta-model-based approach both for a specific diagram and for the language
aspects (Section 3.2). Section 3.3 presents the most important concepts from the meta-language.
Section 4 describes how the relationship between the structure and the representation is handled
in this approach. The concluding remarks are found in Section 6.

2 An overview of the Approach and its Implementation

The biggest difference between a string language and a graphical language is the dimensional
space of the sentences in the language. While sentences in a string language are linear, the
sentences (i.e. the diagrams) in a graphical language have a minimum of two dimensions. The
differences are in the concrete representation. We consider a diagram expressed in a graphical
language as a collection of graphical elements that are arranged in various ways. There are
different methods for describing how the graphical elements are located and arranged to form
valid diagrams. One way is to specify the placement of an element physically by using concrete
coordinates. The coordinates will give the exact position of an element. Another method is
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to specify the placement logically. A logical placement is normally described by using spatial
relationships to describe where an element is placed relative to other elements. A deeper outline
on how graphical elements are spatially related and arranged in diagrams is found in [BG04].
In the approach presented in this paper, the arrangements of the graphical elements are also
specified in a logical way using spatial relationships.

At the lowest level in the approach, M1, we have the diagram description model (see left-
hand side in Figure 1), which describes the graphical representation of one particular diagram.
This includes instances of the graphical elements, their properties and how they are related. The
model is an abstraction of a diagram, and presents a complete construction of it. The diagram
description model conforms to the graphical representation meta-model (M2) for the language
the diagram belongs to. The graphical representation meta-model consists of two parts, the
graphical representation description and the basis library which is language independent. The
graphical representation description specifies all the graphical elements in the language, their
role in the diagram and how they are spatially related to form well-formed diagrams. The basis
library consists of a set of pre-defined geometrical shapes, which the graphical elements inherit
from. These two parts are described more detailed in Section 3.2. At the upper-most level
(M3) we have the graphical representation meta-meta-model which defines all the role concepts
that are necessary for specifying the representation of a graphical language in a precise way.
This meta-language re-uses, in its conceptual form, and extends, some concepts from UML
Infrastructure. The three different levels are explained in more detail in Section 3.

Figure 1: An overview of the high level approach (left-hand side) and its transformation to the
GMF platform

The prototype for this approach is based on the Eclipse framework. The Eclipse Modeling
Framework (EMF) [emf] makes it possible to easily create editors by generating code from meta-
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models. The meta-language for graphical representation is implemented in the EMF framework,
and by using the editors generated from the meta-language, it is possible to define the graph-
ical representation for a specific language. This high-level description is then transformed to
the lower level GMF framework [gmf] which is responsible for generating the graphical editor
features that are necessary. The model-to-model transformations between the high-level specifi-
cation and the GMF models are completely handled using QVT-R [OMG08], implemented using
the tool ikv++ medini QVT. The transformations are illustrated in Figure 1 which shows the high-
level approach on the left-hand side, the GMF framework on the right hand side (with the EMF
in the middle since the structure meta-model is used by both approaches) and the transformation
arrows in between. This transformation consists of three steps: first, from the graphical repre-
sentation meta-model to graph.gmfgraph, second, from the graphical representation meta-model
to tool.gmftool, and third, from the mapping meta-model (high-level approach) to map.gmfmap.
These three gmf-models are sufficient for generating a GMF editor.

Currently, the users specify the graphical representation within the high-level approach in
a textual editor, implemented for the meta-language using TEF [Sch08]. This is to make it
easier and more user-friendly to create the meta-models for the graphical representations and to
generate corresponding GMF graphical editors.

The following section will focus on the conceptual sides of the approach, presented from a
bottom-up approach, starting with the diagram description model. There are some minor differ-
ences between the conceptual aspects and the practical aspects covered by the prototype. These
differences will be described in the sections for the current aspect.

3 Specification of the Graphical Representation

As an example for the article, a diagram from the domain specific language Services will be used.
The language is used to model service devices with plugs, and their connections. The example
diagram in Figure 2 includes the following graphical elements: two device symbols with names
“PC” and “Keyboard”, one female plug symbol with name “USB in” and one male plug symbol
named “USB out”, one connection point symbol (the filled ellipse) and two connector symbols.
It is not only important to identify the graphical elements in a diagram, it is also necessary to

Figure 2: The service diagram used as running example

describe how the elements could legally be related to each other. The relations between the el-
ements are what actually create the diagrams in a language. For the service diagram we can
recognise the following relations between the graphical elements: The device symbols have two
compartments placed inside, one name compartment and one plug compartment. A horizontal
line, also placed inside the device symbol, is separating the two compartments. The device name
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is placed inside the name compartment. The plug symbols are placed inside the plug compart-
ments of the devices. The plug names are associated with the plug symbols. The connector
symbols are connected to a plug symbol at their source end and to a connection point at their
target end.

The next sections will give a bottom-up description of how the graphical elements and their
spatial relationships can be specified in a meta-model-based way. We start with the description
of the diagram in Section 3.1, the language graphical concepts in the service language are pre-
sented in Section 3.2 and finally the most important concepts in the graphical meta-language are
presented in Section 3.3.

3.1 The Diagram Description Model (M1)

The graphical elements and how and where they are related form the most important aspects of
the graphical representation of the service diagram, and are also what we would like to describe
in the diagram description model in Figure 3. The graphical elements are represented as objects
and the relations as plain links with role names representing the spatial relationships between
the elements involved in the relation. They are all instances of the graphical representation
specification for the language, specified on the level above (refer Section 3.2). Three kinds of

Figure 3: The diagram description model (M1) specifying a complete abstraction of the service
diagram

relations were identified in the service diagram, and these three kinds of relationships are also
presented in the model: inside, connectedTo and associatedWith. The inside relation represents
one graphical element placed inside another graphical element, and is given in the model as a
link between the two objects that are involved in the relationship, e.g. the device name “PC”
inside the name compartment.

The associatedWith relationship describes a special kind of relation since it is not directly
visible in the diagram. An example of use is the instance of a plug name which is associated
with an instance of a male or female plug. In the diagram it is not possible to see that these
elements have a concrete relationship in between, but they are still related with an ”invisible”
association.

The connectedTo relationship is used to describe that two (or more) graphical elements are
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connected physically to each other. In the service diagram we have the connector symbol which
at each target end is connected to the border of a connection point symbol. The connectedTo
relationship (and also the associatedWith in some cases) also involves an anchor object (e.g. cp
connection anchor) that specifies where the connecting appears. The anchor specifies a single
point or a set of points that represent the concrete intersection point/area between the graphical
elements that are involved. In the diagram description model (Figure 3), the cp connection
anchors specify one single point at the border of the connection point where it intersects with
the target end of a connector symbol.

The three spatial relationships, inside, connectedTo and associatedWith, are the only ones that
are found necessary. Combining them with anchors gives possibilities to specify more complex
relationships, and also more specific connection areas, than for the connectors and connection
points.

Since the approach is implemented using EMF and transformed to GMF, the diagram descrip-
tion model is not a part of the prototype. Instead it is replaced by an instance of the notation
model in GMF.

3.2 The Graphical Representation Meta-model (M2)

The model in Figure 3 is an abstraction of how the elements are arranged in the particular di-
agram. The objects in the model are instances of the graphical elements which are specified
within the language. One particular diagram is just one, among many, legal representations in a
language. At the language level in the meta-model hierarchy (see Figure 1) we have the graph-
ical representation meta-model describing all the graphical elements in the language and their
legal, spatial relations.

Figure 4: The aspects covered in the graphical representation meta-model at the M2 level

The graphical representation meta-model is separated into two parts: the graphical represen-
tation description and the basis library for shapes (language independent). The graphical repre-
sentation description consists of an identification of all the graphical elements in the language,
their roles (connection, container shape etc.) and how they are related to form well-formed di-
agrams. These elements are instances of the roles that are specified in the meta-language. The
basis library contains a number of pre-defined shapes that are considered as the most important
shapes for graphical languages. The abstract descriptions of the geometrical shapes are all in-
stances of a UML::Class (refer Section 3.3). If necessary, the basis library can be extended. The
relationship between the graphical representation package and the basis library package is ex-
pressed by the UML dependency use as illustrated in Figure 4, and the relationship between the
graphical elements and the related pre-defined shapes is expressed by inheritance (also UML).
This implies that the graphical elements get the semantics for their role in the language by in-
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stantiation and their geometrical shape by inheritance.
A device symbol in the service language plays the role as a container shape and is shaped like a

rectangle. Figure 5 illustrates how this is expressed in the meta-model: the device symbol which
is an instance of container shape inherits from rectangle in the basis library. Being an instance
of a container shape implies that the device symbol gets its semantics, i.e. it can have other
graphical elements inside itself, from the container shape defined in the meta-language. This is
opposed to simple shapes which can not act as a container for other graphical elements. The
properties bounding and attachment area are inherited from the actual geometrical shape, in this
case rectangle, since they depends on the geometry. The bounding is a point set representing the
outer border (visible or invisible) of the geometrical shape. The attachment area is also a point
set, representing the point or area where the shape could be legally related to other graphical
elements through spatial relationships. In many cases, the bounding and attachment area are
equal, like for the connection point. The classes Point and PointSet are part of the basis library.
The connector plays the role of a connection and is shaped like an arrow. We use the connection

Figure 5: A subset of the graphical representation meta-model (M2) for the Service language

role when we have simple relationships like the connector symbol connecting to a shape in each
end. The advantage of using connection is the possibility to easily state the positions of the source
and the target as they are properties in the element. These values act as legal attachment areas
for connections. The anchor property in the connection area is derived from the attachment
properties for the graphical elements involved in the relationship, and represents the possible
intersection point/area. For the cp connection anchor, the anchor is specified (by constraint) to
be all the possible points where the target of the connection symbol intersects the attachment
area of the connection point. On this level, the anchor is relative to the involved elements.
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The compartment role is used for specification of compartments within a container shape. Name
compartment and plug compartment are examples, and they both expand the container, the device
symbol, horizontally.

Using a combination of spatial relationships (inside, connected to and associated with) and the
connection areas for describing relationships between graphical elements makes this approach
different from most other meta-model-based approaches. The advantage by using these features
is the possibility to express complex spatial relationships on a high level of abstraction. The
specification of the legal attachment areas for a graphical element is not a new idea itself, and
especially in the traditional grammar-approaches (e.g. DiaGen [Min06]), attachment areas are
used. In meta-model-based approaches on the other hand, these kinds of features are omitted in
many cases, which makes it difficult to specify attachment areas that are unequal to the shape
boundings. The meta-model-based approaches that are most similar to the one presented in this
paper, are described in more detail in Section 5.

3.3 The Graphical Meta-meta-model (M3)

The graphical meta-meta-model is the meta-language at the M3 level in the meta-model hierar-
chy (see Figure 1), and defines all the concepts that are necessary for specification of graphical
representations. This section presents a slightly simplified version of the meta-meta-model, with
focus on the concepts that are used in earlier sections.

Figure 6: The meta-language (M3) for graphical representations

The basis element in the meta-meta-model is UML::Class which acts as super class for all the
conceptual roles in the meta-language as illustrated in Figure 6. There are four special kinds of
roles: shape class, connection class, connection area class and text class. A container shape
class is a special kind of shape that acts as container for other graphical elements. A container
shape can contain compartments, which are used to arrange their contents. The properties for the
different roles are semantically generated from OCL constraints that are defined for the meta-
language. The explicit constraints are omitted from the paper.
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One of the interesting features in this approach is the possibility to describe spatial relation-
ships between graphical elements. For this to be possible it is necessary to include concepts for
describing complex relationships in the meta-language. Also for these features, UML Infrastruc-
ture is used as basis. The most important concept is the spatial property, which is an extension
of UML property. This concept gives the possibility to express spatial relationships (extension
of UML association) with aggregation, multiplicity and navigable end. The new feature pre-
sented in spatial property is the spatial kind. This property is used to specify which kind of
spatial relationship (inside, connectedTo, associatedWith) that exist between graphical elements.
All these features give the possibility to express the graphical representation for languages and
diagrams as complete construction, which also is an aspect where this approach differs from
other meta-model-based approaches (see also Section 5). As we can see, the meta-language for
specification of graphical representations is not very different from MOF, but it contains some
additional semantics which are especially related to conceptual roles and spatial relationships.

In Section 2, the use of EMF and GMF as implementation technologies for the meta-language
was described. It is in this point the conceptual ideas and the implementation differs most,
since the conceptual part of the approach are described re-using concepts from UML Infrastruc-
ture, while the implementation is based on EMF. These differences are solved as follows: The
UML::Class is replaced by EClass. For the spatial relationship, which extends UML::Association,
and spatial property, which extends UML::Property, the challenge is bigger. While UML uses
associations, with properties for the association ends, EMF uses references to express relation-
ships between classes. In the implementation, this is solved by merging the spatial relationship
and spatial property into one unit, and let it extend EReference. The property EOpposite from
EReference is used on the level below to express bidirectional spatial relations between graphi-
cal elements. By adding the property kind of type spatial kind to the new unit all the necessary
semantics are kept.

4 Relating the Representation and the Structure

As we have seen in Section 3, the graphical representation is specified completely independent
from the structure definition. This means there needs to be some kind of mapping defined be-
tween the two syntactic aspects to keep them synchronized. The complete separation is an impor-
tant feature in this approach as it gives the possibility to have several representation definitions
for the same structure and vice versa. The importance of keeping the structure and representa-
tion separated is discussed more widely in [Fon07]. The mapping meta-language that is defined
within this approach is based on a study of the graphical languages SDL [ITU99] and UML
[OMG04] and a categorisation of their relationships between the structure and the representa-
tion. From this study, three important mapping patterns were identified. The one-to-one pattern
is the simplest kind of mapping, and also the most common. The merge pattern is used to map
graphical concepts which have several notation options. A well known example is signal decla-
rations in SDL. At last, the partial description pattern is used to map graphical concepts which
have a partial representation in addition to a complete. Well-known examples are references and
duplications. These patterns are also described with some more examples in [Tve08]. The pat-
terns are implemented as a mapping meta-meta-model as presented in Figure 1, and a mapping
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meta-model that conforms to it is transformed to the gmfmap model in the GMF framework. In

Figure 7: Illustration of mapping relationships in the Service Language

the Service language, all mapping relationships are described using instances of the one-to-one
pattern. This is illustrated in figure 7.

5 Related Work

There exist a number of meta-tools that generate graphical editors from language specifica-
tions which involve meta-models to some degree: XMF-Mosaic [Cet], The Graphical Model-
ing Framework (GMF) [gmf], MetaEdit+ [Met05], The Generic Modeling Environment (GME)
[LBM07] and Tiger [EEHT05] to mention some. All of these meta-tools present their own ap-
proach for handling and specifying the graphical representation. While most of these approaches
(e.g. MetaEdit+ and GME) specifies the graphical representation on top of the structure meta-
model and with this keep the graphical information as properties in the structure elements, GMF
and XMF-Mosaic presents new, independent meta-languages for the graphical representation.
The graphical representation description is then related to the structure meta-model by a syntac-
tic mapping description. Of these two, GMF is the approach that shares most with the approach
presented in this paper as it has a strong focus on separating the structure and the representation.

The biggest differences between the Eclipse-based GMF and the approach presented in this
paper are related to two aspects: expressiveness and completeness. It is not possible to explicitly
specify spatial relationships between graphical elements or specific attachment areas in GMF,
except compartments, which make it possible to handle inside relationships. The relationships
between nodes and connections are handled implicitly. This implicit specification makes the
approach less expressive than the one presented in this paper. The other difference is related to
the completeness of the graphical representation. The meta-language presented in this approach
aims to specify the graphical representation as a complete construction (model), and not only
single graphical elements collected in a container (canvas in GMF) without any relationships
in between. In GMF, the relationships between a compartment and its content, and between
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a connection and its connected node, are specified in the mapping description, and not in the
graphical representation itself.

This is also the case for another approach [Fon07] that is worth mentioning. This approach is
different from both GMF and XMF as it does not provide a new meta-language for the graphical
representation, but instead proposes to extend the already existing structure meta-model by an
extra layer of visual objects. This approach is interesting as it presents features for specification
of spatial relationship (contains, overlap, connects and nearby) between graphical elements. The
weakness with this approach, as with GMF, is that the spatial information is specified as a part
of the mapping description, and not in the graphical representation itself.

6 Conclusion

This paper presents an approach for meta-model-based graphical representation. The central
part of the approach is a new meta-language based on re-use and extensions of concepts from
UML Infrastructure, which provides concepts for specification of graphical elements and their
arrangements. The graphical representation is specified completely independent of the structure
definition. The introduction of connection areas together with three kinds of spatial relationships
(inside, connected to and associated with) gives the possibility to specify both simple and more
sophisticated relationships between and within diagram elements on a high level of abstraction.
The expressiveness, the possibility to describe the graphical representation for both the language
and its diagram as a complete construction, and the complete independence from the structure
specification are the main advantages with the approach presented.

For now, the conceptual aspects are the strength of this approach. Nevertheless, a prototype
that is based on EMF and transformed to the GMF platform is implemented. With this, the
approach can be used to specify the graphical representation of a graphical language, which to-
gether with a structure specification and the mapping description make it possible to generate a
GMF editor from the specification. At this moment the meta-language has a textual representa-
tion and a textual editor implemented using TEF [Sch08]. The future plan is to also specify a
graphical representation for the meta-language and generate a graphical editor for it, using the
approach and the meta-language itself.
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