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Abstract: Though graphs are flexible enough to model any kind of data struture
in principle, for some structures this results in a rather large overhead. This is for
instance true for lists, i.e., edges that are meant to point to an ordered collection of
nodes. Such structures are frequently encountered, for instance as ordered associa-
tions in UML diagrams. Several options exist to model lists using standard graphs,
but all of them need auxiliary structure, and even so their manipulation in graph
transformation rules is not trivial.

In this paper we propose to enrich graphs with special ordered edges, which more
naturally represent the intended structure. We show that the resulting graphs still
form an adhesive HLR category, and so the standard results from algebraic graph
transformation apply. We show how lists can be manipulated. We believe that in
a context where lists are common, the cost of a more complicated graph formal-
ism is outweighed by the benefit of a smaller, more appropriate model and more
straightforward manipulation.

Keywords: Graph Rewriting, Ordered Edges

1 Introduction

The context of the work in this paper is graph transformation. This means that we use graphs,
essentially only consisting of nodes and edges, to model different kinds of structures such as
real-world systems or software concepts. A rich source of such structures comes from soft-
ware engineering, in the form of UML models. Graph transformation offers a mathematically
well-founded method for systematically encoding changes to graphs; this in turn can be used to
describe the dynamics of the system being modelled.

In principle, appropriate compositions of the basic building blocks of nodes and binary edges
can encode arbitrary structures. In many cases the resulting graphs reflect the original structures
quite naturally. There are, however, situations in which the encoding is awkward, for instance
because it requires auxiliary elements in the graph that do not directly reflect anything from the
original structure. This impacts the understandability and complexity of the encoding, and thus
decreases the usability of graph transformation. In such cases, one may choose to use a richer
graph formalism instead, which more closely reflects the structures at hand.
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Examples of enriched graph formalisms, introduced exactly for the reason of modelling par-
ticular kinds of structures more naturally, are: attributed graphs [EEPT06a], hierarchical graphs
[DHP02], and hypergraphs [Hab92]. There is a price to pay for such enrichments, in the form of
added complexity in their usage and understanding (often called the learning curve), as well as in
their manipulation, both on the level of theory and of implementation. It follows that enrichments
in the graph formalism are only justified if the resulting increase in complexity is outweighed by
the corresponding advantages in modelling.

Fortunately, on the theoretical level there is a touchstone against which we can measure the
feasibility of any enriched graph formalism: namely, the concept of adhesive HLR categories,
developed in [EPPH06] — see [EEPT06b] for an extensive description. That is, if one can prove
that an enriched notion of graphs satisfies the constraints of HLR-adhesiveness, then there is a
standard way to define their transformation, and many desirable properties are known to hold.

In this paper we propose an enrichment of the basic graph formalism to cope with the structural
concept of ordered lists. Such lists occur frequently in practice, for instance in the form of
ordered associations in UML diagrams or array- and list-like structures in software. We will
argue that encoding lists using simple graphs introduces spurious elements and thus increases
their complexity; also the manipulation of the encodings is non-trivial. Thus, in line with the
reasoning above, it makes sense to solve the problem of modelling list structures by enriching
the graphs. In order to justify the cost of a more complex formalism on the level of theory, we
show that the resulting category of graphs is still adhesive HLR.

In the next section, we motivate and explain our extension on an intuitive level, using an example
inspired by the Olympic winter games. After that, Section 3 presents the formal definitions and
states the main theoretical result (HLR adhesiveness of the resulting category). We show the use
of list graphs in Section 4. Finally, Section 5 discusses related work and presents conclusions.

2 Motivation

As a motivating example, we use sporting events taking place in the 2010 Olympic winter games.
In particular, we concentrate on ice-skating. Before the games, every skating event has a list of
participants; the order in the list corresponds to their starting order at the event. For instance,
Figure 1 shows two events (1500 m and 5 km for men). The notation means that the 1500 m
event has four participants, in the order from top to bottom, whereas the 5 km event has three,
namely Kramer, Tuitert and Davis (in that order). A third event, the 10 km, has an empty list of
participants.

Intuitively straightforward operations one may want to perform on such a list are:

Appending an element when a new participant is enrolled;

Removing participants convicted of doping abuse;

After the event, moving the winner to the top of the list.

A more complex operation is list reversal. For instance, if we started with a ranking list (in which
the seasonal best skater is at the top), then it needs to be reversed to get the starting order.
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Figure 1: Two skating events with overlapping lists of participants

2.1 Plain graph encoding

There are several ways to encode such lists using plain graphs, consisting only of nodes and
binary edges. We discuss the main issues.

The core problem is to specify the order of the elements. For this purpose, one can either
rely on an implicit ordering, for instance using indices, or introduce an explicit ordering
using special edges. Indices require updating whenever elements are added or removed
(except at the end of the list).

Elements can be shared among lists (as Figure 1 shows), or may even occur multiple
times in the same list. For this reason, the indices or special edges specifying the ordering
cannot be incident to the list elements themselves (this would introduce confusion between
the lists); rather, one needs an intermediate layer of “slot” nodes.

It is often convenient, or even necessary, to express that a given element is in a particular
list. To encode this information, we need further special edges pointing from the list owner
to the elements, or vice versa.

Many list operations explicitly refer to the first or last element. To express this, either
we need negative application conditions stating that the element has no predecessor, re-
spectively successor; or this information can be captured using special edges — which,
however, then have to be maintained while manipulating the list.

The empty list needs to be represented in some special way, as in that case there are no
element or slot nodes to attach information to.

Clearly, such a graph representation is expensive, in the sense of requiring many auxiliary el-
ements; moreover, unless one is careful, the last two issues will require case distinctions in
transformation rules.

From programming, we know an encoding for lists that copes with most of the issues relatively
well (in particular avoiding case distinctions), but is expensive in terms of overhead: namely, a
circular linked list consisting of “slot” nodes pointing to the elements and back to the list owner,
and a special “head” node without an element, marking the start and the end of the list. Figure 2
shows a plain graph encoding of the structure of Figure 1.
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Figure 2: Plain graph representation of the structure in Figure 1
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Figure 3: Plain graph rule moving the winner of an event to the top of the list.

Figure 3 shows an example rule that will result in the winner of an event being moved to the
start of the list. The figure shows the left hand side and right hand side of the rule; the connecting
morphisms are implicit in the positioning of the nodes. The unlabelled nodes are meant to match
any node in the graph; in particular, they may match Head or Slot nodes. A solution that works
for properly typed graphs requires inheritance. Note that this only works under the assumption
that non-injective matches are allowed.

An important observation is that the issues discussed above are exactly those one encounters

while programming with lists. This goes against the idea that graph transformation provides
an abstract, declarative way of manipulating structures. To name one consequence, if the graph
model is used for the design of a software system, from which an implementation is to be derived,
then the graph representation choices will influence the implementation, possibly in unintended
ways. For instance, the encoding in Figure 2 makes it unnatural to choose an array-based imple-
mentation.
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Figure 4: List graph rule moving the winner of an event to the top of the list.

2.2 List edges

The proposal in this paper is to enrich graphs with explicit support for lists, avoiding both the
overhead and the “programming” nature of the plain graph encoding. We do this by extending
the notion of edges: rather than binary edges with a single source node and a single target
node, we propose to use list edges of which the target is a sequence of nodes. Thus, list edges
are somewhat like hyperedges in that they may have different numbers of tentacles: however,
hyperedges typically have a fixed number of tentacles (called the arity) determined by their
labels, which is not the case for list edge arity.

For instance, Figure 1 is a straightforward visualisation of a graph with list edges from the
Event nodes to different sequences of Part nodes. The string of “knots” in the edge gives the
order of the elements in the list; the arrows from the knots point to the actual elements.

The real innovation, however, does not lie in the graphs but in the rules. For these, we introduce
a new type of node, called list nodes, which will only appear in rules and can be seen as standing
for arbitrary sequences of nodes from the host graph. List nodes can only occur within edge
targets, never as sources. Graph morphisms are extended to list nodes as follows: every list node
is matched either by a sequence of plain nodes, or by a single list node. This is extended to list
edges in the natural way.

For instance, Figure 4 shows the rule performing the same operation as the one in Figure 3, but
this time for list graphs. The ‘doubled’ nodes are list nodes. The parts edge in the left hand side
matches any list edge in the host graph from an Event node, pointing to an arbitrary sequence of
nodes (matched by the upper list node of the LHS), followed by the Part-node that the winner-
edge points to, followed by another arbitrary sequence of nodes (matched by the lower list node
of the LHS). The effect of the rule is to delete this list edge and create a new one, in which the
Part-node and the first sub-sequence are swapped. This has the effect of moving the Part-node
to the top of the list.

An example of the application of this rule is shown in Figure 5. The initial state is the same
as in Figure 1, but now with Kramer and Tuitert indicated as winners for the 1500m and 5000m
respectively. The rule can be applied twice, resulting in the right hand side graph.

3 Formalisation

In this section, we will show that lists can be incorporated in graph theory in a sound manner.
For this purpose, we will extend a standard representation of multi-sorted graphs with list nodes
and list edges, and we will show that the result is an adhesive HLR category [EPPH06]. We will
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Figure 5: Applying Figure 4 twice to the left hand side graph yields the right hand side graph

use double push-outs (DPO) for the formalisation of graph rules.
First, we extend a standard V E src tgt lab representation of multi-sorted graphs, by: (1)

splitting V into V̂ (normal nodes) and V (list nodes); and (2) changing the result of tgt from V (a
single node) to V (a sequence of nodes, may be empty). In other words, we add list nodes and
replace one-to-one (plain) edges with one-to-many (list) edges:

Definition 1 (multi-sorted list graphs)

Let G V̂ V E src tgt lab be a multi-sorted list graph, where:
V̂ and V are the sets of plain nodes and list nodes respectively (let V denote V̂ V )
E is the set of (list) edges
V̂ , V and E are disjoint
src : E V̂ is the function that yields the source node of an edge
tgt : E V is the function that yields the sequence of target nodes of an edge
lab : E L is the labelling function (assuming a fixed set of labels L)

As usual, we will use graph homomorphisms as arrows in our to be defined category. A
homomorphism f : G H is a structure preserving mapping of nodes and edges. In our case,
three mappings have to be defined: (1) one for plain nodes, which are mapped to plain nodes; (2)
one for list nodes, which are mapped either to list nodes or to sequences of plain nodes; and (3)
one for list edges, which are mapped to list edges. The one-to-one mapping of list nodes will be
used to restrict our graph rules, and the one-to-many mapping of list nodes will be used for the
matching of a rule to a graph.

For the sake of convenience, we will combine the mappings of nodes into a single function that
always produces a sequence. Furthermore, we will often implicitly convert a singleton sequence
to its element or vice-versa; it will always be clear from the context when we do this. Finally, we
will write f

V
for the sequence homomorphism that is generated by fV ; that is, if fV is a function

from VG to V
H

, then f
V

is the natural extension that maps V
G

to V
H

.

Definition 2 (homomorphisms)

Let G = V̂G V G EG srcG tgt
G

labG and
H = V̂H V H EH srcH tgt

H
labH be multi-sorted list graphs.

Let f fV fE with fV : VG V
H

and fE : EG EH map the nodes and edges of G to H.
Then, f is a homomorphism when the following conditions hold:

for all vg V̂G there exists a vh V̂H such that fV vg = vh
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for all vg V G, there either exists a vh V H such that fV vg = vh , or fV vg V̂
H

labH fE labG

srcH fE fV srcG

tgt
H

fE f
V

tgt
G

The composition of two homomorphisms can now easily be defined by means of a combination
of function composition and natural extension to sequences. By construction, it follows that the
result is a homomorphism as well, which allows us to define list graphs as a category.

Definition 3 (composition of homomorphisms)

If f fV fE : G H and g gV gE : H I are homomorphisms on list graphs, then g f

is defined by g
V

fV gE fE .

Definition 4 (list graphs as a category)

The category consists of list graphs (Definition 1) as objects, homomorphisms (Defini-
tion 2) as arrows and composition as in Definition 3. The identity arrows are the homomor-
phisms that are pairs of identity functions.

The next step is to show that the constructed is also an adhesive HLR category, which
allows DPO graph rewriting to be defined in it. First, we briefly recall the definitions:

Definition 5 (van Kampen squares)

A pushout p is a VK-square if for any commutative cube where the bottom face is p, it holds
that the top face is a pushout iff the front faces are pullbacks.

Definition 6 (adhesive HLR categories)

A category C with a given subclass of M-morphisms is an adhesive HLR-category, iff:
M is a class of monomorphisms that is closed under isomorphisms, composition and de-
composition
all objects have pullbacks and pushouts along M-morphisms, and M-morphisms are closed
under pushouts and pullbacks
all pushouts form VK-squares

In order to show that is an adhesive HLR category, we have to identify a subclass of M-
morphisms and prove the properties that are listed in Definition 6. In this paper, we will present
a part of the proof only; the full proof can be found in [MR10].

Definition 7 (M-morphisms in )

A monomorphism f fV fE : G H in belongs to the subclass M if for all vG V G

there exists a vH V H such that fV vG vH . In other words: an M-morphism does not
perform matching of list nodes to sequences, but maps them one-to-one to list nodes only.

Theorem 1 ( is an adhesive HLR category)

is an adhesive HLR category.

Proof (sketch). In this paper, we limit ourselves to sketching the construction of pullbacks and

7 / 12 Volume of the Pre-proceedings of GT-VMT (2010)



On A Graph Formalism for Ordered Edges

pushouts. The rest of the proof can be found in [MR10].
Construction of pullbacks. Suppose that B

b
A

c
C, and that b is a M-morphism. Let AB

be the subgraph of A that is formed by the image of b. Because b is a M-morphism, B is
isomorphic to AB. Construct the largest subgraph D C such that c maps all elements of D

to elements of AB. Then, D is the pullback of B
b

A
c

C, with D C by means of idD and
D B by means of z c, where z is the isomorphism between AB and B.
Construction of pushouts. Suppose that B

b
A

c
C, and that b is a M-morphism. Assume

that B and C are disjoint (if not, find isomorphic graphs that are disjoint). Let BA be the
subgraph of B that are in the image of b. Because b is an M-morphism, A is isomorphic to
BA. Then, D C B BA is the pushout of B

b
A

c
C, with C D by means idC and

B D by means of idB BA
c z , where z is the isomorphism between BA and A. Note that

when edges are added by b (i.e. they appear in B BA), then the sources and targets of these
edges have to be transformed by means of idB BA

c z as well.

This result allows DPO graph rewriting to be applied in our category .

Definition 8 (double pushout rewriting)

A graph production L
l

K
r

R is applied to a host graph G with the following procedure:
First, find a morphism m that maps L to G.
Then, find a morphism k that maps K to D such that: the pushout of K

l
L and K

k
D is

G (with m).
Then, build the pushout of K

r
R and K

k
D, which is the result of applying the rule.

Note furthermore that:
If either of the morphisms m or k does not exist, the rule cannot be applied.
In an adhesive HLR category, when l and r are both monomorphisms from the subclass
M, morphism k is unique (if it exists). This ensures that the result of applying the rule is
determined completely (up to isomorphism) by m.

Unfortunately, the current definitions, although sound, still give rise to some strange behaviour.
Suppose that p L K R is a production. Then:

If R contains list nodes that have no counterpart in K, then the application of p introduces
list nodes in the host graph. This is undesirable, because a list node in a normal graph has
no meaning; a list node only makes sense in a rule.

Conversely, if L contains list nodes that have no counterpart in K, then p can never be
applied to graphs that do not contain list nodes. This is due to the pushout construction
(see Theorem 1), which copies B A (in this case L K into the pushout (in this case the
intermediate host graph D).

We will disallow this strange behaviour by demanding that both the morphisms in a production
must be surjective with respect to list nodes, which ensures that L and R cannot contain list nodes
that do not have a counterpart in K.

Definition 9 (surjective M-morphisms)
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Figure 6: List graph rules creating a reversed parts list out of a rank list.

A M-morphism f fV fE : G H in is surjective if for all vH V H there exists a
vG V G such that fV vG vH .

Definition 10 (productions in )

For graph rewriting in the category , only productions p L
l

K
r

R are allowed in
which both l and r are surjective M-morphisms.

It turns out that l and r being surjective is not only a necessary, but even a sufficient condition
for ensuring that rules do not introduce list nodes. A proof of this property can again be found
in the technical report [MR10]. This implies that graph rewriting in our category always
transforms normal graphs (i.e. without list nodes) to normal graphs.

4 List reversal

We show some more applications of list graph transformations, inspired by the setting of Sec-
tion 2. In particular, we show how we can obtain a participants list, parts, from a ranking list,
rank, by copying and reversing the list. The entire behaviour is specified by the three rules in
Figure 6.

The start rule copies the rank list into a copy list, and creates an empty parts list. Note that
this is a “shallow” copy: the elements are not copied but shared among the lists.

The build rule repeatedly removes the last element from the copy list and appends it to the
parts list. By applying this rule as long as possible, eventually the copy list will be empty,
at which point the parts list contains all the elements of the original copy list, and hence of
the rank list, in reverse order.

The finish rule deletes the empty copy list, completing the reversal process. Note that this
rule is only applicable if the copy list is indeed empty.

Figure 7 shows a sequence of applications of these rules.
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Figure 7: Example production sequence for the rules in Figure 6.

5 Conclusion

In this section, we look back on what we have achieved, and list the good and bad points. We
also briefly discuss related work and future extensions.

5.1 Evaluation

We have defined list graphs in order to directly capture ordered structures. We have shown that
encoding such structures into plain graphs is awkward and, worse, introduces programming-like
structures that break the inherent abstraction of graph-based models. In contrast, the construction
and manipulation of list graphs is much more abstract and results in smaller, more intuitive
graphs and rules. We have also shown that list graphs fit into the theory of algebraic graph
rewriting, and so the cost of the more complex graph formalism is low, at least on the level of
theory.

On the downside, the way lists are manipulated on the theoretical level is not attractive from
an implementation point of view. List edges are deleted and created as a whole, which, when
taken literally, would mean that entire lists are discarded and constructed every time a single
element is added or deleted. An implementation should instead recognise and efficiently deal
with frequently occurring patterns of list usage. A first attempt is to identify re-use of list edges
with a static analysis of stable nodes and edges, but it is yet unclear how this can be generalised.

It may be remarked that our list edges break the usual symmetrical treatment of edge sources
and targets, since lists may only occur at the target and not at the source of an edge. In this
regard, we have been led by the intended application of the enriched formalism. From the the-
oretical perspective there is no reason to forbid list nodes at edge sources: our theory smoothly
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Figure 8: List graph rule inserting an element at a specified position.

extends to standard hyperedges (keeping our specialised notion of morphism), which do not have
a distinguished source node at all.

5.2 Related work

As far as we have been able to determine, there is essentially no prior work on enriching the
basic graph formalism with lists. On a more pragmatic level, however, many tools offer ways
to deal with ordered structures or associations, if only by suggesting a default encoding or syn-
tactic sugar. For instance, FUJABA reflects programming structures such as lists and arrays into
the rules, and provide notations to traverse them conveniently (see [MZ04]). FUJABA’s handling
of ordered edges is formalised in [Zün01]. For VIATRA2 it is suggested in [VB07] to use rela-
tions over relations to encode ordering. In general it is difficult to find information about such
pragmatic solutions.

Remotely related are extensions to deal with parallel or amalgamated rule applications (e.g.,
[Tae97]), since in this setting the rules also have nodes that can be mapped to more than one graph
node (a prime instance are the set nodes of PROGRES, see [Sch97]). However, the connection
stops there: the purpose and technical contribution of this work is entirely different.

5.3 Future work

So far, the concepts in this paper only exist in theory. The proof of their usability can only come
through an implementation. The natural way to go is to extend our research vehicle GROOVE (see
[Ren04]) to list graphs. However, this will require a major refactoring to generalise to hyperedges
— quite apart from the fact that GROOVE implements SPO and not DPO rewriting.

Instead, we first plan to use these ideas to define a suitable transformation language in the
project CHARTER1, in the context of which this work has been carried out. For this project
we will provide a tool that compiles graph transformation systems to Java source code which
accesses and manipulates the actual graphs through a predefined API. Since ordered lists and
arrays are a common feature in the graphs we will have to deal with, it is imperative to have a
suitable, declarative way to specify their transformation.

A theoretical extension that would add quite a bit of power to the formalism, and make it even
more generally usable, is indexing. Currently there is no way to specify or reason about the
position of an element in a list. We conjecture that this requires only a minor extension, namely
to add a default unmodifiable length attribute to all list nodes. Morphisms then have to respect

1 See http://charterproject.ning.com/.
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the length of list nodes, in the following way: if a morphism maps a list node to another list
node, then the value of the length attribute should remain unchanged, whereas if the image is a
sequence of plain nodes, the value of the length attribute should equal the actual length of the
sequence. For instance, Figure 8 specifies that a Part-node should be inserted at index i.
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Graph Algebras for Bigraphs

Davide Grohmann1, Marino Miculan2

1 grohmann@dimi.uniud.it, 2 miculan@dimi.uniud.it
Department of Mathematics and Computer Science, University of Udine, Italy

Abstract: Binding bigraphs are a graphical formalism intended to be a meta-model
for mobile, concurrent and communicating systems. In this paper we present an
algebra of typed graph terms which correspond precisely to binding bigraphs over a
given signature. As particular cases, pure bigraphs and local bigraphs are described
by two sublanguages which can be given a simple syntactic characterization.

Moreover, we give a formal connection between these languages and Synchronized
Hyperedge Replacement algebras and the hierarchical graphs used in Architectural
Design Rewriting. This allows to transfer results and constructions among for-
malisms which have been developed independently, e.g., the systematic definition
of congruent bisimulations for SHR graphs via the IPO construction.

Keywords: Bigraphs, graph grammars, types.

1 Introduction

Bigraphical Reactive Systems (BRSs) [Mil01] have been proposed as a promising meta-model
for ubiquitous, mobile systems. The key feature of BRSs is that their states are bigraphs, semi-
structured data which can represent at once both the (physical, logical) location and the connec-
tions of the components of a system. The dynamics of the system is given by a set of rewrite
rules on this semi-structured data.

Bigraphs are very flexible: they have been successfully used for representing many domain-
specific calculi and models, from traditional programming languages, to process calculi for con-
currency and mobility, from context-aware systems to web-service orchestration languages—see
e.g. [JM03, LM06, BDE 06, GM07, BGH 08]. In fact, many variants of bigraphs have been
proposed: the original pure bigraphs have been later generalized into binding bigraphs, allow-
ing also for name scoping; other variants have been proposed, such as local bigraphs used for
studying the λ -calculus.

In this paper, we propose a general typed language for binding bigraphs, which we recall in
Section 2. More precisely, in Section 3 we define an algebra of typed graph terms, so that well-
typed terms correspond to binding bigraphs, and congruence captures bigraphic equality; this
interpretation and corresponding properties are exposed in Section 4. Moreover, as we will show
in Section 5, the important subcategories of pure, local and prime bigraphs can be described by
suitable sublanguages which can be given a simple and effective syntactic characterization.

Finally, we show how this language for binding bigraphs can be tailored to formalisms intro-
duced in literature (for quite different purposes). In Section 6 we consider hypergraphs used in
Synchronized Hyperedge Rewriting [FHL 05] and the “designs” of Architectural Design Rewrit-
ing [BLMT07].
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We have implemented the resulting algorithm in our BPL Tool, which we briefly describe in Section 6. We also
present an example of a bigraphical reactive system, an encoding of the polyadic π calculus, and show how it can be
used to simulate a simple model of a mobile phone system.

Bigraphical reactive systems are related to general graph transformation systems; Ehrig et al. [10] provide a recent
comprehensive overview of graph transformation systems. In particular, bigraph matching is related to the general
graph pattern matching (GPM) problem, so general GPM algorithms might also be applicable to bigraphs [11, 14, 20,
21]. As an alternative to implementing matching for bigraphs, one could try to formalize bigraphical reactive systems
as graph transformation systems and then use an existing implementation of graph transformation systems. Some
promising steps in this direction have been taken [19], but they have so far fallen short of capturing precisely all the
aspects of binding bigraphs. For a more detailed account of related work, in particular on relations between BRSs,
graph transformations, term rewriting and term graph rewriting, see the Thesis of Damgaard [8, Section 6].

The remainder of this paper is organized as follows. In Section 2 we give an informal presentation of bigraphical
reactive systems and in Section 3 we present our matching algorithm: we first recall the graph-based inductive char-
acterization, then we develop a term-based inductive characterization, which forms the basis for our implementation
of matching. In Section 4 we describe how our implementation deals with the remaining nondeterminism and in Sec-
tion 5 we discuss a couple of auxiliary technologies needed for the implementation of the term-based matching rules.
In Section 6 we finally describe the BPL Tool and present an example use of it. We conclude and discuss future work
in Section 7.

2. Bigraphs and Reactive Systems

In the following, we present bigraphs informally; for a formal definition, see the work by Jensen and Milner [13]
and Damgaard and Birkedal [9].

2.1. Concrete Bigraphs

A concrete binding bigraph G consists of a place graph GP and a link graph GL. The place graph is an ordered
list of trees indicating location, with roots r0, . . . ,rn, nodes v0, . . . ,vk, and a number of special leaves s0, . . . ,sm called
sites, while the link graph is a general graph over the node set v0, . . . ,vk extended with inner names x0, . . . ,xl , and
equipped with hyper edges, indicating connectivity.

We usually illustrate the place graph by nesting nodes, as shown in the upper part of Figure 1 (ignore for now the
interfaces denoted by “ : · →· ”). A link is a hyper edge of the link graph, either an internal edge e or a name y. Links

Bigraph G : �3, [{},{},{x0,x2}],X� → �2, [{y0},{}],Y �

0

1

2

y0 y1 y2

x0 x2

x1

e2

v0

v1

v2 v3

e1

X ={x0,x1,x2}

Y ={y0,y1,y2}

Place graph GP : 3 → 2

roots:

sites:

r0

v0

v1

s0

v2

r1

v3

s2 s1

Link graph GL : X → Y

names:

inner names:

y0 y1 y2

v0

v1

v2

v3

x0 x2 x1

e1

e2

Fig. 1. Example bigraph illustrated by nesting and as place and link graph.

2

Figure 1: A binding bigraph (picture taken from [BDGM07]).

These results are useful for several reasons. First, the typed algebra we propose can be used
as a language for binding, pure, local and prime bigraphs, alternative to the bigraph algebra
[JM03]. Moreover, we confirm once more that bigraphs are a quite expressive general framework
of ubiquitous systems. These connections pave the way for transferring results and constructions
from bigraphs to the SHR and ADR frameworks, and vice versa, as suggested in Section 7.

2 Binding Bigraphs

In this section we recall Milner’s binding bigraphs [JM03, JM04]. Intuitively, a binding bigraph
represents an open system, so it has an inner and an outer interface to “interact” with subsystems
and the surrounding environment (Figure 1). The width of the outer interface describes the roots,
that is, the various locations containing the system components; the width of the inner interface
describes the sites, that is, the holes where other bigraphs can be inserted. On the other hand, the
names in the interfaces describe free links, that is end points where links from the outside world
can be pasted, creating new links among nodes. In particular, we consider binding bigraphs with
(possibly) multiply localized names, as in [Mil04] and slightly generalizing [JM03, JM04].

More formally, let be a binding signature of controls (i.e., node types), and ar :
be the arity function. The arity pair h k (written h k) consists of the binding arity h

and the free arity k, indexing respectively the binding and the free ports of a control.

Definition 1 (Interfaces) An interface is a pair m X where m is a finite ordinal (called width),
X is a finite set of names. A binding interface is a triple m loc X , where m X is an interface
and loc m X is a locality map associating a subset of the names in X with sites in m. If
s x loc then x is located at s, or local to s; x is global if, s, s x loc.
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Sometime, we shall represent the locality map as a vector X X0 Xm 1 of subsets, where
Xs is the set of names local to s; thus X X X X0 Xm 1 are the global names. We
call an interface local (resp. global) if all its names are local (resp. global). We denote by the
union of already disjoint sets, i.e., S T S T if S T /0, otherwise it is undefined.

Definition 2 (Pure and binding bigraphs) A (pure) bigraph G : m X n Y is composed by
a place graph GP and a link graph GL describing node nesting and (hyper-)links among nodes:

G V E ctrl GP GL : m X n Y (pure bigraph)

GP V ctrl prnt : m n (place graph)

GL V E ctrl link : X Y (link graph)

where V E are the sets of nodes and edges respectively; ctrl : V is the control map, which
assigns a control to each node; prnt : m V V n is the (acyclic) parent map (often written
also as ); link : X P E B Y is the link map, where P ∑v V π1 ar ctrl v is the set
of ports and B ∑v V π2 ar ctrl v is the set of bindings (associated to all nodes). A link
l X P is bound if link l B; it is free if link l Y E.

A binding bigraph G : m loc X n loc Y is a (pure) bigraph Gu : m X n Y satis-
fying the following locality conditions:

1. if a link is bound, then the names and ports linked to it must lie within the node that binds it;

2. if a link is free, with outer name x, then x must be located in every region that contains any
inner name or port of the link.

Definition 3 (Binding bigraph category) The category of binding bigraphs over a signature
(written Bbg ) has local interfaces as objects, and binding bigraphs as morphisms.

Given two binding bigraphs G : m loc X n loc Y , H : n loc Y k loc Z , the
composition H G : m loc X k loc Z is defined by composing their place and link graphs,
whenever they have disjoint node and edge sets:

1. the composition of GP : m n and HP : n k is defined as

HP GP VG VH ctrlG ctrlH idVG prntH prntG idVH : n k;

2. the composition of GL : X Y and HL : Y Z is defined as

HL GL VG VH EG EH ctrlG ctrlH idEG linkH linkG idPH : X Z

Definition 4 (Categories of pure, local and prime bigraphs) The category of pure bigraphs
(Big) is the full subcategory of binding bigraphs whose objects are of the form n /0 X (often
shorten as n X ).

The category of local bigraphs (Lbg) is the full subcategory of binding bigraphs whose objects
are of the form n X X (often shorten as X ).

The category of prime bigraphs (Pbg) is the full subcategory of local bigraphs whose objects
are of the form n X X , with n 0 1 , (often shorten as before: X ).
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Intuitively, in pure bigraphs all names are global, whilst in local bigraphs all names are local,
finally prime bigraphs are all the local bigraphs with one root, and one or zero holes.

An important operation about (bi)graphs, is the tensor product. Intuitively, the tensor prod-
uct puts “side by side” two bigraphs, given G : m X X n Y Y and H : m X X
n Y Y , their tensor product is a bigraph G H : m m XX X X n n YY Y

Y defined when global names in X X and Y Y are disjoint. Two useful variants of tensor prod-
uct can be defined using tensor and composition: the parallel product , which merges shared
names between two bigraphs, and the prime product , that also merges all roots in a single one.
As shown in [Mil04, DB06], all bigraphs can be constructed by composition and tensor product
from a set of elementary bigraphs:

1 : 0 /0 /0 1 /0 /0 is the barren (i.e., empty) root;

mergen : n /0 /0 1 /0 /0 merges n roots into a single one;

γm n X Y : m n XY X Y m n Y X X Y permutes the first m
roots having local names in X with the following n roots with local names in Y .

x : 0 /0 x 0 /0 /0 is a closure, that is it maps x to an edge;

y X : 0 /0 X 0 /0 y substitutes the names in X with y, i.e., it maps the whole set
X to y; as a shortcuts, we write y X to mean y0 X0 yn 1 Xn 1;

X : 1 X X 1 /0 X means that names in X are switched from local to global

conversely, X : 1 /0 X 1 X X localizes the global names of X .

Finally, Kx X : 1 X /0 1 /0 x is a control which may contain other graphs, and it has
free ports linked to the name in x, whilst the names X are connected to its binding ports.

We use the convention that local names are enclosed in parenthesises.
Bigraphs can be given always in discrete normal form: the idea of this normal form is to

separate wirings (i.e., linkings) from discrete bigraphs (i.e., nesting of nodes). The following
is an easy generalization of [DB06, Theorem 1] to the case of bigraphs with multiply located
names.

Theorem 1 (Discrete Normal Form (DNF)) 1. Any binding bigraph
G : I n YB YB YF can be expressed as

G i n yi Xi i YF
wi Wi i Z zi zi Zi D

where D : I m X X W Z is a name discrete.

2. Any name discrete D : I m X X W Z can be expressed as

D α P0 Pn 1 π

where α is a renaming, and π a permutation.
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(a) l

x0 x1 xn

(b) L

Ay0

y1
ym

x0 x1 xn

. . .

Figure 2: Example of an atomic label (a) and a non-atomic one (b).

3. Any name-discrete prime P : J 1 UB U can be expressed as

UB mergen k idU α0 αn 1 M0 Mk 1 π

where every Mi : Ji 1 /0 UM
i is a free discrete molecule, and for renamings αi : Vi UC

i ,
we have U i nUC

i i k UM
i .

4. Any free discrete molecule M : K 1 /0 x V can be expressed as

M Kx S idV P

where P : H 1 S S V is a name discrete.

3 Graph Grammar for Bigraphs

In this section we introduce a language for binding bigraphs. It is parametric over a ranked
alphabet of labels a n exit : a n in : n , where a are the atomic
labels, ranged over by l, and n are the non-atomic labels, ranged over by L. Each label is given
an exit-rank, exit l , enumerating the “exiting tentacles”. Non-atomic labels have an in-rank
in L , enumerating the label’s “incoming tentacles”. We often denote by the set a n.

One may think of a node with an atomic label l as an hyperedge with exit l tentacles, as in
Figure 2(a). A node labelled with L has exit L tentacles, and may contain a subsystem whose
exiting tentacles are either linked to the in L ports of the node, or go “outside” the node, see
Figure 2(b). More formally, the language of graphs is as follows.

Definition 5 (Agent graphs) Let be an infinite set of names, be an infinite set of variables,
and be a ranked alphabet of labels. An agent-graph A is a term generated as follows:

A :: ε 0 l x L x A y X A A A A νz A A w z A z A z

where x y ; l a, L n with exit l exit L x , in L y ; X ; and w z .
Moreover, in a term A, each X is used at most once.

Intuitively, ε represents the absence of any system, that is, no agents at all, while 0 represents
an empty agent (i.e., an agent with no nodes). We denote by l x atomic hyperedges whose
tentacles are linked to the names in x, whilst by L x A y non-atomic hyperedges having exiting
tentacles linked to the names in x, containing a subgraph A whose names y are linked on the edge
itself. Graph variables X are needed for representing open systems, i.e., graphs with holes.
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;τ ε : τ ;τ 0 : /0 τ ;τ l x : /0 x τ
Γ ;τ A : σ y ρ y σ /0

Γ ;τ L x A y : σ ρ x

Γ ;τ A : σ ρ Γ ;τ A : σ ρ τ τ /0
Γ Γ ;τ τ A A : σ σ ρ ρ

Γ ;τ A : σ ρ Γ ;τ A : σ ρ τ τ /0
Γ Γ ;τ τ A A : σσ ρ ρ

X : σ ;τ X : σ τ
Γ ;τ A : σ ρ

Γ ;τ νx A : σ x ρ x
Γ ;τ A : σ ρ π permutation

π Γ ;τ A : σ ρ

Γ ;τ A : σ ρ x σ
Γ ;τ A x y : σ y x ρ

Γ ;τ A : σ ρ x σ
Γ ;τ A x y : σ ρ x y

Γ ;τ A : σ ρ x x ρ
Γ ;τ A x : σ x ρ

Γ ;τ A : σ ρ x σ
Γ ;τ A x : σ x ρ x

Figure 3: Type inference rules for agent-graphs.

Two agent graphs A B can be composed in parallel in two different ways: A B “merges” two
graphs into a unique one (i.e., in the same location), while A B puts the two systems side by
side, i.e., they keep living in different locations.

As usual, νy A limits the scope of y to A, while A w z is the explicit substitution of name w
with z. Notice that the agent-graph A w z exhibits the name z also when w does not appear in
A; in this case, the operator w z “creates” unused (or idle) names.

Finally, A z localizes z to (the location of) A. This means that z can only be accessed by/linked
to nodes lying in the location of A, that is, they must be inside or in parallel ( ) to A. Dually, A z
globalizes z, allowing a localized name to be used also by nodes in different locations.

From the above intuition, it is clear that not all terms generated by this grammar are meaning-
ful. For instance, what is the meaning of A B or A z when A is a system with more than one
location? In order to rule out meaningless terms, we introduce a typing system for agent graphs.

Definition 6 (Type system for agent graphs) Simple types τ σ ρ are finite sets of names.
An agent-type τ τ is a pair formed by a list τ τ0 τn 1 of simple types (where is the

empty list), and a simple-type τ , such that τ τ0 τn 1 /0.
An environment is a pair Γ ;τ formed by a list of typed variables (Γ X : τ X0 : τ0 Xn 1 :

τn 1) and a simple-type (τ), such that τ τ0 τn 1 /0.
A typing judgement is of the form Γ ;τ A : σ ρ , whose inference rules are in Figure 3.

Agent-types τ τ τ0 τn 1 τ describe both the locations of a graph, and the names that
the graph exposes to the environment. Names in τ are “global”, and can be used from every
location; instead, names in τi can be used only inside the i-th location of the system.

We are interested in open systems, that is systems with “holes”. An environment Γ ;τ X0 :
τ0 Xn 1 : τn 1 ;τ declares the “inner interface” of an agent: the names of the variables (Xi for
i n), with their sets of local names (τi are the names local to Xi), and the set of incoming global
names (τ), i.e., names that can be used from within any variable.

Notation. List concatenation is denoted simply by juxtaposition. We extend the operators ,
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lX
x

z

x w

u
l Y

x

L

y

y

Y : x X : x z ; y νu l x u X z z w L y u Y l w x x w : w w x y

Figure 4: An example of an agent-graph.

and over set lists as follows: x τ iff there exists τ̄ τ such that x τ̄; let S be a set,
then τ0 τn 1 S τ0 S τn 1 S and τ0 τn 1 S τ0 S τn 1 S . Γ1 Γ2 is the
concatenation of Γ1 and Γ2, defined when dom Γ1 dom Γ2 /0. We introduce some useful
shortcuts: νx A νx x 1 νx0 A; A x y A x0 y0 xn 1 yn 1 when x y n;
A X x A x0 x x X x if X /0, A /0 x A z x for some z fresh (i.e., z is not
used by A); finally A X x A X0 x0 Xn 1 xn 1 when X x n.

Some intuitive explanation of the typing rules may be useful. Empty agents have only global
names, as defined by the environment. Notice that 0 is the null process, which is an agent, while
ε is no agent at all. An atomic hyperedge whose exit-tentacles are linked to the names x exposes
those (global) names to a context, plus the ones added by the environment. As before, a non-
atomic hyperedge shows names x that are linked to its exit-tentacles, plus the global ones defined
in the environment. The difference is that it contains a graph term having y local names, that are
linked to the hyperedge’s input tentacles, and hence they are not visible from the context.

The names exposed by a composition ( ) of two subgraphs are the union of the names exposed
by the two subgraphs. The rule for is quite similar, but in this case the two graphs keep their
different locations, and hence the names can be treated in a different way, so global names are the
union of agents’ global names, whilst local names remains unchanged, i.e, the two lists of local
names are concatenated. If a variable has type σ in an environment Γ, then it exposes σ local
names and the global names τ defined by the environment. The restriction deletes a name from
the set of global or local exposed names. The next rule describes the possibility to reorder the
variables in the environment; it will be important in the definition of a category for agent-graphs.

For the substitution A w z there are two cases: (1) if w is localized, it will be substituted
by z; (2) if it is global the substitution (possibly) deletes w and adds z to the set of global names.
Notice that if w z are not used in A, then it effectively adds the name z to its interface.

An example of an agent-graph is given in Figure 4, where white nodes are closed (that is,
nodes not accessible from the context); the other are the external nodes (which can be visible by
a context): the grey nodes are global and the black ones are local.

Now, we can prove the following properties on our language.

Proposition 1 If Γ ;τ A : σ τ and Γ ;τ A : σ τ then σ σ and τ τ .

Lemma 1 (substitution lemma) The following rule is admissible.

Γi ;τi Ai : σi ρi 0 i n i j τi τ j /0 X0 : σ0 Xn 1 : σn 1 ; n 1
i 0 ρi A : η ζ

Γ0 Γn 1 ; n 1
i 0 τi A A0 X0 An 1 Xn 1 : η ;ζ
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As happens often with graph grammars, the same system may be denoted by many terms.
Therefore, it is convenient to introduce a structural congruence over terms, capturing graph iso-
morphisms up-to free nodes. Congruence judgments are of the form Γ ;τ A B, for A B terms
of the language. This turns our language into a graph algebra, whose axioms are in Appendix A.

Proposition 2 Let Γ ;τ A A , Γ ;τ A : σ ρ if and only if Γ ;τ A : σ ρ .

4 Interpreting Agent Graphs as Binding Bigraphs

In this section we give an interpretation of agent graphs as binding bigraphs, showing that the
language is sound and complete, and that the axiomatization captures bigraphical equivalence.
In order to simplify the translation from our algebra to bigraphs and back, we first introduce a
category for agent-graphs.

Definition 7 The category A of agent-graphs, over a ranked alphabet , has graph types
σ ρ as objects, and judgments on agent-graphs as morphisms, that is, if X0 : η0 Xn 1 :

ηn 1 ;τ A : σ ρ then X0 Xn 1 A : η τ σ ρ is a morphism. Composition is
defined in virtue of Lemma 1.

Proposition 3 A ; /0 ε : /0 is a strict symmetric monoidal category.

4.1 Interpretation of agent-graphs as binding bigraphs

Let be a ranked alphabet of labels; we define an interpretation functor from the agent-graph
category A to the binding bigraph category BBg , for a suitable bigraphical signature

.
The idea is to translate the agent-graph hyperedges into nodes, and nodes (or names) into

links (i.e., outer names and edges); hence, the bigraphical signature corresponds to the alphabet
of labels. Formally:

l : 0 exit l l a L : in L exit L L n

We can now define the functor : A BBg by induction on the typing judgments:

Objects: σ ρ σ σ τ
Morphisms: ;τ ε : τ idτ

;τ 0 : /0 τ 1 idτ

;τ l x : /0 x τ lx idτ

Γ ;τ L x A y : σ ρ x Lx y Γ ;τ A : σ y ρ
X : σ ;τ X : σ τ id σ idτ

Γ Γ ;τ τ A A : σ σ ρ ρ Γ ;τ A : σ ρ Γ ;τ A : σ ρ
Γ Γ ;τ τ A A : σσ ρ ρ Γ ;τ A : σ ρ Γ ;τ A : σ ρ

Γ ;τ νx A : σ x ρ x Γ ;τ A : σ ρ if x σ
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Y : x X : x z ; y νu l x u X z z w L y u Y l w x x w : w w x y

1
z x

l

0
w x

0
x

lL

1
w

y

y

G : 2 z x x z x y
2 w w x y w

Figure 5: An example of encoding an agent-graph into a binding bigraph.

Γ ;τ νx A : σ ρ x x Γ ;τ A : σ ρ x if x σ
Γ ;τ A x y : σ y x ρ y x Γ ;τ A : σ ρ if x σ

Γ ;τ A x y : σ ρ x y y x Γ ;τ A : σ ρ x if x σ
Γ ;τ A x : σ x ρ x Γ ;τ A : σ ρ x

Γ ;τ A x : σ x ρ x x Γ ;τ A : σ ρ if x σ
π Γ ;τ A : σ ρ Γ ;τ A : σ ρ π

Basically, each variable of type σ is encoded as a site having σ local names; therefore, variable
permutation is site permutation. Restricted names are represented by bigraph edges, not accessi-
ble from the context. The graph 0 is represented by the empty root 1. An example is in Figure 5.

We can now prove the following results about this semantics for . First, it respects the
structure of the two categories:

Proposition 4 : A ; /0 ε : /0 Bbg id 0 /0 /0 is a strict monoidal
functor.

Moreover, the axiomatization of the graph algebra given in Appendix A is sound and complete
with respect to bigraph equivalence.

Proposition 5 Let A A be two agent-graphs; then, for every environment Γ ;τ: Γ ;τ A A
if and only if Γ ;τ A : σ ρ Γ ;τ A : σ ρ .

4.2 Representing binding bigraphs with agent-graphs

In this section we show that our language is expressive enough to cover all binding bigraphs, over
a given signature . To this end, we define a translation from binding bigraphs to agent-graphs
of a language whose ranked labels are defined by means of the bigraphical signature.

k k : 0 n atomic k k : m n non atomic exit in

exit k n for k : m n in k m for k : m n non atomic

The representation function maps objects of the category Bbg to agent-types, as
n X X X X X . In order to simplify the translation of bigraphs, in virtue of

Theorem 1 we can suppose w.l.o.g. that all binding bigraphs are in discrete normal form. Let
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1
z x

l

0
w x

0
x

lL

1
w

y

y

G : 2 z x x z x y
2 w w x y w

0

v1

x
1

v0

z x

y
Q0 : x Q1 : x z ; y

νz l x z Q1 ε z L y z Q0 l w x x s s ε w z w : w w x y

Figure 6: An example of encoding a binding bigraph into an agent-graph.

G : m XB XB XF n YB YB YF , be in discrete normal form as follows

G i n yi Xi i YF
wi Wi i Z zi zi Zi a b P0 Pn 1 π

then, for Q Q0 Qm 1 a list of m variables, we define

G Q νz Z 1 νz0 p0 Q pn 1 Q

b a W0 w0 W YF 1 w YF 1 X0 y0 Xn 1 yn 1

where p0 pn 1 P0 Pn 1 π v0
X0

vm 1
Xm 1

.

Given p UB mergeh k idU a0 b0 ah 1 bh 1 m0 mk 1 , then

p Q K0
x0 S0 p0

Q Kki 1

xki 1 Ski 1
pki 1

Q

v j0
Xj0 Q b0 a0 a0 v

jhi 1

Xjhi 1 Q bhi 1 ahi 1 ahi 1 UB

vi
Xi Q Qi

Kx /0 1 Q K x where K atomic

Kx S p Q K x p Q S s s where K non-atomic, and s fresh

where the nodes v0 vm 1 have special controls not present in , and they are used only
to simplify the translation. In practice, these special nodes give a “name” to each hole of the
bigraphs, i.e., the node vi represents the i-hole of the bigraphs. Notice that, the hole sequence
may not follow necessarily the numeration of holes, as shown in the bigraph in Figure 6.

The following result, states the expressivity of our language.

Proposition 6 Let G : m XB XB XF n YB YB YF be a binding bigraph. Then,
G Q is an agent-graph s.t. Q : XB;XF G Q : YB YF , and Q : XB;XF G Q : YB YF G.
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A ; /0 ε : /0P ; /0 ε : /0 L ε : H ε : /0

Bbg id 0 /0 /0Big id 0 /0 Lbg id Pbg id /0

Π

Figure 7: Relations among the categories under investigation.

We can also establish nice connections between the axiomatizations of the two categories.

Proposition 7 Let G G : m XB XB XF n YB YB YF be two binding bigraphs
over a given signature. Then, G G if and only if Q : XB;XF G Q G Q.

Proposition 8 For Γ ;τ A : σ ρ a typing judgment: Γ ;τ Γ ;τ A : σ ρ dom Γ A.

These results induces a normal form for agent-graphs inspired to the discrete normal form of
binding bigraphs. This normal form tries to separate the notions of nesting and linking:

A νz Ā0 Ān 1 X x

Ā L0 x0 Ā0 Y0 y0 y0 Lm 1 xm 1 Ām 1 Ym 1 ym 1 ym 1

l0 z0 lk 1 zk 1 X0 Z0 z0 z0 Xh 1 Zh 1 zh 1 zh 1 W

Proposition 9 Every agent-graph is structural equivalent to an agent-graph in normal form.

Finally, notice that the mapping : Bbg A is not a functor, because the com-
position of wirings in binding bigraphs is not respected by the graph composition defined in
virtue of Lemma 1. Therefore, Bbg and A are not isomorphic. However, as we will
see next, composition is respected in the important subcategories of pure and local bigraphs.

5 Characterize pure, local and prime bigraphs

In this section we show that pure, local and prime bigraphs can be captured by simple syntactic
conditions on the language and types of the typed language presented in Section 3. Indeed, these
subcategories are covered by the same sublanguage, obtained by removing and :

A :: ε 0 l x L x A y X A A A A νz A A w z (1)

Despite we use the same (sub)language, and using essentially the same typing rules of Figure 3,
we are able to describe both pure and local bigraphs, just by restricting the form of types and
typing environment. A summary diagram of the correspondence among the categories under
investigation is in Figure 7.

5.1 Pure bigraphs

In pure bigraphs all names are global, hence, variables and agents cannot have localized names.
Therefore, a typing system for pure bigraphs is derivable from the system in Figure 3 by simply
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;τ ε : 0 τ ;τ 0 : 1 τ ;τ l x : 1 x τ

Γ ;τ A : 1 ρ
Γ ;τ L x A : 1 ρ x X ;τ X : 1 τ

Γ ;τ A : 1 ρ Γ ;τ A : 1 ρ τ τ /0
Γ Γ ;τ τ A A : 1 ρ ρ

Γ ;τ A : n ρ Γ ;τ A : n ρ τ τ /0
Γ Γ ;τ τ A A : n n ρ ρ

Γ ;τ A : n ρ
Γ ;τ νx A : n ρ x

Γ ;τ A : n ρ π permutation
π Γ ;τ A : n ρ

Γ ;τ A : n ρ
Γ ;τ A x y : n ρ x y

Figure 8: Typing rules for restricted agent-graphs where all names are global.

restricting to types of the form /0 τ , while the variables in the environment can have only /0
as type. The only function of /0 is to count the locations of the system. Therefore a typing
judgement is simply of the form Γ ;τ A : n ρ where A is a term as per (1); a global type
n ρ is a pair where n and ρ is a simple types; an environment Γ ;τ is a list of variables

Γ X X0 Xn 1, together with a simple-type τ .
Notice that for L non-atomic, it must be in L 0, because there are no local names which can

be linked to an in-tentacle. This is enforced by the typing system, which is given Figure 8. These
rules are essentially the same of Figure 3, just with the restricted form of types and environments.

Definition 8 The category P of agent-graphs, over a ranked alphabet , has types m ρ
as objects, and judgments as morphisms, i.e., if X0 Xn 1 ;τ A : m ρ then X0 Xn 1 A :
n τ m ρ is a morphism. Composition is defined in virtue of Lemma 1.

Proposition 10 P ; /0 ε : /0 is a strict symmetric monoidal category.

The encoding functor : Big L and the representation function : P
Big are particular cases of the ones for binding bigraphs. Again the two maps establish a
bijection between the two categories.

5.2 Local bigraphs

In local bigraphs all names are localized, hence there are no global names, and variables can have
only their own names. So, the typing is obtained again from the system in Figure 3 by simply
restricting to types of the form σ /0 , while in the environment the set of the global names is
always /0. More formally, a typing judgement is of the form Γ A : σ where A is a term generated
by the grammar (1), a local type τ τ0 τn 1 is a list of simple types, and an environment Γ
is a list of typed variables (Γ X : τ X0 : τ0 Xn 1 : τn 1). The type inference rules are in
Figure 9. Notice that, in local bigraphs, non-atomic hyperedges can have non-zero in-rank.

Definition 9 The category L of agent-graphs, over a ranked alphabet , has local types
σ as objects, and judgments as morphisms, that is, if X0 : τ0 Xn 1 : τn 1 A : σ then
X0 Xn 1 A : τ σ is a morphism. Composition is defined in virtue of Lemma 1.
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ε : 0 : /0 l x : x
Γ A : σ y y σ /0

Γ L x A y : σ x

X : σ X : σ
Γ A : σ Γ A : σ
Γ Γ A A : σ σ

Γ A : σ Γ A : σ
Γ Γ A A : σσ

Γ A : σ
Γ νx A : σ x

Γ A : σ π permutation
π Γ A : σ

Γ A : σ
Γ A x y : σ x y

Figure 9: Typing rules for restricted agent-graphs where all names are local.

0 : /0 l x : x
Γ A : σ Γ A : σ Γ Γ 2

Γ Γ A A : σ σ

X : σ X : σ
Γ A : σ

Γ νx A : σ x
Γ A : σ

Γ A x y : σ x y

Figure 10: Typing rules for restricted agent-graphs with one locality.

Proposition 11 L ε : is a strict symmetric monoidal category.

The two encoding functors : Lbg L , and : L Lbg are par-
ticular cases of the ones for binding bigraphs. Notice that, in this particular case, is actually
a functor; and, as before, the two functors establish a bijection between the two categories.

5.3 Prime bigraphs

Following the idea of the functor from agent-graph to bigraphs, we can identify a subcate-
gory of A, where all agents have zero or one variable. These are prime bigraph, that is bigraphs
with at most one hole. One may think of these bigraphs as single-located (open) systems.

Again we can characterize pure prime bigraphs by a restriction on agent types. A typing
judgement is of the form Γ A : σ where A is zero or one variable term generated by A :: 0
l x X A A νz A A w z . A prime type σ is just a simple type, and an environment Γ is
a list of typed variables of at most length one, i.e., Γ :: X : ρ . The induced type inference
rules are in Figure 10.

Definition 10 The category H has simple types (τ) as objects, and judgments as morphisms,
i.e., if X : τ A : ρ then X A : τ ρ is a morphism or if A : ρ then A : /0 ρ is a
morphism. Composition is defined as follows:

Γ A : τ X : ρ A : ρ
Γ A A X : ρ

Proposition 12 H 0 : /0 is a strict symmetric monoidal category.
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The two encoding functors : Pbg H and : H Pbg can be
defined as a “simplification” of the ones for local bigraphs.

Proposition 13 Let A A be terms; then, for every environment X : τ: X : τ A A if and only
if X : τ A : τ X : τ A : τ .

Proposition 14 Let H H : Y be two prime graphs; then, H H iff H
H . Instead, if H H : X Y , then H H iff Q : X H Q H Q.

Forgetting localities. Let us consider only atomic signatures a, that is, where all controls
are atomic, and hence there is no nesting of nodes. In this case, we can define a functor :
Lbg a Pbg a which “forgets” the localities of a local bigraph, merging all roots into a
single one and all sites (holes) into a single one. Formally:
Objects: X0 Xn 1 X0 Xn 1.
Morphisms: V E ctrl prnt link V E ctrl prnt link where prnt v 0, for all v.

The previous functors and the forgetful functor induce a forgetful functor Π :
L a H a , defined as follows:
Objects: Π σ0 σn 1 σ0 σn 1.
Morphisms: given a graph in normal form A νz Ā0 Ān 1 X x , where every

subgraph Āi li
0 zi

0 li
ki 1 zi

ki 1 Xi
0 Zi

0 zi
0 Xi

hi 1 Zi
hi 1 zi

hi 1 , then

Π A νz l0
0 z0

0 l0
k0 1 z0

k0 1 ln 1
0 zn 1

0 ln 1
kn 1 1 zn 1

kn 1 1

X Z0
0 z0

0 Z0
h0 1 z0

h0 1 Zn 1
0 zn 1

0 Zn 1
hn 1 1 zn 1

hn 1 1

In practice the above functor merges all the separate agent-graphs into a single-located graph. It
translates a operator with the one and unifies all variables into a single one.

As a consequence of the definitions of the functors defined above, we can prove the following
results. Notice that the lists X , Q and τ are either empty or just singletons.

Proposition 15 Let X : τ A : ρ Π Γ B : σ ; then, X : τ Γ B : σ X A.

Proposition 16 1. Let P : X Y be a prime bigraph, then Q : X P Q P.

2. Let X : τ A : σ be a term, then X : τ X : τ A : σ X A.

6 Comparing with SHR hypergraphs and ADR designs

Remarkably, our language for binding bigraphs can be used for capturing formalisms introduced
in literature, often for quite different purposes. Here we consider the hypergraphs used in Syn-
chronized Hyperedge Rewriting (SHR) [FHL 05] and the “designs” of Architectural Design
Rewriting (ADR) [BLMT07]. Both are derived from the algebra of graphs introduced first in
[CMR94].
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SHR hypergraphs. SHR is a framework that allows hypergraph transformations by means of
local productions replacing a single hyperedge by a generic hypergraph, possibly with constraints
given by the surrounding nodes. The global rewriting is obtained by combining different local
production whose conditions are compatible (with respect to some synchronization model).

In this paper, we are interested only in SHR hypergraphs, which are inductively defined as:

G :: 0 l x G G νx G

where 0 is the empty graph, the hyperedge l is linked to the nodes in x, and ν binds x in G.
Clearly, the SHR grammar is a particular case of the one for prime bigraphs (Section 5.3), and

specifically when the variable and substitutions are dropped.
ADR designs. ADR graphs (called designs) resemble SHR graphs, but they have a notion of
graph nesting, as some hyperedges can contain other graphs. Such nesting is used for incremental
modelling, that is, edges can be refined into graphs or vice versa graphs collapse into edges. The
ADR designs are inductively defined as:

D :: L λx G G :: 0 x l x G G νx G D x

where 0 is the empty graph, the hyperedge l is linked to the nodes in x, ν binds x in G, D x is
a design generated by attaching design D to nodes x, and finally L λx G represent a design L,
with “body graph” G and exposing the names x in its interface.

The grammar of designs recalls the one defined for local bigraphs, when the composition is
omitted. In such a case, we deal with graphs residing in only one location. A formal translation
of the ADR design grammar into the grammar in (1) can be defined as follow:

T 0 0 T x 0 z x z fresh T G1 G2 T G1 T G2

T l x l x T νx G νx T G T L λx G y L y G x

By means of these translations of SHR hypergraphs as prime bigraphs, and ADR designs as
local bigraphs, we can transfer results and constructions among formalisms developed indepen-
dently. As examples, it is possible to extend the SHR semantics allowing for not only replacing
single hyperedges, but more complex graphs; moreover, we can also define congruent bisimula-
tions for SHR systems via the so-called IPO construction over bigraphical reactive systems.

7 Conclusion

In this paper we have first defined an algebra of typed term graphs which corresponds precisely to
binding bigraphs, on a given signature. Secondly, we have shown that particular sublanguages of
our main language properly characterize interesting subclasses of bigraphs, more precisely: pure
and local bigraphs. Moreover, on this last kind of bigraphs we also give a reduced language for
dealing with one-location (bi)graphs, named prime bigraphs. So, those languages can be used in
place of the more complex bigraph algebra already present in literature. A family of bigraphical
calculi has been introduced in [DK08]; however, these calculi has been suitably restricted for
modelling biological systems and do not cover all possible bigraphs over a given signature.
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Finally, it turns out that these languages are strictly connected with two well-know formalisms:
Synchronized Hyperedge Replacement hypergraphs, which can be represented as a sublanguage
of the algebra for prime bigraphs (over atomic signatures), and Architectural Design Rewriting
designs, which are a sub-case of the local bigraphs’ language.

A possible future work is to take advantage of the rich theory provided by bigraphical reactive
systems [JM03], in order to obtain interesting results about SHR and ADR. In particular, we hope
to generalize the transitions allowed in SHR graphs, which only rewrites a single hyperedge, to
more general ones dealing with (sub)graphs. Moreover, bigraphs allow to synthesise labelled
transition systems out of rewriting rules, via the so-called idem-pushout construction [LM00];
it is important to notice that the bisimilarity induced by this labelled transitions system (LTS)
is always a congruence. Therefore, given a reactive system over SHR (ADR) graphs, we can
derive the labelled transition system in bigraphs, and remap it on SHR (ADR) graphs. Then, the
inductive definition of SHR (ADR) agents can be useful for defining an SOS-like presentation of
the LTS derived in this way.

Acknowledgments. The authors thank Emilio Tuosto and Ivan Lanese for useful discussions
about SHR.
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Notes in Computer Science 3921, pp. 187–201. Springer, 2006.

[BDGM07] L. Birkedal, T. C. Damgaard, A. J. Glenstrup, R. Milner. Matching of Bigraphs.
Electr. Notes Theor. Comput. Sci. 175(4):3–19, 2007.

[BGH 08] M. Bundgaard, A. J. Glenstrup, T. T. Hildebrandt, E. Højsgaard, H. Niss. Formal-
izing Higher-Order Mobile Embedded Business Processes with Binding Bigraphs.
In Lea and Zavattaro (eds.), COORDINATION. Lecture Notes in Computer Sci-
ence 5052, pp. 83–99. Springer, 2008.

[BLMT07] R. Bruni, A. Lluch-Lafuente, U. Montanari, E. Tuosto. Service Oriented Architec-
tural Design. In Barthe and Fournet (eds.), Proc. TGC. Lecture Notes in Computer
Science 4912, pp. 186–203. Springer, 2007.

[CMR94] A. Corradini, U. Montanari, F. Rossi. An Abstract Machine for Concurrent Modular
Systems: CHARM. Theor. Comput. Sci. 122(1&2):165–200, 1994.

[DB06] T. C. Damgaard, L. Birkedal. Axiomatizing Binding Bigraphs. Nord. J. Comput.
13(1-2):58–77, 2006.

[DK08] T. C. Damgaard, J. Krivine. A Generic Language for Biological Systems based on
Bigraphs. Technical report TR-2008-115, IT University of Copenhagen, Dec. 2008.

Proc. GT-VMT 2010 16 / 18



ECEASST

[FHL 05] G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, E. Tuosto. Synchronised Hyper-
edge Replacement as a Model for Service Oriented Computing. In Boer et al. (eds.),
Proc. FMCO. Lecture Notes in Computer Science 4111, pp. 22–43. Springer, 2005.

[GM07] D. Grohmann, M. Miculan. Reactive Systems over Directed Bigraphs. In Caires
and Vasconcelos (eds.), Proc. CONCUR 2007. Lecture Notes in Computer Sci-
ence 4703, pp. 380–394. Springer, 2007.

[JM03] O. H. Jensen, R. Milner. Bigraphs and transitions. In Proc. POPL. Pp. 38–49. 2003.

[JM04] O. H. Jensen, R. Milner. Bigraphs and mobile processes (revised). Technical re-
port UCAM-CL-TR-580, Computer Laboratory, University of Cambridge, 2004.

[LM00] J. J. Leifer, R. Milner. Deriving Bisimulation Congruences for Reactive Systems.
In Palamidessi (ed.), Proc. CONCUR. Lecture Notes in Computer Science 1877,
pp. 243–258. Springer, 2000.

[LM06] J. J. Leifer, R. Milner. Transition systems, link graphs and Petri nets. Mathematical
Structures in Computer Science 16(6):989–1047, 2006.

[Mil01] R. Milner. Bigraphical Reactive Systems. In Larsen and Nielsen (eds.), Proc. 12th
CONCUR. Lecture Notes in Computer Science 2154, pp. 16–35. Springer, 2001.

[Mil04] R. Milner. Bigraphs whose names have multiple locality. Technical report 603, Uni-
versity of Cambridge, CL, Sept. 2004.

A Structural congruence

The free name function f n is defined as follows with respect to an environment Γ τ .

f nΓ ;τ ε τ f nΓ ;τ L x A y f nΓ ;τ A y x τ
f nΓ ;τ 0 τ f nΓ ;τ A1 A2 f nΓ ;τ A1 f nΓ ;τ A2

f nΓ ;τ l x x τ f nΓ ;τ A1 A2 f nΓ ;τ A1 f nΓ ;τ A2

f nΓ ;τ νy A f nΓ ;τ A y f nΓ ;τ A w z f nΓ ;τ A w z
f nΓ ;τ A x f nΓ ;τ A f nΓ ;τ A x f nΓ ;τ A

f nΓ ;τ Xi τi τ if Xi:τi Γ
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In the following table, the structural congruence for agent-graph is defined with respect to
some environment Γ ;τ .

Γ
;τ

A
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A
Γ

;τ
A 1

A 2
A 2

A 1
Γ
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A 1

A 2
A 3
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Γ
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Γ
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Γ
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Γ
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Abstract: We generalize the order-theoretic variant of the Myhill-Nerode theorem
to graph languages, and characterize the recognizable graph languages as the class
of languages for which the Myhill-Nerode quasi order is a well quasi order. In the
second part of the paper we restrict our attention to graphs of bounded interface
size, and use Myhill-Nerode quasi orders to verify that, for such bounded graphs,
a recognizable graph property is an invariant of a graph transformation system. A
recognizable graph property is a recognizable graph language, given as an automaton
functor. Finally, we present an algorithm to approximate the Myhill-Nerode ordering.

Keywords: graph transformation, recognizable graph languages, Myhill-Nerode
theorem, invariants

1 Introduction

Regular languages and well quasi orders have proven to be useful analysis techniques in the field
of string rewrite systems. In particular, the Myhill-Nerode well quasi order of a regular language
L, which is strongly related to the well-known Myhill-Nerode equivalence, has nice properties
[EHR83, LV94]: the left and right concatenation are monotone w.r.t. the order and the regular
language L used to define it is upward-closed with respect to it. Let a string rewrite system
be given. From the first property it follows that if r is greater (with respect to the order) than
for every rewrite rule r of , then it holds that v is greater than w for each word v reachable
from w. The second property means, that for each word v that is greater than w, it holds that v L
if w L. Together, these two properties ensure that it is decidable whether a property, described
as a regular language containing exactly the words satisfying the property, is an invariant of a
string rewrite system.

Since the late 1980s several notions of regular graph languages – in this context called recog-
nizable graph languages – have been introduced [BC87, Cou90, BK06, BK08b], which all turned
out to be equivalent. Recognizable graph languages have found many applications, especially in
the field of complexity theory.

In the light of the above observations it is natural to ask how results from regular languages,
such as Myhill-Nerode equivalences, can be transferred and used for recognizable graph languages.
While Myhill-Nerode equivalences are typically used to show that a language is not regular, we
use them in a different way and study Myhill-Nerode quasi orders in order to verify that a specified
property is an invariant of a graph transformation system.

The definition of recognizable graph language we use in this paper is based on the notion
of automaton functor introduced in [BK08b], a category-based generalization of finite (word)
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automata. Like finite automata in the word case, automaton functors provide an operational
view on recognizable graph languages, which allows one to define a “Myhill-Nerode”-order
on automaton states rather than on graphs directly. This is convenient, because states typically
represent an infinite class of graphs. Still, automaton functors are in general infinite structures,
due to the unboundedness of graph interfaces. In Section 2 we briefly define recognizable graph
languages, automaton functors, and the category-theoretic notions at the heart thereof.

In Section 3 we generalize the order-theoretic variant of the Myhill-Nerode theorem to (recog-
nizable) graph languages; that is, we define the Myhill-Nerode quasi order on graph languages
and characterize recognizable graph languages as the class of languages for which this order is a
well quasi order.

In the second part of the paper we focus on the application of the Myhill-Nerode quasi order
in practice. First, in Section 4 we show that we need only define the automaton functor for a
restricted set of so-called atomic cospans, so that we do not need consider all cospans when
calculating the order.

As indicated above, the quasi order typically cannot be represented in a finite way, due to
the unboundedness of graph interfaces. In Section 5 therefore, we restrict our attention to
graphs which can be constructed with atomic cospans of bounded interface sizes, and we present
an algorithm which approximates (and in the case of deterministic automaton functors even
computes) the Myhill-Nerode quasi order of an automaton functor. Finally, we illustrate the
work with a short example in Section 6. The full version with the proofs can be found at
http://www.ti.inf.uni-due.de/publications/blume/invcheck.pdf

2 Preliminaries

In this section we briefly recall some concepts of category theory and recognizable graph lan-
guages. We presuppose a basic knowledge of category theory and order theory.

2.1 Category Theory and Recognizable Graph Languages

First we review and fix some notations. The category which has sets as objects, relations as arrows
and relation composition as composition operator is denoted by Rel . The subcategory which has
total functions as arrows instead of relations is denoted by Set . The composition of two arrows
f and g will be denoted by ; where f ;g g f indicates the arrow which is obtained by first
applying the arrow f and then the arrow g.

Let be a category with pushouts. A cospan c : J cL C cR K is a pair of -arrows
with the same codomain. Here, J and K are the domain (or inner interface) and codomain (or
outer interface) of the cospan c, respectively. The identity cospan for an object E is the cospan
consisting of twice the identity arrow of E. Let c : J cL C cR K and d : K dL D dR M be
cospans (where the codomain of c equals the domain of d). The composition of c and d is obtained
by taking the pushout of cR and dL. A semi-abstract cospan is an equivalence class of cospans,
where we take the middle object of the cospan up to isomorphism. Now, the cospan category
Cospan is defined as the category which has the objects of as objects, and semi-abstract
cospans as arrows. If the middle object is not important, a cospan c : J C K (an arrow in the
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cospan category from J to K) will be denoted as c : J K.
Let a set Σ of labels be given. A hypergraph G, later also simply called graph, is a four-tuple

VG EG G G , where VG is a finite set of vertices (or nodes) of G, EG is a finite set of
edges of G, G : EG VG is the attachment function and G : EG Σ is the labeling function.
Here, VG denotes the set of finite sequences of elements of VG. A hypergraph morphism f is a
structure-preserving map between two hypergraphs. A discrete graph is a graph which does not
contain any edges. The discrete graph with n nodes is denoted by Dn. The empty graph is denoted
by /0 instead of D0. The category of graphs and graph morphisms is denoted by HGraph .

A cospan of graphs (an arrow in the category Cospan HGraph ) can be seen as a graph with an
inner (left) and an outer (right) interface. Intuitively, the interfaces designate the parts of the graph
which can be “touched” from the outside. With G : /0 G /0 we denote the cospan consisting
of a graph G with empty inner and outer interfaces.

Cospans of graphs are closely related to graph transformation systems, in particular to the
double-pushout (DPO) approach to graph rewriting [SS05]. A DPO rewrite rule ρ : L ρ I ρ

R can be considered as a pair of cospans : /0 L ρ I and r : /0 R ρ I, which will in the
following be called left- and right-hand side, respectively. Then it holds that G ρ H if and only
if G ;c and H r ;c, for some cospan c.

We define recognizable graph languages by using automaton functors on the category of
cospans of graphs, as in [BK08b].

Definition 1 (Automaton functor, recognizability) Let a category with initial object /0 be
given. An automaton functor is a functor : Rel , which maps every object X of to a finite
set X of states of X and every arrow f : X Y to a relation f X Y , together
with two distinguished sets I /0 and F /0 of initial and final states, respectively.

An automaton functor is deterministic if every relation f is a function and every I
contains exactly one element.

An arrow f : /0 /0 is accepted by an automaton functor , if s t f , for some s I
and t F . The language L of an automaton functor contains exactly those arrows which
are accepted by it. A language L of arrows from /0 to /0 is a recognizable language if L L ,
for some automaton functor .

The intuition behind the definition is to have a mapping into a (locally) finite domain. The func-
tor property guarantees that decomposing an object in different ways does not affect acceptance in
any way. This is different from word languages, where there is essentially one way to decompose
an object into subobjects.

Familiar constructions on finite automata, such as the determinization construction, can be
easily generalized to automaton functors. Also, it was shown in [BK08b], that restricting to
discrete interfaces does not affect the expressiveness of the formalism. Due to the latter result, we
shall restrict to discrete interfaces in the rest of this paper.

The above definition can easily be generalized to accept languages between arbitrary objects.
However, in our setting we require only languages from the initial object to the initial object.

A characterization of recognizable graph languages can be obtained in terms of recognizable
languages in Cospan HGraph :
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Definition 2 (Recognizable graph language) A set L of graphs is a recognizable graph language,
if L G : /0 G /0 G L is a recognizable language in Cospan HGraph .

In the following we will not distinguish between L, a language of graphs, and L , a language
of (cospans of) graphs with empty interfaces.

2.2 Orders on categories

One of the basic concepts in checking invariants of regular languages is the notion of (well) quasi
orders. First, we review the definition of (well) quasi orders on arbitrary sets (see also [LV94]).

A quasi order (qo) is a binary relation M on a set M if M is reflexive and transitive. A quasi
order M on M is called well-quasi order (wqo) whenever if m1 m2 is an infinite sequence of
elements of M, then there exist integers i j such that 0 i j and mi m j. In the following we
will write instead of M if M is clear from the context.

Next, we consider a semigroup M and a quasi order on M. We say that is left-monotone
(resp. right-monotone) if for all m1 m2 m M the following condition is satisfied:

m1 m2 m m1 m m2 resp. m1 m2 m1 m m2 m

In the following we will define orders on the homsets of a category. More specifically, two
arrows f g can only be related by a quasi order if they have the same source and target objects.
Alternatively we could consider as a family of quasi orders, one for each homset.

The notion of order in categories is also present in enriched categories [GMM94, Kel82]. Note
however that unlike in enriched categories we do not necessarily require that the order is always
preserved by composition ( f f and g g implies f ;g f ;g ), since we will usually only
require right-monotonicity as defined above.

3 A Generalization of the Myhill-Nerode Theorem

In this section we generalize the theorem of Myhill-Nerode to graph languages. This theorem
says that a language is regular if and only if it is the union of equivalence classes of a monotone
(or right-monotone) congruence on words of finite index. There is an order-theoretic variant
of this theorem given in [EHR83, LV94] saying that a language is regular if and only if it is
upward-closed with respect to a monotone well quasi order.

In order to state this theorem in our framework we first need the notion of Myhill-Nerode
quasi order. Note that while the word or string variant of this theorem uses orders that are both
left-monotone and right-monotone, here we work only with right-monotone orders. Intuitively
this is sufficient since we start with the empty interface and attaching any cospan on the left can
always be simulated by attaching an appropriate cospan on the right.

Definition 3 (Myhill-Nerode quasi order) Let L be a graph language over Cospan HGraph . A
quasi order L on Cospan HGraph is called Myhill-Nerode quasi order (relative to L), if for
arbitrary cospans a b : /0 Dn the following condition is satisfied:

a L b iff c : Dn /0 : a ;c L b ;c L
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Based on L we can define the Myhill-Nerode equivalence L on cospans a b : /0 Dn as
follows:

a L b iff a L b and a L b

The Myhill-Nerode equivalence is called locally finite, if for every cospans a : /0 Dn the
equivalence class of a is a finite set.

One can prove that the Myhill-Nerode quasi order is in fact a quasi order on Cospan HGraph .
It also possesses two other properties which will be important in the following. (Note that all
proofs can be found in the appendix.)

Proposition 1 Let L be a graph language over Cospan HGraph . The Myhill-Nerode quasi
order (relative to L) is right-monotone and the language L is upward-closed with respect to L.

This proposition is the key to invariant checking. We say that a graph language L is an invariant
for a rule ρ if G L and G ρ H always implies H L.

Imagine a rule ρ is given by a pair of cospans r : /0 I and it holds that L r. If G is
rewritten to H via ρ we have that G ;c and H r;c for some cospan c : I /0. Now L r
implies G L H (right-monotonicity) and if G is contained in L, then H is contained in L as
well (upward-closure). Hence L is an invariant w.r.t. ρ . Furthermore if L r, there is a cospan c
violating the condition of Definition 3 and L is no invariant w.r.t. ρ . Hence we have that L is an
invariant for ρ if and only if L r.

Similar to the case of word languages we can characterize the recognizable graph languages in
terms of congruence classes as shown in [BK08b]. Furthermore Ehrenfeucht et al. [EHR83] give
a generalization of the Theorem of Myhill-Nerode by characterizing regular languages in terms of
well quasi orders instead of equivalence classes of finite index. As an important result we can lift
this theorem to the case of recognizable graph languages.

Theorem 1 (Generalized Myhill-Nerode Theorem) Let a graph language L over Cospan HGraph

be given. The following statements are equivalent:

(i) L is a recognizable graph language,

(ii) L is locally finite and L is the union of (finitely many) equivalence classes of L.

(iii) L is upward closed with respect to some right-monotone well quasi order L.

(iv) The Myhill-Nerode quasi order L is a well quasi order.

4 Atomic Cospans

In this section we introduce atomic graph operations which play the role of letters in the case of
words. These atomic graph operations are based on the algebra of graphs originally described by
Courcelle [BC87]. Each atomic graph operation is given by an atomic cospan, so that applying the
graph operation to a cospan (a graph with interfaces) amounts to composing the cospan with the
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atomic cospan of the operation. In the following, we will distinguish between graph operations
and atomic cospans used to define them.

We assume that the set of nodes of each discrete graph Dn is VDn v0 vn 1 . We set n
0 n 1 and we denote the disjoint union of two graphs G1 and G2 by G1 G2. We assume

that G1 and G2 are disjoint. Furthermore we define the disjoint union f g : G1 G2 H1 H2
of two graph morphisms f : G1 H1 and g : G2 H2 where H1 and H2 are disjoint as follows:

f g v
f v if v VG1

g v if v VG2

and f g e
f e if e EG1

g e if e EG2

Definition 4 (Atomic graph operations) Restriction of the outer interface: Let ρ : Dn 1 Dn
with ρ vi vi be an arrow between two discrete graphs. We define the cospan n as
follows: n : Dn Dn Dn ρ Dn 1.

Permutation of the outer interface: Let a permutation π : n n with π i i 1 for 0
i n 1 and π n 1 0 and an arrow σ : Dn Dn with vi vπ i between two discrete
graphs be given. We define the cospan n as follows: n : Dn Dn Dn σ Dn.

Transposition of the outer interface: Let a transposition τ : n n with τ 0 1, τ 1 0
and τ i i for 2 i n 1 and an arrow σ : Vn Vn with vi vτ i between two discrete
graphs be given. We define the cospan n as follows: n : Dn Dn Dn σ Dn.

Fusion of two nodes of the outer interface: Let n 1 and an equivalence relation θ Vn

v0 v1 v1 v0 , an arrow θmap which maps every node of Dn to its θ -equivalence class,
and an arrow ϕ : Dn 1 D with vi vi 1 θ , where D is the discrete graph with node set

v θ v Vn , be given. We define the cospan n as follows: n : Dn θmap D ϕ

Dn 1.

Connection of a single hyperedge: Let an edge label A Σ, m with 0 m n and a
hypergraph H which consists of a single hyperedge h with arity m and labeled with A be
given. We define the cospan A m

n as follows: A m
n : Dn e H Dn m e Dn

with e vi i h for 0 i m and e vi vi m otherwise.

Disjoint union with a single node: We define the cospan n as follows: n : Dn dL

Dn 1 Dn 1 Dn 1 with dL
Dn i and i : /0 D1.

The intuitions behind these atomic graph operations are as follows (see Figure 1): With the
cospan n we can hide the last node of the outer interface of a precomposed cospan. The cospan

n glues the first two nodes of the outer interface of a precomposed cospan and afterward
restricts the second node of this outer interface.

The cospans n and n permute the outer interface of a precomposed cospan. The
former maps the nodes of the outer interface in such a way that only the first two nodes are
transposed. The latter permutes the nodes of the outer interface such that every node is mapped to
its successor node.

In order to be able to construct new graphs the cospans n and A m
n can be used to

generate new nodes and edges. By composing n with an arbitrary cospan c : /0 G Dn

Proc. GT-VMT 2010 6 / 13



ECEASST

n

Dn Dn Dn 1

...
...

...

ρ

n

Dn Dn Dn

...
...

...
σ

n

Dn Dn Dn

...
...

...

σ

n

Dn D Dn 1

...

...
...

θmap ϕ

A m
n

Dn H Dn m Dn

...

...

...

...

A
...

...

e

n

Dn Dn 1 Dn 1

...
...

...

dL

Figure 1: Graph operations

we add a single, isolated node to G and extend the outer interface of c to Dn 1, such that the last
node of the extended outer interface is mapped to the new node. The cospan A m

n adds an
A-labeled hyperedge with arity m in such a way to G that the first m nodes of the outer interface
are mapped to the m nodes of the hyperedge h.

We can restrict our attention to these atomic graph operations, because any graph G (seen as
a cospan of the form /0 G /0) can be constructed by composing a finite number of them as
shown by the next proposition.

Proposition 2 Every cospan of the form c : Dm ϕL G ϕR Dn where the right leg ϕR is
injective can be constructed by a sequence op1 opk of atomic graph operations, i.e. c can be
obtained as the composition c op1 ; ;opk.

5 A Decidable Variant

In this section we develop an algorithm – based on the Myhill-Nerode quasi order – for checking
invariants for recognizable graph languages. The algorithm takes as input an automaton functor
which accepts the given graph language. In general this automaton functor has infinitely many
states, since for every interface Dn (n ) there exists a set of states. But for practical purposes
we need an automaton functor which is finite, i.e. has only a finite number of states.

In order to get automaton functors with a finite number of state sets, we only take cospans with
a bounded interface size into account.

Definition 5 (Bounded cospan) A cospan c : S T is called bounded (by k), if there exist graph
operations op1 op j such that c op1 ; ;op j and for every graph operation opi : Dni Dmi

for 1 i j it holds that ni mi k.

Definition 6 (Bounded Myhill-Nerode quasi order) Let a natural number k and a graph
language L over Cospan HGraph be given. The quasi order k

L on Cospan HGraph is called
bounded Myhill-Nerode quasi order (relative to L), if for arbitrary k-bounded cospans a b : /0 Dn
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the following condition is satisfied:

a k
L b iff c : Dn /0 c k-bounded : a ;c L b ;c L

The bounded Myhill-Nerode quasi order defined above gives us an over-approximation of L,
i.e., two cospans with a L b are for sure related by the relation k

L, but not necessarily vice versa.
Note that graphs with edges of arity more than k can not be constructed by cospans that are

bounded by k. Also for edges with smaller arity it is not guaranteed that they are constructible.
For example a k-grid consisting of binary edges needs interfaces of size at least k.

Since all automaton functors which accept only cospans of bounded interface size have a finite
representation, we are able to consider an algorithm which computes the Myhill-Nerode quasi
order relative to a given deterministic automaton functor similar to the algorithm for computing
the Myhill-Nerode equivalence by pairwise comparing two states with their successor states.

But for practical purposes the algorithm is not useful due to the fact, that in general the
deterministic automaton functor can be exponentially larger than the equivalent non-deterministic
automaton functor. Therefore we also allow non-deterministic automaton functors as input for
the algorithm. However this leads to some additional changes. Since the automaton functor
is non-deterministic, for a given state there exists a set of successor states instead of a unique
successor state and we cannot pairwise compare two states with their (unique) successor states. In
order to circumvent this difficulty, we allow an “one-sided error” by taking a stronger relation
than the Myhill-Nerode quasi order. Roughly, we are under-approximating language inclusion via
some form of simulation. A relation R on the states of an automaton functor is a simulation, if
the following condition is satisfied:

s1 R s2 s1 F s2 F op: s1 op s1 : s2 op s2 : s1 R s2

A state t2 simulates a state t1, denoted by t1 t2, if t1 R t2 holds for some simulation R.

Definition 7 (Bounded simulation) Let L be a graph language over Cospan HGraph and
an automaton functor, which accepts the language L. The quasi order k is called bounded
simulation (relative to L), if for arbitrary, k-bounded cospans a b : /0 Dm the following condition
is satisfied:

a k b iff s1 a I : s2 b I : s1 s2

Replacing the (bounded) Myhill-Nerode quasi order by the (bounded) simulation relation
results in fact in an one-sided error, as the next proposition shows:

Proposition 3 Let n k with n k, a b : /0 Dn be cospans and be the automaton
functor which accepts the language L. If a k b holds, then a k

L b holds. The inverse direction
holds if is deterministic.

Algorithm 1 on page 9 computes k as defined above. Note that this is a fixed-point algorithm
computing the greatest fixed-point. The relations i (one for each interface size) first contain all
possible pairs of states and are suitably refined in each step. First, we delete all pairs, where the
first state is final and the second is not. Then, for all pairs still in the relation we check whether
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each transition from the first state can be mimicked by the second such that the resulting states
are in the relation. If no more pairs can be deleted we have reached a fixed-point and terminate.
Then it is left to check whether

Algorithm 1 a b k
Input: Bounded cospans a b : /0 Dn with n k, an automaton functor
Output: true, if a k b and false, if a k b

set i Di Di for all 0 i k
for all s0 F , s1 /0 F do

delete s0 s1
0

repeat
for all s0 s1

i with 0 i k do
for all op A m

i i i i i i do
for all s0 op s0 do

if there exists no s1 op s1 , such that s0 s1
i then

delete s0 s1 from i

until no deletion has been performed in the last iteration
for all i I do

for all s0 a i do
if there exists no state s1 b i , such that s0 s1

n then
return false

return true

Theorem 2 Let an automaton functor and two bounded cospans a b : /0 Dn with n k be
given. Then a k b holds, if and only if a b k returns true.

We implemented the algorithm in a naive way: our implementation explicitly stores the relations
i in tables and iterates until no further changes occur. More details about the run-time and

memory requirement of the naive implementation are given in the next section; some ideas for
significant improvement are presented as future work in the conclusion.

6 Short Example

In this section we consider a multi-user file system where the access to the system is controlled by
several rules in order to guarantee some consistency properties. The case study was inspired by
[KMP02]. As in most cases, the violation of these consistency properties can be modeled by the
occurrence of one or more forbidden graphs. Therefore, we first introduce a k-bounded automaton
functor , i.e. an automaton functor processing only k-bounded graphs, which accepts every
graph G which contains a specified subgraph U .

The idea behind this automaton functor is as follows: The automaton functor used in this
example contains a state set Di for every discrete interface Di, 0 i k. Every state in each
state set stores two kinds of information: on the one hand the subgraph U of U which has already
been read and on the other hand a partial function f from VDi to VU describing which vertices of
U are contained in the interface Di. By Proposition 2, we can restrict the automaton functor to
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accept only atomic graph operations (see Section 4), since every cospan H can be decomposed
to a sequence of atomic graph operations op1 op such that H op1 ; ;op . For every
atomic graph operation op j : Dm Dn with 1 j , m n 0 k containing a subgraph
U of U and a state U f Dm the successor state U U f Dn is computed by
adding the new subgraph U to the subgraph U and updating the partial function f according to
op j resulting in the partial function f (see image below). Note that op j might contain various
subgraphs U and hence the automaton is heavily non-deterministic. More details concerning the
construction of this automaton functor can be found in [Blu08].

We can show that we obtain a functor which guarantees that the decomposition of the cospan
H does not affect the acceptance behavior of the automaton functor. The set of start states I

contains only the state /0 /0 consisting of the empty graph and the empty partial function. The
set of acceptance states F contains only the state U /0 consisting of the wanted subgraph and
the empty partial function.

Now we want to use this automaton functor
f Dn

U
U U

DnDm op j

U

for the verification of the multi-user file system.
We consider two properties which describe when
the consistency of the multi-user file system is
violated. The system is in a consistent state as
long as these properties are not satisfied. The
first property is the double write access of a user

to a file (double access), i.e. a user has two times a write access to the same file at the same time.
The second property is the write access of two different users to the same file at the same time
(two users). These two properties can be modeled by the following two graphs, where nodes
labeled with u (resp. f ) denote users (resp. files) and edges from a user-node to a file-node labeled
with w (resp. r) denote a write (resp. a read) access of that user to that file:

Note that it is not forbidden that a user has more than one read access to

u f
w

w
u

f

u

w

w

a file at the same time and that two or more users can have read access to
the same file at the same time even if one user has write access to that file.
Since recognizable languages are closed under boolean operations and with
the considerations above we can now construct an automaton functor that
recognizes all graphs violating one of the two properties, i.e., all graphs
that contain either of the two subgraphs.

Furthermore, the multi-user file system offers the usual operations such
as adding and removing users, creating, deleting and requesting files as well
as switching, dispossessing and transferring access rights. In the following,
we will show with the rules “User creates new file” and “User requests file” how these file system
operations can be modeled as DPO rewrite rules. The rule “User creates new file” applied for
some user u creates a new file f and gives the user a write access to this file. It can be modeled by
the following span:

u
0

u
0

u
0

fw
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The rule “User requests file” applied for some user u sets the write access of this user from the
current file to some other existing file. The following span models this rule:

u
0

f
1

f
2

u
0

f
1

f
2

u
0

f
1

f
2

w

w

Since every rewrite rule can be considered as two cospans and r (see Subsection 2.1) which are
the left and right hand side of the corresponding rewrite rule, we can verify the consistency of this
multi-user file system by checking, if the language of all graphs containing none of the forbidden
subgraphs is an invariant for each rule. Since the automaton functor accepts the complement
of this language, i.e., all graphs that do contain one of the forbidden subgraphs, we perform a
backwards analysis on each rewrite rule and check whether r k . If r is related to , then
the original rewrite rule does not violate the consistency of the multi-user file system. After the
application of the rule the consistency of the system is violated only if it was already violated
before the rule application, hence the language is verified to be an invariant.

We now use the algorithm described in the previous section to check the rewrite rules mentioned
above. For all interface sizes that we checked the result of the algorithm is that the language
is an invariant w.r.t. the first rule, but not w.r.t. the second rule. This is clear, since a user can
request write access to a file, to which another user has already write access. Note also that, due
to the under-approximation by simulations, there are actually rules which are correct, but are not
recognized as such by the algorithm.

Although the example is rather small, the computed simulation relation becomes very large
quickly. Table 1 presents the size of the simulation relation (according to the number of pairs
contained in the relation) and the run-time of the implementation of Algorithm 1 for some interface
sizes. The tests were performed on a Linux machine with a Xeon Dualcore 5150 processor and 2
GB of available main memory.

Maximum interface size
0 1 2 3 4

Size (in pairs) 400 3.425 31.314 323.995 3 7 106

Run-time (in seconds) 1s 1s 1s 2s 26s

Table 1: Size of the simulation relation and run-time of the algorithm

Note that for interfaces with a size more than 4 the size of the simulation relation exceeds
the amount of main memory. Nevertheless it is possible to verify all rewrite rules which have a
interface size up to 4.

7 Conclusions

The notion of recognizable graph language used in this paper has been introduced in [BK08b] and
is strongly related to [Cou90, Gri03, BK06]. Especially the notion of recognizability considered
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here is equivalent to Courcelle’s notion. For a detailed comparison see [BK08b]. In [BK08a] a
weaker notion of graph automata is introduced.

Invariant checking for graph transformation rules has already been considered in several papers:
in [FL97, BPR03] shape types and shapes are introduced in order to describe graph languages.
Both papers propose algorithms that analyze each rule and check whether (and how) it may change
the shape of a graph. In order to describe shapes the former uses context-free grammars whereas
the latter uses more expressive graph reduction systems, that are able to express properties such as
balancedness of trees. In [HPR06] a method for computing weakest preconditions of application
conditions, which are equivalent to first-order graph logic, is presented. This method can also
be used for invariant checking, by showing that for every rule the weakest precondition of the
invariant is implied by the invariant. Note that, in general, recognizable graph languages are more
expressive than first-order logic since every monadic second-order graph logic formula is known
to specify a recognizable graph language [Cou90]. Another related work [BBG 06] considers
graph patterns consisting of negative and positive components and shows that they are invariants
via an exhaustive search. Interestingly, this method made efficient by a symbolic algorithm based
on binary decision diagrams, an idea that we are trying to reuse in a somewhat different setting
(see remarks below).

We have not yet compared the effectiveness of our approach to these other approaches in detail,
but our method is different from all the others in that it is based on the Myhill-Nerode quasi order.

Our approach suffers from the restriction that we have to work with k-bounded cospans.
Especially we first over-approximate the relation L by k

L (by introducing k-boundedness),
which is subsequently under-approximated by k (by using simulation instead of language
inclusion). While it is difficult to imagine how to avoid the restriction to interfaces up to size k,
the determinization of the automaton functor , which would avoid the under-approximation,
should be achievable if we use a more succinct representation of automaton functors. We are
currently experimenting with the representation of automaton functors (which are basically very
large relations) with binary decision diagrams (BDDs), which are well-suited for the compact
representation of large (but finite) relations. Our experiments have so far been very promising.
With BDDs we can handle much larger interfaces and we expect to obtain less memory usage and
better run-times.

Finally, decomposing a graph into atomic cospans is basically equivalent to the path decompo-
sition of a graph and checking whether a graph is contained in the language is hence linear-time
for graphs of bounded pathwidth. For efficiency reasons it would be more suitable to consider
generalizations of tree automata that can handle tree decompositions of graphs, as it is similarly
done in the work by Courcelle. Hence we are currently investigating tree automata and their
generalization to graphs.
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Abstract: In the framework of graph transformation systems with Negative Ap-
plication Conditions (NACs) the classical notion of switch equivalence of deriva-
tions is extended to permutation equivalence, because there are intuitively equiva-
lent derivations which are not switch-equivalent if NACs are considered. By def-
inition, two derivations are permutation-equivalent, if they respect the NACs and
disregarding the NACs they are switch equivalent. A direct analysis of permutation
equivalence is very complex in general, thus we propose a much more efficient anal-
ysis technique. For this purpose, we construct a Place/Transition Petri net, called
dependency net, which encodes the dependencies among rule applications of the
derivation, including the inhibiting effects of the NACs.

The analysis of permutation equivalence is important for analysing simulation runs
within development environments for systems modelled by graph transformation.
The application of the technique is demonstrated by a graph transformation system
within the context of workflow modelling. We show the effectiveness of the ap-
proach by comparing the minimal costs of a direct analysis with the costs of the
efficient analysis applied to a derivation of our example system.

Keywords: graph transformation, Petri nets, process analysis, adhesive categories

1 Introduction

Given a workflow of a system, it is often interesting to know whether the workflow can be im-
proved, by executing the tasks in a different order, which might be more convenient for the
user or preferable from an efficiency point of view. If the workflow is modelled by a Petri net,
representing a deterministic process, these questions can be fairly easily answered: processes
incorporate a notion of concurrency that can be exploited to rearrange the tasks, while still re-
specting causality.

In this paper we consider workflow models with two further dimensions, which consider-
ably complicate the problem: first, we work in the general setting of (weak) adhesive categories
[LS05, EEPT06] where we can model systems with an evolving topology, such as (attributed)
graph transformation systems, in contrast to systems with a static structure. For the sake of con-
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ciseness, the definitions and results in this paper are presented for graph transformation systems,
and we refer to the companion technical report [HCEK10] for the general notions based on adhe-
sive categories. As a second dimension, we take into account Negative Application Conditions
(NACs) that are used to ensure the “absence” of forbidden structures when executing a transfor-
mation step: NACs significantly improve the specification formalisms based on transformation
rules leading to more compact and concise models as well as increased usability and as a matter
of fact they are widely used in non-trivial applications. The presence of NACs leads to more
complex interdependencies of tasks.

For this reason, we introduce a notion of permutation equivalence on derivations with NACs,
which is coarser and more adequate than the switch equivalence in the double-pushout (DPO)
approach including NACs. As defined in [Her09] two derivations are called permutation-
equivalent, if they respect the NACs and disregarding the NACs they are switch-equivalent.
Using the notion of switch equivalence with NACs directly does not lead to all permutation-
equivalent derivations of a given derivation in general. The main remaining problem is how to
derive the complete set of all permutation-equivalent derivations to a given one. For this purpose,
we construct a subobject transformation system (STS) via a standard colimit construction and
from this STS we construct a dependency net, given by a standard P/T Petri net, which includes
a complete account of the inhibiting effects of the NACs. The main result shows that complete
firing sequences of this net are one-to-one with derivations that are permutation-equivalent to the
given derivation, allowing us to derive the complete set of permutation-equivalent derivations.
Finally, for a given derivation of a simple example system with NACs, we perform a detailed
complexity analysis of the cost of identifying all permutation equivalent derivations using the
reduction to a Petri net and its reachability graph, and compare it with a lower bound of the costs
for a direct analysis, i.e. for computing all shift-equivalent derivations first, and then filtering out
the ones which do not respect the NACs. We obtain a significant improvement in speed, which
shows that the proposed technique can be efficient for many applications which involve the gen-
eration of permutation-equivalent derivations. Furthermore, the constructed P/T Petri net can be
used to derive specific permutations without generating the complete set first. In the context of
workflow analysis, both goals are of central interest for the modelling of a system.

The structure of the paper is as follows. Sec. 2 reviews the main concepts of permutation
equivalence for graph transformation systems. The construction of the dependency net is pre-
sented in Sec. 3 and in our main result it is shown to be sound and complete for computing the
set of permutation-equivalent derivations. Sec. 4 validates the efficiency of the analysis based on
an extended version of the running example. Finally, Sec. 5 sums up the main results, discusses
related work, and points out aspects of future work.

2 Permutation Equivalence

In this section we review the standard switch equivalence and the recently introduced permuta-
tion equivalence [Her09] for graph transformation systems based on the double pushout (DPO)
approach. The running example of this paper illustrates that there are derivations which are
intuitively equivalent and also permutation-equivalent but not switch-equivalent.
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Definition 1 (Graph Transformation System with NACs) A rule p Lp
l

Kp
r

Rp is
a pair of injective graph morphisms. A Negative Application Condition (NAC) for a rule
p is an injective graph morphism n : Lp N, having the left-hand side of p as source.
A rule with NACs is a pair p N where p is a rule and N ni : Lp Ni i I is a fi-
nite set of NACs for p. A match of a rule p in a graph G is an injective graph mor-
phism1

m : Lp G; match m satisfies the NAC n : Lp N for p, written m n, if there
is no arrow g : N G such that g n m.2 We say that there is a direct derivation

G
p m

H from an object G to H using a rule with NACs p N
and a match m : Lp G, if there are two pushouts (1) and (2) in
Graphs, as depicted. A derivation respects the NACs, if m n

for each NAC n : Lp N N. A typed graph transformation

N
���

�����

Lp

n��

m �� 1

Kp

��

r ��l��

2

Rp

��
G D ���� H

system (GTS) with NACs is a tuple Q πN where Q is a set of rule names, and πN

maps each name q Q to a rule with NACs πN q π q Nq in the category GraphsTG

of graphs typed over a given type graph TG. A derivation (respecting NACs) of is a sequence
G0

q1 m1
G1

qn mn
Gn, where q1 qn Q and di Gi 1

π qi mi

Gi are direct derivations
(respecting NACs) for i 1 n. Sometimes we denote a derivation as a sequence d d1; ;dn

of direct derivations.

worksOn

member

connectedTo

device Person
name:  String
accessLevel:  Int

Task
name:  String
description:  String
acessLevel:  Int

AccessPoint
IP:  String
Subnet:  String

started

MobileDevice
IP:  String

task

Team
name:  String

continueTask                        (NACs  are  not  depicted)
L

:worksOn

K R

3:started

member

task

2:Task
accessLevel=lv

1:Person
acessLevel=lv

2:Team

3:started

member

task

2:Task
accessLevel=lv

1:Person
acessLevel=lv

2:Team

3:started

member

task

2:Task
accessLevel=lv

1:Person
acessLevel=lv

2:Team

Attributed  Type  Graph  TG*

Figure 1: Part of attributed transformation system GS , modeling mobile adhoc networks

Example 1 (Graph Transformation System with NACs) Fig. 1 shows a part of an attributed

graph grammar for modelling a workflow system in mobile adhoc networks, where persons can

be assigned to teams and tasks and they can change their location implying that their mobile

communication devices may need to reconnect to new access points. In order to simplify the

further constructions we will use the reduced version of this grammar in Fig. 2. The type graph
TG shows that nodes in the system represent either persons or tasks: a task is active if it has a

1 In the general case NAC-morphisms n : L N and matches are not required to be injective. For the general case,
our technique can be extended by the results in [HE08].
2 Intuitively, the image of Lp in G cannot be extended to an image of the “forbidden context” N.
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continueTask                (short:   )

L

:worksOn
1:Person

3:started

K

1:Person

R

1:Person

2:Task

NAC2

:worksOn
1:Person

2:Task

3:started

2:Task

3:started

2:Task

R

:worksOn
1:Person

2:Task

K

1:Person

2:Task

L

1:Person

2:Task

NAC1

:worksOn
:Person

2:Task

1:Person

stopTask                (short:   )

3:started
3:started

:worksOn
:started

TG

Person

Task

Type  Graph

Figure 2: Reduced transformation system GS as running example

“:started” loop, and it can be assigned to a person with a “:worksOn” edge. Rule “stopTask”

cancels the assignment of a task to a person; rule “continueTask” instead assigns the task, and

it has two NACs to ensure that the task is not assigned to a person already. Fig. 3 shows two

derivations respecting NACs of GS. In derivation d the only task is first continued by “1:Person”,

and then, after being stopped, by “2:Person”. In d the roles of the two Persons are inverted.

G1

w1:worksOn

1:Person

3:Task 4:started

2:PersonG0

1:Person

3:Task 4:started

2:Person G2

1:Person

3:Task 4:started

2:Person G3

w2:worksOn
1:Person

3:Task 4:started

2:Person G4

1:Person

3:Task 4:started

2:Person

G 1

w1:worksOn

1:Person

3:Task 4:started

2:PersonG0

1:Person

3:Task
4:started

2:Person G 2

1:Person

3:Task 4:started

2:Person G 3

w2:worksOn
1:Person

3:Task
4:started

2:Person G4

1:Person

3:Task 4:started

2:Person

cont,m1⇒ stop,m2⇒

stop,m4⇒

cont,m3⇒

cont,m1⇒

stop,m4⇒

stop,m2⇒cont,m3⇒

d:

d :

Figure 3: Derivation d (respecting NACs) of GS and permutation-equivalent derivation d

The classical theory of the DPO approach (without NACs) introduces an equivalence among
derivations which relates derivations that differ only in the order in which independent direct
derivations are performed (see [Kre86, BCH 06]). The switch equivalence is based on the notion
of sequential independence and on the Local Church-Rosser theorem. This is briefly summarised
in the next definition.

Definition 2 (Switch Equivalence on Derivations) Let d1 G0
p1 m1

G1 and d2

G1
p2 m2

G2 be two direct derivations. Then they are se-

quentially independent if there exist arrows i : R1 D2 and
j : L2 D1 such that l2 i m1 and r1 j m2 (see the diagram
on the right, which shows part of the derivation diagrams). If d1

K1

��

�� R1

m1

��

���
� i ��

L2

m2
��

����
j

��

K2

��

��

D1 r1
�� G1 D2l2

��

and d2 are sequentially independent, then according to the Local Church Rosser Theorem (Thm.
5.12 in [EEPT06]) they can be “switched” obtaining direct derivations d2 G0

p2 m2
G1 and

d1 G1
p1 m1

G2, which apply the two rules in the opposite order.
Now, let d d1; ;dk; dk 1; ;dn be a derivation, where dk and dk 1 are two sequentially

independent direct derivations, and let d be obtained from d by switching them according to
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the Local Church Rosser Theorem. Then, d is a switching of d, written d
sw

d . The switch

equivalence, denoted
sw

, is the smallest equivalence on derivations containing both sw and the
relation for isomorphic derivations.

Corresponding notions of parallel and sequential independence have been proposed for graph
transformation systems with NACs [HHT96, LEO06]. However, the derived notion of switch
equivalence does not identify all intuitively equivalent derivations. The reason is that, in presence
of NACs, there might be an equivalent permutation of the direct derivations that cannot be derived
by switch equivalence. Looking at d in Fig. 3 there is no pair of consecutive direct derivations
which is sequentially independent if NACs are considered. However, the derivation d should
be considered as equivalent. There are also examples in which even the switching of blocks
of several steps would not lead to all permutation-equivalent derivations. This brings us to the
following, quite natural notion of permutation equivalence of derivations respecting NACs, first
proposed in [Her09]. Note that for permutation-equivalent derivations d

π
d the sequence of

rules used in d is a permutation of those used in d.

Definition 3 (Permutation Equivalence of Derivations) Two derivations d and d respecting
NACs are permutation equivalent, written d

π
d if, disregarding the NACs, they are switch

equivalent as for Def. 2.

3 Dependency Net of a Derivation

In order to efficiently analyse permutation equivalence of derivations we introduce the construc-
tion of the dependency net of a given derivation with NACs. This Place/Transition Petri net
purely encodes the dependencies between the derivation steps. The reachability graph of this net
with initial marking determines the class of derivations which are permutation-equivalent to a
given one.

The construction of the dependency net is based on the construction of the subobject trans-
formation sytem (STS) of a given derivation d according to [CHS08] and its extension to NACs
in [Her09]. Subobjects of a graph G form the category of subobjects Sub G , which contains
subgraphs of G

3 as objects and injective graph morphisms m : G1 G2 between subgraphs as
morphisms, where m is required to respect the injective embeddings of G1 and G2 to G. We will
write G1 G2 for the componentwise intersection and G1 G2 for the componentwise union of
subgraphs of G, where items are identified with respect to the injective embeddings of G1 and
G2 into G.
In order to construct the STS for a derivation d

d1; ;dn we compute the colimit T of the se-
quence of DPO diagrams, where all morphisms are
injective. Thus, all objects and morphisms of this di-
agram are in the category Sub T . The NACs of the
rules do not occur in this diagram.

Lk

��

Kk
�� ��

��

Rk

��
G0

�������������������� �� Gk 1

����
��

Dk
�� ��

��

Gk

�����
�

�� �� Gn

����������������

T

3 More formally, a subgraph is given by an equivalence class of injective graph morphisms to G, such that the image
of all morphism is equal.
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Definition 4 (STS of a derivation) A subobject transformation system T Q π consists
of a super object T , a set of rule names Q, and a function π , which maps a name q Q to a rule,
i.e., to a triple π q Lq Kq Rq of subobjects of T such that Kq Lq Rq.

Now, let Q π be a graph transformation system, and let d G0
q1 m1 qn mn

Gn

be a derivation of . The STS generated from d is defined as STS d T P π̂ , where T

is the colimit object of the diagram underlying the derivation d, P k dk Gk 1
qk mk

Gk is a step of d , and π̂ k Lk Kk Rk , where qk Lk Kk Rk .

For the rest of the paper, we consider only derivations such that the colimit T is a finite object,
i.e. Sub T is a finite lattice. This is guaranteed if each rule of has finite left- and right-hand
sides, and if the start object of the derivation is finite. The generation of an STS with NACs from
a given derivation works as in Definition 4, but additionally each rule will be equipped with a list
of NACs, i.e., those obtained as “instances” of the original NACs in the colimit object T . Note
that one original NAC can have several instances, but also not a single one.

Definition 5 (Instantiated NACs) Let d d1; ;dk; ;dn be a derivation respecting NACs
and let T be the colimit object of the derivation. Let p N be the rule with NACs used in direct
derivation dk and let NACS p n : Lp N n N . The set of all instantiated NACs in T of
the NACs of a rule p is given by NACST p N

tN T in Sub T n N s.t. tN n tL for
Lp

tL T in Sub T .

Definition 6 (STS of a Derivation with NACs) Let be a GTS with NACs and let d be a
derivation of respecting NACs. The STS with NACs generated by d is given by STSN d

T P π̂N , where T and P are as in Def. 4, π̂N k π̂ k Nk , π̂ k is as in Def. 4, and Nk is an
arbitrary but fixed linearisation of the instantiated NACs NACST pk as in Def. 5, where pk is
the rule of used in dk.
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4:started
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Figure 4: Derived Subobject Transformation System STSN d
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Example 2 (Derived STS STSN d ) For the derivation d in Ex. 1 we derive the STS as shown

in Fig. 4. The super object T is derived by taking the first graph of the derivation and adding

the items, which are created during the transformation, i.e. the two edges of type “worksOn”.

The derivation d involves the rules “continueTask” and “stopTask” and thus, the derived STS

contains the rule occurrences “1 cont1”, “2 stop1”, “3 cont2” and “4 stop2”, where the

NACs of the rule “continueTask” are instantiated.

The following relations between the rules of an STS with NACs specify the possible depen-
dencies among them: the first four relations are discussed in [CHS08], while the last two are
introduced in [Her09]. In our case the STS with NACs is generated from a derivation d accord-
ing to Def. 6.

Definition 7 (Relations on Rules) Let q1 and q2 be two rules in an STS with NACs
T P πN with πN q j L j Kj R j N j for j 1 2 and N j Nj i i 1 n j

. The relations
on rules are defined on P as follows:

Name Notation Condition
Read Causality q1 rc q2 R1 K2 K1

Write Causality q1 wc q2 R1 L2 K1 K2

Deactivation q1 d q2 K1 L2 K2

Independence q1 q2 L1 R1 L2 R2 K1 K2

Weak NAC Enabling q1 wen i q2 1 i N2 L1 N2 i K1 L2

Weak NAC Disabling q1 wdn i q2 1 i N1 N1 i R2 L1 K2

Read causality specifies that rule q1 produces an item that is read by q2, but not deleted by
q2 and in the case of write causality we have that q2 also deletes such an item. Deactivation
occurs when rule q2 deletes an item that is read by q1, but not created and two rule occurrences
are independent if they overlap only on items that are neither produced nor deleted by one of the
rules. Rule q1 weakly enables the rule q2 at i if q1 deletes a forbidden part q2, i.e. an item of
the i-th NAC of q2 that is not contained in L2. The rule q2 weakly disables q1 at i if q2 produces
a piece of the i-th NAC of q1. It is worth stressing that the relations introduced above are not
transitive in general.

Example 3 (Relations on Rules) The rules of STSN d in Fig. 4 are related by the following

dependencies. For write causality we have “cont1 wc stop1” and “cont2 wc stop2”. Weak

enabling/disabling are shown in the table below, while read causality and deactivation are empty.

Weak Enabling Weak Disabling

stop1 wen 1 cont1 stop2 wen 2 cont1 cont1 wdn 1 cont1 cont2 wdn 2 cont2

stop1 wen 1 cont2 stop2 wen 2 cont2 cont2 wdn 1 cont1 cont1 wdn 2 cont2

Based on the STS of a derivation, we now present the construction of its “dependency net”,
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given by a P/T Petri net which specifies only the dependencies between the derivation steps.
All details about the internal structure of the graphs and the transformation rules are excluded,
allowing us to improve the efficiency of the analysis of permutation equivalence.

Definition 8 (Dependency Net DNet of a derivation) Let d d1; ;dn be a derivation re-
specting NACs of a GTS with NACs, let STSN d T P π̂ be the generated STS with NACs
and let s seq d q1 qn 1 n denote the sequence of rule names in P according
to the steps in d. The dependency net of d is given by the marked Petri net DNet d N M ,
N PL TR pre post , constructed by the steps in Fig. 5, where the steps are performed in the
order they appear in the table.

3. For all q ∊ P with q ≮wdn[i] q, i ∊ ℕ
2. For all q,q ∊ P, q <x q , x ∈ {rc,wc,d }

1. For each q ∊ P

STS(d) = (T,P,¼) DNet(d) = ((PL,TR,pre,post),M)

a) N[i] of q

b) For all q ∊ P: q <wen[i] q

c) For all q ∊ P: q <wdn[i] q

3. For all q ∊ P with q ≮wdn[i] q, i ∊ ℕ
2. For all q,q ∊ P, q <x q , x ∈ {rc,wc,d }

1. For each q ∊ P

STS(d) = (T,P,¼) DNet(d) = ((PL,TR,pre,post),M)

a) N[i] of q

b) For all q ∊ P: q <wen[i] q

c) For all q ∊ P: q <wdn[i] q

p(q<xq ) q
+ ++q p(q<xq ) q
+ ++q

p(q,N[i]) q
+ +p(q,N[i]) q
+ +

p(q,N[i])q
+
p(q,N[i])q

+

q
+ +

p(q,N[i]) q
+ +

p(q,N[i])

p(q) q
+ +

+
+

p(q) q
+ +

+
+

^

Figure 5: Construction of the Dependency Net

Fig. 5 shows the steps of the construction of the dependency net. The steps are given as visual-
ized rules, where gray line colour and plus-signs mark the inserted elements. In the first step they
are created without context, but e.g. in step two the new place “p q x q ” is inserted between
the already existing transitions q and q . The tokens of the marked Petri net are represented by
bullets that are connected to their places by arcs. The first step creates a transition for each rule
and the transition is connected to a marked place for ensuring that it cannot fire twice. In step 2,
between each pair of transitions in each of the relations rc, wc and d , a new place is created
in order to enforce the corresponding dependency. The rest of the construction is concerned with
places which correspond to NACs and can contain several tokens in general. Each token in such
a place represents the absence of a piece of the NAC; therefore if the place is empty, the NAC
is complete. In this case, by step (3a) the transition cannot fire. Consistently with this intuition,
if q wen i q, i.e. transition q consumes part of the NAC N i of q, then by step (3b) q produces
a token in the place corresponding to N i . Symmetrically, if q wdn i q , i.e. q produces part of
NAC N i of q, then by step (3c) q consumes a token from the place corresponding to N i . No-
tice that each item of a NAC is either already in the start graph of the derivation or produced by a
single rule. Furthermore, if a rule generates a part of one of its NACs, say N i (q wdn i q), then
by the acyclicity of STSN d the NAC N i cannot be completed before the firing of q: therefore
we ignore it in the third step of the construction of the dependency net.

A more formal definition of the construction, which explicitly defines the sets PL TR, the pre
and post mappings as well as the marking M PL , is given by Def. 12 in [HCEK10]. Note
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that the constructed net in general is not a safe one, because the places for the NACs can contain
several tokens. Nevertheless it is a bounded P/T net, where the bound to the number of tokens is
given by the maximum, taken over places representing NACs, of the number of rules that either
weakly disable or weakly enable the specific NAC.

1=cont1 3=cont2

2=stop1 4=stop2

p(1<wc 2)

p(3)

p(1,N[2])

p(1) p(2)

p(3<wc 4)
p(3,N[1])

p(4)

Figure 6: Dependency Net DNet d as Petri Net

Example 4 (Dependency Net) Consider the derivation d from Ex. 1 and its derived STS in

Ex. 2. The marked Petri net shown in Fig. 6 is the dependency net DNet d according to Def. 8.

The places encoding the write causality relation are “p 1 wc 2 ” and “p 3 wc 4 ”. For the

NAC-dependencies we have the places “p 1 N 2 ” for the second instantiated NAC in the first

derivation step of d and “p 3 N 1 ” for the third derivation step and its first instantiated NAC.

The other two instantiated NACs are not considered, because the corresponding rules are weakly

self-disabling (q wdn i q). At the beginning the transitions cont1 and cont2 are enabled. The

firing sequences according to the derivations d and d in Fig. 3 can be executed and they are

the only firing sequences of this net. Thus, the net specifies exactly the derivations which are

permutation-equivalent to d.

We now show by Thm. 1 below that we can exploit the constructed Petri net DNet d for a
derivation d to characterise all derivations that are permutation-equivalent to d, by analysing the
firing behaviour of DNet d . Note that according to Def. 8 each sequence s of rule names in
the STS STSN d can be interpreted as a sequence of transitions in the derived marked Petri net
DNet d , and vice versa. This correspondence allows us to transfer the results of the analysis
back to the STS. More precisely, we can generate the set of all permutation-equivalent sequences
by constructing the reachability graph of DNet d , which therefore can be considered as a com-
pact representation of this equivalence class.

Recall that a transition complete firing sequence of a Petri net is a firing sequence where each
transition of the net occurs at least once; notice also that in a dependency net according to Def. 8,
each transition can fire at most once by construction. This means in our case each transition
fires exactly once. The following Thm. 1 presents a sound and complete analysis of permutation
equivalence by complete firing sequences in the corresponding dependency net.

Theorem 1 (Analysis of Permutation Equivalence of Derivations) Let d be a derivation re-

specting NACs of a GTS with NACs, and let DNet d be its dependency net. Then a derivation d

is permutation equivalent to d (d
π

d) if and only if the sequence of names sd , which contains

all the direct derivations of d in the order they are actually fired in d , is a transition complete

firing sequence of the marked P/T Petri net DNet d .

Proof (Sketch). Let d be a derivation with NACs, STSN d be its derived STS and DNet d be the
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constructed dependency net. We can interpret a transition complete firing sequence s of DNet d

within the STS STSN d and show that it corresponds to a valid derivation in STSN d . This
allows us to use Thm. 1 in [Her09] showing that the derivation derived from s is permutation-
equivalent to d. Vice versa, given a derivation d , which is permutation-equivalent to d, we can
show that the corresponding sequence sd is a transition complete firing sequence in DNet d .
For a complete proof see Cor. 1 in [HCEK10].

4 On the Cost of Analysis

Besides soundness and completeness of the analysis as presented in Thm. 1 we now focus on
its efficiency. Therefore, we extend the previous example and compare the analysis efforts of
the new technique with those of a direct analysis of the derivation. This comparison shows a
significant advantage of the technique and the effect is not limited to specific examples. The
benefit is high for transformation sequences, where many steps overlap on matches and include
dependencies because of NACs. Clearly, if NACs are not involved permutation equivalence is
equal to switch equivalence and in this case the reachability graph of the Petri net specifies all
switch-equivalent derivations.

q1=cont1',          i ∈ {0,1,2,3,4}
L

w1:worksOn
1:Person

4:started

K

1:Person

R

1:Person

3:Task

N1[2i+1]

w(2i+1):worksOn
1:Person

3:Task

4:started

3:Task

4:started

3:Task

N1[2i+2]

w(2i+2):worksOn
2:Person

3:Task

1:Person

4:started 4:started

T 

w1:worksOn

1:Person

3:Task

4:started

2:Person

w2:worksOn
w3:worksOn
w5:worksOn
w7:worksOn
w9:worksOn

w4:worksOn
w6:worksOn

w8:worksOn
w10:worksOn

Figure 7: Part of the Derived STS STSN d

Example 5 (Extended Derivation) We extend the derivation d of Ex. 1 to a derivation d, which

specifies that the two persons are working on the same task, but they continue and stop their work

five times, i.e. d d;d;d;d;d is a derivation with 20 steps. The derived STS STS d contains

20 rule occurrences and Fig. 7 shows its super object T and the rule occurrence “cont1’ ” for the

first step of d. This rule occurrence has 10 NACs, one for each possible edge of type “worksOn”

in T . These NACs are visualised in the figure by two NACs with a parameter i ranging from

zero to four. The derivation consists of 10 blocks of the form “contx; stopx”. Each permutation-

equivalent derivation of d has to preserve these blocks, otherwise a NAC would not be fulfilled or

the causality relation would be violated. Thus there are 10! 3 628 800 permutation-equivalent

derivations.

Based on the dependency net DNet d we can construct the reachability graph RG DNet d

for this marked Petri net with 20 transitions and 120 places. Each path in this graph spec-
ifies a permutation-equivalent derivation. An upper bound for the effort eff of constructing
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RG DNet d is given by: eff 9 n, where n is n 20 10! 72 576 000, which is the num-
ber of derivation steps in the set of all permutation-equivalent derivations. The details of these
and the following numbers are given in [HCEK10]. A direct generation of the permutation-
equivalent derivations based on Def. 3 (brute force method) starts with a computation of the
complete set of switch-equivalent derivations disregarding the NACs and thereafter the invalid
ones are filtered out. This would lead to F 654 729 075 times as many derivations as the
number of permutation-equivalent derivations, because the blocks “cont x ;stop x ” are split
and many steps “cont x ” can be shifted backwards. Thus, the lower bound for the brute force
effort EFF is given by F n EFF. In comparison we have for the effort eff of constructing the
reachability graph of the dependency net:

eff 1 4 10 8
EFF.

Fig. 8 shows how the different amounts of equivalent sequences develop for 2 up to 10 blocks
of “continue;stop” steps. Both analyses are fairly brute-force, since we did not integrate reduc-
tions, such as symmetry or partial-order reduction. However, the figures show that a definite gain
in efficiency can be obtained, which we expect similarly also with additional reductions, which
are mainly orthogonal to the reduction technique studied in this paper.

Of course, the effort for constructing the Petri net has also to be taken into account, but it
does not significantly change the result. In general, the construction of the STS STS d with its
relations is shown to be of polynomial time complexity with respect to the length of the derivation
d [Her09]. Furthermore, the construction of the dependency net is linear with respect to STSN d

equipped with the derived relations and for this example contains only 120 places. Note that still
all steps in d are sequentially dependent with NACs and therefore, no direct switching is possible.

5 Conclusion

In the framework of adhesive high-level replacement (HLR) systems there are many instantia-
tions, such as graph transformation systems scaling up to typed attributed graph transformation
systems with node type inheritance, and Petri net transformation systems - in particular for the



Analysis of Permutation Equivalence

modelling of workflows of reconfigurable mobile adhoc networks [EHP 07, HEP07]. Each of
them has its specific features, which support the modelling of systems in the concrete applica-
tion domain. Negative Application Conditions (NACs) are an important control structure for
these techniques and they are widely used for applications. However, the analysis of processes
of such systems, i.e. the study of equivalence of derivations in the presence of NACs going be-
yond switch equivalence including NACs as studied in [HHT96, LEO06], was introduced only
recently in [Her09]. This new notion of equivalence, called permutation equivalence, is stud-
ied in this paper. More precisely, we study the problem how to obtain, in an efficient way, all
derivations d which are permutation-equivalent to a given derivation d.

In order to provide a sound, complete and efficient analysis technique for permutation equiv-
alence we have shown how the dependency net for the derivation can be constructed, which
purely specifies the dependencies between the transformation steps including the inhibiting ef-
fects of the NACs. Based on the reachability graph of the dependency net we derive all valid
permutations of the derivation steps of a given derivation d, i.e. the order of the applied rules
together with the new matches. The derived derivations are exactly the permutation-equivalent
derivations of d. While the example in this paper was kept compact, the overall approach can
be applied to adhesive HLR systems in general, if suitable side conditions are fulfilled [HE08],
which is the case for e.g. typed attributed graph transformation systems.

The efficiency of the Petri net approach is based on two advantages. First of all, the constructed
Petri net only specifies the dependencies among the steps of the derivation, ignoring the concrete
structure of the involved graphs: This advantage is independent of the presence of NACs. The
second advantage is that NACs are respected during the generation of the permutation-equivalent
sequences. Thus, the number of generated sequences during the analysis is reduced significantly
if NACs are involved, as shown by the presented example.

Some of the problems addressed in this paper are similar to those considered in the process
semantics [KK04] and unfolding [Bal00, BKS04] of Petri nets with inhibitor arcs, and actually
we could have used some sort of inhibitor arcs to model the inhibiting effect of NACs in the
dependency net of a derivation. However, we would have needed some kind of “generalised”
inhibitor nets, where a transition is connected to several (inhibiting) places and can fire if at least
one of them is unmarked. To avoid the burden of introducing yet another model of nets, we
preferred to stick to a direct encoding of the process of a derivation into a standard marked P/T
nets, leaving as a topic for future research the possible use of different models of nets for our
dependency net.

Future work will encompass the extension of the presented technique to general application
conditions in the form of nested application conditions [HP05, HP09], for which we already have
concrete ideas. Further improvements of efficiency could be obtained by observing the occurring
symmetries in the P/T Petri net, and applying symmetry reduction techniques on it. Additionally,
the space complexity of the analysis could be reduced by unfolding the net and then representing
all permutation-equivalent derivations in a more compact, partially ordered structure. We already
implemented the construction of a dependency net from a given graph transformation derivation
with NACs based on a recently developed graph transformation engine in Mathematica called
AGT (Algebraic Graph Transformation) [BHE09].
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Abstract: The precise specification of software models is a major concern in model-
driven design of object-oriented software. Metamodelling and graph grammars are
apparent choices for such specifications. Metamodelling has several advantages: it
is easy to use, and provides procedures that check automatically whether a model
is valid or not. However, it is less suited for proving properties of models, or for
generating large sets of example models. Graph grammars, in contrast, offer a
natural procedure – the derivation process – for generating example models, and
they support proofs because they define a graph language inductively. However,
not all graph grammars that allow to specify practically relevant models are easily
parseable. In this paper, we propose contextual star grammars as a graph grammar
approach that allows for simple parsing and that is powerful enough for specify-
ing non-trivial software models. This is demonstrated by defining program graphs,
a language-independent model of object-oriented programs, with a focus on shape
(static structure) rather than behavior.
Keywords: Graph grammar, Meta-model

1 Introduction

The precise specification of software models is a major concern in model-driven design of object-
oriented software. Such specifications should support a checking procedure for distinguishing
valid from invalid models, they should be well-suited for proofs in order to reason about the
specified models, and they should allow for automatically generating model instances that may
be used as test cases for computer programs being based on such models. The meta-modeling
approach is an apparent choice for such specifications. It allows for precise model definitions and
provides checking procedures. However, it is less suited for proofs and for instance generation.
Graph grammars are another natural candidate for specifying software models. They precisely

define model languages, they are well-suited for proofs because of their inductive way of defin-
ing a graph language, and they offer a natural procedure for automatically generating model
instances. Several kinds of graph grammars have been proposed in the literature. In order to
allow for the specification of practically relevant models, we need a formalism that is powerful
so that all properties of models can be captured, and simple in order to be practically useful, in
particular for parsing models in order to determine their validity. However, easy to use graph
grammar approaches often fail to completely specify models. As a case study, we consider pro-
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gram graphs, a language-independent model of object-oriented programs that has been devised
for specifying refactoring operations on programs [MEDJ05]. However, neither hyperedge re-
placement grammars [DHK97], nor the equivalent star grammars [DHJM10, Theorem 2.8], nor
node replacement grammars [ER97] are powerful enough for completely specifying program
graphs. Even the recently proposed adaptive star grammars [DHJ 06, DHJM10] fail for cer-
tain more delicate properties of program graphs. Their rules must be extended by application
conditions in order to describe program graphs completely [Hof10].
In this paper, we propose the simpler graph grammar approach of contextual star grammars,

an extension of star grammars that allows for easy parsing. Plain star rules are extended with
positive and negative contexts, which must exist (or must not exist, respectively) in order to ap-
ply a star rule. Contexts may specify the existence of paths to certain nodes in the host graph,
which may then be linked by the rule application. It turns out that program graphs can be defined
by a contextual star grammar. Hence, this graph grammar approach allows for the precise spec-
ification of program graphs, i.e., non-trivial software models, supports a natural procedure for
generating model instances, is well-suited for proofs, and allows for easy parsing. We contrast
this grammar with the definition of program graphs using a conventional meta-model, which is
specified by a UML class diagram and logical OCL constraints.
The paper is structured as follows. In Section 2, we recall how object-oriented programs can

abstractly be represented as program graphs. We define the language of program graphs by a
metamodel that consists of a class diagram with additional OCL constraints. Then we introduce
star grammars in Section 3, show that they can define program skeletons, a sub-structure of
program graphs, but fail to define program graphs themselves. We introduce contextual star
grammars in Section 4, define program graphs with them, and outline an easy parsing procedure.
We discuss these specifications—by metamodels and by contextual star grammars—in Section 5.
We conclude with some remarks on related and future work in Section 6.

2 Graphs Representing Object-Oriented Programs

Program graphs have been devised as a language-independent representation of object-oriented
code that can be used for studying refactoring operations [MEDJ05]. Therefore, they do not
represent the abstract syntax of an object-oriented program, but rather its structural components
and their dependencies. For instance, they capture single inheritance of classes and method
overriding. Data flow between parameters, attributes, and method invocations represents the
structure within method bodies.
Consider the object-oriented program shown in Figure 1 as an example. The program, written

in object-oriented pseudo code, consists of class Cell and its subclass ReCell. The superclass
has an attribute variable cts and two methods get and set. Subclass ReCell inherits these three
features and additionally has an attribute variable backup and a method restore. Moreover, it
overrides the method set of its superclass.
Figure 1 also shows the corresponding program graph. The graph is actually represented as

an object diagram according to the program graphs’ model whose class diagram is shown in
Figure 2. Note that not all association roles of Figure 2 are shown Figure 1. Only one of the
two roles of the associations is shown to avoid clutter. Note also the fat links in Figure 1; they
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ECEASST

class Cell is
var cts: Any;
method get() Any is
return cts;
method set(var n: Any) is
cts := n

subclass ReCell of Cell is
var backup: Any;
method restore() is
cts := backup;
override set(var n: Any) is
backup := cts;
super.set(n)
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Figure 1: An object-oriented program and its program graph
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Figure 2: A model for program graphs shown as a class diagram

correspond to the composition associations of Figure 2.
Each class is represented by a Class node. Note the universal superclass Any. Each class

represents its (protected) attribute variables and (public) methods as features. Method nodes
together with Variable nodes as their parameters represent method signatures; method bodies are
represented separately by Body nodes. If a method is overridden, a new body refers to (we say:
implements) the signature of the overridden method. Method set is an example: The signature
node set:Method is implemented by two Body nodes, one being part of class Cell, the other being
part of subclass ReCell. Data flow within method bodies is represented by (abstract) expressions
that a body consists of (link expr). Expressions are represented by Access or Invoc nodes, both
being subclasses of Expr. Access represents a reference to a variable either using its value, or
assigning the value of an expression to it. Invoc nodes represent method invocations with their
actual parameters being referred to by param links.
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Figure 2 shows a UML class diagram for program graphs. The class diagram represents a
model of program graphs and also a meta-model because program graphs are models of
object-oriented programs, i.e., is a model of a modeling language. As usual, missing car-
dinalities mean 0..*. Also note the child-parent association at class Expr. It is subsetted by the
corresponding associations (actually their association ends) for the subclasses Invoc and Access.
However, not all instances of the model represented by the class diagram are valid program

graphs. Certain syntactic properties, usually called static semantics or consistency conditions,
cannot be expressed by just a class diagram. The class of all program graphs is rather defined
by the class diagram and additional constraints:

Definition 1 (Program graphs) The class of program graphs consists of all instances of the
model in Figure 2 that additionally satisfy the following constraints:

1. There is exactly one root class, i.e., class node without superclass.

2. A Variable node either belongs to a class (link feature) or to a method (link param).

3. An Expr node either belongs to a Body (link body) or to another expression (link parent).

4. A body b may implement a method contained in some class c if b is contained in c or in a
subclass of c.

5. Every class may contain at most one body defining or overriding a particular method m.

6. An Access node emay refer to a Variable node representing an attribute contained in some
class c if e is a sub-expression of a body that is contained in c or some subclass of c.

7. An Access node e may refer to a parameter of a Method node m if e is a sub-expression of
a body implementing m.

context Class
def: visible : Set(Feature) =
if super isEmpty() then
feature

else
feature union(super.visible)

endif

context Expr
def: visible : Set(Feature) =
if body isEmpty() then
parent.visible

else
body.bodyClass.visible

union(body.sig.param)
endif

1) inv uniqueRoot:
Class.allInstances()

select(c c.super isEmpty()) size() = 1

2) context Variable inv validVariable:
featureClass isEmpty() method isEmpty()

3) context Expr inv validExpr:
body isEmpty() parent isEmpty()

4) context Body inv implementsVisibleMethod:
bodyClass.visible includes(sig)

5) context Body inv methodImplementedOnce:
not bodyClass.body exists(b b self and b.sig = self.sig)

6,7) context Access inv accessesVisibleVariable:
visible includes(refersTo)

Figure 3: OCL constraints for the program graph model .
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The Object Constraint Language OCL of the UML has been defined for formally defining
such consistency conditions [Obj06]. Figure 3 shows the OCL constraints for program graphs
based on the class diagram in Figure 2. The derived attributes visible of each Class instance
contain all features directly defined in the own class together with all visible features of its
superclass. These sets, together with all parameters of the implemented method, are propagated
to sub-expressions of method bodies. Conditions 1–5 are formalized by constraints uniqueRoot,
validVariable, validExpr, implementsVisibleMethod, and methodImplementedOnce, respectively.
Constraint accessesVisibleVariable formalizes conditions 6 as well as 7. Numbers in Figure 3
correspond to the ones used above.
Note that conditions 1–3 require each node, except a unique Class node, to be a composite part

of exactly one other node. The following observation follows from the fact that compositions
cannot form cycles:

Fact 1 The subgraph P̄ of a program graph P induced by the composition edges is a spanning
tree of P; the root of P̄ is a Class node.

3 Star Grammars

We first recall many-sorted graphs:

Definition 2 (Graph) Let Σ Σ̇ Σ̄ be a pair of disjoint finite sets of sorts.
A many-sorted directed graph over Σ (graph, for short) is a tuple G Ġ Ḡ s t σ where Ġ

is a finite set of nodes, Ḡ is a finite set of edges, the functions s t : Ḡ Ġ define the source and
target nodes of edges, and the pair σ σ̇ σ̄ of functions σ̇ : Ġ Σ̇ and σ̄ : Ḡ Σ̄ associate
nodes and edges with sorts.
Given graphsG andH , a pairm ṁ m̄ of functions ṁ : Ġ Ḣ and m̄ : Ḡ H̄ is amorphism

if it preserves sources, targets and sorts.

Star grammars are a special case of double pushout (DPO) graph transformation [EEPT06].
By [DHJM10, Theorem 2.8], they are equivalent to hyperedge replacement grammars [DHK97]
a well-understood context-free kind of graph grammars.

Definition 3 (Star) We assume that the node sorts contain nonterminal sorts Σ̇v Σ̇ so that the
terminal node sorts are Σ̇t Σ̇ Σ̇v.
Consider a (star-like) graph X , with one center node cX of nonterminal sort x Σ̇v, and with

some border nodes (of terminal sorts from Σ̇t) so that the edges of X connect cX to some of the
border nodes. Then X is called an incomplete star named x. An incomplete star is called a star
if each border node is incident with at least one edge. An (incomplete) star is straight if every
border node is incident with at most one edge. Let denote the class of stars, the graphs
with stars, and those without stars (where all nodes are labeled by Σ̇t). We assume that nodes
of nonterminal sort are not adjacent to each other in any graph.

Definition 4 (Star Replacement) An incomplete star rule is written r L :: R, where the left-
hand side L is a straight incomplete star and the replacement (right-hand side) is a graph
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Figure 4: The rules of the star grammar PT

R that contains the border nodes of L. An incomplete star rule is called a star rule if L
is a star.
The (incomplete) star rule r applies to some graphG if there is a morphismm : L G, yielding

a graph H that is constructed by adding the nodes Ṙ L̇ and edges R̄ disjointly to G, and by
replacing, for every edge in R̄, every source or target node v L̇ by the node ṁ v , and by
removing the edges m̄ L̄ and the node ṁ cL .
We write G r H if such a star replacement exists, G H if G r H for some r from a

finite set of (incomplete) star rules, and denote the reflexive-transitive closure of this relation
by .

In the remainder of this section, we consider star rules only; incomplete star rules will only be
used as a part of contextual star rules in Section 4.

Example 1 (Star Replacement) Figure 4 shows a set of star rules. The center nodes of stars are
depicted as boxes enclosing the star name. Nodes with terminal symbols are drawn as circles
with their sort inscribed.
The replacements of some rules show examples of abbreviating notation for repetitions in

graphs and for optional subgraphs, which we will use frequently in star rules. Shaded boxes with
a “ ” in the top-right corner, like those in rules hy, cls, meth, bdy, and call, designate multiple
subgraphs that may occur n times, n 0, in the graph, with the same connections to the rest. If
the shaded box has a “?” in its top-right corner (in rules meth and acc), its contained subgraph
may occur 1 or 0 times in the graph. Note that this notation is similar to the EBNF notation
of context-free string grammars. Likewise, it is just an abbreviating notation; one can always
replace rules with this notation by several plain star rules using auxiliary stars and recursion, as
long as shaded boxes do not include any of their rules’ border nodes.

Definition 5 (Star Grammar) Γ Z is a star grammar with a start star Z .
The language of Γ is obtained by exhaustive star replacement with its rules, starting from the start
star: Γ G Z G .
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Example 2 (Star Grammar for Program Skeletons) Figure 4 shows the star rules generating the
program skeletons that underlie program graphs. The rules define a star grammar PT, with the
left-hand side of the first rule indicating the start star (named Prg). Terminal node sorts are
abbreviations of the class names in Figure 2, e.g., C instead of Class. Terminal edge sorts are
omitted completely. They can be easily inferred from the sorts of the incident nodes. Rule exp,
which already is a shorthand for two rules, indicated by the two alternative replacements, uses
x as border node sort where x stands for B, A, or I. Note that this is again just an abbreviating
notation.
Consider rules ovrd, acc, and call, which generate method overriding, variable access, and

method invocations. The overridden method, the accessed variable, and the invoked method,
respectively, are distinguished by drawing them as filled circles with thick lines. In the skeleton
rules, they are created anew. In a correct program graph according to Section 2, these distin-
guished nodes have to be identified (“merged”) with the corresponding nodes that have been
created elsewhere by rules var and meth, and represent their declarations. However, identifica-
tion of nodes cannot be represented by star grammars, but requires contextual star grammars as
defined in the next section.

PT generates graphs that are closely related to program graphs. Given any graph G PT ,
let GT denote the graph obtained from G by removing all filled nodes and dashed edges from G.
Let T PT : GT G PT denote the class of all such graphs. The following fact
directly follows from the structure of rules in PT:

Fact 2 T PT is a language of trees.

Obviously, grammar PT creates a single root class, and for each class an arbitrary number of
subclasses. Each class gets arbitrarily many variables, method declarations, and bodies that con-
sist of an arbitrary number of expressions that are either variable accesses or method invocations,
consistent with the class diagram in Figure 2. Apparently, T PT is the language of all trees
that fit the class diagram when considering just its composition associations and additionally
requiring the conditions 1–3 in Definition 1. Based on Fact 1 we can infer:

Fact 3 The spanning tree P̄ of each program graph P (cf. Fact 1) is a member of T PT .

Let M PT denote the language of all graphs that can be obtained from a member of PT
by merging each filled node with a corresponding declaration node. Let P be an arbitrary
program graph. Its spanning tree P̄ is equal to graph GT of some graph G PT because
of Fact 3. P can be obtained by identifying the filled nodes of G with appropriate declaration
nodes, i.e., P M PT . On the other hand, it is obvious that each identification of filled nodes
with declaration nodes fits the class diagram and conditions 1–3 in Definition 1. Therefore, each
graph G M PT satisfying conditions 4–7, too, is a program graph. We can summarize:

Fact 4 The set of all graphs G M PT that satisfy conditions 4–7 in Definition 1 is equal
to .

Star grammars are context-free in the sense defined by Courcelle [Cou87]. This suggests that
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their generative power is limited. Indeed, we have the following

Fact 5 There is no star grammar Γ with Γ .

Proof Sketch Consider the rule call in Figure 4. (The situation is similar for rules ovrd and acc.)
This rule generates a new node for a method (drawn filled, and with thick lines). However, for
generating a program graph, the rule should insert a call to a method that already exists in the
host graph, and may be called in the expression. Due to the restricted form of star rules, the
method had to be on the border of the rule. Since expressions may call every method in the
graph, the star rule must have all these methods as its border nodes so that one of them can be
selected. However, the number of callable methods depends on the size of the program, and is
unbounded. Thus a finite set of star rules does not suffice to define all legal method calls.

4 Contextual Star Grammars

The adaptive star grammars defined in [DHJ 06] overcome the deficiencies illustrated in the
proof sketch for Fact 5 by allowing the left-hand sides of star rules to adapt to as many border
nodes as needed. A further extension, by positive and negative application conditions, extended
their power, however with rather complicated rules [Hof10]. In this paper, we therefore consider
a different extension of star rules with which program graphs can be completely defined in a
simple way. We allow that the application of a star rule depends on its context in the host graph.
Some positive context may be required whereas other, negative, context is forbidden if the rule
shall apply. Nodes of the positive context may be used by the replacement graph of the rule.

Definition 6 (Contextual Star Rule) A contextual star rule r has the form r P N L :: R,
where L :: R is an incomplete star rule, and the positive contexts P as well as the negative
contexts N are (decidable) sets of graphs that contain the border nodes of L as subgraph. (Note
that r is a star rule if L is a star and the sets P and N are empty.)
The contextual star rule r applies to some graph G if there is a morphism m : L G that can

be extended to a morphism C G for at least one positive context C P (if P /0) and that
cannot be extended to a morphism C G for any negative contextC N, yielding a graph H by
applying the incomplete star rule L :: R to G with morphism m.
Then we write G c

r H , G
c H if G c

r H for some r from a finite set of contextual
star rules, and denote the reflexive-transitive closure of this relation by c .

Definition 7 (Contextual Star Grammar) Γ Z is a contextual star grammar
(CSG) with a start star Z and a finite set of contextual star rules. The language of Γ
is obtained by exhaustive application of its rules, starting from the start star: Γ G
Z c G .

In the following, we will either enumerate context graphs of the sets P and N of positive and
negative contexts, respectively, or we will specify them by path expressions similar to the PRO-
GRES language [Sch97]. Even more powerful specifications of context graphs are conceivable,
e.g., by hyperedge replacement systems, as proposed in [HR10], or by star grammars. But this
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Figure 5: The contextual star rules of the grammar PG

is not necessary for specifying program graphs.

Example 3 (Contextual Star Grammar for Program Graphs) The CSG for program graphs con-
tains the star rules start, hy, cls, var, meth, bdy, and exp of PT in Figure 4, and the contextual
rules in Figure 5. In these rules, specifications of positive and negative contexts are drawn below
their incomplete star rules. Small numbers indicate the correspondence between context nodes
and border nodes.
So filled nodes in rules ovrd, acc, and call of PT are turned into context nodes in PG. Path

expressions encode conditions 4–7 in Definition 1. A small “ ” above an edge represents any
path of length 1. In rule ovrd, the path expression of the positive context P encodes condition 4,
i.e., the method declaration must be inherited by the current class, while the negative context
encodes condition 5, i.e., the current class must not have a second body for the same method
declaration. Rule acc does not have a negative context, but two positive contexts. Rule acc may
be applied either with context P1 or with context P2. P1 and P2 encode conditions 6 and 7, i.e.,
access to a visible attribute variable and to a visible parameter, respectively. The node labeled x
represents a node of any sort. Rule call has empty positive and negative contexts and is applicable
if its incomplete star rule applies. However, it still is a contextual star rule because its left-hand
side requires the existence of an M-node in the context.
In Figure 6, some steps in the derivation of the program graph in Figure 1 are shown. The

first graph represents the class hierarchy of the program graph. The grey bubbles in these graphs
abstract from parts of the derived graph that are nor relevant for the derivation steps shown. The
rule ovrd can be applied to this graph, where we draw the context node filled, with thick lines, and
underlay the path leading to it in grey. We use the same drawing convention for the remaining
derivation steps using bdy, call, acc, and again acc.

The following fact is a direct implication of Fact 4:

Fact 6 PG .

Star grammars can be easily transformed into equivalent hyperedge replacement gram-
mars [DHJM10, Theorem 2.8] and vice versa by interpreting stars as hyperedges with nontermi-
nal labels. Hence, parsers for hyperedge replacement grammars like the DIAGEN parser [Min02]
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Figure 6: Deriving the program graph of Figure 1 with PG

can be used to parse star grammars. The same parser with only slight extensions can also be
used for parsing CSGs. This parser is outlined below.
The parser works on CSGs like a Cocke-Younger-Kasami (CYK) parser for string grammars.

The CSG has to be in Chomsky normalform (CNF) so that each production rule is either terminal
or nonterminal. The right-hand side of a terminal rule is a terminal graph with only one edge, the
right-hand side of a non-terminal rule is the union of two stars. Similar to string grammars, each
CSG that does not produce the empty graph can be transformed into CNF. Given a terminal graph
G, the parser creates a derivation for G, if it exists, in two phases. The first phase completely
ignores contexts of contextual star rules and creates candidates for derivations. The second phase
searches for a derivation by checking these candidates, this time considering contexts.
In the first phase, the parser builds up n sets L1 L2 Ln where n is the number of edges in

G. Each set Li eventually contains all stars that can be derived to any subgraph of G that contains
exactly i edges. Set L1 is built by first finding each embedding of the right-hand side of each ter-
minal rule and adding the star of the corresponding left-hand side to L1. If the corresponding rule
is a contextual star rule with an incomplete star as left-hand side, only the (complete) star within
the incomplete star is added to L1. The remaining sets are then constructed using nonterminal
rules. A nonterminal rule is reversely applied by searching for appropriate stars s and s in sets
Si and Sj, respectively. If a nonterminal rule (without considering contexts) is applicable, i.e., if
the rule’s right-hand side is isomorphic to the union of s and s , a new star corresponding to the
rule’s left-hand side is added to a set Sk. Note that k i j since each star in a set Si can be
derived to a subgraph of G with exactly i edges. Each instance of the start star Z in Sn represents
a derivation candidate for G.
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The second parser phase checks these derivation candidates by testing for each application of
a contextual star rule whether required context has already been created and forbidden context
has not (yet) been created earlier in the derivation. The parser stops when it finds the first valid
derivation, or when it has checked the last derivation candidate without success.

5 Discussion

In the previous sections we have used two different techniques to describe program graphs. We
have shown that the specification of program graphs by CSGs is indeed equivalent to their defi-
nition using a model together with OCL constraints. Moreover, both approaches allow for auto-
matic checking whether a given graph is a valid program graph. Both specifications are actually
even more closely related as the following discussion shows.
The CSG for program graphs consists of (plain) star rules and contextual star rules. As de-

scribed by Fact 2, the tree structure (made from composition links) of program graphs can be
constructed by (plain) star rules. Plain star grammars, however, fail for links refersTo and call,
i.e., those program graph edges that represent references to objects that are located “far away”
in the program structure. Contextual star rules are needed to add those edges; the far away ob-
jects are represented by the rules’ context nodes (Figure 5). The positive and negative contexts of
those rules play the same role like the OCL constraints for conditions 4–7 in Figure 3. These con-
straints actually can be considered as an OCL implementation of the rules’ context conditions.
E.g., constraint methodImplementedOnce for condition 5 in Definition 1 prohibits a second body
of the same method within the same class; this exactly corresponds to the negative context N of
rule ovrd (Figure 5). The path expressions P, P1, and P2 of rules ovrd and acc, respectively, re-
alize conditions 4, 6, and 7. Their OCL realizations make use of the derived attributes visible
whose recursive definition exactly reflects the iteration operator “+” in the path expressions.
The contextual star grammar PG (Figure 4 and 5) for program graphs has been created by

hand. The discussion, however, has revealed a close relation between OCL constraints and pos-
itive as well as negative contexts on the one hand, and between class diagram and contextual
star rules without those contexts on the other hand. This close relation may lead to a procedure
for translating CSGs and meta models with OCL constraints into each other at least in a semi-
automatic way. This line of research is also motivated by work of Ehrig et al. [EKT09]. They
create graph transformation rules with graph constraints from meta models with OCL constraints.
The graph transformation system is then used to automatically generate model instances of the
meta model. However, they only consider very restricted OCL constraints that are not sufficient
for the specification of program graphs, and their generated layered graph transformation rules
are rather complicated, and are less suited for parsing.

6 Conclusions

We have extended star rules by positive and negative context. These contextual star grammars al-
low to define program graphs precisely, without sacrificing parseability. Program graphs, which
represent certain aspects of object-oriented programs, can also be defined by a class diagram
together with OCL constraints in a model-based style. However, this approach is less suited
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for inductive proofs or for automatic instance generation than the proposed grammar-based ap-
proach. A comparison of both specification approaches, however, has shown close relations be-
tween both specification approaches which may allow for a semi-automatic translation process
between both specification approaches. This will be subject of future work.
Too many kinds of graph grammars are related to contextual star grammars to mention all of

them. So we restrict our discussion to those that aim at similar applications. Contextual star rules
re-use path expressions first devised by M. Nagl [Nag79], which have later been implemented
in the PROGRES graph transformation language [Sch97]. Using context conditions and exam-
ining their relation to logical graph properties and constraints is not new either. A. Habel and
K.-H. Pennemann have shown that nested graph conditions are equivalent to first-order graph
formulas [HP09]. These conditions are still too weak to specify program graphs, as they only
allow to require or forbid the existence of subgraphs of bounded size. Only in [HR10], A. Habel
and H. Radke devised nested graph conditions with variables that allow to express the conditions
of CSGs (and more). However, rules and grammars using such conditions are not yet consid-
ered in that paper. Context-embedding rules [Min02] extend hyperedge replacement grammars
by rules that add a single edge to an arbitrary graph pattern. They are used to define and parse
diagram languages, but are not powerful enough to define models like program graphs. Graph
reduction grammars [BPR10] have been proposed to define and check the shape of data struc-
tures with pointers. While the form of their rules is not restricted, reduction with them is required
to be terminating and confluent, so that random application of rules provides a backtracking-free
parsing algorithm. It is still open whether graph reduction grammars suffice to define program
graphs.
The nested patterns [HJG08] recently introduced to GRGEN [GBG 06], an efficient graph

rewrite tool, allow to express nested graph conditions with variables that are defined by hyper-
edge replacement systems, and can thus be used to implement contextual star grammars (like
that for program graphs) in the future.

Acknowledgements: We thank the reviewers for their constructive criticism that helped to
improve our paper.
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Abstract: The behavior of a dynamic system is most easily understood if it is
illustrated by a visual model that is animated over time. Graphs are a widely ac-
cepted approach for representing such dynamic models in an abstract way. System
behavior and, therefore, model behavior corresponds to modifications of its repre-
senting graph over time. Graph transformations are an obvious choice for specify-
ing these graph modifications and, hence, model behavior. Existing approaches use
a graph to represent the static state of a model whereas modifications of this graph
are described by graph transformations that happen instantaneously, but whose du-
rations are stretched over time in order to allow for smooth animations. However,
long-running and simultaneous animations of different parts of a model as well as
interactions during animations are difficult to specify and realize that way. This pa-
per describes a different approach. A graph does not necessarily represent the static
aspect of a model, but rather represents the currently changing model. Graph trans-
formations, when triggered at specific points of time, modify such graphs and thus
start, change, or stop animations. Several concurrent animations may simultane-
ously take place in a model. Graph transformations can easily describe interactions
within the model or between user and model, too. This approach has been integrated
into the DIAMETA framework that now allows for specifying and generating edit-
ing environments for interactive animated visual models. The approach is demon-
strated using the game Avalanche where many parallel and interacting movements
take place.

Keywords: animated visual language

1 Introduction

Visual modeling is already one of the most useful techniques for describing complex systems.
There is the need for many different, also domain-specific visual languages, each appropriate
for dedicated purposes. Meta-tools like DIAGEN/DIAMETA [Min06], GenGED [Erm06] or
AToM3 [LV02] help specifying such languages and generating corresponding editors.

However, visual languages are not limited to static models. When modeling dynamic systems,
dynamic models can be used to simulate the system and help understanding it. Smooth anima-
tions can even improve this visual comprehension. Suitable visual languages for animations span
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Figure 1: Existing approach: before GT (a), after GT (b) and animated scene (c)

formal/mathematical models like petri nets, educational languages like Alligator Eggs [SM09]
and even highly interactive programming languages like the Alternate Reality Kit [Smi86].

It is a common approach to use graphs for representing such models in an abstract way. The
model is changed by transforming the underlying graph via graph transformations (GT). Exist-
ing techniques associate each graph (the graph before and after the GT) with a static model and
therefore static visualization. An example in the domain of conveyor systems is shown in Fig-
ure 1. While (a) shows the graph and its visual representation before the GT, (b) shows them
afterwards. In order to avoid a jumping parcel in the visualization, the instantaneous GT can be
stretched over time and a smooth animation is applied to the state transition (c).

This approach comes along with some obvious problems. If the system behavior includes
multiple, independent animations in different parts of the model at the same time, specification
becomes difficult. The problem becomes even more complicated if multiple animations overlap
in time or if interactive environments shall be realized that way. As an instance consider the
conveyor system where the container may move, too, and those movements might be triggered
by user interactions. If such a user interaction takes place while a parcel is on its way as shown
in Figure 1c, the system should immediately stop the conveyor with the parcel at the current
position. However, this situation cannot be represented by the chosen graph.

This paper describes another approach: graphs represent the currently changing model and
GTs are used to start, stop and modify animations. The rest of the paper is structured as follows:
Section 2 describes Avalanche as a motivating example. Section 3 introduces the abstract ani-
mation system, which serves as abstract formal system of the described approach in Section 4
using GTs. As an example, Section 5 shows an application of this approach in order to specify
Avalanche. Section 6 outlines related work, and Section 7 concludes the paper.

2 Avalanche

Originally, Avalanche is a board game for two and more players. It was republished by different
publishers and is available under different names and variants. For this paper, we concentrate
on the main game mechanics and ignore objectives and other gaming aspects. The following
paragraphs describe an Avalanche variant that is suitable as an exemplary dynamic system.
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Figure 2: Avalanche board Figure 3: Avalanche pieces

The board of the game is an inclined plane. On this plane, there are multiple lanes, which
are directed top-down. However, lanes can be interrupted by switches. Switches are placed in
between two adjacent lanes. In this area, there is no border between left and right lane, and the
switch can be tilted freely to the left or right. Shifted to one side, the switch can block the direct
top-down way of the corresponding lane. Figure 2 shows an exemplary Avalanche board.

The game is played by putting marbles on the start (top) of a lane. After putting a marble
there, it rolls down along the lane. Figure 2 (a) shows a position where a marble can be brought
into play, and the marble starts rolling. While rolling down, a marble can be stopped by a switch
that is facing the marble’s lane (b). Rolling along the opposite lane, the marble hits the bottom of
the switch, and therefore tilts the switch to the other side like in (c). This feature can be used for
releasing a marble that has been stopped by the switch. After this marble has been released, it
continues to roll along its lane, as shown in (d). In this concrete situation, the switch is lying on
the left side afterwards1. If a marble hits another marble that has been stopped by a switch like
in (e), the rolling marble changes the lane, continues rolling, and releases the other, previously
blocked marble. Finally, when a marble reaches the end (bottom) of its lane as shown in (f), it is
removed from the board.

Each Avalanche board consists of four types of building blocks (see Figure 3): Start (starts
each lane; marbles can be placed there), Straight (straight lane), Switch (can block rolling mar-
bles and can be switched by rolling marbles; each switch can be in the left or right position), and
End (end of each lane; marbles are taken out of the game there).

1 Depending on the Avalanche variant, it is also possible that the released marble immediately triggers the switch
again. If this is the case, the switch would be lying on the right side afterwards.

3 / 13 Volume of the Pre-proceedings of GT-VMT (2010)



Generating Editors for Interactive Visual Languages

3 Abstract Animation Systems

The Avalanche game is a continuous dynamic system. In order to describe its behavior, it is a
common approach to look on it as a discrete event system with specified events for the collision
of marbles with switches, putting new marbles on the field, etc. In the time between these
events, the marbles are moving over the board, which can be illustrated by an animated visual
model. This section formalizes abstract animation systems (ASSs), a particular kind of event-
oriented systems, which is especially suited for interactive and animated visual languages. It
is an abstraction of the animation approach using graphs and GTs described in the following
sections.

The idea of defining a visual animated model by an ASS is to specify a state-transition-system
that performs state transitions triggered by events at certain points in time. The visual represen-
tation of a model is determined by the current state of the state-transition-system and the current
time. That means, the visual representation just depends on the (continuously) proceeding time
between two consecutive state transitions. State transitions are triggered by events. Events may
have an external source, e.g., the user placing a marble at a Start piece. These external events

may happen at any time. Other events, called internal events, happen because of the current
state after a certain span of time. For instance, if a switch starts switching from right to left, the
switch will hit its left border after a fixed span of time. For this purpose, an event Switching-

CompleteLeft is triggered, which stops the switching (cf. Section 5). Models usually consist of
different parts, each of them with more or less independent behavior (e.g., an Avalanche board
with several switches and marbles). States and events must appropriately reflect this composite
structure.

In the following, ASSs are introduced more formally. Let T represent the absolute time. For
each point in time t T , let ω t and let T

ω
T ω . For any set X , the power set of X is

denoted by P X .

Definition 1 An abstract animation system is a tuple A S E Ẽ s0 δ τ ε . S is the set of

states and s0 is the initial state, s0 S. E is the set of all events, whereas Ẽ E is the set

of internal events. E Ẽ denotes the set of external events. δ is the state transition function,
δ : S E T P S . τ and ε describe the occurrence of internal events, τ : S T

ω and
ε : S P Ẽ . Each of these sets may be uncountably infinite.

The abstract animation system A is started in state s0 at some point in time t0. The execution
of A is expressed by the chronology of occurred states; state changes are triggered by occurring
events (internal and also external) at certain points in time. Each execution can be described by
a trace

s0
e1

t1
s1

e2

t2
s2

e3

t3

ei

ti

si

ei 1

ti 1

of assumed states s0 s1 s2 S. In each case, at the point in time ti (i 0), event ei occurs
and triggers the state transition from si 1 to si δ si 1 ei ti . Either ei ε si 1 , i.e., ei is an
internal event, then ti τ si 1 , or ei E Ẽ, i.e., ei is an external event, then ti ti 1 τ si 1 .

This definition of state transitions reflects the motivation of ASSs at the beginning of this sec-
tion: If the state-transition-system is in a certain state, an internal event will happen after a certain
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span of time. This is reflected by function ε and τ . However, an external event may happen at
any time, i.e., possibly before the scheduled internal event. The external event triggers a state
transition, and the previously scheduled internal event may be re-scheduled again, specified by
functions δ , ε , and τ .

Following the motivation at the beginning of this section, the visual representation of an ani-
mated visual model with an ASS A is a visualization function I : S T R where R represents
all possible graphical illustrations. Given a trace s0

e1

t1
s1

e2

t2
s2 of A, the visual representa-

tion of the model at any point in time t is I s t where s is the current state at t, i.e., s si for an
appropriate i such that t ti ti 1 .

4 Animations using Graphs and Graph Transformations

The ASS formalism has been introduced to clarify the concepts determining the behavior of
visual animated models. It can be used for describing an animated system like Avalanche, but
it is less suited for actually specifying concrete animated languages. Instead, we use the widely
spread approach of typed graphs for internally representing visual models. Existing meta-tools
like DIAMETA [Min06], which are based on this approach (we do not distinguish plain graphs
from hypergraphs here), then allow for generating editing environments from the visual language
specifications. These tools already represent the static structure of a visual model by typed
attributed graphs; the visual representation of a model is just a view of this graph. We now
augment these graphs such that they also represent the current model state according to the
notion of ASSs. The visualization function, as described in the previous section, again provides
a view of the graph. However, it must take the continuously proceeding time into account when
determining the visual representation of the animated model.

Because graphs are used for representing the ASS state, state transitions correspond to graph
modifications. GTs are an obvious choice to perform and specify these modifications. In order
to realize the state transition function δ of the ASS using GTs, each event (type) is associated
with a particular set of graph transformation rules. Whenever an event occurs, especially if this
is an external event sent to the system, the associated rules are selected for application in order
to change the graph and state of the system, resp. If an event carries additional information, e.g.,
the Start piece where the user has placed a new marble, this information must be passed as a
partial embedding morphism to the selected GT rules.

While external events are generated outside (e.g., by user interaction) and sent to the system
by selecting appropriate GTs, scheduling internal events must be calculated by the animated
system based on its state, i.e., functions ε and τ must be specified. This is done in the following
way: Instead of directly calculating the next internal event and the point in time when it has to be
triggered, this is done for each part of the whole system. The next scheduled internal event then
is just the one of all calculated events that happens first. For instance, when several marbles are
rolling, each marble will eventually hit a blocked marble, will be blocked by a switch, change
a switch state, or disappear when arriving at an End piece. For each of these events, one can
easily compute the point in time when this event happens as long as no other event happens first,
changing the system state. However, since we are interested in the first of these events only when
calculating ε and τ , we need not consider situations when events influence other events. Hence,
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calculation of the next internal events can be realized as follows: Whenever a new ASS state is
reached, i.e., when the graph is changed, a list of all possible internal events for each part of the
system is computed. Only that event is selected that will happen first. This implicitly realizes
ε and τ . If there is no unique first event, one of them is chosen nondeterministically. When the
event is triggered at the scheduled point in time, or if an external event happens earlier, the graph
will be modified, i.e., a state transition is performed, and the next internal event will be computed
again.

As already described, triggering an external or internal event actually means performing a GT;
a partial morphism selects where the GT is applied. For external events, the partial morphism is
selected by the external source, e.g., by selecting the Start piece where the user places a marble.
For an internal event, however, the partial morphism must have been determined when the event
has been “scheduled” after the last graph modification. So far, we have not yet discussed how
these internal events get calculated. Actually, event (types) are associated with graph patterns
together with additional application conditions, i.e., positive and negative application conditions
as well as conditions on node and edge attributes as well as the current time. Each pattern de-
scribes situations, in which this event type occurs. Therefore, the list of all possible internal
events is found by searching for all embeddings of each of these patterns satisfying their appli-
cation conditions. An additional evaluation rule, called time calculation rule, computes the point
in time when the event will happen. The results of this rule are used to select the first scheduled
internal event. The associated embedding determines where the event takes place. Hence, the
left-hand side of the GT rule specifying the effect of the event must consist of the same pattern
that specifies the event and whose embedding has already been found when scheduling the event.

In summary, the specification of an internal event type consists of a graph transformation rule
with application conditions and a related time calculation rule. An external event type can be
specified with a rule only.

We have extended our meta-tool DIAMETA [Min06] such that not only static visual languages
can be specified, but also animated visual languages following the ideas described above. DIA-
META allows for generating editing environments for visual animated models from such speci-
fications. The DIAMETA framework is now aware of events, and it manages an event queue that
is used to determine the next internal events. This event queue is actually built up and updated
in a smart way based on changes of the graph model.

The specification of events in DIAMETA is not restricted to single GT rules. Graph transfor-
mation programs, which may consist of several rules, are used instead. The application of these
rules is controlled by additional control programs which, e.g., may specify a sequence of rules
or use more complex control operators like apply as long as possible [Min02]. The availability
of complex control programs allows for the specification of arbitrarily powerful GT transforma-
tions although each single GT rule is just a simple SPO rule with optional negative application
conditions.

5 Specification of Avalanche

This section outlines how visual animated models of Avalanche are specified in DIAMETA. One
purpose of the described specifications was generating an editing environment which is able to
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Figure 4: Avalanche editor screenshot

(a) build Avalanche boards and (b) play the game including the possibility to put marbles onto
the Avalanche board and watch the progress of the system. A screenshot of the resulting editor
is shown in Figure 4. An animated example can be found online2.

Typed, attributed hypergraphs are used for representing models, i.e., animated diagrams. Each
model component is represented by a hyperedge that visits the nodes representing the compo-
nent’s attachment points. Model hypergraphs also contain relation edges (binary hyperedges),
that stand for relationships between components, and further hyperedges (called animation edges

in the following) that are used for the representation of animation states only. More details about
the usage of hypergraphs for the specification of visual languages (except hyperedges represent-
ing animation states) can be found in [Min06].

The Avalanche model components are the ones shown in Figure 3 with the hyperedge types
start, end, switch, straight and marble. Figure 5 shows an example Avalanche board and its
model hypergraph. Each component is associated with its component hyperedge, which is de-
picted by a filled rectangle each. Nodes are drawn as small circles. For instance, the switch

hyperedge is connected to individual nodes via connectors (“tentacles”) 0 to 3. The four nodes
represent the top-left, top-right, bottom-left and bottom-right corners of the switch. Each of
them can be connected to another model component. Connections between model components
are represented by binary at topbottom relation hyperedges. They are depicted by fat arrows.
Additional edge types are used for animation edges representing the animation state, e.g., edge
2 http://www.unibw.de/inf2/DiaGen/animated
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(detailed)

end end

marble start

start

straight

switch

at_topbottom
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at_topbottom at_topbottom

at_topbottom

at_topbottom

started_at

0 0

0 0

0

0

1

0 1

2 3

0

1

Figure 5: Avalanche board and corresponding hypergraph

types switched to or switching to. The switched to edge connects the first switch node with the
second one if the right lane is blocked by the switch. If the left lane is blocked, the edge con-
nects these nodes the other way around. Analogously, the switching to edge indicates that the
particular lane is not blocked yet, but the switch is currently moving in order to block the lane
afterwards. There are also different edge types representing a marble’s state as explained later.

Furthermore, each component hyperedge has the layout attributes x and y for the position of
the represented diagram component. Finally, hyperedges which can be animated (resp. their
corresponding components) contain an attribute tc. It is used for storing the point in time when
attributes of the hyperedge or its state have been modified lastly.

Static components and their visual appearance can be specified like in static DIAMETA. For
animated components, the specification is slightly different. There are two types of animations
which are represented by a subgraph: a rolling marble and a shifting switch. Figure 6 shows
two concrete graph examples which represent these animations: (a) represents a switch which is
currently shifting from left to right. The switching to edge is an animation edge that represents
the shifting state of the switch. The shifting animation has started at 20000 ms, which is indicated
by attribute tc. (b) represents a marble which is rolling. This animation has started at 3000 ms
when the marble was at position 110 10 . The started at edge is again an animation edge which
specifies the animation state. The edge is not necessary for static diagrams, but it rather indicates
the component where the marble was located when the animation started

By using these attributes and animation edges, the animated visual appearance for a compo-
nent depending on the proceeding time t can be specified. For example, instead of drawing the
marble at the static position x y , the position for each animation frame is calculated using the
time difference t tc and a linear (or accelerated) movement. Further details about required con-
stants (e.g., rolling speed of the marble, acceleration, relation points for positions) are omitted
here.

So far, the described specification is sufficient for editable models with basic animations like
rolling marbles or shifting switches. However, interaction between model elements or user in-
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Figure 6: Hyperedges of animated components

straight

switch

ps

switch

pe

straight switch switchat_topbottom or or or

path_down

path_down (example)

0

1

0

2
at_topbottom

1

3

0

2

1

at_topbottom

3
at_topbottom

0

1

0

2

1

3

0

2

1

3

0

1

Figure 7: Example path

teraction during animation have not been considered yet. In order to specify the Avalanche

behavior, the following internal and external events are specified. Please note that some events
must be specified for the left and right side of switches separately3. Because the specification of
both sides is analogous, rules for the right side are omitted.

External events:

– PutMarble: The user selects a Start component in order to place a marble there.

Internal events:

– MarbleStopLeft: A rolling marble hits the top of a switch (tilted to the left) and is
blocked.

– ReleaseMarble: A marble, blocked by a switch, is released and starts rolling down
because the switch does not block the lane any more.

– MarbleSwitchingLeft: A rolling marble hits the bottom of a switch (tilted to the right)
and initiates the shifting of the switch; during this shifting process, the switch cannot
block marbles or be shifted again.

– SwitchingCompleteLeft: A shifting switch reaches its final destination after it has
started shifting from the right to the left side.

– MarbleChangeLaneLeft: A rolling marble starts changing the lane because it hits
another marble that is blocked by a switch tilted to the left.

– ChangeLaneCompleteLeft: A marble reaches its new lane after it has started chang-
ing its lane from the left to the right side.

– RemoveMarble: The marble reaches the end of the lane and is removed from the
board.

3 DIAMETA actually supports more generic specifications that cover both sides, but they are too technical and less
suited for presentation in this paper.
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In the rest of this section, these events are described. Figure 8 shows the event specifications
by GT rules4 and, for internal events, time calculation rules (indicated by the Time keyword).
DIAMETA actually uses a different, primarily textual syntax; the syntax in Figure 8 is used for
illustration only. It shows the GT rule within one pattern: parts which are removed by the rule
are drawn in red and marked with “- - -”, and parts which shall be added are drawn in green
with “+++”. Attribute modifications are illustrated by expressions within a separate Actions box.
Please note that some expressions make use of constants starting with letter C; these constants
represent specification details, e.g., rolling speed, relation points for positions, etc.

The external event PutMarble is triggered by the user who selects a start component and calls
an operation called PutMarble (by clicking the corresponding button in the Avalanche editing
environment). The selected start component is then used for defining a partial match for the
pattern of the graph transformation rule specified for PutMarble. The result of the rule is a
created marble, which starts rolling down the lane.

SwitchingCompleteLeft is a simple internal event. Events of this type occur for each switch

edge with a switching to animation edge as shown in the pattern, i.e., for each switch which is
currently shifting from the right to the left side. The time of the corresponding event is deter-
mined by a simple formula indicating that the switch has reached the final destination after a
constant amount C5 of time. Hereby, the value in attribute tc represents the point in time when
the corresponding switch started shifting (triggered by event MarbleSwitchingLeft, see below).
As a result, the switching to edge is replaced by a switched to edge.

MarbleStopLeft is a more complex event specification because it has to describe a rolling
marble hitting a blocking switch in the marble’s lane. The lane can go through a number of
start, straight, and switch components. In the event specification, this is represented by a dashed
arrow indicating a path within the model hypergraph. The path is actually an arbitrary sequence
of at topbottom(0,1), switch(0,2), switch(1,3), or straight(0,1) elements. Thereby, the numbers
in parenthesis specify the hyperedge tentacles the path must follow: the first number specifies
the ingoing tentacle and the second one specifies the outgoing tentacle when following the path
through hyperedges. An example path is shown in Figure 7: the path starts at node ps and ends
at node pe. In a matching scenario of MarbleStopLeft, the marble edge must be linked to ps via
the started at edge, and pe is the node of the first outgoing tentacle of switch edge sw.

The time of the event MarbleStopLeft is calculated based on the distance between the rolling
marble and the switch. As a result of this event, the marble looses its started at relation and
receives a blocked edge instead, which indicates the marble being blocked by the switch. More-
over, the marble’s static position is set to the position of the switch.

Event MarbleSwitchingLeft is similar and also makes use of path expression path down de-
scribed above. The switch, however, does not block the rolling marble’s lane, indicated by the
switched to edge having the opposite direction of the one in event MarbleStopLeft. If this event
occurs, the marble continues rolling normally, but it also shifts the switch. The switch state is
changed by replacing the switched to edge by a switching to edge, now being associated with
the opposite side/lane. Nevertheless, the switch is not considered blocking this lane yet. The end
of this shifting phase will trigger a new SwitchingCompleteLeft event (see above).

4 Please note that these events are actually specified using single GT rules; the specification of Avalanche does not
require complex graph transformation programs as event specifications.
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PutMarble (external event)

SwitchingCompleteLeft (internal event)

m:marble

s:start

+++

+++

+++

m.tc := t
m.x := s.x + C1
m.y := s.y + C2

Actions:

sw.tc := t

Time:

Actions:

sw.tc + C5

sw:switch

MarbleStopLeft (internal event)

m.tc := t
m.y := sw.y + C3

Time:

Actions:

m.tc + (sw.y - m.y + C3) / C0
(marble with constant speed)

m:marble

x = s.x + C
y = s.y + C
tc = t

sw:switch

- - -
+++

MarbleSwitchingLeft (internal event)

sw.tc := t

Time:

Actions:

m.tc + (sw.y - m.y + C4) / C0
(marble with constant speed)

m:marble

x = s.x + C
y = s.y + C
tc = t

sw:switch

+++
- - -

RemoveMarble (internal event)

Time: m.tc + (e.y - m.y + C9) / C0
(marble with constant speed)

m:marble

x = s.x + C
y = s.y + C
tc = t

e:end

- - -

- - -

- - -

- - -

ReleaseMarble (internal event)

Time:

m:marble

x = s.x + C
y = s.y + C
tc = t

- - -

NAC

n1 n1

+++

Actions:

MarbleChangeLaneLeft (internal event)

Time:
m.tc + (sw.y - m.y + C6) / C0
(marble with constant speed)

m:marble

x = s.x + C
y = s.y + C
tc = t

sw:switch

m.tc := t
m.y := sw.y + C6Actions:

+++
- - -

ChangeLaneCompleteLeft (internal event)

Time: m.tc + C8

m:marble

x = s.x + C
y = s.y + C
tc = t

sw:switch

m.tc := t
m.x := sw.x + C7Actions:

+++- - -

- - -
+++

+++

(immediately if match is found)

m.tc := t

0

0

started_at

2 3

0 1

switched_to

switching_to

0started_at

2 3

0

blockedpath_down

1

switched_to

0started_at

2 3

0

path_down

1switched_to

switching_to

0

started_at

0

path_down

0

switched_to
blocked started_at

2 3

0

path_down

1

blocked

0

change_tostarted_at

2 3

0 1

0

started_atchange_to

Figure 8: Avalanche Event Specifications

The event ReleaseMarble can occur directly after a MarbleSwitchingLeft (or MarbleSwitch-

ingRight, resp.) event. The ReleaseMarble event does not specify a time calculation rule and,
therefore, is applied immediately as soon as a match is found. It releases a blocked marble if the
switch does not block the according lane any more. The marble then starts rolling down again,
indicated by the animation edge started at.

The internal event MarbleChangeLaneLeft handles the case that a rolling marble hits a blocked
marble. The rolling marble then changes its lane, which is indicated by a change to edge linked
to the switch node of the opposite side. This changing process ends as soon as event Change-
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LaneCompleteLeft occurs after a constant amount of time. The marble then continues rolling
down again, however in the switch’s other lane.

Finally, event RemoveMarble occurs as soon as a marble reaches the end of its lane. The
marble and the associated started at edge are removed then.

6 Related Work

An approach of simulating and animating visual languages has already been described in [Erm06].
However, the described methods come along with some of the issues mentioned in the introduc-
tion of this paper. The resulting animations are self-running movies, and amalgamated graph
transformation rules are already required for the specification of less complex examples like
animated petri nets, for instance.

The described abstract animation system is similar to timed event systems and, therefore,
also to DEVS [ZPK00]. However, abstract animation systems omit some specific features like
acceptance stated (compared to timed event systems in general) or output function (compared to
DEVS). On the other hand, the intention of abstract animation systems is that system states can
be visualized in an animated way, and state changes start, stop, and change these animations. It
allows for an easier specification of systems which must be animated and illustrated.

Section 5 shows that there is a need for a time attribute like tc within graph vertices for
many types of animation. This attribute can be compared with an attribute chronos introduced
in [GHV02] which describes an approach of graph transformation with time. The shown trans-
formations utilize logical clocks, which are also represented by the mentioned vertex attribute.

Another, but similar approach, though not based on GTs, is shown in [EVV09]. This work
describes a transformation system enriched by parameters like duration, repetitions and focuses
on the visual notation of such rules.

The idea of states describing animation and behavior of graphical objects is a common ap-
proach. The term animation state has also been described in [Vit05] where it represents a state
in which corresponding object attributes are changing with regard to animations. The work also
shows how animations and the behavior of object can be described by a visual language based
on UML2 statecharts.

7 Conclusions

The specification of animated visual languages based on graphs has been limited with regard
to simultaneous, independent animations and interactivity yet. The described approach enables
dynamic, animated and interactive models using existing graph and graph transformation tech-
niques. After minor extensions, the existing meta-tool DIAMETA is able to generate editing
environments for interactive animated visual models like Avalanche.

However, the way from a complex dynamic system to an event-oriented and graph-based sys-
tem still is a challenging task. Right now, we are investigating additional techniques in order to
specify dynamic systems on a higher level, which is less formal and also diagrammatic. Result-
ing diagrams shall help deriving graph-based specifications and visualizations then. Also tool
support for some of the described methods still lacks usability, e.g., visualization and time cal-
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culation rules must be written by hand. Animation patterns for common animation types would
be desirable, and also a physics engine or other frameworks could be used in order to simplify
specification of particular kinds of animated visual languages.
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Decidable Race Condition and Open Coregions in HMSC
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Abstract: Message Sequence Charts (MSCs) is a visual formalism for the descrip-
tion of communication behaviour of distributed systems. An MSC specifies relations
between communication events with partial orders. A situation when two visually
ordered events may occur in any order during an execution of an MSC is called a
race and is usually considered as a design error. While there is a quadratic time al-
gorithm detecting races in a finite communication behaviours called Basic Message
Sequence Charts (BMSCs), the race detection problem is undecidable for High-level
Message Sequence Charts (HMSCs), an MSC formalism describing potentially infi-
nite sets of potentially unbounded behaviours. To improve this negative situation for
HMSCs, we introduce two new notions: a new concept of race called trace-race and
an extension of the HMSC formalism with open coregions, i.e. coregions that can
extend over more than one BMSC. We present three arguments showing benefits of
our notions over the standard notions of race and HMSC. First, every trace-race-free
HMSC is also race-free. Second, every race-free HMSC can be equivalently ex-
pressed as a trace-race-free HMSC with open coregions. Last, the trace-race detec-
tion problem for HMSC with open coregions is decidable and -complete.
Finally, the proposed extension of coregions allows to represent in a visual fash-
ion whether an arbitrary number of racing events in the usual MSC formalism are
concurrent or not.

Keywords: HMSC; race condition; trace-race condition; open coregions;

1 Introduction

Message Sequence Chart (MSC) [ITU04] is a popular visual formalism for specification of dis-
tributed systems behaviours (e.g. communication protocols or multi-process systems). Its sim-
plicity and intuitiveness come from the fact that MSC describes only exchange of messages
between system components, while other aspects of the system (e.g. content of the messages,
computation steps) are abstracted away. Even such an incomplete model can indicate serious
errors in the designed system. This paper focuses on a common error called race condition.

MSCs are based on composition of simple chronograms called Basic Message Sequence
Charts (BMSCs). A BMSC consists of a finite number of processes and events. Processes are
represented by vertical lines, and all events executed by some process are located on its lifeline

Partially supported by Czech Science Foundation (GAČR), grants No. 201/08/P459 and No. P202/10/1469.
† Partially supported by the research centre “Institute for Theoretical Computer Science (ITI)”, project No. 1M0545.
‡ Partially supported by Czech Science Foundation (GAČR), grant No. 201/08/P375, and Ministry of Education of
the Czech Republic, project No. MSM0021622419.
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Figure 1: A BMSC contain-
ing a race

Figure 3: A similar BMSC
containing a race

Figure 5: A BMSC containing
a race between r1 r2

and ordered from top to bottom. Messages are represented by an arrow from a sending event
to a receiving event. Total orderings of events on lifelines and messages form a visual order ,
which provides graphically information on the respective ordering of events. However, the visual
order can not always be enforced by the architecture of the modelled system. In addition to the
visual order, there exists a causal order , that is weaker than . Intuitively, events e f are in
causal order e f , if the BMSC enforces that e always precedes f . There are several definitions
of causal order depending on the settings of the modelled system and semantics of the model.
For example, if one process sends two messages to another process, the corresponding receive
events are causally ordered if and only if the considered message transport protocol has the FIFO
property: two messages sent from one process to another are always received in the same order.
In this paper, we assume that every process has one unbounded buffer for all incoming messages
and that the message transport protocol satisfies the FIFO property.

A BMSC contains a race condition (or simply race) [AHP96] if there are two visually ordered
events that are not causally ordered (i.e. they can actually occur in an arbitrary order). For
example, Figure 1 depicts that the process q receives a message from r followed by a message
from p. As processes and communication in BMSCs are always asynchronous, the messages can
be also received in the opposite order as shown in Figure 2. In both figures, the two receive events
are in race as they are ordered visually but not causally. Races in BMSC description should
be considered as a design error, as they exhibit discrepancies between the intended ordering
designed in a BMSC, and the ordering that a real implementation of this BMSC would enforce.
Races in a BMSC can be detected in quadratic time [AHP96].

While a BMSC describes only a single and finite communication scenario, its extension called
High-level Message Sequence Chart (HMSC) [RGG96, AHP96] can describe more complex
interactions, with iterations and alternatives between several scenarios. An HMSC is a finite
state transition system where each state is labelled by a BMSC or a reference to another HMSC.
In the sequel, we will only consider HMSCs labelled by BMSCs. Each run (i.e. a path starting
in the initial state and ending in a final state) of an HMSC can be understood as a single BMSC,
which is a concatenation of the BMSCs labelling the states along the run. Hence, an HMSC
represents a potentially infinite set of BMSCs of unbounded size.

The definition of race was extended to HMSCs in [MP99]. Roughly speaking, an HMSC
H has a race if some BMSC represented by H contains a race and H does not represent any
BMSC where the two racing events are defined with the opposite visual order. Unfortunately,
the problem whether a given HMSC contains a race is undecidable [MP99, ITU04].

In this paper, we propose an alternative definition of race for HMSCs called trace-race. In-
tuitively, an HMSC has a trace-race if some BMSC represented by H contains a race. Clearly,
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every trace-race-free HMSC is also race-free but not vice versa. To improve the expressive power
of trace-race-free HMSCs, we extend the HMSC formalism with open coregions. A coregion is
a standard part of the MSC formalism that allows some events on the same process in a BMSC
to be visually unordered. In particular, coregions can be used to visually order only causally
related events (hence making concurrency a visual property). While this application of core-
gions can remove all races in BMSCs, it is not sufficient for removing all races in HMSCs. An
open coregion is basically a coregion spread over several BMSCs. We present a transformation
of an arbitrary race-free HMSC into an equivalent trace-race-free HMSC with open coregions,
where equivalence means that the two HMSCs have the same linearizations. Finally, we show
that the problem whether a given HMSC with open coregions contains a trace-race is decidable
and -complete. In fact, our algorithm is polynomial for HMSCs with fixed number of
processes and gates. For definitions of gates and linearizations see Sections 2 and 3, respectively.

The rest of the paper is organized as follows. Section 2 recalls the definitions of BMSCs,
HMSCs, and race condition for BMSCs. The race and trace-race conditions for HMSCs are de-
fined and compared in Section 3. Section 4 is devoted to the translation of race-free HMSCs into
equivalent trace-race-free HMSCs. The decidability and complexity of the trace-race detection
problem is discussed in Section 5. Section 6 briefly summarizes benefits of the presented no-
tions. Due to the space limitations, we present only crucial lemmata and theorems accompanied
by explanations of basic ideas. Proofs with all technical details can be found in [ŘSSH09].

2 Preliminaries

The following definitions omit some features of MSCs given by the ITU standard [ITU04],
e.g. atomic actions, labelling of messages with names, timers etc. However, these restrictions
are quite common, and our results can be extended to MSCs with atomic actions and message
labelling using the technique of [DGH08].

2.1 BMSCs with (open) coregions, gates, and general ordering

The basic concepts of BMSCs are described in Section 1. In the visual representation of a BMSC,
processes are depicted as vertical lines and messages are represented by arrows between these
lines. Events located on the same process line are visually ordered from top to bottom. A process
line may contain segments called coregions delimiting subsets of events. Events in a coregion
are a priori not in visual order, but they can be visually ordered using a general ordering relation.
(this relation need not be a partial order). Coregions are visually represented by rectangles and
general ordering by dashed arrows between pairs of ordered events (see Figure 3).

In existing MSC formalisms, coregions are limited to finite set of events located in a single
BMSC. We extend the definition of BMSCs with open coregions and gates. These features
allow coregions of arbitrary size, spread over several concatenated BMSCs. Gates enable events
of different BMSCs to be generally ordered within the final joined coregion. Similar ideas for
connecting orders using gates or predicates was already proposed for instance in [Pra86, GH07].

A coregion can be open on top (top-open coregion), on bottom (bottom-open coregion), or
open on both sides. All processes use a common gate name space G. For each process p, we
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define the sets of top gates p G p g g G and bottom gates p G p g g G located on
process p. Given a BMSC with a set of processes P, we set P G p P p G and P G p P p G
to be the sets of all top and bottom gates in this BMSC, respectively. We also extend the general
ordering to range over both events and gates within an open coregion.

Definition 1 Let G be a finite gate name space. A BMSC over G is a tuple M
P ES ER P p p P M C C C C where

P is a finite set of processes.
ES ER are disjoint finite sets of send and receive events, respectively. We set E ES ER.
P : E P is a mapping that associates each event with a process.

p is a total order on all events on a process p.
M ES ER is a bijective mapping, relating every send with a unique receive. We
assume that a process cannot send a message to itself, i.e. P e P f whenever e f
M. For any e f M, we use M e to denote the receive event f , and M 1 f to denote
the send event e.
C is a finite set of pairwise disjoint coregions, where a coregion C C is a consistent
nonempty subset of events and gates of a single process p, i.e.

– /0 C P 1 p p G p G for some p P
– if e p d p f and e f C, then d C.

A coregion C containing a top gate is called top-open and it has to contain all top gates p G
and satisfy that if e p f and f C then e C. A coregion C containing a bottom gate is
called bottom-open and it has to contain all bottom gates p G and satisfy that if e p f and
e C then f C. A coregion which is both top-open and bottom-open is called just open.

C is an acyclic relation called general ordering on elements in C such that C p G
P 1 p p G P 1 p , where p is the process containing the coregion C.

The definition says that a top-open coregion has to contain all top gates. As coregions are
pairwise disjoint, there is at most one top-open coregion. Similarly, each BMSC contains at
most one bottom-open coregion. Note that we do not impose that coregions contain events. For
example, an open coregion covering an inactive process can connect top and bottom gates.

In the visual representation, an open coregion is depicted as a rectangle without the side(s)
which are open. Gates are represented by small squares on the corresponding missing side of
these rectangles. As gates are always depicted in the same order, their names become redundant
(and they are often omitted). For example of BMSCs with open coregions see Figure 4. Recall
that dashed arrows represent a general ordering.

2.2 Visual order, causal order and race in BMSCs

Every BMSC induces two preorders on events: visual and causal ordering. The visual
order represents the order of events directly described by the BMSC. Loosely speaking, is
the reflexive and transitive closure of total orders p of events on each process, excluding the
order of events within each coregion, plus general ordering and the order generated by the FIFO
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property and the fact that every send event precedes the corresponding receive event. The visual
order is actually defined over the union of events and gates.

Definition 2 Let M P ES ER P p p P M C C C C be a BMSC over G. A visual
order given by M is the least preorder P G E P G E such that

i contains the relation
p P

p
C C

C C
C C

C M,

ii respects the FIFO property, i.e. for every e f ES such that P e P f and P M e
P M f , it holds that e f implies M e M f .1

One can define a BMSC where is not a partial order. This situation is clearly a design error
and it can be detected by a cycle detection algorithm. In the sequel, we always assume that is
a partial order.

In contrast to the visual order, the causal order captures the partial order of events that has to
be respected by all executions as it is enforced by the semantics of the design. Hence, the causal
order represents the interpretation of a BMSC relevant to its implementation.

Definition 3 Given a BMSC M P ES ER P p p P M C C C C over G, we define a
causal order as the least partial order on E such that e f , if

e f , i.e. send and receive events of each message are ordered, or
P e P f and e f and f ES, i.e. any send event is delayed until all previous events
took place, or
P e P f and e f E such that e f , P e P f , e e and f f ,
i.e. causal order respects the FIFO property.

Lemma 1 For every BMSC it holds . Further, for each f ES it holds e f e f .

A race is defined as a difference between visual and causal order on events.

Definition 4 If a BMSC contains some events e f satisfying e f and e f , we say that the
BMSC contains a race (between events e f ). Otherwise, the BMSC is called race-free.

Theorem 1 ([AHP96]) The problem whether a given BMSC with n events contains a race is
decidable in time n2 .

Note that [AHP96] deals with BMSCs without any coregions. However, an extension of this
theorem to BMSCs with (possibly open) coregions and general ordering is straightforward.

The following lemma says that a BMSC contains a race if and only if it contains a race between
two events on the same process.

Lemma 2 A BMSC contains a race if and only if there are two events e f such that e f ,
e f , and P e P f .
1 The FIFO property is usually not included in the definition of a visual order. However, once we choose the FIFO
message passing setting, violating this property should be considered as a design error and it can be easily detected.
Hence, we included the property directly in our definition.
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2.3 HMSCs

An HMSC is a finite directed graph with an initial state and a set of final states, where each state
is labelled with a BMSC.

Definition 5 An HMSC is a tuple S s0 SF L where

S is a finite set of states, s0 S is an initial state, SF S is a set of final states,
S S is a transition relation,

is a finite set of BMSCs over a common gate name space,
L s : S is a mapping assigning to each state a BMSC.

A sequence of states σ s1s2 sk is a path, if si si 1 for every 1 i k. A path is a run
if s1 s0 and sk SF .

To give a semantics of HMSCs, we need to define a concatenation operation on BMSCs.
Intuitively, the concatenation of BMSCs M1 and M2 is done by gluing the corresponding process
lines together with the BMSC M2 drawn beneath M1. If M1 and M2 contain bottom-open and
top-open coregions on a process p, respectively, then the two coregions are merged and each
bottom gate p g of the upper open coregion is joined with the corresponding top gate p g of the
lower open coregion. Further, whenever an event e of the upper coregion is generally ordered
with a joined gate and this joined gate is generally ordered with an event f of the lower coregion,
the events e f become generally ordered in the newly created coregion. The joined gates are
then removed. If M1 contains a bottom-open coregions on a process p that is not in M2, then the
coregion remains bottom-open. However, if M1 contains a bottom-open coregion on a process p
and M2 contains the process p without any top-open coregion on it, then the bottom side of the
coregion is closed.

Definition 6 Let Mi Pi ESi ERi Pi ip p P Mi Ci iC C Ci for i 1 2 be two BMSCs
over a common gate name space G and such that the sets ES1 ER1 and ES2 ER2 are disjoint
(we can always rename events so that the sets become disjoint). The concatenation of M1 and M2
is the BMSC M1 M2 P1 P2 ES1 ES2 ER1 ER2 P1 P2 p p P M1 M2 C C C C
where

p

1p if p P1 P2

2p if p P2 P1
transitive closure of 1p 2p P 1

1 p P 1
2 p

if p P1 P2

and C contains all coregions C of the following five kinds:

1. C C1 and C is not bottom-open or C is on a process p P1 P2. We set C 1C.
2. C C2 and C is not top-open or C is on a process p P2 P1. We set C 2C.
3. C C1 p G for some C1 C1 such that p G C1 and p G C2 /0 for all C2 C2,

i.e. C corresponds to a coregion of C1 that is bottom-open but there is no matching top-
open coregion in C2 (note that C is closed on the bottom side). We set C 1C1 C C .
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Figure 6: BMSCs M1 (upper) and M2 Figure 8: Concatenation M1 M2

4. C C2 p G for some C2 C2 such that p G C2 and p G C1 /0 for all C1 C1,
i.e. C corresponds to a coregion of C2 that is top-open but there is no matching bottom-
open coregion in C1. We set C 2C2 C C .

5. C C1 p G C2 p G for some C1 C1 and C2 C2 satisfying p G C1 and
p G C2, i.e. C is a bottom-open coregion of C1 merged with the matching top-open
coregion of C2. We set

C e f e f 1C1 and f p G or e f 2C2 and e p G
or e p g 1C1 and p g f 2C2 for some g G

Note that if visual orders of M1 and M2 are partial orders, then the visual order of M1 M2 is
also a partial order. Figures 4 and 5 provide an example of two BMSCs and their concatenation.

Each path s1s2 sk of an HMSC represents a single BMSC given by concatenation of the
BMSCs assigned to s1 s2 sk, i.e. a path σ s1s2 sk represents the BMSC L σ L s1
L s2 L sk . Hence, an HMSC represents a set of BMSCs corresponding to its runs. As an
HMSC may contain a cycle, the represented set of BMSCs can be infinite and there is no bound
on the size (i.e. number of events) of such BMSCs.

3 Race conditions in HMSCs

First we explain the idea of race conditions for a set of BMSCs. Let us consider a system where
two processes p and r send a message to a third process q, that receives them in arbitrary order.
This behaviour can be specified (even without any coregion) by two BMSCs depicted in Figures 1
and 2. Even if both BMSCs contain a race, the specification given by this pair of BMSCs should
be considered as race-free because both permutations of the two receive events on process q
allowed by causal ordering are included in the specification.

The race condition for a set of BMSCs can formulated very simply using the following termi-
nology. An execution induced by a BMSC M is a totally ordered set E , where E is the set of
events of M and is a linear extension of the causal order given by M. We say that such an
execution E corresponds to a BMSC M if M has the same set of events and is a linear
extension of the visual order of M .
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Definition 7 We say that a set of BMSCs contains a race if there exists an execution induced
by some BMSC of the set and not corresponding to any BMSC of the set.

The race condition for HMSCs introduced in [MP99] follows the same principle. Unfortu-
nately, we cannot directly say that an HMSC contains a race if it represents a set of BMSCs
containing a race. The problem is that the BMSCs represented by the HMSC are constructed
with the concatenation operation during which events can be renamed. Therefore, the events are
replaced by labels keeping the information about sending and receiving processes. Further, the
linearly ordered executions are replaced by words called linearizations.

Definition 8 Let M P ES ER P p p P M C C C C be a BMSC. We define an aux-
iliary function label : E p!q p?q p q P such that

label e p!q if e ES, p P e , and q P M e
p?q if e ER, p P e , and q P M 1 e

A linearization of M w.r.t. a partial order is a word label e1 label e2 label en
such that E e1 e2 en and ei e j implies i j. Moreover, we define Lin M to be
the set of all linearizations of M w.r.t. . Finally, we define linearizations of an HMSC H
w.r.t. to be the set

Lin H
σ is a run of H

Lin L σ

Intuitively, Lin M represents all executions induced by M, while Lin M represents all
executions corresponding to M.

Definition 9 ([MP99]) An HMSC H contains a race if Lin H Lin H .

This definition of race has several drawbacks. First of all, the problem whether an HMSC
contains a race is undecidable even if we restrict the problem to HMSCs without core-
gions [MP99, MP00]. Further, as soon as we consider HMSCs with coregions, this notion of
race does not tally with the definition of race for BMSCs. For example, the BMSC drawn in
Figure 3 contains a race as the messages from q to r can be sent in arbitrary order while the
receive events r1 r2 are visually ordered. If we look at this BMSC as an HMSC with only one
state, then there is no race with respect to Definition 9 as both events r1 r2 are represented in
linearizations by the same label r?q and therefore the information about their order is lost.

A simple definition of a trace-race follows.

Definition 10 An HMSC H contains a trace-race if there is a run σ of H such that the BMSC
L σ contains a race.

If an HMSC H contains no trace-race, then each of its runs σ represents a race-free BMSC
L σ . As visual and causal orders of a race-free BMSC coincide, we get that Lin L σ
Lin L σ . Hence, every trace-race-free HMSC is also race-free. The inverse implication does
not hold. For example, the race-free HMSC of Figure 6 has a trace-race (the HMSC describes
the system discussed at the beginning of this section).

Proc. GT-VMT 2010 8 / 12



ECEASST

Figure 9: An race-free HMSC with a trace-race Figure 11: A trace-race-free HMSC

As the definition of trace-race does not replace events by labels, trace-race tallies with the
definition of race for BMSCs, i.e. a BMSC has a race if and only if it has a trace-race when seen
as a single state HMSC.

It is commonly agreed that designers should avoid races in HMSCs. We provide an intuitive
explanation why we think that designers should actually avoid trace-races as well. Let H be
a race-free HMSC with a trace-race. As H has a trace-race, there has to be a run σ such that
L σ induces an execution not corresponding to L σ . As H is race-free, this execution corre-
sponds to some BMSC L σ , where σ σ is another run of H.2 Lemma 1 implies that all
executions corresponding to a run are also induced by the run. Hence, the execution is in fact
induced by (at least) two different runs of the HMSC. This is a potential source of errors as an
implementation of this kind of description tends to violate the “write things once” programming
principle. Moreover, trace-race-free HMSCs are usually more compact and their use may en-
courage a cleaner way for designing systems. For example, compare the trace-race-free system
depicted on Figure 7, which models the same behaviour as the race-free HMSC of Figure 6.

4 Transformation of HMSCs into trace-race-free HMSCs

We present a transformation of an arbitrary HMSC H into a trace-race-free HMSC H . The
transformation modifies only BMSCs in the states of H. The modified BMSCs have the same
processes, events, and causal orders as the original BMSCs, but they induce different visual
orders. As the structure of H remains the same, it has the same set of runs as H. The HMSC is
changed in such a way that both visual and causal orders of the BMSC corresponding to a run σ
in H are the same as the causal order of the BMSC corresponding to σ in H. Hence, Lin H
Lin H Lin H and H is trace-race-free. Moreover, if H was race-free (i.e. Lin H
Lin H ), then Lin H Lin H Lin H Lin H and we say that H and H are
equivalent. The transformation of the original HMSC H proceeds in two steps.

Step 1 We modify each BMSC M in a state of H such that each process is covered with a
coregion open on both sides, while BMSCs represented by the resulting HMSC remain the same
as those represented by H: the same events on the same processes with the same visual and
causal orders. We use general orderings and two fresh gate names pre suc to induct the same
2 In fact, the linearization corresponding to the mentioned execution has to be in Lin L σ .
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visual (and hence also causal) orders. The definition of concatenation implies that, on a process
p, all events of BMSCs preceding M in some run of H are visually ordered before all events of M
(except those in a top-open coregion). This relation is preserved using the gate p pre. Similarly,
all events of M (except those in a bottom-open coregion) are visually ordered before all events
of BMSCs succeeding M in some run of H. This relation is preserved using the gate p suc.

More precisely, the general ordering C of a coregion C open on both sides and covering a
process p is defined as the least relation satisfying the following conditions (where G G
pre suc and refers to the original visual order of M):

For every e E p G f E p G , if e f , then e f C .
For every e E, if e is not in a top-open coregion in M, then p pre e C .
For every e E, if e is not in a bottom-open coregion in M, then e p suc C .
p suc E p G C .
E p G p pre C .

Step 2 We restrict the general orderings to induce visual orders equivalent to the original causal
orders. Due to Definition 3, it is sufficient to generally order pairs e f such that e f and
f ES (where refers to the original visual order). Formally, we replace every general ordering

C computed in the previous step with C P G E P G Es .

5 Trace-race detection problem for HMSCs

This section studies decidability and complexity of the trace-race detection problem, i.e. the
problem whether a given HMSC (with open coregions) contains a trace-race. We assume that
each state of a given HMSC H S s0 SF L L appears on some run of H and it is labelled
with a race-free BMSC. Recall that H contains a trace-race if and only if there is a run σ such that
the BMSC L σ contains a race. There is such a run if and only if there is a path π s0s1s2 sk
where L s0 sk 1 is a race-free BMSC containing an event e and L sk is a race-free BMSC
containing an event f such that L π contains a race between e and f . Due to Theorem 1, one
can easily check whether a given path π s0s1s2 sk meets these conditions. However, it does
not solve the trace-race detection problem as there could be infinitely many paths starting in s0.

Our detection technique relies on a precise characterization of races appearing in concatena-
tion M1 M2 of two race-free BMSCs. For this, we need two new functions returning sets of
joined gates. Intuitively, a joined gate p g for a concatenation M1 M2 is a reference to a gate that
appears as a bottom gate p g in M1 and is identified with the corresponding top gate p g of M2
during concatenation. We denote by p G and P G the sets all joined gates over gate name space
G and the process p or all processes P, respectively.

Definition 11 Given a BMSC M P ES ER P p p P M C C C C over gate name
space G, we define two functions : ES ER 2P G as e p g P G e p g
and e p g P G p g e .

In the context of a concatenation M1 M2, e and e always refer to the values of these
functions in the BMSC Mi (where i 1 2 ) originally containing the event e. The characteri-
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zation of races in M1 M2 is formulated in Lemma 3. The lemma assumes that the two race-free
BMSCs M1 M2 are in the special form of Section 4, where all events and gates on each process
are covered by a coregion open on both sides. Note that every BMSC can be converted to this
form by the first step of the transformation presented in the previous section.

Lemma 3 Let M1 M2 be a concatenation of two race-free BMSCs M1 M2 in the special form,
e be an event of M1, and f be an event of M2 such that P e P f p. Then e and f are in
race if and only if all the following conditions hold.

1 f is a receive event 4 label e label f 1 e 1 f /0
2 e f p G /0 5 receive events f of M2 such that f 1 f :
3 e 1 f /0 label e label f 1 e 1 f /0

The precondition P e P f is not a serious restriction thanks to Lemma 2. The charac-
terization says that to decide whether an event e of M1 is in race with some event of M2, one
needs to know only label e , e and, if e is a receive action, then also 1 e . Triples
label e e 1 e for receive events e and label e e /0 for send events e are

called footprints of M1. Note that the number of footprints for a fixed set of processes P and
a gate name space G is bounded by 2 P 2 2 P G 2 P G . Extending function P to labels as
P p!q P p?q p, Lemma 3 can be reformulated as follows:

Lemma 4 Let M1 and M2 be two race-free BMSCs in the special form. The concatenation
M1 M2 contains a race if and only if there is a receive event f in M2 and a footprint l F F of
M1 such that all the following conditions hold.

1 P l P f p 4 l label f F 1 f /0
2 F f p G /0 5 receive events f of M2 such that f 1 f :
3 F 1 f /0 l label f F 1 f /0

Now we return to the observation from the beginning of this section. Let s s be two states
of the HMSC H such that s s . If we have the set of footprints of all BMSCs of the form
L π where π is a path leading from s0 to s, we are able to decide whether any concatenation
L π L s contains a race. Moreover, we can effectively compute the set of footprints of all
BMSCs of the form L π L s .

Hence, with each state s of the HMSC H we associate the set of all footprints of all BMSCs
corresponding to paths starting in s0 and leading to s. These sets of associated footprints can be
easily computed using the fixpoint approach. If no race is detected during the computation, then
the HMSC is trace-race-free. The precise algorithm, its complexity analysis, and complexity
analysis of the trace-race detection problem can be found in [ŘSSH09].

Theorem 2 Given an HMSC H S s0 S f L (with open coregions and gates) over a
gate name space G, the problem whether H contains a trace-race is decidable in time S 2

b3 P 2 22 P G 2 , where b is the size of the largest BMSC in L. Hence, the problem is in
if the number of processes and gates is fixed.

Theorem 3 The trace-race detection problem is -complete.
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6 Conclusions

We have introduced two new notions for HMSCs: an extension of the formalism with open core-
gions and a new race condition for HMSCs called trace-race. Definitions of race and trace-race
directly imply that every trace-race-free HMSC is also race-free. We have shown that every race-
free HMSC can be translated into an equivalent trace-race-free HMSC using open coregions,
where by equivalence we mean that the two HMSCs represent sets of BMSCs with identical
linearizations. Hence, trace-race-free HMSCs with open coregions are as expressive as race-free
HMSCs with open coregions (and we conjecture that trace-race-free HMSCs with open core-
gions are in fact strictly more expressive than race-free HMSCs without open coregions). While
the race detection problem is undecidable even for HMSCs without coregions [MP99], we have
demonstrated that the trace-race detection problem is decidable (and -complete) for
HMSCs with open coregions. Therefore, HMSCs with open coregions and the trace-race notion
appear as good candidates for tractable analysis of race ambiguities in scenario based designs.

The trace-race detection algorithm is implemented in Sequence Chart Studio, a Microsoft
Visio add-on available at http://scstudio.sourceforge.net/. The studio currently
supports HMSCs with closed coregions only (a support of open coregions is planned too).

Acknowledgements: We would like to thank Philippe Darondeau for an important hint.
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Abstract: We present a new abstract machine for interaction nets and demonstrate
that an implementation based on the ideas is significantly more efficient than existing
interaction net evaluators. The machine, which is founded on a chemical abstract
machine formulation of interaction nets, is a simplification of a previous abstract
machine for interaction nets. This machine, together with an implementation, is
at the heart of current work on using interaction nets as a new foundation as an
intermediate language for compiler technology.

Keywords: Interaction nets, programming languages, abstract machine

1 Introduction

Interaction nets [7] are a graphical model of computation. It is possible to program with in-
teraction nets [6, 9] and they also serve as an intermediate language for implementing other
programming languages. Some examples are encodings of λ -calculus, and simple functional
programming languages (amongst others, see for instance [2, 4, 8]).
One reason why they have been very successful at implementing other programming lan-

guages is that a compilation must explain all the components of a computation. What is rare, is
that the compilation can give something back, and this has been observed with the encodings on
the λ -calculus where new strategies for reduction have been found. One of the reasons for this
is because interaction nets naturally capture sharing, indeed one has to work hard to simulate
reduction strategies where duplication of work takes place.
In [3] a calculus was given which provided a foundation for the operational understanding of

interaction nets. This calculus led to the development of an abstract machine [10], which in turn
led to a very efficient implementation of interaction nets.
Recently, there have been new developments in the foundations for a calculus of interaction

nets. The purpose of this paper is to outline these ideas which led to the main contribution of
the paper which is an abstract machine founded on the new calculus. This in turn has led to the
development of new implementations of interaction nets which are the most efficient that we are
aware of to date.
One of the main hopes of this work is that it provides a new foundation for a research pro-

gramme to build implementations of programming languages through interaction nets: an im-
provement in the implementation technology for nets will have an impact on all the compilers
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developed.
The main contributions of this paper are:

We define a new term calculus of interaction nets. The novelty is that the notion of substi-
tution is simplified in that it just replaces a name.

We simplify and improve Pinto’s abstract machine [10] by using this calculus. The main
improvement is due to the fact that we no longer need to maintain lists of names, and
consequently the transition rules become significantly more simple.

We have built a prototype implementation based on the ideas. We demonstrate that we
get a factor of ten improvement over previous implementations, and this implementation
is thus the most efficient evaluator to date.

Overview. The rest of this paper is structured as follows. In the next section we review what
we need about interaction nets. In Section 3 we give our new calculus. Section 4 gives the
abstract machine, and gives studied properties of it. We conclude the paper in Section 5.

2 Interaction nets
Here we review the basic notions of interaction nets. We refer the reader to [7] for a more detailed
presentation. Interaction nets are specified by the following data:

A set Σ of symbols. Elements of Σ serve as agent (node) labels. Each symbol has an
associated arity ar that determines the number of its auxiliary ports. If ar α n for
α Σ, then α has n 1 ports: n auxiliary ports and a distinguished one called the principal
port.

A net built on Σ is an undirected graph with agents at the vertices. The edges of the net
connect agents together at the ports such that there is only one edge at every port. A port
which is not connected is called a free port. A set of free ports is called an interface.

Two agents α β Σ Σ connected via their principal ports form an active pair (analo-
gous to a redex). An interaction rule α β N in replaces the pair α β by the
net N. All the free ports are preserved during reduction, and there is at most one rule for
each pair of agents. The following diagram illustrates the idea, where N is any net built
from Σ.
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Figure 1: An example of a system of interaction nets

We use the relation for the one step reduction and for its transitive and reflexive closure.
Interaction nets have the following property [7]:

Proposition 1 (Strong Confluence) Let N be a net. If N N1 and N N2 with N1 N2,
then there is a net N3 such that N1 N3 and N2 N3.

Figure 1 shows a classical example of an interaction net system that encodes the addition
operation. We can represent numbers using the agents S to represent the successor function
n n 1 and Z to represent the number 0. The left of the figure contains the two addition rules
which we leave the reader to relate to the standard equational term rewriting system definition
of addition. The right of the figure gives an example reduction sequence which shows how a net
representing 0 1 is reduced to 1 using the given rules.

2.1 The calculus for interaction nets

In this section we review the calculus for interaction nets proposed by Fernández and Mackie [3].
We begin by introducing a number of syntactic categories:

Names Let be a set of names ranged over by x y z x1 x2 . We write x̄ ȳ for sequences
of names. We assume and Σ are disjoint.

Terms are built from Σ and using the grammar: t :: x α t1 tn , where t1 tn are
terms, α Σ and ar α n. If ar α 0, then we omit brackets and write just α . We use
t s u to range over terms and t̄ s̄ ū over sequences of terms.

Equations have the form: t s, where t and s are terms. Equations are elements of computa-
tion. Given t̄ t1 tk and s̄ s1 sk, we write t̄ s̄ to denote the list t1 s1 tk
sk. We use Δ Θ to range over multisets of equations.

Configurations have the form: t̄ Δ , where t̄ is a sequence of terms representing the
interface of the net and Δ is a sequence of equations. All names occur at most twice in
a configuration. We use C1 C2 to range over configurations. Configurations that differ
only on names are considered equivalent.
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Interaction rules have the form: α t1 tn β s1 sk , where α t1 tn and β s1 sk
are terms. This notation for rules was introduced by Lafont [7] and we refer to it as La-
font’s style. All names occur exactly twice in a rule, and there should be at most one rule
between any pair of agents in . is closed under symmetry, thus if α t̄ β s̄
then β s̄ α t̄ .

Definition 1 (Bound names) If a name x occurs twice in a term t, then we say x is bound. We
extend this notion to equations, sequences of terms, and multiset of equations.

The calculus consists of three reduction rules which reduce (valid) configurations.

Indirection:
t̄ x t u s Δ i t̄ u t x s Δ where x occurs in u,

Collect:
t̄ x t Δ c t̄ t x Δ where x occurs in t̄,

Interaction:
t̄ α t̄1 β t̄2 Δ t̄ t̄1 s̄l t̄2 ūl Δ
where α s̄ β ū and s̄l and ūl are the result of replacing each occurrence of a

bound name x for α s̄ β ū by a fresh name xl respectively.

Example 1 The example rules in Figure 1 can be represented using Lafont’s style 1 as:
add S x y S add x y , add x x Z

The example net in Figure 1 can be represented using the configuration:
a add a Z S Z

and the following is a possible reduction sequence using the calculus rules above:

a add a Z S Z a a S x Z y Z add x y
c S x Z y Z add x y
i S x Z add x Z

S x x x Z x
c S x Z x
c S Z

3 Refining the calculus
The calculus given in the previous section has nice properties and provides a simple static and
dynamic semantics for interaction nets. However, the calculus introduces extra computational
steps to reduce a given net to normal form. For example, the example net in Figure 1 reduces
in two steps using the graphical setting while the same net reduces in six steps using the textual
calculus (see Example 1). In this section, we answer the following question in the positive: can
we optimise the calculus to obtain more efficient computations? The result of this question is
our lightweight calculus which will form the basis of the lightweight abstract machine.
1 see [7, 5] for a more detailed description of Lafont’s style syntax
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Interaction rules. The notation of Lafont’s style generates (redundant) equations which will
be reduced by the Indirection rule. In particular, if an auxiliary port of an interacting agent in
a rule is connected to another auxiliary port, the application of an Interaction rule will generate
an equation with a variable x on one side of the equation. Since all variables appear twice in a
rule, x will eventually be eliminated using the Indirection rule. For example, this can be traced in
Example 1 where the equation Z y is generated in the configuration after applying the first rule
add S x y S add x y . In other words, the application of an Interaction rule to an active
pair α β where α t̄1 x t̄2 β s̄1 will generate a configuration where an Indirection rule
is applicable.
In order to eliminate the generation of redundant equations we introduce an alternative nota-

tion to represent interaction rules. We represent rules using the syntax: lhs rhs where lhs
consists of an equation between the two interacting agents and rhs is a list of equations which
represent the right-hand side net. All rules α t̄ β s̄ in Lafont’s style can be written using our
notation:

α t̄1 β s̄1 t̄1 t̄ s̄1 s̄ where t̄1 s̄1 are meta-variables for terms.

As a concrete example, the rule add S x y S add x y can be represented as

add t1 t2 S u1 t1 S x t2 y u1 add x y

moreover we can simplify rules by replacing equals for equals. The above rule can be simplified
to:

add t1 t2 S u1 t1 S x u1 add x t2

Therefore we obtain a more efficient computation by using the notation of term rewriting sys-
tems.

Definition 2 (Lightweight interaction rules) A lightweight rule r lt is of the form:

α t1 tn β s1 sk Δ

where α β Σ, ar α n ar β k, and t1 tn s1 sk are meta-variables for terms. Each
meta-variable occurs exactly twice in a rule: once on the lhs and once on the rhs. The set
lt contains at most one rule between any pair of agents; lt is closed under symmetry — if

α t̄ β s̄ Δ lt then β s̄ α t̄ Δ lt.

Indirection rules. Let us now examine the Indirection rule of the calculus which eliminates
bound variables by means of variable substitution. The application of this rule will search
through the list of terms to locate a term which contains an occurrence of a particular vari-
able. In order to reduce the searching costs, Pinto’s abstract machine [10], which is based on this
calculus, attaches a list of variables to the head of every term. This again introduces management
overheads, hence the increase in the number of operations required to perform rewirings.
Taking into consideration that every change of connection does not affect interactions directly,

it turns out that we do not have to perform all substitutions eagerly. Therefore we decompose
the Indirection rule into: communication rules that will replace just a name, and substitution rule
that will perform other substitutions.
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Definition 3 (Lightweight reduction rules) We define Lightweight reduction rules as follows:

Communication:
t̄ x t x u Δ com t̄ t u Δ ,

Substitution:
t̄ x t u s Δ sub t̄ u t x s Δ where u is not a name and x occurs in u,

Collect:
t̄ x t Δ col t̄ t x Δ where x occurs in t̄,

Interaction:
t̄ α t̄1 β t̄2 Δ int t̄ Θl Δ

where α s̄ β ū Θ lt and Θl is the result of replacing each occurrence of
a bound name x for Θ by a fresh name xl and replacing each occurrence of s̄ ū by t̄1 t̄2
respectively.

We use just instead of com sub col int when there is no ambiguity. We defineC1 C2
by C1 C2 where C2 is in normal form. From now on, we use T S U for non-variable
terms.

Example 2 Rules in Figure 1 can be represented as follows:

add x1 x2 S y x1 S w y add w x2
add x1 x2 Z x1 x2

and the following computation can be performed:

a add a Z S Z int a a S w Z add w Z
col S w Z add w Z
int S w w Z
col S Z

3.1 Properties of lightweight reduction rules

In this section, we present some properties of the lightweight reduction rules. First, we show that
we can postpone the application of Collect rules as in Abramsky’s Computational interpretations
of linear logic [1].

Lemma 1 If C1
col com C2 then C1

com col C2.

Proof. Let C1 t̄ x t u y y v Δ col t̄ t x u y y v Δ com t̄ t x u
v Δ C2. Then, C1

com t̄ x t u v Δ col C2.

Lemma 2 If C1
col sub C2 then C1

sub col C2.
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Lemma 3 If C1
col int C2 then C1

int col C2.

By Lemma 1, 2, 3, the following holds.

Lemma 4 If C1 C2 then there is a configuration C such that C1 C col C2 and C1 is
reduced to C without the application of any Collect rule.

Next, we examine whether or not we can postpone the application of Substitution rules. Note
that applying the Substitution rule to an equation does not generate any other equations which
require the application of an Interaction rule. Therefore the following properties hold.

Lemma 5 If C1
sub com C2 then C1

com sub C2.

Lemma 6 If C1
sub int C2 then C1

int sub C2 or C1
int com C2.

By Lemma 4, 5 and 6 the following theorem holds.

Theorem 1 If C1 C2 then there is a configuration C such that C1 C sub col C2 and
C1 is reduced to C by applying only Communication and Interaction rules.

This theorem shows that all Interaction rules can be performed without applying Substitution
rules. We define C1 ic C2 by C1 C2 where C2 is a

int com normal form.

4 Lightweight abstract machine

In this section we define the Lightweight abstract machine which is based on the lightweight
rewriting rules.

Definition 4 (Machine configuration) A configuration of our abstract machine state is given by
a 5-tuple Γ φ t̄ Θ Δ where

Γ is an environment which maps a variable to a term. We use as an empty map and the
following notation:

Γ x t z t (z is x)
Γ z (otherwise)

φ is a connection map. When φ x is undefined, we use the following notation:

φ x z undefined (z x)
φ z (otherwise)

t̄ is a sequence of terms

Θ is a sequence of error codes that are not executable
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Δ is a sequence of equations which we also regard as codes. We write “ ” for an empty
sequence of codes.

In Figure 2 we give the semantics of the machine as a set of transitional rules of the form:
Γ φ t̄ Θ Δ Γ φ t̄ Θ Δ . The functions interaction S T and error S T
are defined as follows:

interaction S T Δ1 (when S T int Δ1 )
(otherwise)

error S T (when S T int Δ1 )
S T (otherwise)

For readability purposes we present the transitions in a table format. For example, the entry:

Before After
II 0 Connections φ x φ x

Env. Γ x Γ x U
Code x U Δ Δ

corresponds to:

Γ x φ x t̄ x U Δ Γ x U φ x t̄ Δ

4.1 Correctness

In order to show the correctness of our abstract machine, we first define a decompilation function
from configurations to terms. Several lemmas follow before the correctness theorem.

Definition 5 (Decompilation) We define a translation env from an environment Γ into a mul-
tiset of equations as follows:

env
def empty

Γ x t env
def x t Γ env

The function con translates a connection map φ into a multiset of equations as follows:

con
def empty

φ x y con
def x y φ con

We write just instead of env, con when there is no ambiguity.

The machine will stop when there is no executable code. These cases arise not only when the
code sequence is empty, but also when names are included in both the domains of Γ and φ . We
define the latter case as inconsistent:
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Before After

I Error Θ error U T Θ
Code U T Δ interaction U T Δ

II 0 Connections φ x φ x
Env. Γ x Γ x U
Code x U Δ Δ

II c Connections φ x y φ x y
Env. Γ x y Γ x y U
Code x U Δ Δ

II e Connections φ x φ x
Env. Γ x T Γ x
Code x U Δ T U Δ

II Code U x Δ x U Δ

III 0 0 Connections φ x y φ x y
Env. Γ x y Γ x y
Code x y Δ Δ

III 0 c Connections φ x y w φ x w y
Env. Γ x y Γ x y
Code x y Δ Δ

III 0 e Connections φ x y φ x y
Env. Γ x y U Γ x U y
Code x y Δ Δ

III c 0 Connections φ x z y φ x y z
Env. Γ x y Γ x y
Code x y Δ Δ

III c c Connections φ x z y w φ x y z w
Env. Γ x y Γ x y
Code x y Δ Δ

III c e Connections φ x z y φ x y z
Env. Γ x y U Γ x y z U
Code x y Δ Δ

III e 0 Connections φ x y φ x y
Env. Γ x T y Γ x y T
Code x y Δ Δ

III e c Connections φ x y w φ x y w
Env. Γ x T y Γ x y w T
Code x y Δ Δ

III e e Connections φ x y φ x y
Env. Γ x T y U Γ x y
Code x y Δ T U Δ

Figure 2: Transitions Γ φ t̄ Θ Δ Γ φ t̄ Θ Δ

9 / 12 Volume of the Pre-proceedings of GT-VMT (2010)



Interaction nets

Definition 6 (Consistency of a machine state) A state Γ φ t̄ Θ Δ is consistent iff

t̄ Γ φ Θ Δ is a configuration, thus every name occurs at most twice,

for every x , x is not included in both domains of Γ and φ .

The following lemma shows that consistency is preserved during transitions:

Lemma 7 Let M1 be a consistent state. If M1 M2, then M2 is also consistent.

Let M1 and M2 be two abstract machine states. We define M1 M2 by M1 M2 where M2 is
a normal form.

Lemma 8 Let M1 be a consistent state, If M1 Γ φ t̄ Θ Δ , then Δ is empty.

Proof. There exists a transition which can be applied to an equation t s whenever Γ φ t̄
Θ t s Δ is consistent.

Lemma 9 Let M1 be a consistent state Γ1 φ1 t̄ Θ1 Δ1 . If M1 Γ2 φ2 t̄ Θ2 Δ2 ,
then one of the following holds:

t̄ Γ1 φ1 Θ1 Δ1 t̄ Γ2 φ2 Θ2 Δ2 ,

t̄ Γ1 φ1 Θ1 Δ1
int t̄ Γ2 φ2 Θ2 Δ2 ,

t̄ Γ1 φ1 Θ1 Δ1
com t̄ Γ2 φ2 Θ2 Δ2 ,

t̄ Γ1 φ1 Θ1 Δ1
com com t̄ Γ2 φ2 Θ2 Δ2 .

Theorem 2 Let t̄ Δ be a configuration. If t̄ Δ terminates at Γ φ t̄ Θ Δ ,
then Δ is empty and t̄ Δ ic t̄ Γ φ Θ .

Proof. By Lemma 8, Δ is empty. Since Γ φ t̄ Θ is consistent by Lemma 7, Γ and
φ cannot contain equations that are reducible using the Communication rule. Therefore, by
Lemma 9, t̄ Δ ic t̄ Γ φ Θ .

Definition 7 We define the operation as follows:

Γ φ x y t̄ Θ Γ x y φ t̄ x y Θ ,

Γ x s t̄ Θ Γ s x t̄ s x Θ ,

t̄ Θ t̄.

Each execution of corresponds to an application of either Substitution or Collect rules.
Therefore, we can show the following property:

Theorem 3 (Correctness) Let t̄ Δ be a configuration. If t̄ Δ Γ φ t̄
Θ Δ , then Δ is empty and there is a reduction path such that t̄ Δ ū Θ where

Γ φ t̄ Θ ū.
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AMINE Light AMINE/Light
255II 14.07 0.09 156.33
264II 50.02 0.14 357.29
256II 119.93 0.23 521.43
A 3 6 4.14 0.18 23.00
A 3 7 40.15 0.71 57.04
A 3 8 612.19 1.70 360.11

Table 1: The execution times in seconds on Linux PC (2.6GHz, Pentium 4, 512MByte)

Example 3 The computation of r Add r Z S Z is given below:
r Add r Z S Z

r r S x Z Add x Z (I)
r S x r Z Add x Z (II.0)
r S x r x Z (I)
r S x x Z r (II.0).

r S x x Z r
r S Z r S Z

4.2 Benchmark results

We compare the lightweight version with Pinto’s implementation (AMINE). Both are written in
C language. Table 1 shows execution times in seconds of our implementation and AMINE. The
final column gives the ratio between the two. The first three input programs are applications
of church numerals where n λ f λx f nx and I λx x. The encodings of these terms into
interaction nets are given in [8]. The next programs compute the Ackermann function. The
following rules are the interaction net encoding of the Ackermann function:

Pred Z Z, Dup Z Z Z,
Pred x S x , Dup S a S b S Dup a b ,
A r S r Z, A1 Pred A S Z r r Z,
A A1 S x r r S x , A1 Dup Pred A r1 r A y r1 r S y ,

and A 3 5 means computation of r A S S S S S Z r S S S Z .
The results that we have obtained are better than previous implementation results, and allow

substantially larger classes of functions to be executed very efficiently. Depending on the archi-
tecture used, these results will vary slightly. We however invite the reader to try some of these
examples by downloading our implementation: http://www.interaction-nets.org/.

5 Conclusion
The aim of this paper is to report on current work on the foundations of the implementations
of interaction nets. Specifically, we have presented a new implementation that is the most effi-
cient to date. In the work where interaction nets are considered as an intermediate language for
compilation, this work gives a speedup by a factor of ten or more.
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Implementation work for interaction nets is currently being investigated very actively, and
although this step is a considerable one, we believe that there is still much more to do. Our im-
plementations are still very much prototype in nature, and no program optimisations have been
included here. Future work will be directed towards developing stable and efficient implementa-
tions for both sequential and parallel architectures.
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Abstract: The diversity of today’s model transformation languages makes it hard
to compare their expressiveness and provide a framework for interoperability. De-
constructing and then re-constructing model transformation languages by means of
a unique set of most primitive constructs facilitates both. We thus introduce T-Core,
a collection of primitives for model transformation. Combining T-Core with a (pro-
gramming or modelling) language enables the design of model transformation for-
malisms. We show how basic and more advanced features from existing model
transformation languages can be re-constructed using T-Core primitives.
Keywords: Transformation primitives, multi-paradigm model transformation

1 Introduction
A plethora of different rule-based model transformation languages and supporting tools exist to-
day. They cover all (or a subset of) the well-known essential features of model transformation
[SV09c]: atomicity, sequencing, branching, looping, non-determinism, recursion, parallelism,
back-tracking, hierarchy, and time. For such languages, the semantics (and hence implemen-
tation) of a transformation rule consists of the appropriate combination of building blocks im-
plementing primitive operations such as matching, rewriting, and often a validation of consis-
tent application of the rule. The abovementioned essential features of transformation languages
are achieved by implicitly or explicitly specifying “rule scheduling”. Languages such as ATL
[JK06], FUJABA [FNTZ00], GReAT [AKK+06], MoTif [SV09b], and VIATRA [VB07] include
constructs to specify the order in which rules are applied. This often takes the form of a control
flow language. Without loss of generality, we consider transformation languages where models
are encoded as typed, attributed graphs.
The diversity of transformation languages makes it hard, on the one hand, to compare their

expressiveness and, on the other hand, to provide a framework for interoperability (i.e., mean-
ingfully combining transformation units specified in different transformation languages). One
approach is to express model transformation at the level of primitive building blocks. De-
constructing and then re-constructing model transformation languages by means of a small set
of most primitive constructs offers a common basis to compare the expressiveness transforma-
tion languages. It may also help in the discovery of novel, possibly in domain-specific, model
transformation constructs by combining the building blocks in new ways. Furthermore, it allows
implementers to focus on maximizing the efficiency of the primitives in isolation, leading to
more efficient transformations overall. Lastly, once re-constructed, different transformation lan-
guages can seamlessly interoperate as they are built on the same primitives. This use of common
primitives in turn allows for global as well as inter-rule optimization.
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Figure 1: The T-Core module

We introduce T-Core, a collection of transformation language primitives for model transfor-
mation in Section 2. Section 3 motivates the choice of its primitives. Section 4 shows how
transformation entities, common as well as more esoteric, can be re-constructed. Section 5 de-
scribes related work and Section 6 draws conclusions and presents directions for future work.

2 De-constructing Transformation Languages

We propose here a collection of model transformation primitives. The class diagram in Figure 1
presents the module T-Core encapsulating model transformation primitives. T-Core consists of
eight primitive constructs (Primitive objects): a Matcher, Iterator, Rewriter, Resolver, Rollbacker,
Composer, Selector, and Synchronizer. The first five are RulePrimitive elements and represent
the building blocks of a single transformation unit. T-Core is not restricted to any form of speci-
fication of a transformation unit. In fact, we consider only PreConditionPatterns and PostCondi-
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tionPatterns. For example, in rule-based model transformation, the transformation unit is a rule.
The PreConditionPattern determines its applicability: it is usually described with a left-hand side
(LHS) and optional negative application conditions (NACs). It also consists of a PostCondition-
Pattern which imposes a pattern to be found after the rule was applied: it is usually described
with a right-hand side (RHS). RulePrimitives are to be distinguished from the ControlPrimitives,
which are used in the design of the rule scheduling part of the transformation language. A
meaningful composition of all these different constructs in a Composer object allows modular
encapsulation of and communication between Primitive objects.
Primitives exchange three different types of messages: Packet, Cancel, and Exception. A

packet π represents the host model together with sufficient information for inter- and intra-rule
processing of the matches. π thus holds the current model (graph in our case) graph, the match-
Set, and a reference to the current PreConditionPattern identifying a MatchSet. A MatchSet
refers to a condition pattern and contains the actual matches as well as a reference to the match-
ToRewrite. Note that each MatchSet of a packet has a unique condition, used for identifying
the set of matches. A Match consists of a sub-graph of the graph in π where each element is
bound to an element in graph. Some elements (Nodes) of the match may be labelled as pivots,
which allows certain elements of the model to be identified and passed between rules. A cancel
message ϕ is meant to cancel the activity of an active primitive element (especially used in the
presence of a Selector). Finally, specific exceptions χ can be explicitly raised, carrying along the
currently processed packet π (πφ is used to represent the empty packet).
All the primitive constructs can receive packets by invoking either their packetIn, nextIn, suc-

cessIn, or failIn methods. The result of calling one of these methods sets the primitive in success
or failure mode as recorded by the isSuccess attribute. Cancel messages are received from the
cancelIn method. Next, we describe in detail the behaviour of the different methods supported
by the primitive elements. A complete description can be found in [SV09a].

2.1 Matcher Algorithm 1 Matcher.packetIn(π)
M← (all) matches of condition found in π.graph
if ∃〈condition,M′〉 ∈ π.matchSets then

M′ ←M′ ∪M
else
add 〈condition,M〉 to π.matchSets

end if
π.current ← condition
isSuccess←M (= /0
return π

The Matcher finds all possible matches of the condition
pattern on the graph embedded in the packet it receives
from its packetIn method. The transformation mod-
eller may optimize the matching by setting the findAll
attribute to false when he a priori knows that at most
one match of this matcher will be processed in the over-
all transformation. The matching also considers the pivot mapping (if present) of the current
match of π . After matching the graph, the Matcher stores the different matches in the packet as
described in Algorithm 1. Some implementations may, for example, parametrize the Matcher by
the condition pattern or embed it directly in the Matcher. The transformation units (e.g., rules)
may be compiled in pre/post-condition patterns or interpreted, but this is a tool implementation
issue which we do not discuss here.

2.2 Rewriter

As described in Algorithm 2, the Rewriter applies the required transformation for its condition
on the match specified in the packet it receives from its packetInmethod. That match is consumed
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Algorithm 2 Rewriter.packetIn(π)
if π is invalid then

isSuccess← false
exception← χ(π)
return π

end if
M← 〈condition.pre,M〉 ∈ π.matchSets
apply transformation on M.matchToRewrite
if transformation failed then

isSuccess← false
exception← χ(π)
return π

end if
set all modified nodes in M to dirty
remove 〈condition,M〉 from π.matchSets
isSuccess← true
return π

by the Rewriter: no other operation can be further applied
on it. Some validations are made in the Rewriter to verify,
for example, that π.current.condition = condition.pre or
that no error occurred during the transformation. In our ap-
proach, a modification (update or delete) of an element in
{M| 〈condition.pre,M〉 ∈ π.matchSets} is automatically
propagated to the other matches, if applicable.
2.3 Iterator

The Iterator chooses a match among the set of matches of
the current condition of the packet it receives from its pack-
etIn method, as described in Algorithm 3. The match is
chosen randomly in a Monte-Carlo sense, repeatable using
sampling from a uniform distribution to provide a reproducible, fair sampling. When its nextIn
method is called, the Iterator chooses another match as long as the maximum number of iterations
maxIterations (possibly infinite) is not yet reached, as described in Algorithm 4. In the case of
multiple occurrences of a MatchSet identified by π .current, the Iterator selects the last MatchSet.

Algorithm 3 Iterator.packetIn(π)
if 〈π.current,M〉 ∈ π.matchSets then
choose m ∈M
M.matchToRewrite← m
remIterations←maxIterations−1
isSuccess← true
return π

else
isSuccess← false
return π

end if

Algorithm 4 Iterator.nextIn(π)
if 〈π.current,M〉 ∈ π.matchSets and remIterations > 0 then
choose m ∈M
M.matchToRewrite← m
remIterations← remIterations−1
isSuccess← true
return π

else
isSuccess← false
return π

end if

2.4 Resolver
Algorithm 5 Resolver.packetIn(π)
for all condition c ∈ {c|〈c,M〉 ∈ π.matchSets} do
if externalMatchesOnly and c= π.current then
continue

end if
for all match m ∈M do
if m has a dirty node then
if customResolution(π) then

isSuccess← true
return π

else if defaultResolution(π) then
isSuccess← true
return π

else
isSuccess← false
exception← χ(π)
return π

end if
end if

end for
end for
isSuccess← false
exception← χ(π)
return π

The Resolver resolves a potential conflict between
matches and rewritings as described in Algorithm 5.
For the moment, the Resolver detects conflicts in a
simple conservative way: it prohibits any change to
other matches in the packet (check for dirty nodes).
However, it does not verify if a modified match is still
valid with respect to its pre-condition pattern. The
externalMatchesOnly attribute specifies whether the
conflict detection should also consider matches from
its match set identified by π.current or not. In the case
of conflict, a default resolution function is provided
but the user may also override it.

2.5 Composer

The Composer serves as a modular encapsulation in-
terface of the elements in its primitives list. When one
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of its packetIn or nextIn methods is invoked, it is up to the user to manage subsequent method
invocations to its primitives. Nevertheless, when the cancelIn method is called, the Composer
invokes the cancelIn method of all its sub-primitives. This cancels the current action of the
primitive object by resetting its state to its initial state. Cancelling happens only if it is actively
processing a packet π such that the current condition of π is not in ϕ .exclusions, where ϕ is
the received cancel message. In the case of a Matcher, since the current condition of the packet
may not already be set, the cancelIn also verifies that the condition of the Matcher is not in the
exclusions list. The interruption of activity can, for instance, be implemented as a pre-emptive
asynchronous method call of cancelIn.
Additionally, more advanced primitive are included in T-Core but are not described here due

to space constraints. A Rollbacker provides back-tracking capabilities to its transformation rule.
A Selector is used when a choice needs to be made between multiple packets processed concur-
rently by different constructs. Also, a Synchronizer is used when multiple packets processed in
parallel need to be synchronized.

3 T-Core: a minimal collection of transformation primitives

In the de-construction process of transformation languages into a collection of primitives, ques-
tions like “up to what level?” or “what to include and what to exclude?” arise. The proposed
T-Core module answers these questions in the following way.
In a model transformation language, the smallest transformation unit is traditionally the rule.

A rule is a complex structure with a declarative part and an operational part. The declarative
part of a rule consists of the specification of the rule (e.g., LHS/RHS and optionally NAC in
graph transformation rules). However, T-Core is not restricted to any form of specification let
it be rule-based, constraint-based, or function-based. In fact, some languages require units with
only a pre-condition to satisfy, while other with a pre- and a post-condition. Some even allow
arbitrary permutations of repetitions of the two. In T-Core, either a PreConditionPattern or both
a Pre- and a PostConditionPattern must be specified. For example, a graph transformation rule
can be represented in T-Core as a couple of a pre- and a post-condition pattern, where the latter
has a reference to the former to satisfy the semantics of the interface K (in the L ← K → R
algebraic graph transformation rules) and be able to perform the transformation. Transformation
languages where rules are expressed bidirectionally or as functions are supported in T-Core as
long as they can be represented as pre- and post-condition patterns.
The operational part of a rule describes how it executes. This operation is often encapsu-

lated in the form of an algorithm (with possibly local optimizations). Nevertheless, it always
consists of a matching phase, i.e., finding instances of the model that satisfy the pre-condition
and of a transformation phase, i.e., applying the rule such that the resulting model satisfies the
post-condition. T-Core distinguishes these two phases by offering a Matcher and a Rewriter as
primitives. Consequently, theMatcher’s condition only consists of a pre-condition pattern and the
Rewriter then needs a post-condition pattern that can access the pre-condition pattern to perform
the rewrite. Combinations of Matchers and Rewriters in sequence can then represent a sequence
of simple graph transformation rules: match-rewrite-match-rewrite. Moreover, because of the
separation of these two phases, more general and complex transformation units may be built,
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such as: match-match-match or match-match-rewrite-rewrite. The former is a query where each
Matcher filters the conditions of the query. The latter is a nesting of transformation rules. In
this case, however, overlapping matches between different Matchers and then rewrites on the
overlapping elements may lead to inconsistent transformations or even non-sense. This is why a
Resolver can be used from T-Core to safely allow match-rewrite combinations.
The data structure exchanged between T-Core RulePrimitives in the form of packets contains

sufficient information for each primitive to process it as described in the various algorithms in
Section 2. The Match allows to refer to all model elements that satisfy a pre-condition pattern.
The pivot mappings allow elements of certain matches to be bound to elements of previously
matched elements. The pivot mapping is equivalent to passing parameters between rules as will
be shown in the example in Section 4.1. TheMatchSet allows to delay the rewriting phase instead
of having to rewrite directly after matching.
Packets conceptually carry the complete model (optimized implementation may relax this)

which allows concurrent execution of transformations. The Selector and the Synchronizer both
permit to join branches or threads of concurrent transformations. Also, having separated the
matching from the rewriting enables to manage the matches and the results of a rewrite by fur-
ther operators. Advanced features such as iteration over multiple matches or back-tracking to a
previous state in the transformation are also supported in T-Core.
Since T-Core is a low-level collection of model transformation primitives, combining its prim-

itives to achieve relevant and useful transformations may involve a large number of these prim-
itive operators. Therefore, it is necessary to provide a “grouping” mechanism. The Composer
allows to modularly organize T-Core primitives. It serves as an interface to the primitives it en-
capsulates. This then enables scaling of transformations built on T-Core to large and complex
model transformations designs.
T-Core is presented here as an open module which can be extended, through inheritance for

example. One could add other primitive model transformation building blocks. For instance,
a conformance check operator may be useful to verify if the resulting transformed model still
conforms to its meta-model. It can be interleaved between sequences of rewrites or used at the
end of the overall transformation as suggested in [KMW09]. We believe however that such new
constructs should either be part of the (programming or modelling) language or the tool in which
T-Core is integrated, to keep T-Core as primitive as possible.

4 Re-constructing Transformation Languages

Having de-constructed model transformation languages in a collection of model transformation
primitives makes it easier to reason about transformation languages. In fact, properly combin-
ing T-Core primitives with an existing well-formed programming or modelling language allows
us to re-construct some already existing transformation languages and even construct new ones
[SV09a]. Figure 2 shows some examples of combinations of T-Core with other languages. Fig-
ure 2(a) and Figure 2(b) combine a subset of T-Core with a simple (programming) language
which offers sequencing, branching, and looping mechanisms (as proposed in Böhm-Jocapini’s
structured program theorem [BJ66]). We will refer to such a language as an SBL language. The
first combination only involves the Matcher and its PreConditionPattern, Packet messages to ex-
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(a) (b)

(c) (d)

Figure 2: Combining T-Core with other languages allows to re-construct existing and new lan-
guages

change, and the Composer to organize the primitives. These T-Core primitives integrated in an
SBL language lead to a query language. Since only matching operations can be performed on the
model, they represent queries where the resulting packet holds the set of all elements (sub-graph)
of the model (graph) that satisfy the desired pre-conditions. Including other T-Core primitives
such as the Rewriter promotes the query language to a transformation language. Figure 2(b) enu-
merates the necessary T-Core primitives combined with an SBL language to design a complete
sequential model transformation language. Replacing the SBL language by another one, such
as UML Activity Diagrams in Figure 2(c), allows us to re-construct Story Diagrams [FNTZ00],
for example, since they are defined as a combination of UML Activity and Collaboration Dia-
grams with graph transformation features. and the notion of timed model transformations when
combined with a discrete-event modelling language [SV09a].
We now present the re-construction of two transformation features using the combination of

an SBL language with T-Core as in Figure 2(b).

4.1 Re-constructing Story Diagrams

Figure 3: The FUJABA doSubDemo transfor-
mation showing a for-all Pattern and two state-
ment activities

In the context of object-oriented reverse-
engineering, the FUJABA tool allows the user
to specify the content of a class method by
means of Story Diagrams. A Story Diagram
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Figure 4: The three MoTif rules for the doSubDemo transformation

organizes the behaviour of a method with activities and transitions. An activity can be a Story
Pattern or a statement activity. The former consists of a graph transformation rule and the latter
is Java code. Figure 3 shows such a story diagram taken from the doDemo method example in
[FNTZ00]. This snippet represents an elevator loading people on a given floor of a house who
wish to go to another level. The rule in the pattern is specified in a UML Collaboration Diagram-
like notation with objects and associations. Objects with implicit types (e.g., this, l2, and e1) are
bound objects from previous patterns or variables in the context of the current method. The Story
Pattern 6 is a for-all Pattern. Its rule is applied on all matches found looping over the unbound
objects (e.g., p4, and l4). The outgoing transition labelled each time applies statement 7 after
each iteration of the for-all Pattern. This activity allows the pattern to simulate random choices
of levels for different people in the elevator. When all iterations have been completed, the flow
proceeds with statement 8 reached by the transition labelled end. The latter activity simulates
the elevator going one level up.

Algorithm 6 makeChoiceC.packetIn(π)
π ← makeChoiceM.packetIn(π)
if not makeChoiceM.isSuccess then

isSuccess← false
return π

end if
π ← makeChoiceI.packetIn(π)
if not makeChoiceI.isSuccess then

isSuccess← true
return π

end if
π ← makeChoiceW.packetIn(π)
if not makeChoiceW.isSuccess then

isSuccess← false
return π

end if
π ← makeChoiceR.packetIn(π)
if not makeChoiceW.isSuccess then

isSuccess← false
return π

end if
isSuccess← true
return π

We now show how to re-construct this non-trivial
story diagram transformation from an SLB language
combined with T-Core. An instance of that combi-
nation is called a T-Core model. First, we design
the rules needed for the conditions of rule primi-
tives. Figure 4 describes the three necessary rules
corresponding to the three Story Diagram activi-
ties. We use the syntax of MoTif [SV09b] where
the central compartment is the LHS, the compart-
ment on the right of the arrow head is the RHS
and the compartment(s) on the left of dashed lines
are the NAC(s). The concrete syntax for represent-
ing the pattern elements was chosen to be intuitively
close enough to the FUJABA graphical representa-
tion. Numeric labels are used to uniquely identify
different elements across compartments. Elements
with an alpha-numeric label between parentheses de-
note pivots. A right-directed arrow on top of such a
label depicts that the model element matched for this pattern element is assigned to a pivot
(e.g., p4 and l4). If the arrow is directed to the left, then the model element matched for this
pattern element is bound to the specified pivot (e.g., this and e1).
The T-Core model equivalent to the original doSubDemo transformation consists of a Com-

poser doSubDemoC. It is composed of two Composers loadC and nextStepC each containing a
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Algorithm 7 loadC.packetIn(π)
π ← loadM.packetIn(π)
if not loadM.isSuccess then

isSuccess← false
return π

end if
π ← loadI.packetIn(π)
while true do
if not loadI.isSuccess then

isSuccess← true
return π

end if
π ← loadW.packetIn(π)
if not loadW.isSuccess then

isSuccess← false
return π

end if
π ← loadR.packetIn(π)
if not loadR.isSuccess then

isSuccess← false
return π

end if
π ← makeChoiceC.packetIn(π)
π ← loadI.nextIn(π)

end while
isSuccess← true
return π

Matcher, an Iterator, a Rewriter, and a Resolver. The pack-
etIn method of doSubDemoC first calls the corresponding
method of loadC and then feeds the returned packet to the
packetIn method of nextStepC. This ensures that the out-
put packet of the overall transformation is the result of first
loading all the Person objects and then moving the eleva-
tor by one step. makeChoiceC and nextStepC behave as
simple transformation rules. Their packetIn method behaves
as specified in Algorithm 6. First, the matcher is tried on
the input packet. Note that the conditions of the matchers
makeChoiceM and nextStepM are the LHSs of rules make-
Choice and nextStep, respectively. If it fails, the composer
goes into failure mode and the packet is returned. Then,
the iterator chooses a match. Subsequently, the rewriter at-
tempts to transform this match. Note that the conditions of
the rewriters makeChoiceW and nextStepW are the RHSs of
rules makeChoice and nextStep, respectively. If it fails,
an exception is thrown and the transformation stops. Other-
wise, the resolver verifies the application of this pattern with
respect to other matches in the transformed packet. The be-
haviour of the resolution function will be elaborated on later.
Finally, on a successful resolution, the resulting packet is output and the composer is put in suc-
cess mode. loadC is the composer that emulates the for-all Pattern of the example. Algorithm 7
specifies that behaviour. After finding all matches with loadM (whose condition is the LHS and
the NAC of rule load), the packet is forwarded to the iterator loadI to choose a match. The iter-
ation is emulated by a loop with the failure mode of loadI as the breaking condition. Inside the
loop, loadW rewrites the chosen match and loadR resolves possible conflicts. Then, the resulting
packet is sent to makeChoiceC to fulfil the each time transition of the story digram. After that,
the nextIn method of loadI is invoked with the new packet to choose a new match and proceed in
the loop.
Having seen the overall T-Core transformation model, let us inspect how the different Re-

solvers should behave in order to provide a correct and complete transformation. The first
rewriter called is loadR and the first time it receives a packet is when a transformation is ap-
plied on one of the matches of loadM. Therefore each match consists of the same House (since
it is a bound node), two Levels, an Elevator, and the associations between them. On the other
hand, loadW only adds a Person and links it to a Level. Therefore the default resolution function
of loadR applies successfully, since no matched element is modified nor is the NAC violated
in any other match. The next resolver is makeChoiceR which is in the same loop as loadR.
There, the House is conflicting with all the matches in the packet according to the conservative
default resolution function. Note that makeChoiceM finds at most one match (the bound House
element). However, makeChoiceW does not really conflict with matches found in loadM. We
therefore specify a custom resolution function for makeChoiceR that always succeeds. The same
applies for nextStepR.
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4.2 Re-constructing amalgamated rules

Figure 5: The transformation
rules for the Repotting Gera-
niums example

In a recent paper, Rensink et al. claim that the Repot-
ting the Geraniums example is inexpressible in most trans-
formation formalisms [RK09]. The authors propose a trans-
formation language that uses an amalgamation scheme for
nested graph transformation rules. As we have seen in the
previous example, nesting transformation rules is possible in
T-Core and will be used to solve the problem. It con-
sists of repotting all flowering geraniums whose pots have
cracked. Figure 5 illustrates the two nested graph transfor-
mation rules involved and Algorithm 8 demonstrates the com-
position of primitive T-Core elements encoding these rules.
baseM (with, as condition, the LHS of rule base) finds all

Algorithm 8 baseC.packetIn(π)
π ← baseM.packetIn(π)
if not baseM.isSuccess then

isSuccess← false
return π

end if
while true do

π ← baseI.packetIn(π)
if baseI.isSuccess then

π ← baseW.packetIn(π)
if not baseW.isSuccess then

isSuccess← false
return π

end if
π ← baseR.packetIn(π)
if not baseR.isSuccess then

isSuccess← false
return π

end if
π ← innerC.packetIn(π)

end if
π ← baseM.packetIn(π)
if not baseM.isSuccess then

isSuccess← false
return π

end if
end while
isSuccess← true
return π

broken pots containing a flowering geranium, given the in-
put packet containing the input graph. The set of matches
resulting in the packet are the combination of all flower-
ing geraniums and their pot container. From then on starts
the loop. First, baseI chooses a match. If one is chosen,
baseW transforms this match and baseR resolves any con-
flicts. In this case, baseW only creates a new unbroken pot
and assigns pivots. Therefore, baseR’s resolution function
always succeeds. In fact, the resolver is not needed here,
but we include it for consistency. The innerC composer en-
codes the inner rule which finds the two bound pots and
moves a flourishing flower in the broken pot to the unbro-
ken one. In order to iterate over all the flowers in the bro-
ken pot, the innerC.packetIn method has the exact same be-
haviour as loadC.packetIn in Algorithm 7, with the excep-
tion of not calling a sub-composer (likemakeChoiceC). Note
that an always successful custom resolution function for in-
nerR is required. After the Resolver successfully outputs the
packet, the inner rule is applied. Then (and also if baseI
had failed) baseM.packetIn is called again with the resulting
packet. The loop ends when the baseM.packetIn method call
inside the loop fails, which entails baseC to return the final
packet in success mode.

5 Related work
The closer work to our knowledge is [VJBB09]. In the context of global model management,
the authors define a type system offering a set of primitives for model transformation. The
advantage of our approach is that T-Core is a described here as a module and is thus directly
implementable. We have recently incorporated T-Core with an asynchronous and timed mod-
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elling language [SV09a] which allowed us to re-implement the two examples in Section 4 as
well as others. Also, the approach described in [VJBB09], does not deal with exceptions at all.
Nevertheless, their framework is able to achieve higher-order transformations, which we did not
consider in this paper.
The GP graph transformation language [MP08] also offers transformation primitives. They

however focus more on the scheduling of the rules then on the rules themselves. Their scheduling
(control) language is an extension of an SBL language. Our approach is more general since
much more complex scheduling languages (e.g., allowing concurrent and timed transformation
execution) can be integrated with T-Core. Although it performs very efficiently, the application
area of GP is more limited, as it can not deal with arbitrary domain-specific models.
Other graph transformation tools, such as VIATRA [VB07] and GReAT [AKK+06], have their

own virtual machine used as an API. In our approach, since the primitive operations are mod-
elled, they are completely compatible with other existing model transformation frameworks.

6 Conclusion

In this paper, we have motivated the need for providing a collection of primitives for model trans-
formation languages. We have defined T-Core which precisely describes each of these primitive
constructs. The de-construction process of model transformation languages enabled us to re-
construct existing model transformation features by combining T-Core with, for example, an
SBL language. This allowed us to compare different model transformation languages using a
common basis.
Now that these primitives are well-defined, efficiently implementing each of them might lead

to more efficient model transformation languages. Also, for future work, we would like to in-
vestigate how T-Core combined with appropriate modelling languages can express further trans-
formation constructs. We would also like to investigate further on the notion of exceptions and
error handling in the context of model transformation.

Bibliography

[AKK+06] A. Agrawal, G. Karsai, Z. Kalmar, S. Neema, F. Shi, A. Vizhanyo. The Design of a
Language for Model Transformations. SoSym 5(3):261–288, September 2006.

[BJ66] C. Böhm, G. Jacopini. Flow diagrams, turing machines and languages with only two
formation rules. Communications of the ACM 9(5):366–371, May 1966.

[FNTZ00] T. Fischer, J. Niere, L. Turunski, A. Zündorf. Story diagrams: A new graph rewrite
language based on the Unified Modelling Language and Java. In Ehrig et al. (eds.),
Theory and Application of Graph Transformations. LNCS 1764, pp. 296–309.
Springer-Verlag, Paderborn (Germany), November 2000.

[JK06] F. Jouault, I. Kurtev. Transforming Models with ATL. In MTiP’05. LNCS 3844,
pp. 128–138. Springer-Verlag, January 2006.

GT-VMT’10



De-/Re-constructing Model Transformation

[KMW09] T. Kühne, E. V. H. Mezei, Gergely Syriani, M. Wimmer. Explicit Transformation
Modelling. In International workshop on Multi-Paradigm Modelling. ECEASST.
Denver (U.S.A.), October 2009.

[MP08] G. Manning, D. Plump. The GP Programming System. In GT-VMT’08. ECEASST,
pp. 235–247. Budapest (Hungary), March 2008.

[RK09] A. Rensink, J.-H. Kuperus. Repotting the Geraniums: On Nested Graph Transfor-
mation Rules. In Margaria et al. (eds.), GT-VMT’09. EASST. York (UK), March
2009.

[SV09a] E. Syriani, H. Vangheluwe. De-/Re-constructing Model Transformation Languages.
Technical report SOCS-TR-2009.8, McGill University, School of Computer Sci-
ence, August 2009.

[SV09b] E. Syriani, H. Vangheluwe. Discrete-Event Modeling and Simulation: Theory and
Applications. Chapter DEVS as a Semantic Domain for Programmed Graph Trans-
formation. CRC Press, Boca Raton (USA), 2009.

[SV09c] E. Syriani, H. Vangheluwe. Matters of model transformation. Technical re-
port SOCS-TR-2009.2, McGill University, School of Computer Science, March
2009.

[VB07] D. Varró, A. Balogh. The model transformation language of the VIATRA2 frame-
work. Science of Computer Programming 68(3):214–234, 2007.

[VJBB09] A. Vignaga, F. Jouault, M. C. Bastarrica, H. Brunelière. Typing in Model Manage-
ment. In Paige (ed.), Theory and Practice of Model Transformations (ICMT’09).
LNCS 5563, pp. 197–212. Springer-Verlag, Zürich (Switzerland), June 2009.

GT-VMT’10



Electronic Communications of the EASST

Volume of the Pre-proceedings of GT-VMT (2010)

Preliminary Proceedings of the
Ninth International Workshop on

Graph Transformation and
Visual Modeling Techniques

(GT-VMT 2010)

Verification of Model Transformations

Bernhard Schätz

13 pages

Guest Editors: Jochen Küster, Emilio Tuosto
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Abstract: With the increasing use of automatic transformations of models, the
correctness of these transformations becomes an increasingly important issue. Es-
pecially for model transformation generally defined using abstract description tech-
niques like graph transformations or declarative relational specifications, however,
establishing the soundness of those transformations by test-based approaches is not
straight-forward. We show how formal verification of soundness conditions over
such declarative relational style transformations can be performed using an inter-
active theorem prover. The relational style allows a direct translation of transfor-
mations as well as associated soundness conditions into corresponding axioms and
theorems. Using the Isabelle theorem prover, the approach is demonstrated for a
refactoring transformation and a connectedness soundness condition.

Keywords: Model transformation, rule-based, verification, theorem prover

1 Motivation

The construction of increasingly sophisticated software products has led to widening gap be-
tween the required and supplied productivity in software development. To overcome the com-
plexity of realistic software systems and thus increase productivity, current approaches increas-
ingly focus on a model-based development using appropriate description techniques. Besides
increasing efficiency, these transformations can offer consistency ensuring modification of mod-
els, ranging from refactoring steps to improve the architecture of a system to the consistent
integration of standard behavior. However, with the increased use of transformation, the ques-
tion of the correctness of transformations arises: How can we verify that the models constructed
via transformation are ‘well-formed’ given a ‘well-formed’ source model, e.g., by ensuring that
no relevant elements of the source model are absent in the target model. Obviously, testing is
one possible way of ensuring the correctness of transformations. However, concepts like cov-
erage etc. are not immediately transferable to model-transformations, especially if those are
rules-based or declarative.

In the following, a approach for the verification of transformations is introduced, supporting
the formal proof of properties over these transformations. The approach uses a declarative re-
lational style to provide a transformation mechanism, implemented on the Eclipse/EMF Ecore
platform, using a Prolog rule-based interpretation.
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1.1 Related Approaches

Verification of model transformations has been specifically investigated for graph-based trans-
formation technquies (e.g., [GGL 06] and [Str08]). In that respect, the presented approach is
similar: The introduced transformation framework is used to describe graph transformations, us-
ing a relational calculus focused on basic constructs to manipulate nodes (elements) and edges
(relations) of a conceptual model. A theorem prover based on on high-order logics is used to
prove characteristics of the transformation by deducing properties of the target model from some
properties of the source model.

In contrast to other graph-based approaches like MOFLON/TGG [KKS07], Viatra [VP04],
or FuJaBa [GGL05], however, here the specification of transformations is not based on triple
graph-grammars or graphical, rule-based descriptions, but uses a textual description based on a
relational, declarative calculus. Therefore, in contrast to those approaches, the approach intro-
duced here uses only a single formalism to describe basic transformations as well as their com-
positions.Furthermore, only a single homogenous formalism with two simple construction/de-
construction operators to describe the basic transformation rules and their composition; complex
analysis or transformation steps can be easily modularized since there are no side-effects or in-
cremental changes during the transformation. Thus, a specification can be immediately used for
verification without complex translations; furthermore, proofs on the formal level more directly
reflect intuitive reasoning about the transformation.

This homogeneity is especially important for verification since is drastically simplifies the
construction of proofs: [GGL 06] focusses on TGG-based translation and therefore has to add
substantial proof parts to model (and verify) the effective construction of correspondence graphs
to describe the application of individual graph rules. Furthermore – due to that correspondence
graph approach – there structural induction over the pre/post-models is used which is less con-
venient when if non-translation transformations are verified. Here, in contrast, induction over
the transformation itself rather than the pre/post models is performed, thus having a more di-
rect proof principle and avoiding the proof overhead of correspondence graphs and applicability
conditions. Similarly, [Str08] also requires substantial effort to specify and verify correspon-
dence graph and application conditions for single transformation rules as well their combination
using while and case constructs. Thus, the application and ordering of rules provided implic-
itly by a TGG approach has to be verified explicitly and using rather different proof principles.
In contrast, here, a more direct and homogenous form of proof is supported by the declarative
rule-based style.

Another advantage of the presented approach is its capability to interpret loose characteriza-
tions of the resulting model, supporting the exploration of a set of possible solutions. By making
use of the back-tracking mechanism provided by Prolog, alternative transformation results can
not only be applied to automatically search for an optimized solution, e.g., balanced compo-
nent hierarchies, using guiding metrics; the set of possible solutions can also be incrementally
generated to allow the user to interactively identify and select the appropriate solution.
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Figure 1: Example of Hierarchical Component Model and Corresponding Conceptual Model

1.2 Overview and Contribution

As the main contribution, an approach to formally verify model transformations is presented
in the following sections. The approach is based on a transformation of EMF Ecore models
using a completely declarative relational style in a rule-based fashion, introduced in [Sch08].
To provide such a form of transformations, the approach uses a term-based formalization of an
EMF model as shown in Section 2. With this form of model representation, as shown in Section 3
transformations can be described as declarative relations in Prolog style, supporting rules similar
to graph grammars as a specific description style.

Based on these previously established results, as new contribution in Section 4 the suitability
of this declarative relational style of defining models and transformation rules for the verification
of transformations is shown: The formalization of (meta-)models and transformation rules can be
directly translated in representations suited for theorem provers for predicate logic like Isabelle;
furthermore, due to the relational style correctness proofs of transformations can be performed
by reasoning on the level of their specifications. Section 5 highlights some benefits and open
issues.

2 Model Structure

To provide verified transformations of descriptions of systems, first the means of specifying
a system in form of a system model is needed. The left-hand side of Figure 1 shows such a
model, describing the hierarchical structure of the components of a system: the system System,
consisting of subcomponents SubSystem, ComponentB, and SiblingSystem, the first and the last
with subcomponents ComponentA and ComponentC, resp.1

To construct formalized descriptions of a system under development, a ‘syntactic vocabulary’
is needed. This conceptual model2 characterizes all possible system models built from the mod-

1 For simplification, here only components and their containment-relation is modeled; other typical aspects like
interfaces or communication links are ignored.
2 In the context of technologies like the Meta Object Facility, the class diagram-like definition of a conceptual model
is generally called meta model.
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eling concepts and their relations used to construct a description of a system; typically, class
diagrams are used to describe them. The right-hand side of Figure 1 shows the corresponding
conceptual model – with the concept of a Component with an attribute name and a subComp-
relation – used to describe the architectural structure of a system.

2.1 Structure of the Model

The transformation framework provides mechanisms for a pure (i.e., side-effect free) declarative,
rule-based approach to model transformation. To that end, the framework provides access to
EMF Ecore-based models [SBPM07]. Based on the conceptual model, a system model consists
of sets of elements (each described as a conceptual entity and its attribute values) and relations
(each described as a pair of conceptual entities). To syntactically represent such a model, a
Prolog term is used. Since these elements and relations are instances of classes and associations
taken from an EMF Ecore model, the structure of the Prolog term – representing an instance of
that model – is inferred from the structure of that model. The structure of the model is built using
only simple elementary Prolog constructs, namely compound functor terms and list terms. To
access a model, the framework provides construction predicates to deconstruct and reconstruct a
term representing a model. [Sch08] describes the model in more detail.

A model term describes an instance of a EMF Ecore model. Each model term is a list of
package terms, one for each packages of the EMF Ecore model. Each package term, in turn,
describes the content of the package instance. It consists of a functor, identifying the package,
with a sub-packages term, a classes terms, and an associations term as its argument. The sub-
packages term describes the sub-packages of the package; it is a list of package terms.

The classes term describes the EClasses of the corresponding package. It is a list of class
terms, one for each EClass. Each class term consists of a functor, identifying the class, and an
elements term. An elements term describes the collection of objects instantiating this class, and
thus is a list of element terms. Finally, an element term consists of a functor, identifying the class
this object belongs to, with an entity identifying the element and attributes as arguments. Each
of the attributes are atomic representations of the corresponding values of the attributes of the
represented object. The entity is a regular atom, unique for each element term.

Similarly to an elements term, each associations term describes the associations, i.e., the in-
stances of the EReferences of the EClasses, for the corresponding package. Again, it is a list of
association terms, with each association term consisting of a functor, identifying the association,
and an relations term, describing the content of the association. The relations term is a list of
relation terms, each relation term consisting of a functor, identifying the relation, and the entity
identificators of the related objects. In detail, the Prolog model term has the structure shown in
Table 1 in the BNF notation with corresponding non-terminals and terminals.3

The functors of the compound terms are deduced from the EMF Ecore model: The functor of
a PackageTerm from the name of the EPackage; the functor of a ClassTerm from the name of
the EClass; the functor of an AssociationTerm from the name of the EReference. Similarly, the
atoms of the attributes are deduced from the instance of the EMF Ecore model, which the model
3 While actually a ModelTerm consists of a set of PackageTerms, here for simplification purposes only one Pack-
ageTerm is assumed.
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ModelTerm ::= PackageTerm
PackageTerm ::= Functor(PackagesTerm,ClassesTerm,AssociationsTerm)
PackagesTerm ::= [] [ PackageTerm (,PackageTerm)* ]
ClassesTerm ::= [] [ ClassTerm (,ClassTerm)* ]
ClassTerm ::= Functor(ElementsTerm)
ElementsTerm ::= [] [ ElementTerm (,ElementTerm)* ]
ElementTerm ::= Functor(Entity(,AttributeValue)*)
Entity ::= Atom
AttributeValue ::= Atom
AssociationsTerm ::= [] [ AssociationTerm(,AssociationTerm)*]
AssociationTerm ::= Functor(RelationsTerm)
RelationsTerm ::= [] [ RelationTerm(,RelationTerm)*]
RelationTerm ::= Functor(Entity,Entity)

Table 1: The Prolog Structure of a Model Term

term is representing: The entity atom corresponds to the object identificator of an instance of a
EClass, while the attribute corresponds to the attribute value of an instance of an EClass.

2.2 Construction Predicates

In a strictly declarative rule-based approach, the transformation is described in terms of a predi-
cate, relating the models before and after the transformation. Therefore, mechanisms are needed
in form of predicates to deconstruct a model into its parts as well as to construct a model from its
parts. As the structure of the model is defined using only compound functor terms and list terms,
only two forms of predicates are needed: union and composition operations.

2.2.1 List Construction

The(de)construction of lists is managed by means of the union predicate union/3 with tem-
plate4

union(?Left,?Right,?All) such that union(Left,Right,All) is true if
all elements of list All are either elements of Left or Right, and vice versa. Thus, e.g.,
union([1, 3,5],R,[1,2,3,4,5]) succeeds with R = [2,4].

2.2.2 Compound Construction

Since the compound structures used to build the model instances depend on the actual structure
of the EMF Ecore model, only the general schemata used are described. Depending on whether
a package, class/element, or association/relation is described, different schemata are used. In all
three schemata the name of the package, class, or relation is used as the name of the predicate
for the compound construction.

Packages For (de)construction of packages, package predicates of the form
package/4 are used with template package(?Package,?Subpackages, ?Clas-

ses,?Associations) where package is the name of the package (de)constructed. Thus,
4 According to standard convention, arbitrary/input/output arguments of predicates are indicated by ?/+/-.
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e.g., a package named Architecture in the EMF Ecore model is represented by the compound
constructor Architecture. The predicate is true if Package consists of subpackages
Subpackages, classes Classes, and associations Associations.

Classes and Elements For (de)construction of – non-abstract – classes/elements, class/ele-
ment predicates of the form class/2 and class/N+2 are used where N is the number of
the attributes of the corresponding class, with templates class(?Class, ?Elements)

and class(?Element,?Entity,?Attr1,...,?AttrN) where class is the name of the
class and element (de)constructed. Thus, e.g., the class named Compound in the EMF Ecore
model in Figure 1 is represented by the compound constructor Compound. The class predi-
cate is true if Class is the list of Objects; it is used to deconstruct a class into its list of
objects, and vice versa. Similarly, the element predicate is true if Element is an Entity

with attributes Attr1,. . . ,AttrN; it can be used to deconstruct an element into its entity and
attributes, to construct an element from an entity and attributes (e.g. to change the attributes of
an element), or to construct a new element including its entity from the attributes. Thus, e.g.,
Compound(Compounds,[Sys,Sub,Sib]) is used to construct a class Compounds from
a list of objects Sys, Sub, and Sib. Similarly, Compound(Sub,Subsys,"SubSystem")
is used to construct a new element Sub with entity Subsys, and name "SubSystem".

Association and Relation Compounds For (de)construction of associations and relations,
association and relation predicate of the form association/2 and association/3

are used with templates association(?Association,?Relations) and
association(?Relation,?Entity1,?Entity2) where association is the name
of the association and relation constructed/deconstructed. Thus, e.g., a relation named subComp

in the EMF Ecore model in Figure 1 is represented by the compound constructor subComp. The
relation predicate is true if Association is the list of Relations; it is generally used to de-
construct an association into its list of relations, and vice versa. Similarly, the relation predicate
is true if Relation associates Entity1 and Entity2; it is used to deconstruct a relation into
its associated entities and vice versa. E.g., subComp(subComps,[SubSys,SibSys]) is
used to construct the subcomponent association subComps from the list of relations SubSys
and SibSys. Similarly, subComp(SubSys,Sub,Sys) is used to construct relation
SubSys with Sub being the subcomponent of Sys.

3 Transformation Definition

The conceptual model and its structure defined in Section 2 was introduced to define transforma-
tions of system models as shown in the left-hand side of Figure 1. A typical transformation step
is the clustering of a group of sibling components within a container component, making them
subcomponents of that container. Figure 2 shows the result of such a transformation clustering
subcomponents ComponentB and SiblingSystem of component System in Figure 1 into a new
System container. Besides introducing the new additional component System and making it a
subcomponent of the original System root component, the transformation also requires changing
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Figure 2: Example: Result of Clustering ComponentB and SiblingSystem

1 cluster(Pre,Group,Post) :
2 Architecture(Pre,Pack,PreClass,PreAssoc),
3 Compound(PreComp,PreComps),union(OtherClass,[PreComp],PreClass),
4 subComp(PreSub,PreSubs),union(OtherAssoc,[PreSub],PreAssoc),
5 link(PreSubs,Group,PreRoot,OutSubs),
6 Compound(PreRootComp,PreRoot,Name),union([PreRootComp],Comps,PreComps),
7 subComp(NewSub,PostRoot,PreRoot),union([NewSub],OutSubs,InSubs),
8 Compound(PostRootComp,PostRoot,Name),union([PreRootComp,PostRootComp],Comps,PostComps),
9 link(PostSubs,Group,PostRoot,InSubs),

10 subComp(PostSub,PostSubs),union(OtherAssoc,[PostSub],PostAssoc),
11 Compound(PostComp,PostComps),union(OtherClass,[PostComp],PostClass),
12 Architecture(Post,Pack,PostClass,PostAssoc).

Figure 3: Cluster-Transformation: Rule for (De-)Constructing the Model

the supercomponent of ComponentB and SiblingSystem.
In a relational approach to model transformations, such a transformation is described as a

relation between the model prior to the transformation (e.g., as given in the left-hand side of
Figure 1) and the model after the transformation (e.g., as given in Figure 2). In this section, the
basic principles of describing transformations as relations are described.

3.1 Transformations as Relations

In case of the clustering operation, the relation describing the transformation has the interface
cluster(Pre,Group,Post) with parameter Pre for the model before the transformation,
parameter Post for the model after the transformation, and parameter Group for the group of
components of the model to be clustered. In the relational approach presented here, a transfor-
mation is basically described by breaking down the pre-model into its constituents and build up
the post-model from those constituents using the relations from Section 2, potentially adding or
removing elements and relations. With Pre taken from the conceptual domain described in Fig-
ure 1 and packaged in a single package Architecture with no sub-packages, it can be decomposed
in contained classes (e.g., Compound) and associations (e.g., subComp) as shown in Figure 3,
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1 link(Subs,[],Root,Subs).
2 link(InSubs,Group,Root,OutSubs) :
3 subComp(SubRel,Sub,Root),union([Sub],Rest,Group),union([SubRel],Subs,InSubs),
4 link(Subs,Rest,Root,OutSubs).

Figure 4: Cluster-Transformation: Rule for (Un-)Linking SubComponents

lines 2 to 4.5 In the same fashion, Post can be composed in lines 12 to 10. Lines 6 to 8 obtain
the Name of the common super-component with entity PreRoot of the group (line 6), provide
a newly created compound container component PostRootComp this Name and entity PostRoot
(line 8), and make this PreRoot the super-component of PostRoot (line 7). Note that the relation
is bidirectional: Besides clustering a group of siblings into a common container, it can also be
used to uncluster the group of subcomponents contained in a common container.

Besides using the basic relations to construct and deconstruct models (and add or remove
elements and relations, as shown in the next subsection), new relations can be defined to support a
modular description of transformation, decomposing rules into sub-rules. E.g., in the cluster
relation, the transformation can be decomposed into the addition of the new container component
and the reallocation of the components to be clustered; for the latter, then a sub-relation link
with corresponding rules is introduced, as shown in Figure 4. Note that link is effectively used
in both directions in the cluster relation: In line 5, link is used to unlink subcomponents
by removing the subComp-associations between Group elements and the original component
PreRoot from PreSubs to obtain OutSubs; in line 9, link is used to link subcomponents by
adding the subComp-associations between Group elements and the new component PostRoot to
InSubs to obtain PostSubs.

3.2 Transformations as Rules

To define the transformation steps for (un)linking components and subcomponents, relation
link(InSubs,Group,Root,OutSubs) is used, by making the set OutSubs of associa-
tions the reduction of set InSubs when removing all subComp-associations between elements
from Group and Root. The (un)linking of a group depends on whether the group is empty or
not. Therefore, in a declarative approach, two different – recursive – (un)link rules for those two
cases are needed, each with the interface described above.

To define these rules as shown in Figure 4, the conceptual model and its structured represen-
tation introduced in Section 2 are used. Line 1 simply states that in case of an empty group the
sets of associations are the same since no elements can be (un)linked. This case also handles the
termination of the inductive rule definition. In case of a non-empty group, line 3 (un)links a Sub
element from the Group – leaving a rest Rest – and Root, while line 4 repeats this (un)linking
recursively for the Rest of the group. Note that this rule-based description allows to compose
complex transformations by simple application of rules in the body of another rule (like link in

5 For ease of reading, quotes required in Prolog for capital functor identifiers like Architecture or Compound are
dropped.
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cluster). In contrast, graphical specifications generally use additional forms of diagrams, e.g.,
state-transition diagrams. As shown in the following section, this direct combination of rules,
however, is essential to simplify the formal verification of the correctness of transformations.

4 Verification

The relational and declarative approach introduced in the previous sections supports an easy
transition to formal reasoning. In this section, the formalization of an EMF Ecore meta-model
in constructive type theory is presented, as well as the straight-forward formalization of transfor-
mations. Based on these formalizations, the construction of formal correctness proof is demon-
strated using the example of typical invariants. To support formal verification, the interactive
theorem prover Isabelle/HOL [NPW02] is applied.

4.1 Meta-Model Formalization

Isabelle/HOL supports the form of (typed) terms used to represent the EMF models in the rule-
based transformation process. Thus, the transition from the specifications used in Section 2 to
Isabelle/HOL is straight-forward, as shown in the – syntactically slightly simplified – formaliza-
tion of the meta-model of Figure 1:6

1 typedecl ids
2 typedecl string
3 datatype comp = Comp ids string, atom = Atom ids string
4 datatype subComp = SubComp ids ids
5 datatype cls = Comp comp set Atom atom set
6 datatype asc = SubComp subComp set
7 datatype architecture = Architecture cls set asc set

After introducing – via typedecl – uninterpreted ids and string types for representing entities
and string attributes in lines 1 and 2, the corresponding element (line 3), relation (line 4), class
(line 5), association (line 6), and package (line 7) term types are introduced simply by providing
– via datatype – constructor functions, using the same scheme as introduced in Subsection
2.1.7 Based on these constructors and using the set operations provided by Isabelle/HOL, Prolog
model terms can be directly translated, thus enabling the translation of transformations.

4.2 Transformation Formalization

Besides type terms, Isabelle also supports the definition of predicates in a rule-based fashion
analogue to the Prolog-based rules in the transformation approach. To define the transformation
relations in Isabelle, inductive definitions of predicates are used to allow recursive definitions.
The non-recursive cluster relation of Section 3 is – trivially inductively – defined via:8

6 set introduces a set type, | a variant type, => a function type.
7 The Compound and AtomicComponent element/class constructors are abbreviated to Comp and Atom, resp.
8 Standard Isabelle notation is used, including &, |, and --> for conjunction, disjunction, and implication; <= and :
for the subset and element relation; ? for the existential quantor.
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1 inductive cluster :: architecture = ids set = model = bool where
2 pre = (Architecture preclass preassoc) &
3 precomp = (Comp precomps) & otherclass Un precomp = preclass &
4 presub = (SubComp presubs) & otherassoc Un presub = preassoc &
5 (link presubs group preroot outsubs) &
6 prerootcomp = (Comp preroot name) & prerootcomp Un comps = precomps &
7 newsub = (SubComp postroot preroot) & newsub Un outsubs = insubs &
8 postrootcomp = (Comp postroot name) & prerootcomp,postrootcomp Un comps = postcomps &
9 (link postsubs group postroot insubs) &

10 postsub = (SubComp postsubs) & otherassoc Un postsub = postassoc &
11 postcomp = (Comp postcomps) & otherclass Un postcomp = postclass &
12 post = (Model postclass postassoc)
13 (cluster pre group post)

Obviously, again the transition from the specifications used in the previous sections to Is-
abelle/HOL is straight-forward: Line 2 to 12 directly correspond to line 2 to line 12 in Figure 3;
in the former only a direct formalization with equality combined the constructors and set union is
used, while the later uses (de)construction predicates. Line 13 of the former corresponds to line
1 of the later. Line 1 additionally defines the type of the predicate in Isabelle/HOL designated
by “::”. In a similar fashion, the specification of link can be directly translated:

1 inductive link :: subComp set = ids set = ids = subComp set = bool where
2 (link subs root subs)
3 (link subs rest root outsubs) (link ( subComp.SubComp sub root Un subs) ( sub Un rest) root outsubs)

4.3 Proof Construction

Using the formalization of the transformations introduced above, now correctness properties of
the clustering operation can be defined. In the following, two conditions – one concerning class
and one concerning association properties – are considered:

1. Each Compound element contained in the pre-model is also contained in the post model.

2. Each subComp relation between a component and some super-component in the pre-model
has a counter-part in the post-model for the same component and some – potentially dif-
ferent – super-component.

The first property is formalized as theorem keep Comp cluster:
1 theorem keep Comp cluster:
2 (cluster pre group post) & pre = (Architecture preclass preassoc) & post = (Architecture postclass postassoc) &
3 preComp = (Comp preComps) & preAtom = (Atom preAtoms) & preComp, preAtom = preclass &
4 postComp = (Comp postComps) & postAtom = (Atom postAtoms) & postComp, postAtom = postclass &
5 (somecomp:preComps) (somecomp:postComps)

This theorem is straightforward to prove, requiring no induction but only case distinction. There-
fore, the proof is mainly performed by applying Isabelle’s automatic proof tactics (e.g., auto,
clarify, clarsimp), rendering the theorem (or lemma) applicable in further proof steps:

1 apply auto
2 apply (erule pushpull.cases)
3 apply clarify
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4 apply (drule equalityD1)
5 apply (drule equalityD2)
6 apply (drule Un sub D)
7 apply (drule Un sub D)
8 apply clarsimp

Beside the case distinction (line 2), the proof requires three standard simplifications (lines 1, 3,
8 ) and four simple interactions deadline with equality and sub-set relation properties, where the
latter could also be further automized by providing suitable rules.

The second, more challenging property is formalized as theorem keep subComp cluster:
1 theorem keep subComp cluster:
2 (cluster pre group post) & pre = (Architecture preclass preassoc) & post = (Architecture postclass postassoc) &
3 preSubComp = (SubComp preSubComps) & preSubComp = preassoc &
4 postSubComp = (SubComp postSubComps) & postSubComp = postassoc &
5 (? root. (SubComp some root):preSubComps) (? root .(SubComp some root):postSubComps)

The proof script for theorem keep subComp cluster uses the same steps as before; however, since
the corresponding super-component in a subComp-relation in the post-model is different whether
the sub-component is in the group to be clustered or not, the proof requires one additional step –
a lemma application – for distinction between these cases. To that end, corresponding lemmata
are introduced and proved, e.g., keep link group to deal with the case on non-group elements.
Since this distinction essentially affects link, these lemmata operate on the link relation:

1 lemma keep link group: (link pre group old lsubs) & (link post group new rsubs) (lsubs = rsubs & some:group)
2 (SubComp some root):pre (SubComp some root):post

Since these lemmata make use of the inductively defined relation link, induction must be used.
However, besides suggesting the use of the induction principle on the definition of link, again
the proof can performed fully automatic. These lemmata can be combined in a single lemma
keep link with a trivial proof:

1 lemma keep link: (link pre group old lsubs) & (link post group new rsubs) lsubs = rsubs
2 (? root. (SubComp some root):pre) (? root. (SubComp some root):post)

In its proof, proven lemmata like keep link group can be applied in the form
1 apply (insert keep link group [of pre group old lsubs post new rsubs some])

The complete proof of theorem keep subComp cluster consists of the proof of the lemmata with
23 steps and 10 steps for the proof of the theorem itself with the resulting keep link lemma.

5 Conclusion and Outlook

The PETE transformation framework – provided as an Eclipse PlugIn [Sch09] – supports the
transformation of EMF Ecore models using a declarative relational style and allows a simple,
precise, and modular specification of transformation relations on the problem- rather than the
implementation-level. By including operational aspects, the relational declarative form of speci-
fication can be tuned to ensure an efficient execution. In the application to problem from the
embedded software domain, the approach has demonstrated practical feasibility for medium
real-world sized models (e.g, refactoring models consisting of more than 3000 elements and
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more than 5000 relations within a few seconds). Furthermore, debugging on the level of the
specification supports the construction of transformations.

The use of a declarative relational style of specifying transformations is an important asset
for the formal verification of correctness conditions of these transformations: It allows the direct
translation of the conceptual model as well as the transformation rules into a predicate-logical
formalization. Since no indirections are introduced between the specifications on the execution
and the verification level, the proof can be constructed following a natural argumentation. Using
a verification tool like Isabelle/HOL, the verification process can be automized to a large extent.

While the previous sections have demonstrated the applicability of the approach, additional
means of automation should be provided for a extensive application. This includes the mechanic
translation of EMF Ecore models into the corresponding type definitions. Furthermore, the trans-
lation should include the definition of the basic manipulation predicates in the (de)constructor
format to allow the 1:1 use of the executable specification of transformations in the verifica-
tion. Additionally, general lemmata, tailor-made tactics, or using ISAR for more readable proof
scripts should be provided to simplify proofs. Also, other property languages like OCL and
pre/post schemata should be included, to circumvent the specification of property conditions on
the level of predicate logics. Finally, the practicability of the verification approach requires the
analysis of larger case studies.

Since the declarative relational style can also be used to support a search-based design-space
exploration involving backtracking – e.g., when computing correct deployments in embedded
systems – making test-based verification even more complex, simple formal verifiability of the
correctness of such explorative transformations is especially helpful.
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Abstract: Graph rewriting is gaining credibility in the field of model transforma-
tion, and tools are increasingly used to specify transformation activities. However,
their use is often limited by special features of the different graph transformation
approaches, which might not be familiar to experts in the modeling domain. On
the other hand, transformations for specific domains may require several constraints
to be enforced on the results of the transformation. Preserving such constraints by
manual definition of graph transformations can be a cumbersome and error-prone
activity. In this paper we explore the problem of ensuring that possible violations
of constraints following a transformation are repaired in a way coherent with the
intended meaning of the transformation. In particular, we consider the use of trans-
formation units within the DPO approach for intra-model transformations, where the
modeling language is expressed via a type graph and graph conditions. We derive
additional rules in a unit from a declarative rule expressing the principal objective
of the transformation, so that the constraints set by the type graph and the graph
conditions hold after the application of the unit. The approach is illustrated with
reference to a diagrammatic reasoning system.
Keywords: DPO, automatic generation, model transformation

1 Introduction

Graph rewriting-based tools are increasingly used in the field of model transformation. However,
their use is often limited by the special features of the different graph transformation approaches,
which might not be familiar to experts in the modeling domain. On the other hand, transforma-
tions for specific domains may require constraints to be enforced on the results of the transfor-
mation. In this paper we explore the problem of ensuring that possible violations of constraints
are managed in a way coherent with the intended meaning of the transformation.

We consider horizontal (or in-place) model transformations which destructively update a model
expressed in a given language, for the case where the modeling language is expressed via a type
graph and a set of graph conditions. In particular, we study transformations in reasoning pro-
cesses deriving inferences via logical steps creating or deleting model elements.

While modelers are generally clear on what they want to achieve by defining a transformation,
the evaluation of all of its consequences may be complex, and the definition of the implied
preserving or enforcing actions cumbersome and error-prone.

We propose an approach to the automatic construction of transformation units achieving the
effect of an intended model transformation while ensuring that all conditions are satisfied at the
† Partially funded by UK EPSRC grant EP/E011160: Visualisation with Euler Diagrams.
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end of the unit if they held at its start. We consider transformations consisting of the creation or
deletion of elements of a specific type, expressed as principal declarative rules. As their appli-
cation may violate some conditions, they have to be applied in a proper (condition preserving)
context, or (condition enforcing) repair actions have to be taken to restore the satisfaction of such
conditions. Hence, additional rules are defined, derived from the principal one and the conditions
to be enforced. The approach is illustrated with reference to a diagrammatic reasoning system.

In the rest of the paper, Section 2 discusses related work dealing with constraint preservation in
graph transformation, and Section 3 introduces the relevant formal notions. Section 5 develops
the proposed approach and Section 6 applies it to diagrammatic reasoning. Finally, Section 7
draws conclusions and points to possible future developments.

2 Related work

Rensink and Kuperus have exploited the notion of nested graphs to deal with the amalgamated
application of rules to all matches of a rule. In [RK09], they define a language to specify nested
graph formulae. A match can be found from a nested graph rule to a graph satisfying a formula,
according to a given morphism, and the application of a composite rule ensues. Their approach
is focused on avoiding control expressions when all the matches of a rule have to be applied,
while we focus here on preserving constraints with reference to a single match.

Bottoni et al. have defined methods to extend single declarative rules for model transforma-
tion so that they comply with specific patterns defining consistency of interpretation in triple
graphs [BGL08]. They define completions of single rules with respect to several patterns, while
we are interested here in constructing several rules, navigating along different sets of constraints.

Taentzer et al. have proposed the management of inconsistencies among different viewpoints
of a model in distributed graph rewriting. For example, the resolve strategy requires the def-
inition of the right-hand sides of rules to be applied when the left-hand side identifying the
inconsistency is matched [GMT99]. The detection of inconsistencies between rules representing
different model transformations has been attacked by static analysis methods in [HHT02]. Sim-
ilarly, Münch et al. have added repair actions to rules in case some post-conditions are violated
by rule application [MSW00]. In all these cases, actions were modeled through single rules.

Habel and Pennemann [HP09] unify theories about application conditions from [EEHP06]
and nested graph conditions from [Ren04], lifting them to high-level transformations. They
transform rules to make them preserve or enforce both universal and existential conditions. Their
approach leads to the generation of a single rule incorporating several application conditions
derived from different conditions with reference to the possible matches of the rule on host
graphs. In his dissertation [Pen09], Pennemann expands on the topic, also introducing programs
with interfaces, analogous to transformation units, but allowing passing of matches.

In [OEP08], Orejas et al. define a logic of graph constraints to allow the use of constraints for
language specification, and to provide rules for proving satisfaction of clausal forms.

The idea of introducing basic rules derived from entities and associations defined in a meta-
model is exploited in [BQV06] to define constraints on the interactive composition of complex
rules, by allowing their presence in the rule left or right-hand sides only in accordance with their
roles in the meta-model, where only the abstract syntax is taken as a source of constraints.
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Ehrig et al. describe a procedure, exploiting layers, which derives a grammar to generate
(rather than transform) instances of the language defined by a meta-model with multiplici-
ties [EKTW06]. Satisfaction of OCL constraints is checked a posteriori on a generated instance.

3 Background

For a graph G V G E G s t , V G is the set of nodes, E G V G V G the set of
edges and s t : E V the source and target functions. In a type graph T G VT ET sT tT , VT
and ET are sets of node and edge types, while sT : ET VT and tT : ET VT define source and
target node types for each edge type. G is typed on T G via a graph morphism type : G T G,
where typeV : V VT and typeE : E ET preserve sT and tT , i.e. typeV s e sT typeE e
and typeV t e tT typeE e . V G t is the number of nodes of type t VT in G.

A DPO rule [EEPT06] consists of three graphs, called left- and right-hand side (L and R), and
interface graph K. Two injective morphisms1 l : K L and r : K R model the embedding
of K (containing the elements preserved by the rule) in L and R. Figure 1 shows a DPO direct
derivation diagram. Square (1) is a pushout (i.e. G is the union of L and D through their common
elements in K), modeling the deletion of the elements of L not in K, while pushout (2) adds
the new elements, i.e. those present in R but not in K. Figure 1 also illustrates the notion of
negative application condition (NAC), as the association of a set of morphisms ni : L Ni, also
noted NAC n L, with a rule. A rule is applicable on G through a match m : L G if there is no
morphism qi : Ni G, with Ni in NAC, commuting with m (i.e. qi ni m).

In the rest of the paper we exploit the partial order induced, up to isomorphisms, by
monomorphisms on the set of graphs, i.e. g1 g2 m : g1 g2.

Nk

qk
��

N1

q1
��

Ln1
��

nk��

m
��

1

K

2

l�� r ��

k
��

R

m
��

G Df�� g �� H

Figure 1: DPO Direct Derivation Diagram for rules with NAC.

Graph conditions allow the specification of models by forbidding the appearance of certain
subgraphs, or by enforcing others to appear in given contexts. We use here a class of conditions

similar to those in [HP09], where a condition over a graph A is either of the form true or
of the form a q , with a : A Q a morphism from A to some graph Q and q a condition over
Q. Conditions are also obtained by using the Boolean connectives and , and can be written
in the form a q , equivalent to a q . We assume that all conditions in a set Θ differ
for the a morphism, so that a1 q1 a2 q2 Θ A1 A2 Q1 Q2 . We will also use the
short forms Q for a : /0 Q true and Q for a : /0 Q true .

In this paper we restrict ourselves to positive conditions of type a : /0 Q q , noted Q q
with q a disjunction of existential conditions, written as q j J q j : Q Wj, or of type Q .
Moreover, we admit simple negative conditions of the form Q . Note that, in this case, all the

1 In this paper, when we speak of morphisms, we will always consider them injective.
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conditions in Θ of the form Qi can be collapsed into a single condition Q, where Q is the
colimit of all Qi on the diagram constructed with all pairwise maximal common subgraphs.

Definition 1 Given a graph G and a morphism a : A X , we say:

A morphism m : X G satisfies a condition C, (m C), iff one of the following holds:

1. C true.
2. C Y and Y X .
3. C X j J q j : X Wj and m j : m X Wj s.t. q j m j m for some q j.
4. C Y and Y X .
5. C C1 C2 and m C1 or m C2.

A graph G satisfies C (G C), iff one of the following holds:

1. C true.
2. C Y and there exists m : Y G s.t. m C.
3. C X q and for each m : X G, m C.
4. C Y and there is no morphism m : Y G.
5. C C1 C2 and G C1 or G C2.

We say that a graph G typed on T G is a model for Θ , noted G Θ, if Ci Θ, G Ci.
In the rest of the paper, we assume we are dealing with a consistent set of conditions, admitting
only models which are finite non-empty graphs. In particular, we consider simple graphs, with
no two instances of the same edge type between two nodes.

Transformation units control rule application through control words over rule names [KKS97].
We set them here in the framework of the DPO approach for typed graphs with NACs, with: 1)

the class of typed graphs; 2) the class of DPO rules on typed graphs with NACs; 3) the
derivation relation for the DPO approach; 4) a class of graph expressions (here defined by type
graphs and graph conditions), where the semantics of an expression e is a subclass sem e ; 5)

a class of control words over identifiers of rules in built on a grammar allowing single rules,
the sequential construct ‘;’, the iteration construct w , with w , the alternative choice ‘ ’. A
transformation unit is a construct TU e1 e2 P imp w , with e1 e2 initial and terminal
graph class expressions, P a set of DPO rules, imp a set of references to other, imported,
units, whose rules can be used in the current one, and w a control word enabling rules
from P, and units from imp, to be applied. Transformation units have a transactional behaviour,
i.e. a unit succeeds iff it can be executed according to the control condition; it fails otherwise.
The semantics of a TU is the set sem TU g1 g2 g1 sem e1 g2 sem e2 g1

TU g2 ,
where indicates successful termination.

4 A Running Example: Spider Diagrams

Spider Diagrams are a reasoning system based on Euler diagrams. Several variants exist under
the same name, differing in the allowed syntax and even the assigned semantics [HMT 01]. We
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consider a simplified version, based on Venn, rather than Euler, diagrams and omitting shading
and strands. We first provide an indication of the concrete syntax of the diagrams and give an
informal indication of the semantics. Then we propose a graph-based abstract model for them,
called Spider Graphs, which differs from the usual algebraic abstract models used, and is in fact
slightly closer to the concrete model than usual, even modelling spider’s feet.

Let C C1 Cn be a collection of simple closed curves in the plane with finitely many
points of intersection between curves. A zone is a region of the form X1 Xn, where Xi
int Ci ext Ci , the interior of Ci or the exterior of Ci, for i 1 n . If each of the 2n

possible zones of C are non-empty and connected then C is a Venn diagram (see [Rus97] for
more details). Each zone z defines a unique partition of the set C, according to whether z is
inside or outside a curve. Two zones are called twins if their inside and outside relations are
switched for exactly one curve. In this paper, a Spider Diagram is a Venn diagram whose curves
are labelled, together with extra syntax called spiders, which are trees whose vertices (called
feet) are placed in unique zones. The set of zones containing a spider’s feet is called its habitat.
Special arcs, called ties, can be drawn between feet of different spiders in the same zone.

Intuitively, each curve represents a given set (indicated by the label) and each zone represents
some set intersection. A spider indicates the existence of an element within the set determined by
its habitat, whilst a tie between a pair of feet of different spiders within a zone indicates equality
of elements, if both spiders represent an element in the set represented by the zone.

The left hand side of Figure 2 shows an example of a Spider Diagram, with two curves A B
and four zones described by A B , /0 A B , B A , A B /0 . Here, these zones
are the four minimal region of the plane determined by the curves; for example, the zone de-
scribed by A B is the region int A ext B which is inside A but outside B. The habitat of
spider s is the set of zones A B A B /0 , while that of t is the singleton A B /0 .
Informally, the diagram semantics is: there are two sets A and B, there exists an element named
s in A and an element named t in A B. Moreover, if s is in A B then s t.

Figure 2: A Spider Diagram on the left, with the corresponding Spider Graph on the right.

We provide here an abstract graph-based model of a Spider Diagram, called a Spider Graph,
which does not take into account the concrete geometry of the diagram. Since we are interested
here only in syntactic aspects of the diagrams, we do not consider the labeling of the curves. We
obtain the type graph shown on the left of Figure 3, where nodes represent the diagram elements
Curve, Foot, Spider and Zone, and edges represent relations between them. In particular, a twin
edge indicates that two zones are twins w.r.t. some curve and an inside/outside edge indicates
whether a curve contains/excludes a zone, respectively.

On the right of Figure 2 the Spider Graph associated with the Spider diagram on the left is
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shown. The names of the nodes show the correspondence with the objects in the diagram. We
have two curve nodes in each possible relation with four zones2. For ease of reading, the zone
nodes are given names consisting of a list of the lower case letters corresponding to the upper
case letters used as names of the curves the zones are inside, and we use O for the name of the
node corresponding to the zone outside all curves in the diagram. Zone node pairs ab and b, and
O and a are twinned due to curve A, whilst ab and a, and O and b are twinned due to curve B.

Figure 3: The type graph (left) and negative conditions (right) for Spider Graphs.

We now present the conditions completing the definition of the class of Spider Graphs. The
right hand side of Figure 3 shows a set of conditions of the form Q, presented as forbidden
graphs. They prevent duplication or inconsistency of information and state the uniqueness of re-
lations between zones and curves. Moreover, we assume the existence of all negative conditions
forcing the graphs to be simple. We omit the direction of edges and their labels, when understood
from the type graph, and use the abbreviations i and o for the inside/outside case.

The remaining conditions force the existence of a partition of the set of curves for all zones,
and require the existence of suitable contexts for zones and feet. We present them adopting a
visual syntax where a condition a : A Q q is represented by a box, separated into two parts
by a horizontal line, with the top part containing a depiction of the morphism a and the bottom
part containing a box depicting the condition q on Q. An empty bottom box corresponds to
true. Each condition box has an external tab containing either quantifier information or the
boolean connective or . As we use conditions with A /0, we only present Q and we do
not repeat Q in the depiction of q. Numbers are used to indicate identification in the morphisms,
while nodes that are not numbered indicate a hidden existential quantification, as usual. Edges
between identified nodes are also assumed to be identified in the morphisms.

Figure 4: Conditions on single elements.

2 To keep the graph simple, we have omitted the outside edges, which are complementary to the inside ones.
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Figure 5: Conditions on pairs of elements.

Figure 6: Conditions on existence and uniqueness of twins.

The class of Spider Graphs is the intersection of the languages defined by the type graph and
the negative conditions of Figure 3, and the positive conditions in Figures 4 to 6.

Reasoning rules are derived on top of the algebraic abstract models for Spider diagrams. These
are syntactic transformations whose application corresponds to logical deduction, according to
the semantics. They are usually specified by complex algorithmic procedures, during which the
intermediate diagrams may not be logical consequences of the premise diagram, with pre and
post conditions taking into account the stated semantics of the diagram. For instance a rule to
add a new curve must split every zone into two zones, one inside and one outside each existing
zone, as well as duplicating spider’s feet in zones. Whereas the first effect derives from the
syntactical conditions, the second is a semantic aspect.

5 Condition preserving rules

We discuss the derivation of condition-preserving transformation units TUt
g and TUt

d in the case
of generation or deletion, respectively, of an element of type t. The initial and terminal graph
class expressions e1 and e2 for both of these units define the class of graphs typed on T G and
satisfying Θ. TUt

g will be associated with the execution of3 r : /0 /0 t , where indicates the

3 Here and in the rest of the paper, t denotes the graph consisting of a single node of type t.
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pushout along the empty subgraph, while TUt
d with r : t /0 /0. The units will be constructed

so that given a graph G sem e1 , for G
TUt

g H, G H sem TUt
g , G G t H and

H G sem TUt
d . For G

TUt
d H, we will have G H sem TUt

d , and H t G.
Note that in general G t Θ, but G t Θ for some Θ Θ. Hence, we admit that

some conditions may not be satisfied at intermediate steps of the unit application, and define an
operational class in which to perform transformations. Graphs in this class satisfy a subset of
the graph conditions and may be typed on some T G with additional types and edges w.r.t. T G.
In particular, we use here the subset Θ containing Q and all the conditions Qi in Θ.

Before presenting the algorithms, we give their rationale, starting with the case4 r : /0 t .
We only have to consider universal and negative existential conditions, as positive existential
conditions cannot be violated by adding an element. However, adding t produces a graph G t
which may not satisfy Θ in two ways: either it contains a forbidden subgraph, or it provides a
new match for the premise of a universal condition but fails to satisfy the conclusion.

To solve the first problem, given a r : L R in TUt
g (including r : /0 t ), for each condition

X Θ, the function genNAC r X adds to r the set of NACs formed according to the con-
struction on the left of Figure 7. Here Mj is a maximal common subgraphs of X and R, Mj is a
maximal common subgraph of Mj and L, and all the squares are pushouts, i.e., Mj Xj X
is the pushout complement for Mj R X , L Xj Xj is the pushout for L Mj Xj,
and the square with L, R, Mj and Mj also forms a pushout. The set of NACs contains all the
morphisms n j : L Xj preserving the image of L in X . This prevents the application of the rule
on a match which could create the forbidden subgraph X (see [HHT96]).

Mj ��

��

Mj

����
�

��

�� Xj

��

��

L r ��

���
��

R

��
L r ��

n j �����������

��

R �� X Mh

������

���
��

Lh rh
����

�

Xj X

�����
�� Rh

Figure 7: Constructing NAC (left) and incorporating available context (right).

To solve the second problem, given a (universal) condition C Q j J q j : Q Wj , the

function genUniRules C produces the set of rules R C where each rule has the form NAC C n

Q
rC j Wj. TUt

g will contain an alternative choice among these rules, produced by the function
alt R C . In order to prevent these rules from being applied indefinitely in case of iteration
on the choice, the set NAC C contains a copy of each Wj to ensure that the same match is not
reused twice for generating some conclusion. Intuitively, these rules will adjust the relations
of the newly added element w.r.t. the contexts defined in their premises. Howevever, several
aspects have to be taken into account. For example, consider conditions C2 in Figure 4 and
suppose we want to add a Spider. Then, the derived rule will have to create a Foot (condition
C2), but this will require a Zone (condition C3), which will require a Curve (condition C4), hence
other additional Zones (conditions C8 and C9), with several relations to other curves and zones
(conditions C10 C12). On the other hand, a Zone for a Foot is already guaranteed to be present
4 Where not needed, we will omit K.
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by C1, so that one can reuse existing context to satisfy this. To deal with such cases, given a
rule r : L R and a context X to be reused (more on this later), the function reuseContext r X
produces a collection of rules of the form rh : Lh Rh according to the construction on the right
of Figure 7. Here, L Lh X is the pushout along a maximal common subgraph Mh of L and
X and X Rh R is the pushout of X Mh R.

In general, one wants to obtain a TUt
g which, after applying r : /0 t to G, proceeds through

the following abstract steps, so that context is progressively constructed for the next step.

1. define all edges between the added node and existing nodes of G as required by conditions;

2. generate new nodes as required by the conditions;

3. generate all edges for the new nodes, as required by the conditions.

For example, when adding a Curve, one will have to: 1) define relations between new curve
and existing zones; 2) create new zones, while defining relations with the new curve; 3a) establish
relations between new zones and existing curves; 3b) establish relations between zones.

Two things have to be considered. In general, satisfaction of Q q requires iterating through
all possible matches for Q. However, when Q consists of just one node, no iteration is necessary,
and if Q is the graph t , the derived rule has to be applied only to the newly added node, as
it is already satisfied for the nodes of type t which were in G originally. Hence, we extend
T G to admit a special type of loop edge: the first rule is changed to r : /0 t †, where t †

designates a node with a marker loop. For a rule5 r : L R, the function mark r produces a set
P†

r r†
h : L†

h R†
h h : t L where L†

h and R†
h are obtained by adding the loop to the images

h t and r h t , the immersions mh : L L†
h and mh : R R†

h preserve the images of t under

h, and r†
h is the unique morphism s.t. L†

h
r†

h R†
h

mh R is the pushout of R r L mh L†
h. TUt

g will apply
r or rules from P†

r dependent upon the situation. The rule delLoop : t † t will conclude TUt
g

deleting the loop.
Moreover, as seen from the examples above, the application of some rules can require the

creation of new nodes, if they cannot be provided by the context, and so conditions relative to
the new nodes have to be satisfied. This potentially creates a case in which an infinite recursion
might start. To avoid this, we study the relations between types for which conditions are mutually
recursive. In our example, one such pair consists of Curve and Zone. Indeed, the generation of
a curve implies the generation of a collection of zones, whilst the generation of a zone can imply
the generation of a single curve and of the collection of zones related to the new curve. Again,
we need to distinguish between cases in which context, enriched with the new node which has
started the process, has to be reused, and those in which a new node is needed to provide the
correct context. Definition 2 provides notation to assist us.

Definition 2 Let t VT be a type and Q t Θ the set of conditions of the form Op a : A
Q q , for Op s.t. t Q (i.e. a node of type t appears in Q). Q t Q t Q t is a
partition of Q t into existential6, universal and negative existential conditions for t, respectively.
5 For each function operating on rules or types we overload the symbol to accept as argument sets.
6 Note that Q t Q if t Q, and Q t /0 otherwise.
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VT t t Q is the set of existentially quantified types. A partial order C is induced
on Q t by C1 C C2 A1 A2 A1 A2 Q1 Q2 . DAG t is the directed
acyclic graph induced on Q t by C, where q1 q2 is an edge of DAG t iff q1 C q2 qx s.t.
q1 C qx, qx C q2. We call Min t the set of minimal models for Θ Q t for t VT VT
and MIN S the set of minimal models for Θ t S VT

Q t .

For each condition C Q t the rules in genUniRules C will be applied in an order estab-
lished by a function visit DAG t which starts from initial nodes and proceeds from a join node
only after all its incoming paths have been visited. In this way, progressively increasing contexts
will have been produced, possibly providing new matches for the following ones.

In order to follow the abstract steps discussed above, for a type t we organize the rules derived
from Q t into layers: LAY ER1 t contains rules which only add edges touching nodes of type
t, LAY ER2 t contains rules which add at least one node (of any type) in a non-empty context
(and possibly edges of any type), whilst LAY ER3 t contains rules which do not create nodes but
add edges of any type, but with at least one edge between instances of some type other than t.

The sets Min t provide context which is certainly present if a unit for the addition of an
element of type t has already been applied, while Q is guaranteed to be always present. Hence,
reuseContext will be invoked with parameter X equal to Q or Min t , dependent on the situation.

Moreover, if an element of type t is created as a consequence of the generation of t , rules
derived from the visit of DAG t have also to be applied, in the context provided by the already
applied rules. In order to avoid infinite recursion, we introduce a notion of domination and say
that DAG t dominates DAG t if DAG t DAG t . Figure 8 shows the DAGs for the example
introduced in Section 4. It is easy to see that DAG Zone dominates DAG Curve so that the
construction of TUcurve

g should recursively be invoked and the rules from Q curve should be
used twice, creating new zones. To avoid this problem, if DAG t DAG t , then the rules from
DAG t outside the recursion will be processed via reuseContext, with X MIN t . We also
use a function createdType r returning the set of types produced by r, i.e. in VT R V L .

The last aspect to consider is that there might be conditions which have the same conclusions
from different premises, but such that the premises of both are included in the conclusion. Such
is the case of conditions C8 and C9 in Section 4. Hence, the function sameConcl RS processes
a set of rules RS to add NACs to such pair of rules.

Figure 8: The DAGs for Spider Graphs.

We are now ready to present the algorithm CreateGenUnit(t), deriving TUt
G exploiting rules

generated from the universal conditions, organizing them in accordance with the ordering and
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layering, so that rules are applied only when their context for application is ready, and adding
NACs to prevent violation of negative existential conditions.

AlgorithmCreateGenUnit t:type :TU

initialize global UNIT with r†
t : /0 t †;

foreach condition C Q q Θ do R C sameConcl genUniRules C ;
return RecursiveGen t /0 f alse ;

Algorithm RecursiveGen t:type, S:setOfTypes inner:boolean :TU

path visit DAG t ; X /0; aux /0;
if isEmpty S then if t VT VT then X Q; else X MIN S ;
foreach condition C Q j J q j : Q Wj path do

foreach k 1 3 do
foreach t S if dominates DAG t DAG t aux aux t ; ;
if !isEmpty aux then X MIN aux ; single /0; nosingle /0;

foreach rule rC h NAC n L R R C LAY ERk t do
if V L 1 then single single rC h ; else nosingle nosingle rC h ; ;
if(inner) then UNIT concat UNIT alt reuseContext single X ;

UNIT concat UNIT alt reuseContext nosingle X ;
else UNIT concat UNIT alt mark reuseContext single X ;
UNIT concat UNIT alt mark reuseContext nosingle X ; ;

if k 2 then foreach t createdType rC h do
UNIT concat UNIT RecursiveGen t S t true ; ;

foreach rule r : L R in UNIT do
foreach condition C X Θ do replace r with genNAC r X ; ;

UNIT concat UNIT delLoop ;
return UNIT

Theorem 1 A call CreateGenUnit t /0 : 1) terminates, and 2) produces a unit TUt
g s.t. given

a graph G typed on T G, if G Θ then H G
TUt

g H implies H Θ G t .

Proof. (Sketch) 1) The first nested loop performs a finite number of iterations on conditions,
layers and rules. The recursion on recursiveGen terminates since the set S increases in size on
each call. The final iteration to add NACs occurs on a finite number of conditions and rules.

2) If the first rule is applicable, then the application of TUG t terminates on each finite graph
G s.t. G Θ. Indeed, the NACs prevent repeated applications of a rule on identical matches, and
even if new matches can be created, the layering prevents infinite repetition of the execution of a
rule. Moreover, the application of reuseContext avoids arbitrary generation of new elements. If
a graph H is obtained, then H G t , as only increasing rules have been applied. Suppose
now that H Θ. Then either: 1) H Ci for some Ci in some Q t , but this is impossible as this
is prevented by the use of genNAC; or 2) H Q, but this is impossible as Q G G t H;
or 3) H Ci for some Ci in some Q t , but this is impossible as all the rules are derived from
some Q t and all matches for their premises have been considered.
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Due to lack of space, we just present the main ideas concerning the generation of TUt
d , i.e. of

a unit for deleting an element of type t. Now, the modeler can mark a node to indicate which
instance to delete. Hence, TUt

d will start by applying a rule t † n t l t r t † and finish with

t † l /0 r /0. The logic of the unit proceeds in reverse w.r.t. element generation. Hence, it will
delete edges first, starting with those not directly connected to the element, but to its context,
then additional elements relative to the marked instance, and finally all the remaining edges for
the element. Given a condition C, a function delUniRule C will produce a set D C of deleting
rules, inverting the role of premise and conclusion w.r.t genUniRule C . Hence, each rule in

D C has the form Wj
lC j Q

rC j Q. However, care must be taken that the removal of t does not
destroy Q. Hence, for a rule L R R D C , the function preserveMinimal r produces a
collection of rules of the form L Mi Q ni R Mi Q ni R Mi Q, where Mi denotes the pushout
along a maximal common subgraph Mi of R and Q. Hence, no element can be deleted if this
would disrupt the minimal model. Moreover, as t† is deleted only when it has no more defining
context, the conditions in Q t are either vacuously satisfied (if t VT and this was the only
instance of t and left in G, the unit will fail), or satisfied by the remaining instances.

6 Application to Spider Diagrams

We now consider the application of CreateGenUnit on Spider Graphs as defined in Section 4.
Firstly, considering the addition of a Curve, the conditions in Q Curve are ordered according

to DAG Curve in Figure8, while Q Curve C1 , and Q Curve F3 together with the
conditions preventing duplication of edges of the same type between a curve and a zone. As for
layering, we have: LAY ER1 Curve contains rules generated from C7, C11, C12 and from the
first two graphs in the bottom box of C10 since these only add edges incident with nodes of type
Curve. LAY ER2 Curve contains rules generated from C8 C9 which add Zone nodes, whilst
LAY ER3 Curve consists of the rule generated from the last graph in the bottom box in C10
which adds an edge between nodes of type Zone. Note that for C8 and C9, sameConcl R Curve
will produce NACs preventing the generation of an infinite number of nodes.

Figure 9 shows a version of the rules in R C10 , derived from applying genUniRules C10 ,
with one choice of marking for the curve. According to the construction, the set NAC C10 , pre-
sented at the bottom left of Figure 9, contains a NAC for each possible right-hand side, preventing
reuse of the same match for rules from R C10 .

Using the same rule naming scheme as in Figure 9, and the initial rule rcurve : /0 Curve , the
algorithm produces TUCurve

g of the form:

TUCurve
g r†

curve; r7 1† r7 2† ; r10 1† r10 2† ; r11† ; r12† ; r8† ; r9† ;
r4 1 r4 2); r6 ; r7 1 r7 2 ; r10 1 r10 2 r10 3 ; r11 ; r12 ;

r10 3† ;
The internal sequence of iterations derives from the fact that some Zone should be created

by either a rule in r11 or in r12 , so that the unit for zones is activated. However, these reuse
context from the unit for the curve, so that they reuse context and do not create new elements,
as indicated by their presence in an r version. On the other hand, the rules related to the curve
use the † version, to refer to the curve for which the unit is started. Note that rule 10.3 appears in
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layer 1 for zones and layer 2 for curves.

Figure 9: A marked version of the 3 rules derived from condition C10 and the non-marked NAC.

For a Spider, we have Q Spider /0, Q Spider C2 , generating a rule in layer 2.
While the creation of a Spider requires the creation of a Foot, the Zone will be taken from
the context, due to its presence in Q, so that it has been incorporated by the application of
reuseContext. Insertion of a Foot will instead require the creation of a new Spider, if none
exists, or its reuse if one had already been created. However, such a creation will fail if the spider
has already a foot in each existing zone.

Deletion of a curve is performed by first removing the twin edges between zones attached to
the marked curve, then removing all edges from all other curves to these zones, then all zones
attached with an inside or outside edge to the curve to be removed, then all remaining connections
from the marked Curve node to be deleted, and finally the marked node itself. In a similar way,
removal of a spider will be preceded by removal of all its feet and their attachments to zones.

7 Conclusions

We have provided a methodology for the automatic derivation of transformation units from a
principal rule via algorithms that iteratively add preparatory rules to the unit for deleting rules
and that add restorative rules to the unit for increasing rules. As a result, membership in the model
language is ensured before and after the application of the unit, but not necessarily throughout
the unit. The derivation of the units exploits a rule layering approach, with the rules within the
unit generated from graph conditions taking into account the rule application context.

The automatic production of the rules needed to reassemble a syntactically correct diagram
simplifies the specification of diagrammatic inference rules and supports therefore the develop-
ment and comparison of syntactic and semantic variations of the systems.

This would be useful also in other domains. For instance, model refactoring often involves
the elimination of elements, or the creation of suitable contexts for their insertion. One example
is the elimination of a composite state in a Statechart which requires the elimination of all of its
internal states. Then, given a set of conditions stating that each state must be contained within a
composite state, the construction in Section 5 could be applied to generate transformation units
to be recursively invoked to visit the nesting tree. Another refactoring example is that of moving
a method. This requires placing it in a different class and redirecting all its invocations, as well
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as the messages which may originate from its invocation, to its new location. Our construction
can thus be used to manage the identification of the arcs related to such a method.

Of course, semantic considerations play a greater role than simple syntactic constraints. How-
ever, the constructed rules may provide a basis to be extended with additional context and con-
sequences. For example, the specification of a transformation via pre- and post-conditions can
be used to integrate syntactic rules with specific side effects. In this sense, this construction
provides more flexibility to modelers, who can define the language through conditions, the main
goal of a transformation and the desired side effects in an independent manner. This removes
the need to consider complex interplays between rules and constraints, as in approaches which
derive amalgamated rules which have to achieve a global effect with a single specification.

We notice that most transformations involve redirection of associations from one element to
another, or changing the context for an element. The construction presented in the paper can be
adapted to define accumulators and distributors of associations, which would collect all edges to
be redirected, while deleting or constructing elements. Hence, such redirections might be taken
as primitive constructs. The approach has been presented only for typed graphs. Extensions to
graphs with inheritance and with attributes have to be explored, in particular for the case where
identifiers are used to describe the associations of an element with others.

Future work for a full implementation of the approach will have to devise ways to reduce the
number of rules, and particularly of NACs, generated. Hence optimizations pruning rules or
NACs without effect in identifiable contexts should be studied.
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Abstract: Graph transformation can be used to implement stochastic simulation of
dynamic systems based on semi-Markov processes, extending the standard approach
based on Markov chains. The result is a discrete event system, where states are
graphs, and events are rule matches associated to general distributions, rather than
just exponential ones. We present an extension of this model, by introducing a
hierarchical notion of event location, allowing for stochastic dependence of higher-
level events on lower-level ones.

Keywords: Graph Transformation, Stochastic Simulation, Topology

1 Introduction

Graph transformation combines the idea of graphs as a universal modelling paradigm with a
rule-based approach to specify the evolution of systems [KK96]. Behaviour can be modelled
in terms of labelled transition systems, where states are graphs and rule applications represent
transitions. A discrete event system can be generally obtained by interpreting rule matches as
events. Hierarchical graphs can be used to keep into account the spatial structure of graphs in
terms of topological grouping, with advantages that have been underlined from the point of view
of modelling and verification [BL09].

Stochastic graph transformation is applicable to probabilistic analysis and stochastic valida-
tion of graph-based modelling. Stochastic simulation can be particularly useful as validation
technique when systems are too complex to be model-checked. It can be implemented relying on
a discrete event system approach [CL08]. Transitions are labelled by scheduling times, randomly
chosen according to given probability distributions — thus replacing stochastic determinism for
indeterminism in the modelling.

A stochastic graph transformation system can be obtained, in a fairly simple form [HLM06],
by associating each rule name with an exponential distribution. The associated Markov-chain
analysis has been applied to integrated modelling of architectural reconfiguration and non- func-
tional aspects of network models [Hec05]. However, this approach has some limits. Exponential
distributions can express well the relative speed of processes, but are less than suited to describe
phenomena that are characterised in terms of mean and deviation. Generalised stochastic graph
transformation can answer this problem, allowing for general distributions to be associated with
rule names [KL07] and more generally with rule matches [HT09, KTH09]. In the latter case,
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assignment of probability distributions to events may depend e.g. on attributes of match ele-
ments. Generalised semi-Markov processes provide a discrete event-based semantic model for
such systems.

In the physical world, events can often be described at different levels of spatial and causal
granularity. Stochastic simulation based on graph transformation rests completely on the under-
lying graph transformation system in order to express causal dependencies, and deals with events
as stochastically independent from each other. This fact can make it hard to take into account
different levels of description, and to simplify the modelling of behaviour that involves very large
numbers of transitions — although of course the use of global variables and derived attributes
can ease such problems [HT09]. In this paper we consider a notion of structured stochastic sim-
ulation based on hierarchical graphs, making it possible to associate locations to events and to
express a notion of granularity, thus allowing for stochastic dependence of higher-level events
on co-located ones.

Regardless of the specific approach, a major stumbling block in implementing stochastic sim-
ulation based on graph transformation is the need to compute all the matches at each step. This is
hard in principle — the subgraph homomorphism problem is known to be NP-complete, though
feasible in many cases of interest. However, the cost of recomputing can be prohibitive — for
this reason, we rely on incremental pattern matching based on a RETE-style algorithm as im-
plemented in VIATRA [BHRV08] (a model transformation plugin of Eclipse). In [THR] we
presented GraSS, a tool that extends VIATRA with a stochastic simulation control based on
the SSJ Java libraries [LMV02]. By using a decoupled notion of graph hierarchy, it should be
possible to implement hierarchical stochastic simulation in VIATRA/GraSS.

1.1 Hierarchical extensions

Hierarchy can be used in graph models in order to introduce a notion of topological grouping
on model elements. Grouping information can be represented as a hierarchy graph, as distinct
from the underlying one, relying on a decoupled approach [BKK05]. In the case of bigraphs,
the modelling approach is based on a pairing of place graphs and link graphs, together with a
complex notion of matching [Mil08].

Here we use topology to localise events, rather than elements, relying on a generic notion of
rule matching. Formally, the hierarchy is a partial order ( ). Topological grouping arises from
rule matching in the underlying graph and the hierarchy. More precisely, a model consists of an
underlying graph coupled with a place graph, where the latter is a directed acyclic graph (dag)
from which the hierarchy arises, in which nodes are places and edges represent containment
between hierarchy nodes (hierarchical containment). The two graphs are linked together by
containment edges (coupling containment) that map underlying graph nodes to places. Regions
are defined as downward-closed sets with respect to hierarchy, i.e. closed sets in the correspond-
ing order topology [TSB02]. By mapping rule matches to regions, we can also facilitate dealing
with sharing and independence for matches.

From the stochastic point of view, we want to use hierarchy to let lower-level events affect the
assignment of probability distributions to higher-level ones. The assignment of probability dis-
tributions to events may then depend on information beyond that contained in the corresponding
rule matches, and the probability of the application of a rule can depend on a larger subgraph
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than its applicability condition. In this way, it should be possible to refine simulation without
resorting to more complex models and without making reachability analysis harder.

We want to allow for dependency of the distribution assigned to an event (1) on the enabling
of other events, and more generally on the number of enabled matches of a certain type — here
called a density measure; (2) on the the scheduling of other events — called an activity measure.

A density measure boils down to counting matches, therefore it could be handled in a flat
way by introducing more attributes — but this would mean making the model more complex.
An activity measure can be trickier, as in principle it might lead to circular dependencies. This
problem can be solved by requiring that stochastic dependency as well as the scheduling process
follow the hierarchical order. Therefore, events cannot depend on higher level ones, and at each
simulation step, the scheduling of lower-level events is computed before that of higher-level
ones.

2 Example

We give a model example in which higher-level events may depend stochastically on large num-
bers of lower-level ones, by modelling a power grid. We consider a system in which each power
source serves a number of distribution points, by allocating power quotas in a reconfigurable way.
Appliances can be added to and removed from a distribution area, and they can be connected to
and disconnected from distribution points, determining the level of consumption, which must re-
main within a tolerance of the quota. A power failure may occur when the quota is overstepped.
A failure determines the disruption of the distribution point, with consequent loss of data, and it
forces the intervention of a recovery unit. Actual reconfiguration is carried out following opti-
misation criteria that can be reflected stochastically in the application of the rule.

The model is based on the SPO approach, and uses typed graphs with attributes. A power
station is connected to each of the distribution points by power lines denoted by multi-edges, i.e.
sets of parallel edges represented as a single edge with an integer value. A station can reconfig-
ure the capacity of each power line depending on the available power and the distribution area
consumption — this takes place by changing the number of line edges, also updating residual
power and local quota.

The spatial structure of the model is quite simple — there are three types of places: the network
area, a supply area for each station, and a distribution area for each service point. Each place
is represented as a rounded box. The hierarchy order is represented as containment (larger
boxes are places higher up in the order, therefore associated with higher-level elements). The
coupling order is also represented as containment in an obvious way — each underlying graph
element (a square box) being coupled with the smallest place box it is contained in. In this
example, the place graph is a tree. However, the notation can be easily extended to the dag case,
by associating places to intersections. The symbols Dec Inc Tol Add F G H P in the pictures
stand for defined functions.

The distinction between higher-level and lower-level events here is comparatively straight-
forward. The former ones are those associated with reconfigurations, failures and recoveries,
and located in regions generated by supply areas. The latter ones are associated with adding,
removing, switching on and off appliances, and are located in regions generated by distribution
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areas. From the stochastic point of view, actions that depend heavily on aspects which are not
modelled, such adding appliances, switching on and failure, may be associated with exponential
distributions. Actions plausibly associated with variance values to be taken into consideration
within the model, such as switching off and recovery, may be more naturally associated with
normal distributions. Reconfiguration, on the other hand, may make expressing probabilistic
dependence on the context quite attractive.

In the example, there are two possible matches for the reconfiguration rule — one with a1 and
the other with a2 as distribution areas. In order to model stochastically a “smart” reconfiguration
strategy, one could make the probability of application inversely dependant on the difference
between quota and area consumption (a derived attribute associated with distribution points and
denoted by D in the picture). However, if that is to be the only criteria, here there is little chance
of modelling a high quality of service without changing the model. Given a high rate of switching
on against a low one of appliance addition, the area a1 is more at risk than a2, in spite of the
higher D value. This risk is essentially associated with the number of matches for switch on in
a1, and further than that — with their scheduling.

Of course it would be possible to retain information about the number of appliances in an
area explicitly, by adding an attribute — however, apart from the need to extend the model, this
way of capturing the density measure would not be quite natural in this case. The information
could be retained by the service point — but when a failure occurs and the service is disrupted,
the information would be lost. Moreover, it is difficult to think of a similar way to capture an
activity measure. On the other hand, the knowledge embedded in the reconfiguration strategy
might be actually based on estimates rather than precise data. Therefore, modelling it in terms
of implicit stochastic dependence seems reasonable, and may be more realistic than representing
it explicitly by means of attributes.
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3 Stochastic Graph Transformation

Stochastic graph transformation for semi-Markov process modelling requires special attention
to the notion of match and persistence of matches. Although the running example is based
on SPO, we prefer to give a general definition of typed graph transformation with respect to a
generic approach, allowing for node type inheritance and negative application conditions. We
then define a notion of structured GTS, by endowing graphs with hierarchy and hence derived
topological structure.

3.1 Graph transformation

In existing axiomatic descriptions of graph transformation [KK96], a graph transformation ap-
proach is given by a class of graphs , a class of rules , and a family of binary relations

r representing transformations by rules r . This general notion can be refined by
introducing definitions of rule match and rule application, depending on a given approach (such
as SPO and DPO).

We denote by Mr the set of all matches for a rule r, and by MR r R Mr the union of all such
sets of matches for all rules in R (with M r Mr). Similarly, MR G is the subset of
M made of all matches in a graph G .

We assume an -indexed family of sets of rule matches Mr G and extend r to a partial
function r m: , such that r m G is defined if and only if m Mr G. This captures the
idea that rule application is well-defined and deterministic once a valid match m for r in G is
found. In case r is equipped with application conditions, the match is deemed to satisfy them.
As usual, we write G r m H for r m G H, and we say that this is the transformation step
determined by the application of rule r to match m in graph G.

A graph transformation system (GTS) G R G0 consists of a set R of rules and an ini-
tial graph G0 . A transformation in G is a sequence of rule applications G0 r1 m1 G1 r2 m2

rn mn Gn using rules in G with all graphs Gi . The set of the graphs reachable from G0
with rules in R by a finite sequence of transformation steps is denoted by G. By MG we denote
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the set of all matches over all reachable graphs (indeed, in the following we always require this
to be a set).

3.2 Persistence of rule matches

For algebraic approaches in which rule application is defined up to isomorphism, assumptions
have to be made in order to make rule application deterministic, and in order to guarantee that
matches form a proper set, unlike in more abstract presentations [EEPT06]. In order to capture
the idea of a concrete and deterministic implementation of graph transformation, we assume that
a choice of direct transformations is made such that the result of applying a rule to a match is
unique.

Moreover, the notion of rule match needed for an implementation based on incremental pat-
tern matching should be persistent through transformation, i.e. each rule match should have an
identity that transcends individual states, satisfying the following property (persistence prop-
erty): given the scheduling of two independent rule applications at matches m and m , once only
one of them is applied, the other match remains itself enabled. In [KTH09, KL07] persistence
was obtained by defining an equivalence relation on matches, relying on a conservative naming
policy, according to which names are chosen consistently in consecutive transformations so to
preserve the identities of nodes and edges where possible and never to reuse names from the past.

A similar result can be obtained here with a looser naming policy. Each graph G can be
associated to the set Ḡ of its elements (nodes and edges). We can assume the typing includes
connectivity information, by using dependent types for edges, as in [TH09] — then G can be
represented as Ḡ, and we may drop the distinction between them altogether. We do not fix
a general approach. We just assume that rules preserve graph types. Then we can say that
in general, a transformation step t G r m H deletes a set of elements Dt G and creates
a set of new elements Ct H. From the deterministic character of rule application and the
denumerability of the domain, H Ct σt G Dt follows, where σt is the (unique) renaming
induced by t (assuming name spaces are disjoint).

The matches preserved by t can be defined as the largest set M t n MR G n Dt /0
such that, under the assumptions made, σt M t n MR H n Ct /0 or, equivalently, M t

n σt n MR H σt n Ct /0 . We must define M t as largest set rather than as equal, in order
to allow for negative application conditions. We can abstract from renaming, by defining, for n1
MR G n2 MR G , the symmetric relation n1 a n2 that holds whenever for all transformation
steps t, if t G r m G and n1 M t , then n2 σt n1 , and if t G r m G and n2 M t then
n1 σt n2 . We can now define the transitive closure using the least fixpoint operator (µ)

n1 n2 d f µE n1 n2 n3 E n1 n3 n3 a n2

It is a matter of routine showing that is indeed an equivalence relation. Persistent matches
over the set of the reachable graphs in G can now be defined as the quotient class G MG

— as one can see they satisfy the persistence property.
We can now introduce a notion of event. By G r m m G r R we denote the

(enumerable) set of events e1 , given by pairs of rules and match classes. We can write r G
r m m n n MG for the event matched by rule r in graph G and G r R r G for

all events in G. Clearly, an event and a graph determine a transformation step, and therefore
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we can define r m : as disjoint union of all r n for n m . We can also introduce
a notion of post-match of an event e r m for each graph G s.t. e G, with postG e
m RHe G , where RHe G is a subset of the underlying set of e G that represents the post-

condition of the transformation step — i.e. given n m and t r n G , we can define
RHe G Ct σt n Dt .

3.3 Hierarchical structure

We say that a state graph G is hierarchical (in the decoupled sense [BKK05]) whenever the
following two conditions are satisfied. (1) The graph G includes a distinguished acyclic directed
subgraph S, called the place graph of G. The nodes of S are the places. The edges connecting
them express hierarchical containment. (2) Each node of G has a single location edge (denoted
by loc, expressing coupling containment) associating it to a place. We assume loc v v for all
v S. We say that a place is empty when it is location only to itself.

We denote by the transitive closure of hierarchical containment. We will call hierarchy
the resulting partial order S S . In practice, S is going to be mostly finite, however in
theory it is sufficient to assume that is downward well-founded, i.e. that there are no countable
infinite descending chains. We also assume to have finite degree (i.e. to be finitely branching).
If in addition does not contain infinite ascending chains and is connected, finiteness follows,
by Koenig’s lemma. Localisation can be extended to edges of the underlying graph as follows:
given an edge a between nodes v1 v2, we assume that the -join p loc v1 loc v2 exists,
and that loc a p.

We assume places have persistent identity in a strong sense (i.e. they cannot be renamed), and
can be created and deleted only by means of dedicated rules (place set rules), that do not affect
the underlying graph — therefore, only empty places can be created/deleted, whereas underlying
transformation rules (transformation rules altogether) do not affect the place set. On the other
hand, transformation rules may change the coupling as well as the hierarchy — hence affecting
the localisation of underlying elements.

Given a set K S of places, we say that the abstract region generated by K is the set reg K
x S y K x y , i.e. the downward-closed subset of S generated by K, and that the

concrete region of K is the set creg K x G loc x reg K . Given an event e r m
and a graph G s.t. e G, we denote with locG e (by overloading) the location of e, defined
as the set of locations associated with the set of elements (event elements) that either are in the
match or are to be deleted by the application of the rule, i.e. locG e loc x x m Dt Ḡ
with t e G . We then say that regG e reg loc e is the abstract region of e, and
graphG e creg loc e is its concrete region.

Since we assumed that underlying transformation rules do not create/delete places, it follows
that not only the match, but also the post-match of the rule falls within the region generated
by the location of the corresponding event — however, the region associated to the post-match
may be topologically different from the initial one, though generated by the same places. The
definition of event location can be simplified in the case of DPO, since there the elements to be
deleted are always part of the match. On the other hand, one of the reasons to have regions is in
fact to provide a notion of modularity weaker than the DPO one — essentially, by giving a way
to identify the subgraph that has been affected by the transformation (i.e. the concrete region),
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and that by definition includes the nodes that may have lost some edge, the general idea being
to wrap the match of an SPO rule into an abstract region — e.g. the Failure rule in the running
example — thus making it comparatively modular, if only in a weak sense.

The abstract regions on S can be associated with the closed sets of the order topology
S determined by on S (event space), with global region and empty region . Relying

on a standard construction, dual to that based on open sets [Vic89, TSB02], the closed sets are
indeed the subsets of S that are downward-closed with respect to . Inclusion then determines
a partial order on the regions (granularity). From the downward well-foundedness of , it
follows that is similarly well-founded, i.e. it has no countable infinite descending chains. We
may call atomic regions the smallest ones with respect to .

We say that an event e is lower-level with respect to an event e (resp. e is higher-level wrt
e) iff e e , we say that e is located in e iff e e . Clearly, e e iff graph e graph e
— i.e. the event order is reflected in the underlying graph. Different abstraction techniques
based on partitioning graphs and unfolding event structures have been extensively investigated
[BKR05, BBER08, BCK08].

3.4 Stochastic Modelling

In the following we use types that depend on terms [Bar92], assuming GTS elements can be
treated as typed terms, in order to keep formal expressions concise, and we write Πx : α β
rather than α β when β depends on x. We also implicitly assume that events are typed by
the associated rules. A generalised stochastic graph transformation system (GSGTS) can be
defined [HT09] as structure S G ∆ where G is a GTS, ∆ : Πe G Dist e is a distribution
assignment, which associates with every event a cumulative distribution function (cdf, a function
from real numbers to probability values), and we denote by DistG e Reals 0 1 the type
of cdfG e as the cdf assigned to event e in G.

The behaviour of a GSGTS can be described as a stochastic process over continuous time,
where reachable graphs form the state space and the application of transformation rules defines
state transitions as instantaneous events. More precisely, a rule enabled by a match defines an
event associated with an independent random variable (timer, or scheduling time) which repre-
sents the time expected to elapse (scheduled delay) before the rule is applied to the match. As
the simulation is executed, the timer is randomly set according to the static specification pro-
vided by the cdf of the corresponding event — in the implementation, this involves a call to a
pseudo-random number generator (RNG).

We want to extend the definition of GSGTS in order to keep into account the stochastic de-
pendency of higher-level events on lower-level ones — e.g. of Reconfiguration matches on Add
and SwitchOn matches in the running example. This involves introducing a dependency of the
distribution assignment on the state. Therefore, we assume the cdf associated with an event can
depend (1) on the number of events that are located in it, i.e. the value of cd fG e may depend
on e e e (local density), and (2) on the values set for the timers of lower-level events, i.e.
the value of cd fG e may depend on timer e e e (local activity). From the point of view
of the implementation, this means that, in each state G, the scheduling (i.e. the setting of timers)
has to respect G (i.e. the granularity in G). We then define a type
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LDensG e Πr Num r

with Num r Nat, for the cardinalities of the rule match sets (one for each rule) on which the
event e may depend on, and we assume to have a match counting function countG e : LDensG e .
We also assume to have a scheduling function schedG : Πe DistG e Time e , with Time e
Reals, which assigns a value to each timer, given its cdf. A partial scheduling will be a function
of type

LActG d f Πe1e2 e2 G e1 Time e2

The distribution assignment δ may depend on partial scheduling (activity) and match counting
(density). Therefore the type of the abstract distribution assignment can be

δ : ΠG Πe LDensG e LActG e DistG e

Essentially, δ must be provided in order to complete the model. Partial scheduling πG :
Πe LDensG e LActG e can now be defined by recursion (assuming δ is model-specific)

πG d f µ f λe1 countG e1 λe2 if e2 G e1 then schedG e2 δ G e2 f e2

Finally, the distribution assignment ∆ : Πe ΠG DistG e can be defined as

∆ d f λe λG δ G e πG e

This shows that ∆ can be defined recursively, given sched count δ , relying on the well-
foundedness of . Then H G δ is a stochastic hierarchical graph transformation system
(HSGTS) when G is a GTS and δ is a function specified as above, so that the function that
assigns a continuous cdf to each event for each reachable graph can be derived as ∆ : Πe

G ΠG G DistG e . Note that dependence on graphs can be refined into dependence on con-
crete regions, by replacing the definition of ∆ with one of ∆ : Πe G ΠG G DistgraphG e e .

We also find it useful to allow for rule constructors, i.e. c : X R with X finite domain, as
syntactic sugar for a set of rules r1 c x1 rk c xk , where k is the cardinality of X — e.g.
Add(X) in the example.

4 Stochastic Simulation

We can define an operational interpretation of HSGTS in terms of semi-Markov processes, fol-
lowing an approach already used in [THR, KTH09, KL07]. We rely on a representation of
stochastic processes as discrete event systems [CL08], and define a translation of HSGTS into
them.

Semi-Markov processes are a generalisation of Markov processes — indeed, they can be re-
garded as Markov chains with timers. Markov processes enjoy the memoryless property — each
event depends on the current state only, it is independent from past states as well as from the time
spent in the current one. When a Markov process is regarded as discrete event system, the timers
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associated with events, and consequently also interevent times, must be exponentially distributed
— therefore they can be restarted at each change of state without any loss.

In semi-Markov processes, timers (hence also interevent times) can be generally distributed.
This means that events are independent of past states, but may depend on timers that have been set
in previous states. More formally, a semi-Markov process can be defined as a process generated
by a generalised semi-Markov scheme (GSMS) [DK05]. The relationship between semi-Markov
processes and GSMS is altogether similar to that between Markov processes and Markov chains
— indeed, a process generated by a GSMS where all timers are exponentially distributed vari-
ables is stochastically equivalent to a continuous-time Markov chain.

We need to define a structure that is syntactically more general than a GSMS, insofar as we
want to allow for distribution assignments to depend on states. A hierarchical semi-Markov
scheme (HSMS) is here a structure

Z E enabled : Z ℘ E new : Z E Z cdfAsg : E Z Reals 0 1
S: Z E E bool s0 : Z

where Z is a set of system states; E is a set of timed events; enabled is the activation function,
so that enabled s is the finite set of active events associated with state s; new is a partial function
depending on states and events that represent transitions; cdfAsg is the distribution assignment,
so that cdfAsg e s gives a cdf of the scheduled delay of e at state s; S s is a well-founded
order (schedule-making order) on the enabled events; and s0 is the initial state.

Given a HSGTS H R G0 δ , we can define its translation to an HSMS H as follows

Z R G0 is the set of graphs reachable from G0 by rules in R;

E G is the set of possible events for G R G0 ;

enabled G e e G is the set of all events enabled in graph G;

the transition function is defined by new G e H iff G e H;

distribution cdfAsg e G is given by ∆ e G ;

the scheduling order S G is defined as event order G

s0 is G0

This embedding can be used as static framework for the definition of a simulation algorithm
that is adequate with respect to system runs, in the sense that there is a one-to-one correspon-
dence between the runs of the original HSGTS and those of the resulting HSMS, and therefore
correct and complete with respect to reachability. The algorithm, based on the general scheduling
scheme given in [CL08], can be described as follows.

Initial step

1. The simulation time is initialised at 0.
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2. The set of the enabled events A enabled s0 is computed.
3. The schedule-making order S s0 is computed and checked for well-foundedness.
4. For each event e A, a scheduling time te is computed by an RNG as random delay

value de depending on the probability distribution function cdfAsg e s0 ;
5. The enabled events with their scheduling times are collected in the scheduled event

list ls0 e te e A , ordered by time values.

For each successive step — given the current state s Z and the associated scheduled event
list ls e t e active s

1. the first element k e t is removed from ls;
2. the simulation time tS is updated by increasing it to t;
3. the new state s is computed as s new s e ;
4. the list ms of the surviving events is computed, by removing from ls all the elements

become disabled, i.e. all the elements z x of ls such that z enabled s ;
5. The schedule-making order S s is computed and checked for well-foundedness.
6. a list ns of the newly enabled events is built, containing a single element z tz for

each event z such that z enabled s enabled s and has scheduling time tz tS
dz, where dz is a random delay value given by an RNG depending on the distribution
function cdfAsg s z ;

7. the new scheduled event list ls is obtained by reordering the concatenation of ms and
ns with respect to time values

Part of the complexity of the algorithm is hidden in the recursive definition of cdfAsg. This
requires the schedule-making order S to be well-founded — which of course in our translation
is guaranteed by the assumptions on the hierarchy . Apart from that, the algorithm relies on
scheduling, implemented by calls to an RNG, and on a standard match counting function.

5 Further work

Expressing stochastic dependencies associated with density and activity measures — as in the
example — can be useful to model situations in which specific events depend on large num-
bers of co-located ones, as in describing biochemical processes at different levels of detail (e.g.
molecular and cellular). Graph transformation can be good at tracking individual processes —
however, there are aspects that can be modelled more efficiently in terms of mass effect and dif-
ferential equations [Car08]. Therefore, the general capability of expressing presence of reactants
and reactions in a region can be useful.

In the implementation, applying few high-level rules rather than many low-level ones could
ease the costly business of updating incremental data-structures. As presently implemented in
GraSS [THR], flat scheduling is carried out rather independently of the RETE network. Pro-
ceeding that way, hierarchical scheduling might turn out to be expensive. Reflection of hierarchy
into the underlying graph could be handled quite more efficiently, however, by introducing a
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further level of incrementality based on a live transformation approach [RBOV08], i.e. by con-
tinuously maintaining spatial information as part of the transformation context, so that changes
to the spatial structure can be instantly mapped to the underlying graph.

6 Conclusion

Stochastic simulation is a promising field of application for graph transformation techniques.
We have argued that structured graphs can be useful for stochastic simulation. We have focussed
on probabilistic dependency of events on co-located ones, in order to make stochastic modelling
more expressive, and to define models that are more flexible from the point of view of simulation,
by offering more options without resorting to structural changes.

We have shown that hierarchy can be used to define a topological order on events, allowing
for a weak notion of modularity and an increase in expressiveness with respect to stochastic
dependencies. This extension can be embedded in discrete event models of stochastic processes.
We think that an implementation of stochastic simulation along this lines could take great benefit
from an appropriate use of references in incremental pattern-matching.

References

[Bar92] H. P. Barendregt. Lambda Calculi with Types. In Abramsky et al. (eds.), Handbook of
Logic in Computer Science. Volume 2, pp. 117–309. Oxford – Clarendon Press, 1992.

[BBER08] J. Bauer, I. Boneva, K. M. E., A. Rensink. A modal-logic based graph abstraction. In
ICGT 2008. 2008.

[BCK08] P. Baldan, A. Corradini, B. König. A framework for the verification of infinite-state
graph transformation systems. Information and Computation 206:869–907, 2008.
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Abstract: We previously defined collagories essentially as “distributive allegories without
zero morphisms”. Collagories are sufficient for accommodating the relation-algebraic ap-
proach to graph transformation, and closely correspond to the adhesive categories important
for the categorical DPO approach to graph transformation.
Heindel and Sobociński have recently characterised the Van-Kampen colimits used in adhe-
sive categories as bicolimits in span categories.
In this paper, we study both bicolimits and lax colimits in collagories. We show that the
relation-algebraic co-tabulation concept is equivalent to lax colimits of difunctional mor-
phisms and to bipushouts, but much more concise and accessible. From this, we also obtain
an interesting characterisation of Van-Kampen squares in collagories.
Keywords: Relation-algebraic graph transformation, Collagories, Allegories, Pushout,
Adhesive categories

1 Introduction

One of the hallmarks of the relation-algebraic approach to graph transformation [Kaw90, Kah01,
Kah04] is that it allows an abstract characterisation of the gluing condition for the double pushout
approach. Nevertheless, the categorical approach to graph transformation has continued to
use the node-and-edge-based formulation of the gluing condition even in the handbook chap-
ter [CMR 97]. Recently, the literature of the categorical approach, starting essentially with
[EPPH06] has adopted the “adhesive categories” of Lack and Sobociński [LS04], where how-
ever the details of the gluing condition are completely sidestepped.

In [Kah09a], we introduced collagories essentially as “distributive allegories without zero
morphisms”. We redeveloped in collagories the fundamentals of the relation-algebraic approach
to graph transformation, and showed that adhesive categories arise, and also that bitabular col-
lagories share the most important construction principles, such as slice and co-slice category
constructions, with adhesive categories.

Inspired by Heindel and Sobociński’s characterisation of van Kampen squares as bicolimits in
the bicategory of spans [HS09], we establish in this paper (Sect. 6) the connections between our
co-tabulations and bicolimits in collagories, succeding to show that the co-tabulation characteri-
sation of pushouts, which essentially goes back to Kawahara [Kaw90], has a precise categorical
counterpart in bipushouts, and, even more closely, in lax colimits of difunctional morphisms in
a collagory context.

We also succeed in providing, in Sect. 7, an original collagory-theoretic characterisation of
van Kampen squares, significantly advancing over the results of [Kah09a, Kah09b].



2 Categories, Allegories

This section only serves to fix notation and terminology for standard concepts, see [FS90, SS93,
Kah04]. Like Freyd and Scedrov and a slowly increasing number of categorists, we denote com-
position in “diagram order” not only in relation-algebraic contexts, where this is customary, but
also in the context of categories. We will always use the infix operator “.,” to make composition
explicit: R ., S R S .
Definition 2.1. A category C is a tuple ObjC MorC src trg ., where

ObjC is a collection of objects.
MorC is a collection of arrows or morphisms.
src (resp. trg) maps each morphism to its source (resp. target) object.
Instead of src f trg f we write f : .
The collection of all morphisms f with f : is denoted as MorC and also called
a homset.
“.,” is the binary composition operator, and composition of two morphisms f : and
g : is defined iff , and then f ., g : ; composition is associative.

associates with every object a morphism which is both a right and left unit for com-
position.

Definition 2.2. An ordered category is a category C such that
for each two objects and , the relation is a partial order on MorC (the indices
will usually be omitted), and
composition is monotonic with respect to in both arguments.

For homsets that have least or greatest elements, we introduce corresponding notation:
Definition 2.3. In an ordered category, for each two objects and we introduce the following
notions:

If the homset MorC contains a greatest element, this is denoted .
If the homset MorC contains a least element, this is denoted .

For these extremal morphisms and for identities we frequently omit indices where these can be
induced from the context.
Definition 2.4. An ordered category with converse, or OCC, is an ordered category such that

each morphism R : has a converse R : ,
the involution equations hold for all R : and S : :

R R R ., S S ., R
conversion is monotonic with respect to .

Many standard properties of relations can be characterised in the context of OCCs [Kah04]:
Definition 2.5. A morphism R : in an OCC is called:

univalent iff R ., R ,
total iff R ., R ,
injective iff R ., R ,
surjective iff R ., R,
a mapping iff it is univalent and total,



bijective iff it is injective and surjective,
difunctional iff R ., R ., R R.

For an OCC C, we write MapC for the sub-category of C that contains only the mappings as
arrows.

Difunctionality will play an important rôle in this paper; a concrete relation, understood as a
Boolean matrix, is difunctional iff it can be rearranged into “loose block-diagonal form”, with
full rectangular blocks such that there is no overlap between different blocks in either direction.
(See [SS93, 4.4] for more about difunctionality).

For endomorphisms, there are a few additional properties of interest:
Definition 2.6. A morphism R : in an OCC is called:

reflexive iff R,
transitive iff R ., R R, and idempotent iff R ., R R,
co-reflexive or a sub-identity iff R ,
symmetric iff R R,
an equivalence iff it is symmetric, reflexive and transitive.

Lemma 2.7. If P Q is a span and P ., Q is difunctional, then P ., P ., Q ., Q is idem-
potent. If P and Q are moreover total, then P ., P ., Q ., Q is an equivalence.
PROOF: The first claim is immediate: P ., P ., Q ., Q ., P ., P ., Q ., Q P ., P ., Q ., Q .

For the second claim, reflexivity is obvious from totality, and the first claim implies transitivity,
and, together with totality, also symmetry:

Q ., Q ., P ., P ., Q ., Q ., P ., P ., P ., P ., Q ., Q ., P ., P ., Q ., Q P ., P ., Q ., Q

While Freyd and Scedrov [FS90] derive the homset ordering in their allegories from the meet
operation, we define allegories on top of ordered categories — the composition operator has
higher precedence than all other binary operators.
Definition 2.8. An allegory is an OCC such that

each homset is a lower semilattice with binary meet .
for all Q : , R : , and S : , the modal rule holds:

Q ., R S Q S ., R ., R

The most well-known allegory is the category Rel of sets with relations and standard relational
operations. Logical theories give rise to allegories of derived predicates [FS90, App. B]. A sim-
pler case of that are the allegories arising from Σ-algebras (over some signature Σ) as objects, and
with “relational Σ-homomorphisms”, i.e. bisimulations in the sense of [Kah04], as morphisms.

In allegories, one can define domain and range operators:
Definition 2.9. For every morphism R : in an allegory, we define domR : and
ranR : as:

domR : R ., R ranR : R ., R



3 Collagories

κ óλ λ α : glue

In Freyd and Scedrov’s treatment, although allegories are not required to have zero-ary meets,
distributive allegories are required to have zero-ary joins (least elements) together with distribu-
tivity of composition over them, that is, the zero law ., R . In [Kah09a], we introduced an
intermediate concept that does not assume anything about zero-ary joins:
Definition 3.1. A collagory is an allegory where each homset is a distributive lattice with binary
join , and composition distributes over binary joins from both sides.

We directly axiomatise difunctional closure, without introducing Kleene star:
Definition 3.2. A difunctionally closed collagory is a collagory where, there is an additional
unary operation which satisfies the following axioms for all R : , Q : , and
S : : Q : , and S : :

R R R ., R ., R recursive definition
Q ., R Q Q ., R ., R Q Q ., R Q right induction
R ., S S R ., R ., S S R ., S S left induction

We further define R : and R : as:

R : R ., R and R : R ., R

In a difunctionally closed collagory, the operation produces difunctional closures [Kah09a].

Requiring least morphisms satisfying zero laws turns collagories into distributive allegories,
which still heave a much weaker theory than relations in a topos, so graph structures (unary
algebras) with relational graph homomorphism in particular also form collagories.

In [Kah09a], we showed that the absence of the zero laws enables the presence of constant
symbols (allowing for example pointed sets), and also that restrictions to sub-collagories in sig-
nature reducts (for example fixing label sets) and nested algebra constructions (interpreting sig-
natures in the mapping categories of arbitrary collagories instead of just in MapRel) both con-
struct new collagories. These constructions are directly useful for concrete modelling tasks, and
for implementation of the resulting models as data structures; they also subsume the construc-
tion methods presented by Lack and Sobociński [LS04] for adhesive categories, in particular
comprising clice and co-slice category construction.

4 Tabulations and Co-tabulations

Central to the connection between pullbacks and pushouts in categories of
mappings on the one hand and constructions in relational theories on the other
hand is the fact that a square of mappings commutes iff the “relation” induced
by the source span is contained in that induced by the target co-span. The
proof of this does not need the modal rule.

P Q

R S

Lemma 4.1. [FS90, 2.146] Given a square of mappings in an allegory as drawn above, we have
P ., R Q ., S iff P ., Q R ., S .



This provides a first hint that in the relational setting, the identity of the two mappings P and Q
does not matter when looking for a pushout of the span P Q — we only need to con-
sider the diagonal P ., Q. Dually, when looking for a pullback of the co-span R S ,
only R ., S needs to be considered. The gap between the two ways of calculating the horizon-
tal diagonal can be significant since R ., S is always difunctional. In fact, Lemma 4.1 can be
strenghtened:
Lemma 4.2. Given a square of mappings in an allegory as drawn above, and existence of the
difunctional closure of P ., Q, we have P ., R Q ., S iff P ., Q R ., S .
PROOF: The “if” direction follows immediately from P ., Q P ., Q and the “if” direction of
Lemma 4.1.

For “only if”, assume P ., R Q ., S. Then P ., Q R ., S by Lemma 4.1, and

R ., S ., Q ., P ., P ., Q R ., R ., P ., P ., P ., Q commutativity
R ., R ., P ., Q P unival.
R ., S ., Q ., Q commutativity
R ., S Q unival.

By left-induction for difunctional closure we therefore have P ., Q R ., S

Producing the result span of a pullback (respectively the result co-span of a pushout) from the
horizontal diagonal alone is, in some sense, a generalisation of Freyd and Scedrov’s splitting of
idempotents; [Kah04] contains more discussion of this aspect.
Definition 4.3. [FS90, 2.14] In an allegory, let a morphism V : be given. The span

P Q of mappings P and Q is called a tabulation of V iff the following equations
hold:

P ., Q V P ., P Q ., Q

P Q
V

W

R S

Definition 4.4. [Kah04] In a collagory, let a morphism W : be given. The co-span
R S of mappings R and S is called a co-tabulation of W iff the following equations

hold:
R ., S W R ., R S ., S

The first equation implies W ., W ., W R ., S ., S ., R ., R ., S R ., S W (using univalence of R and
S), so if W has a co-tabulation, it has to be difunctional.

Furthermore, from univalence of R and S we also obtain the lax cocone conditions R ., W
R ., R ., S S and W ., S R ., S ., S R.

The following equivalent characterisations provided by [Kah04] have the advantage that they
are fully equational, without the implicit inclusions in the mapping conditions. This frequently
facilitates calculations. Note that V ., V domV; we use the expanded form to emphasise the
duality.



Proposition 4.5. In an allegory, the span P Q is a tabulation of
V : if and only if the following equations hold:

P ., Q V
P ., P V ., V
Q ., Q V ., V

P ., P Q ., Q

Proposition 4.6. In a collagory, the co-span R S is a co-tabulation of W :
iff the following equations hold:

R ., S W
R ., R W ., W
S ., S W ., W

R ., R S ., S

Definition 4.7. If an allegory has a tabulation for each morphism, we call it tabular.
If a collagory has a co-tabulation for each morphism, we call it co-tabular, and if it is further-

more tabular, we call it bi-tabular.
Tabulations in an allegory are unique up to isomorphism (this uses the modal rule), and include

the following special cases:
In a tabulation of a sub-identity, both tabulation morphisms are the induced sub-object injec-
tion [FS90, 2.145].
We can define a direct product of and to be a tabulation of a , provided that
greatest morphism exists. The resulting direct product definition differs from that of [SS93] in
extending naturally to “empty” objects (e.g., empty sets) by not demanding surjectivity of the
projections, but only π ., π dom and ρ ., ρ ran

If a co-span R S of mappings is given, then each tabulation of R ., S (there might
be none) is a pullback in MapA [FS90, 2.147].
For a tabular allegory A, this implies that each pullback in MapA is isomorphic to a tab-
ulation, and therefore is itself a tabulation. However, if A is not tabular, then a co-span

R S of mappings for which no tabulation of R ., S exists may still have a pull-
back in MapA, which then cannot be a tabulation.

If an allegory is known to have all direct products and subobjects, then these can be used to
construct a tabulation for each morphism.

In a collagory, we have the following special cases of co-tabulations, dual to the special tabu-
lations above:

In a co-tabulation of an equivalence relation, both R and S are the induced quotient projections.
We can define a direct sum of and to be a co-tabulation of , if that least morphism
exists.
If a span P Q of mappings is given, and the difunctional closure W : P ., Q
exists then each co-tabulation of W (there might be none) is a pushout in MapA [Kah09a].
The situation is, except for the addition of the difunctional closure, perfectly dual to the sit-
uation for pullbacks described above: For a co-tabular collagory C, each pushout in MapC

is isomorphic to a co-tabulation, and therefore is itself a co-tabulation. However, if C is not
co-tabular, then a span P Q of mappings for which no co-tabulation of P ., Q
exists may still have a pushout in MapC, which then cannot be a co-tabulation.

If direct sums and quotients are available, then a co-tabulation can be constructed for each di-
functional morphism.



A co-tabulation for a difunctional closure Z satisfies the following equations:

R ., S Z R ., R Z S ., S Z R ., R S ., S

This was introduced as a gluing for the morphism Z in [Kah01]. Kawahara is the first to have
characterised pushouts relation-algebraically in essentially this way [Kaw90]; he used relation-
algebraic operations on relations arising in toposes.
Convention 4.8. For a square of morphisms as drawn at the beginning of this section, we say
that

it is a tabulation iff P Q is a tabulation for R ., S ,
it is a (direct) co-tabulation iff R S is a co-tabulation for P ., Q,
it is a gluing iff R S is a gluing for P ., Q, that is, if it is a co-tabulation for
P ., Q .

5 The Gluing Condition in Collagories

We can now state a relational variant of the gluing condition, first introduced by Kawahara
[Kaw90]:
Definition 5.1. Let two morphisms1 Φ : and X : in a collagory with pseudo-
complements on subidentities be given.2

We say that the identification condition holds iff X ., X ranΦ ., X ., X ., ranΦ
We say that the dangling condition holds iff ranX ranX ran Φ ., X

The proofs that the gluing condition is sufficient for the existence
of a pushout complement [Kaw90], and that injectivity of Φ is suf-
ficient for unambiguity of the pushout complement [Kah01] carry
over to the collagory setting, but are outside the scope of this paper.

Another related condition is important in the context of the
single-pushout approach:

Φ

X Ξ

Ψ

Definition 5.2. In an allegory, we call X conflict-free for Φ iff ran Φ ., X ., X ranΦ.
For a node-and-edges-level formulation of conflict-freeness it is well-known that the induced

single-pushout squares have a total embedding of the right-hand side into the application graph
[Löw90, Cor. 3.18.5]. The component-free formulation above was first given in [Kah01], where
it is also shown (Thm. 5.4.11) that a restricting derivation step for a conflict-free redex produces
a pushout of partial functions.

1 Note that “X” is a capital “χ”.
2 Pseudo-complements are residuation of meet in lower semilattice categories; where pseudo-complements exist, we
denote the pseudo-complement or R with respect to S as R S, and we have:

X R S X R S

For example, the pseudo-complement of a subgraph R of a graph G with respect to another subgraph S consists of all
nodes of G that are in S or not in R, and all edges in S or not in R that are also nor incident with nodes in R. Intuitively,
R S therefore is G with the parts or R outside S removed, and then also all dangling edges removed.



6 Co-tabulations as Bicolimits and Lax Colimits

Ordered categories are a simple example of 2-categories and bicategories: between two mor-
phisms there is at most one two-cell, and there is a two-cell between two morphisms R S :
iff R S. Therefore, there is an invertible two-cell between R and S if and only if R S.

6.1 OC-Colimits: Bicolimits in Ordered Categories

The general notion of bicolimits takes as its point of departure a diagram defined via a functor
from a category. We introduce a specialised variant of the definition used in [HS09] by restricting
our attention to ordered categories.
Definition 6.1. Given a category C, an (index) category J, a functor D : J C defining a dia-
gram, and an object , a cocone η from D to consists of a morphism η : D in C for
each object of J, satisfying the following cocone commutativity condition:

DF ., η η for each morphism F : in J.
Definition 6.2. Given an ordered category C, an (index) category J, and a functor D : J C,
an OC-colimit of D is given by an object of C, and a cocone η from D to , satisfying the
following conditions:
1. factorisation: for any other object of C with cocone κ from D to , there is a morphism

h : in C with
η ., h κ for each object in J.

2. isotony: for any other object of C and any two morphisms h h : , if η ., h η ., h
for all objects in J, then h h .

OC-colimits are unique up to isomorphism.

6.2 Lax Colimits in OCCs

For lax cocones, we only need the concept of lax functor, which differs from the functor concept
in that a lax functor D only needs to satisfy D D and D f ., Dg D f ., g , see, e.g.,
[Stu05, Sect. 8, p. 37ff]. Again, we provide specialised definition of lax cocones and lax colimits
for the ordered category case:
Definition 6.3. Given an ordered category C, an (index) category J, a lax functor D : J C

defining a diagram, and an object , a lax cocone η from D to consists of a morphism
η : D in C for each object of J, satisfying the following cocone subcommutativity
condition:

DF ., η η for each morphism F : in J.

Definition 6.4. Given an ordered category C, an (index) category J, and a lax functor D : J C,
a lax colimit of D is given by an object of C, and a lax cocone η from D to satisfying the
following conditions
1. factorisation: for any object of C with lax cocone κ from D to , there is a morphism

U : in C with
η ., U κ for each object in J,



2. isotony: for any object of C and any two morphisms U U : , if η ., U η ., U
for each object in J, then U U .

Lax colimits are unique up to isomorphism, too.

We now add the converse operator to our consideration of lax colimits, and when we use
“ ” to denote an OCC, that OCC has the homset from the first object to the second,
different object contain exactly one morphism, say F, from to . As an OCC, it needs to
also have F , which will be the only morphism from to . Since in this OCC, also F ., F ., F
needs to exist as a morphism from to , it has to be equal to F, which therefore is difunctional.

If a lax functor D maps F : to W : , then

W ., W ., W DF ., DF ., DF D F ., F ., F DF W

so it can map only to difunctional morphisms.
Furthermore, if, for a lax cocone, its source J is considered as an OCC, this implies that for

each morphism F : in J, also the converse morphism F : needs to be considered.
Such a lax cocone therefore automatically has to satisfy both the following conditions:

DF ., η η
DF ., η η

for each morphism F : in J.

Convention 6.5. Given a morphism W : in the OCC C, we will frequently identify W
with the functor D mapping the single morphism explicitly mentioned in the OCC to W.

(Since we are dealing with an OCC, that morphism also has a converse, which then must be
mapped to W .)

A lax cocone from W to therefore is a cospan R S satisfying W ., S R and
W ., R S.

S
W

R

S
S

W U

R
R

We explicitly state the definition of resulting special case of lax colimits:
Definition 6.6. An OCC-colimit of W : in the OCC C is a lax cocone R S

from W to (with W ., S R and W ., R S) satisfying the following conditions:

1. factorisation: for any object of C with lax cocone R S from W to , there
is a morphism U : in C with R ., U R and S ., U S ;

2. isotony: for any object of C and any two morphisms U U : , if R ., U R ., U and
S ., U S ., U , then U U .

The crucial aspect of the following theorem (proof in [Kah10]) is that it connects the respecive
O*-limits for spans P Q of mappings with those for the single difunctional mor-
phisms P ., Q (which do not need to be mappings).



Theorem 6.7. If a span P Q of mappings in a collagory is given, then a cospan
R S is an OCC-colimit for P ., Q iff it is an OC-pushout (i.e., OC-colimit for a

span) for P Q .

6.3 OCC-Colimits are Co-tabulations

In a collagory C that is not co-tabular, categorical pushouts in MapC are not necessarily gluings
— the pushout conditions establish no connection between mappings and other morphisms, and
pathological cases cannot be excluded.

However, OC-colimits and OCC-colimits do establish the necessary connections; one direc-
tion is easy to see (details in [Kah10]):
Theorem 6.8. If a cospan R S in a collagory is a co-tabulation of W : , then
it is also an OCC-colimit for W.

We now show that all OCC-colimits (of necessarily difunctional morphisms) are in fact co-
tabulations. The proof needs to rely on the lax colimit properties, and therefore needs to use
appropriate lax cocones constructed from the morphisms known to exist for a given OCC-colimit.
The following lemma already follows this pattern:
Lemma 6.9. If, in an allegory, R S is an OCC-colimit for W, then

W ., R S ., ranR W ., R ., R S ., R
W ., S R ., ranS W ., S ., S R ., S

PROOF: Let R0 W ., S and S0 S. This defines a lax cocone R0 S0 from W to ,
since:

W ., R0 W ., W ., S W ., R S S0 ;
W ., S0 W ., S R0

Then factorisation gives us a U0 : such that R0 W ., S R ., U0 and S0 S S ., U0. Since
R ., U0 W ., S R R ., and S ., U0 S S ., , isotony gives us U0 .

So U0 is a sub-identity, and S S ., U0 implies ranS U0. Since composition of sub-identities
is meet, we obtain the following (which implies U0 ranS):

W ., S W ., S ., ranS R ., U0
., ranS R ., ranS

Analogously, W ., R S ., ranR also holds, and these further imply
W ., R ., R S ., R and W ., S ., S R ., S

Lemma 6.9 does not use difunctionality of W, and implies:
W ., W ., W ., R W ., W ., S ., ranR W ., R ., ranS ., ranR

W ., R ., ranS S ., ranR ., ranS S ., ranR W ., R

and, analogously, W ., W ., W ., S W ., S. Therefore, even with a weaker concept of OCC-colimit,
we would still have, in some sense, “almost-difunctionality” of W.

Lemma 6.9 did use allegory properties (for sub-identities); to show the opposite inclusion to
Theorem 6.8 we need full collagories (detailed proof in [Kah10]):
Theorem 6.10. If, in a collagory, W : is a difunctional morphism and R S

is an OCC-colimit for W, then it is also a co-tabulation for W.



In summary, we have shown in Theorem 6.7 that OC-pushouts (i.e., OC-colimits) of a span
are the same as OCC-colimits of the difunctional closure of the composition across that span.
Furthermore, OCC-colimits of difunctional morphisms are the same as co-tabulations, as shown
in Theorems 6.8 and 6.10.

7 Van Kampen Squares in Collagories

Adhesive categories as a more specific setting for double-pushout graph rewriting have been
introduced by Lack and Sobociński [LS04, LS05]; the following two definitions are taken from
there:
Definition 7.1. A van Kampen square (i) is a pushout which satisfies the following condition:
given a commutative cube (ii) of which (i) forms the bottom face and the back faces are pullbacks
(where is considered to be in the back), the front faces are pullbacks if and only if the top face
is a pushout.

M F

G N

(i)

f

m n
g

c
b

a
F

d

M N

G
(ii)

Definition 7.2. A category C is said to be adhesive if
1. C has pushouts along monomorphisms;
2. C has pullbacks;
3. pushouts along monomorphisms are van Kampen squares.
For more concise formulations, we define:
Definition 7.3. A van Kampen setup in a collagory C for a square as in Def. 7.1(i) is a commuting
cube in MapC as in Def. 7.1(ii) where the bottom square is a gluing and the two back squares
are tabulations.

In [Kah09b], the following two lemmas were only shown for co-tabulations (i.e., assuming
that M ., F is difunctional, and also of m ., f where it is assumed to be a gluing), not for general
gluings. In [Kah10], we show the following significantly strengthened versions.
Lemma 7.4. In a collagory, if the front squares of a van Kampen setup are tabulations, then the
top square is a gluing. If furthermore M ., F is difunctional, then m ., f is difunctional, too.
Lemma 7.5. In a van Kampen setup where the top square is a gluing, the front squares are
tabulations iff the following holds:

m ., m ., f ., f c ., c
The condition here is equivalent to the following inclusion in the lattice of equivalences on :

m ., m f ., f c ., c



Since equivalence lattices are not necessarily distributive, we cannot derive this from the tabula-
tion equations m ., m c ., c and f ., f c ., c .

From Lemmas 7.4 and 7.5, we also directly obtain a characterisation of van Kampen squares
in bitabular collagories:
Theorem 7.6. A gluing square (as in Def. 7.1(i)) in a bitabular collagory is van Kampen iff all
its van Kampen setups (as in Def. 7.3) where the top square is a gluing satisfy the following:

m ., m ., f ., f c ., c

The bitabularity condition could be weakened, but even then, this characterisation theorem is
still very different from the appropriate diagram instance of Heindel and Sobociński’s charac-
terisation theorem [HS09, Theorem 22], due to the fact that, by assuming a gluing, we already
restricted ourselves to “well-behaved” pushouts.

Our theorem also stays more in the typical relation-algebraic spirit: instead of Heindel and
Sobociński’s condition “a colimit exists”, we have a local inclusion to check. The universal
quantification this is embedded in is essentially the same as in [HS09, Theorem 22].

An interesting question is whether there is a useful characterisation that employs a local con-
dition only on the candidate square, beyond injectivity of one M and F, as used in the definition
of adhesive categories.

First we observe (proof in [Kah10]):
Lemma 7.7. In a van Kampen setup where M ., M F ., F , the following hold:
1. f ., f m ., m ., c ., c
2. c ., c m ., m ., f ., f
Injectivity of M makes M ., F difunctional and also enforces injectivity of m and therewith di-
functionality of m ., f .

In the general case, however, we have seen above that difunctionality of m ., f requires not only
difunctionality of M ., F, but also the front tabulation conditions.

This failure of difunctionality propagation can be understood as coming from the fact that in
the difunctionality inclusion M ., F ., F ., M ., M ., F M ., F, the right-hand side passes through a
“ element” that may be distinct from the three “ elements” of the left-hand side.

This distinct “ element” gives rise to a “ element” that is, in the absence of the front
tabulation conditions, determined only up to c ., c .

One way to avoid this unwanted factor is to specify that in any chain diagram documenting
M ., M ., F ., F ., M ., M , the fourth (i.e., last) element needs to be one of the previous three
elements. Referring to so many elements simultaneously in a relation-algebraic way requires
direct products — we use π and ρ as the projections. The following is one formulation of this
condition:

M ., M ., π F ., F ., M ., M ., ρ M ., M ., π F ., F M ., M ., ρ
However, it is not hard to see that this is equivalent to the following, much simpler condition:

F ., F ., M ., M F ., F M ., M

This is obviously satisfied if one of M and F is injective. It can also be strengthened to an
equality, since M and F are both total. This implies symmetry:

F ., F ., M ., M F ., F M ., M M ., M ., F ., F



and, furthermore, difunctionality of M ., F:

M ., F ., F ., M ., M ., F M ., M ., M ., F ., F ., F M ., F

Assuming also M ., M F ., F , we obtain f ., f ., m ., m f ., f m ., m :

f ., f ., m ., m
f ., f ., m ., m c ., F ., F ., M ., M ., c
f ., f ., m ., m c ., F ., F M ., M ., c assumption
f ., f ., m ., m c ., c ., f ., f c ., c ., m ., m
f ., f ., m ., m c ., c ., f ., f f ., f ., m ., m c ., c ., m ., m

f ., f m ., m Lemma 7.7

Therefore, m ., f is difunctional, too, and together with Lemma 7.7 we obtain

m ., m ., f ., f c ., c m ., m ., f ., f c ., c

Altogether we have shown the following:
Theorem 7.8. In the category MapC of maps over a bi-tabular collagory C, pushouts for spans

M F that satisfy also

F ., F M ., M and F ., F ., M ., M F ., F M ., M

are van Kampen squares.
Both inclusions can be strengthened to equalities, and since the second condition implies

difunctionality, both together imply that such pushouts are also pullbacks.

8 Conclusion

We have shown that, in collagories, lax colimits of single morphisms are the same as co-tabulations,
and bicolimits of spans (bipushouts) are the same as gluings. Furthermore, the move from a span

P Q to the difunctional closure of P ., Q preserves both kinds of colimits. (The
opposite move could be achieved via a tabulation, and may still deserve to be spelt out.)

We also strengthened our previous results about the two implications involved in van Kampen
squares from difunctional spans to arbitrary spans, extracted a precise relation-algebraic condi-
tion for van Kampen squares in collagories, and gave a new, purely local sufficient condition for
van Kampen squares that is more general than the “pushouts along monomorphisms” used in
adhesive categories.

These two results together with the fact that the equational characterisation of co-tabulations
enables a nice, calculational proof style make a strong case to employ collagories as a conve-
nient basis for theoretical investigations of graph structure transformations. In addition, relation-
algebraic formulations and reasoning are accessible to a wide audience due to the fact that in the
intuitive special case of Rel, they can be understood as Boolean matrix operations.

Future investigations will explore how these new conditions for van Kampen squares can be
combined with the different variations of adhesive categories in a collagory setting, including the
quasiadhesive categories of [LS05], and their applications.
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