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Lecture 1 

Formal language theory 
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Languages and monoids 

Σ : finite set of symbols. 

Σ+ : the set of all non-empty finite words formed from the 
symbols in Σ. 

Example.  Σ = { a, b }; 

 Σ+ = { a, b, a2, ab, ba, b2, a3, a2b, ........ }. 

Σ+ forms a semigroup (under the operation of concatenation): 

 • associative (αβ)γ = α(βγ) for all α, β, γ. 
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Σ* : the set of all finite words formed from the symbols in Σ 
(including the empty word ε). 

Example.  Σ = { a, b };   Σ* = { ε, a, b, a2, ab, ba, b2, a3, a2b, ........ }. 

Σ* forms a monoid (under the operation of concatenation): 

 • associative (αβ)γ = α(βγ) for all α, β, γ. 

 • identity ε αε = εα = α for all α. 

Σ+ is the free semigroup and Σ* is the free monoid on the set Σ. 

We often refer to the operation in a semigroup or monoid as a 
product. 
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Let S be a semigroup. We say that a subset Σ of S generates S if every 
element of S is a product of elements of Σ. 

If S is a semigroup generated by a finite set Σ, then every element 
of S is expressible as an element of Σ+. 

If S is a semigroup generated by a finite set Σ then there is a 
homomorphism  ϕ : Σ+ → S  (i.e. we have (αϕ)(βϕ) = (αβ)ϕ for all 
words α and β in Σ+). 

In this case, the semigroup S is isomorphic to Σ+/≈ where ≈ is the 
congruence (equivalence relation preserved under concatenation) 
on Σ+ defined by  

α ≈ β   ⇔   αϕ = βϕ. 
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If R is a set of relations on a semigroup S generated by Σ (i.e. if R is 
a set of equations of the form α = β where α, β ∈ Σ+ and where 
α and β represent the same element of S), then R generates a 
congruence ≈ on Σ+ (where ≈ is the smallest congruence on Σ+ 
containing R). 

We say that R is a set of defining relations for S if S is isomorphic to 
Σ+/≈. 

This is effectively saying that every relation which holds in S is a 
consequence of the relations in R. 

We then say that < Σ : R > is a presentation for the semigroup S. 
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Example. 

If we have the presentation 
 < a, b : a2 = a, b2 = b > 
for a semigroup S, then every element of S is equal to a word of 
the form: 
 abab....ab,  abab....ba, 
 baba....ba, or baba....ab. 
 

The free semigroup Σ+ on a set Σ has the presentation < Σ :   >. 
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We have a similar idea for monoids.  A subset Σ of a monoid M 
generates M if every non-identity element of M is a product of 
elements of Σ.  If M is generated by a finite set Σ, then every element 
of M is expressible as an element of Σ*.  The empty word ε 
represents the identity of M. 

There is a homomorphism  ϕ : Σ* → M and M ≅ Σ*/≈ where ≈ is 
the congruence on Σ* defined by  α ≈ β   ⇔   αϕ = βϕ. 

If R is a set of relations on a monoid M, then R generates a 
congruence ≈ on Σ*.  We say that R is a set of defining relations 
for M if M is isomorphic to Σ*/≈ . 

We then say that < Σ : R > is a presentation for M. 
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Example.   If we have the presentation 

 < a, b : a2 = a, b2 = b > 
for a monoid M, then every non-identity element of M is equal to 
a word of the form: 
 abab....ab,  abab....ba, 
 baba....ba, or baba....ab. 
The identity element is represented by ε (and by no other word). 
 

The free monoid Σ* on a set Σ has the presentation < Σ :   >; note 
that this is a monoid (as opposed to a semigroup) presentation. 
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Languages 

A language L is a subset of Σ* (for some finite set Σ). 
 

Example.   Σ = { a, b }  L = { α ∈  Σ* : |α| is even}. 
 

Example.   Σ = { a, b, c }  L = {anbcn : n ∈ N}. 
 

Note that the set N of natural numbers is taken to contain 0 here. 
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Some classes of languages and the associated “machines”: 
 

Languages Machines 
Regular languages Finite automata 

Context-free languages Pushdown 
automata 

Recursive languages  
Recursively enumerable 

languages 
Turing machines 
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Regular languages. 

Regular languages are the languages accepted by finite automata. 

Finite automata have states with a designated start state and a set 
of accept states. A word α is accepted by an automaton M if α maps 
the start state to an accept state. 

For example, the finite automaton below accepts the language 

{anbcm : n, m ∈ N}: 

 

read a

read b

read c
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Allowing non-determinism, such as 

 
does not increase the range of languages accepted. 

In a non-deterministic machine, a word is accepted if at least one 
computation path leads to acceptance; in our example, the 
machine accepts the language {abna : n ∈ N} ∪ { ab }. 

read a read a

read a

read b

read b
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Some other definitions of regular languages. 

Regular grammars   (N, Σ, P, S) 

We have a set N of non-terminals that can be rewritten. 

We have a set Σ of terminals that cannot be rewritten. 

We have a set P of production rules. 

Each production rule is of the form A → xB where A, B ∈ N and 
x ∈ Σ or else of the form A → ε. 

There is a designated starting symbol S ∈ N.  The language of the 
grammar is the set of all words in Σ* that can be derived from S. 
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Example.  Consider the regular grammar 

S → aS | bT  T → cT | ε 
where N = {S, T} and Σ = {a, b, c}. 
The starting symbol is S. 
Starting from S we can proceed as follows: 

S → aS → a2S → … → anS → anbT → anbcT → anbc2T → 
… → anbcmT → anbcm. 

This grammar generates the regular language 
  {anbcm : n, m ∈ N}. 
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Rational expressions 

∅, {ε} and {a} (for any a ∈ Σ) are regular languages. 

If K and L are regular language then so is K ∪ L. 

If K and L are regular languages then so is KL = {ab : a ∈ K, b ∈ L}. 

If K is a regular languages then so is K* = {a1a2…an : ai ∈ K, n ∈ N}. 

So any language which can be built up from ∅, {ε} and {a} by 
means of union, concatenation and star is regular. 

For example, the rational expression a*bc* represents the language 

 {anbcm : n, m ∈ N}. 
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Context-free languages 

We may extend a (non-deterministic) finite automaton by adding 
a stack to get a pushdown automaton. 

Again, there is a designated start state and a set of accept states. 

A word is accepted if one can reach an accept state when all the 
input has been read. We start with an empty stack and we don’t 
worry about what is on the stack at the end of the computation. 

The languages accepted by pushdown automata are known as 
context-free languages. 
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a a a b c c c

Machine  M
State  q

Input

a

a

#
Stack
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For example, the pushdown automaton shown below accepts the 
language {anbcn : n ∈ N}. 

 
We often label the edges by x, y; z (read x, pop y, push z). 

Insisting that the machine is deterministic does restrict the range 
of languages accepted in this case (the class of deterministic context-
free languages). 

The machine shown in the above example is deterministic. 

push #

read a & push a

read b

read c and pop a

pop #



 

 - 20 - 

The pushdown automaton shown below accepts the language 

 L = {xnyn : n ∈ N} ∪ {xny2n : n ∈ N}. 

 
L is not accepted by any deterministic pushdown automaton. 

!, !; #

!, !; #

x, !; x

y, x; !

y, x; !

y, x; !

y, x; !

y, !; !

x, !; x

!, #; !

!, #; !
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Another definition of context-free languages. 

In a similar fashion to regular grammars we have context-free 
grammars; the only difference to regular grammars that there is 
now no restriction on the right-hand side of a production rule (i.e. 
each production rule is of the form A → α for some α ∈ (N ∪ Σ)*). 
 

Example.  S → aSc | b 

This context-free grammar generates the language {anbcn : n ∈ N}: 
 S → aSb → a2Sc2 → … → anScn → anbcn. 
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Turing machines 

A most general model of 
computation is the Turing 
machine. 

Here we have some 
memory (in the form of a 
work tape) as well as the 
input.   

 

We also have (at least one) halt state (as opposed to accept states). 

←→ a a b b c c

→ a a

Machine M
 state q
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A Turing machine can move freely over its input tape.  It can write 
symbols to its work tape (and erase them).   
 

A Turing machine with a given input α will either 

 (i) terminate (if it enters a halt state);   or 

 (ii) hang (no legal move defined);   or 

(iii) run indefinitely without terminating or hanging (sometimes 
referred to as an “infinite loop”). 
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There are two main classes of languages associated with Turing 
machines. 

Recursively enumerable (simple acceptance – one halt state) 

 

Recursive (decision process – “accept” and “reject” halt states) 

 

α M

Υ if α ∈ L

hangs / infinite 
loop if α ∉ L

α M

Υ if α ∈ L

Ν if α ∉ L
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Any recursive language is recursively enumerable but the 
converse is false. 

What about non-deterministic Turing machines? 

Recursively enumerable:  the Turing machine accepts the input if it is 
possible to enter the halt state. 

Recursive: the Turing machine accepts the input if some computation 
path leads to the accepting halt state and rejects the input if every 
computation path leads to the rejecting halt state. 

Allowing non-determinism does not increase the range of languages 
accepted or decided by Turing machines. 
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However, if we put restrictions on the amount of time or space 
allowed for the computation, the situation may change. 
 

P = NP Question. 

Is the class P of languages decided by deterministic Turing 
machines in polynomial time equal to the class NP of 

languages decided by non-deterministic Turing machines in 
polynomial time ? 
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Lecture 2 

Group theory 
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Groups 

Group:  A monoid G such that every element g has an inverse g-1 : 

 gg-1 = g-1g = 1  for all g ∈ G (where 1 is the identity element). 

Let G be a group generated by a finite set X so that each element 
of G may be written as a word in the symbols x, x-1 (where x ∈ X).   
Let A = X ∪ X-1. 

Every element of G may be expressed as a reduced word (one which 
contains no subwords of the form xx-1 or x-1x) over A. 

The set of all reduced words on A forms the free group on X. 
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If G is a group generated by X and F is the free group on X then 
the map from A* to G factors through the map onto F: 

  A* → F → G. 

 

F GA*

All words in
the symbols
A = X ∪ X-1

Free group
on X

Group G
generated by

a set X
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If G is generated by a finite set X and A = X ∪ X-1 then G is 
isomorphic to A*/ ≈, where ≈ is some congruence on Σ* containing 
every pair of the form (xx-1, ε) or (x-1x, ε) with x ∈ X. 

In general each element of the group is represented by several 
(reduced) words in A*. 

A word α is said to be cyclically reduced if it is not of the form x-1βx 
or xβx-1 for any x ∈ X and any word β. 
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Group presentations 

The idea here is similar to semigroups and monoids but we must 
take care of inverses.  Note that words α and β represent the same 
element of a group G if and only if αβ-1 represents the identity 
element of G. 

A presentation for a group G is an expression of the form < X : R > 
where R is a set of defining relators, i.e. a set of words such that 
G is A*/≈, where ≈ is the congruence on A* generated by pairs of 
the form (xx-1, ε) or (x-1x, ε) with x ∈ X and pairs of the form (α, ε) 
with α ∈ R.  We may take the words in R to be cyclically reduced. 
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Example.   G = < a, b : aba-1b-1 >. 

The words a, bab-1, b-1ab, bbab-1a-1ab-1, …. all represent the same 
element of G. 

A group G is said to be finitely generated if it has a finite generating 
set X (i.e. every element of G is a product of elements of X and the 
inverses of elements of X; notice that this is a group generating set 
as opposed to a monoid generating set). 

A group G is said to be finitely presented if it has a presentation 
< X : R > with both X and R finite.  If R is empty then we have a 
presentation for the free group on X. 
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Example.    G = < a, b : a3, b2, (ab)2 >. 

G is a group with six elements.  The words 
ε,  a,  a2,  b,  ab,  a2b 

represent the six elements of G. 
 

Example.    G = < a, b : aba-1b-1 >. 

G is an infinite group.  Let A denote a-1 and B denote b-1.  Each 
element of G is represented by a word of the form aibj, Aibj, aiBj or 
AiBj (with i, j ∈  N). 
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If < X : R > is a presentation for a group G and if α is any reduced 
non-empty word representing the identity element of G, then we 
can express α in the form 

β1
-1r1β1 . β2

-1r2β2 .  ….  . βs
-1rsβs 

for some words β1, β2, …. , βs over X ∪ X-1 and for some words 
r1, r2, …., rs in R ∪ R-1. 

Note that α is equal to β1
-1r1β1.β2

-1r2β2. …. .βs
-1rsβs in the free group 

on X (i.e. to get α from β1
-1r1β1.β2

-1r2β2. …. .βs
-1rsβs we simply need 

to continually delete subwords of the form xx-1 or x-1x). 
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If G is a group, H ⊆ G and H forms a group, then H is said to be a 
subgroup of G. 

We write H ≤ G if the group H is a subgroup of the group G.  The 
group G is then said to be an overgroup of the group H. 

If H is a subgroup of G and g ∈ G, then the set Hg = {hg : h ∈ H} is 
said to be a coset of H in G. 

The group G is the disjoint union of the cosets of H.  The number 
of cosets is called the index of H in G.  If there are only finitely 
many such cosets, then we say that H has finite index in G. 
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A group G that does not have a non-trivial proper congruence on 
it (i.e. has no non-trivial proper quotients) is said to be simple. 

A congruence ≈ on a group G corresponds to a normal subgroup N 
(i.e. to a subgroup N of G such that g-1Ng = N for all g ∈ G).  We 
then have that g ≈ h if and only if Ng = Nh. 

Factoring out the congruence ≈ is equivalent to taking the factor 
group G/N with elements the cosets {Ng : g ∈ G} and operation 
defined by (Ng)(Nh) = N(gh). 
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Group constructions 

If G and K are groups with presentations < X : R > and < Y : S > 
with X ∩ Y = ∅, we write G*K for the free product and G × K for the 
direct product of G and K, i.e. the groups with presentations 

< X ∪ Y : R ∪ S >   and 

< X ∪ Y : R ∪ S ∪ {x-1y-1xy : x ∈ X, y ∈ Y} > 

respectively.  A finitely generated free group is then a group of the 
form Z * Z * … * Z. 



 

 - 38 - 

Subsets of monoids and groups 

M  -  finitely generated monoid.  S ⊆ M. 

ϕ : Σ* → M  -  homomorphism.  L = Sϕ-1. 
 

If F is a family of languages then we say that F is closed under: 

• homomorphisms if, whenever L ∈ F, L ⊆ Σ* and ϕ : Σ* → Ω* is a 
homomorphism, then Lϕ ∈ F; 

• inverse homomorphisms if, whenever L ∈ F, L ⊆ Ω* and ϕ : Σ* → Ω* 
is a homomorphism, then Lϕ-1 ∈ F. 
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If F is a family of languages then we say that F is closed under: 

• intersection with regular languages if, whenever L ∈ F, L ⊆ Σ*, 
K is regular and K ⊆ Σ*,  then L ∩ K ∈ F. 

 

If F is a family of languages which is closed under inverse 
homomorphism, M is a monoid, and ϕ : Σ* → M and ψ : Ω* → M 
are homomorphisms, then Sϕ-1 ∈ F if and only if Sψ-1 ∈ F. 
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S

M

Σ*

ϕ

L = Sϕ
-1

ϕ
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A subset S of a monoid M is said to be a recognizable subset of M if 
L = Sϕ-1 is a regular subset of Σ*.  We write S ∈ Rec (M). 
 

Let M be a finitely generated monoid and let S ⊆ M. Then the 
following are equivalent: 

(i)  S = Lϕ for some regular L ⊆ Σ*. 

(ii)  S is generated by a regular grammar over M.  

(iii) S is represented by a rational expression over M.  

We say that S is a rational subset of M in this case and we write 
S ∈ Rat (M). 
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S is said to be a context-free subset of M if L = Sϕ-1 is a context-free 
subset of Σ*.  We write S ∈ CF (M). 
 

Let M be a finitely generated monoid and let S ⊆ M. Then the 
following are equivalent: 

(i)  S = Lϕ for some context-free L ⊆ Σ*. 

(ii)  S is generated by a context-free grammar over M.  

We say that S is an algebraic subset of M in this case and we write 
S ∈ Alg (M). 
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Clearly 

  Rec (M) ⊆ Rat (M)   and   CF (M) ⊆ Alg (M). 

  Rec (M) ⊆ CF (M)   and   Rat (M) ⊆ Alg (M). 
 

If G is a group and S is a subset of G then S ∈ Rec (G) if and only 
if S is a union of cosets of a subgroup of finite index. 
 

Anisimov & Seifert.  If G is a group and H is a subgroup of G 
then H ∈ Rat (G) if and only if H is finitely generated. 
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In a finitely generated monoid M we have that 

  Rec (M) ⊆ Rat (M). 

M is said to be a Kleene monoid if and only if Rec (M) = Rat (M). 
 

A group G is a Kleene monoid if and only if it is finite. 
 

A monoid M in which CF (M) = Alg (M) is said to be algebraic. 
 

Question. Which groups are algebraic? 
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Lecture 3 

Word problems 
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Recall from Lecture 2 ….. 

S is said to be recognizable if L = Sϕ-1 is a regular subset of Σ*.  
We write S ∈ Rec (M). 

S is said to be rational if S = Lϕ for some regular subset L of Σ*.  
We write S ∈ Rat (M). 

S is said to be context-free if L = Sϕ-1 is a context-free subset of Σ*.  
We write S ∈ CF (M). 

S is said to be algebraic if S = Lϕ for some context-free subset L of Σ*.  
We write S ∈ Alg(M). 
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recognizable/context-free    versus    rational/algebraic 

Clearly 

  Rec (M) ⊆ Rat (M)   and   CF (M) ⊆ Alg (M). 

  Rec (M) ⊆ CF (M)   and   Rat (M) ⊆ Alg (M). 

 

S

Sϕ-1

S = Lϕ
L

Σ* Σ*

M M
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Example. 

G = { ....   , x-3, x-2, x-1, 1, x, x2, x3, .... } ≅ Z. 
H = { ....   , x-4, x-2, 1, x2, x4, ... }   -  index 2 in G. 
Hx = { .....   , x-3, x-1, x, x3, x5, ..... }.  G = H ∪ Hx;   H ∩ Hx = ∅. 
Σ = {a, A}.     aϕ = x,   Aϕ = x-1. 
Hϕ-1 = {α ∈ Σ* : |α|a - |α|A  is even} is regular; so H ∈ Rec {G}. 
{1}ϕ-1 = {α ∈ Σ* : |α|a = |α|A } is context-free but not regular. 
So  {1} ∈ CF (G)  but  {1} ∉ Rec (G). 
However, {1} is clearly in Rat (G) since {1} = {ε}ϕ. 
In this particular group Alg (G) = CF (G). 
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Example. 
F - free group with generators x and y. 
Σ = {a, A, b, B}.    aϕ = x;   Aϕ = x-1;   bϕ = y;   Bϕ = y-1. 
Consider the context-free grammar (with starting symbol U): 
 U → xUx-1 | V; V → x-1VVx | y. 
If S is the subset of F generated by this grammar, then 
 Sϕ-1 ∩ b* = {b2n

 : n ∈ N}, 
which is not context-free.  So S ∉ CF (F). 
However, by construction, we have that S ∈ Alg (F). 
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Word problems for groups 

Let G be a group generated by a finite set X; each element of G 
may be written as a word in the symbols x, x-1 (where x ∈ X). 

Let Σ = X ∪ X-1. As before we have the natural homomorphism  
ϕ : Σ* → G. 

For every word α in Σ*, let [α] denote the corresponding element 
of the group G. 

As before, note that words α and β represent the same element 
of G if and only if αβ-1 represents the identity element of G. 
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Word problem for groups.  Given a presentation < X : R > defining a 
group G and given a word α in Σ*, is [α] = 1 in G ? 
 

Alternatively, we can define the word problem W for a group G 
generated by a finite set X to be the set of all words in Σ* that 
represent the identity element of G. 
 

What does the nature of the word problem (as a formal language) 
say about the algebraic structure of G? 
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1

G

Σ*

ϕ

W = 1ϕ
-1

ϕ
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If G has a finite presentation < X : R > then WX(G) is recursively 
enumerable. 
 

The word problem for G is said to be solvable if WX(G) is 
recursive. 
 

If F is a family of languages closed under inverse 
homomorphism, if X and Y are finite subsets of a group G, and if 
G = < X > = < Y >, then WX(G) ∈ F  if and only if  WY(G) ∈ F. 

We can just write W(G) ∈ F  in this case. 



 

 - 54 - 

 

Novikov, Boone.  There exist finitely presented groups with 
unsolvable word problem. 
 

Higman. W(G) is recursively enumerable if and only if G is a 
subgroup of a finitely presented group.  
 

Boone & Higman.  W(G) is recursive if and only if G ≤ H ≤ K, 
where H is simple and K is finitely presented. 
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Regular and context-free word problems 
 

Anisimov. If G is a finitely generated group, then W(G) is regular 
if and only if G is finite. 
 

Muller & Schupp.  If G is a finitely generated group, then W(G) 
is context-free if and only if G has a free subgroup of finite index. 
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Example. 

G = < a, b : ab = ba > ≅ Z × Z.   Σ = { a, A, b, B }.  A = a-1, B = b-1. 

W(G) = { α ∈ Σ* : |α|a = |α|A, |α|b = |α|B }. 

W(G) is not context-free. 

However, Σ* - W(G) is context-free. 
 

Question. Which finitely generated groups have a word problem 
which is the complement of a context-free language?  
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Let C denote the class of such (finitely generated) groups. 

Some facts (Holt/Rees/Röver/Thomas). 

• C contains all free and abelian groups. 

• C is closed under taking finitely generated subgroups. 

• C is closed under taking finite index overgroups. 

• C is closed under direct products. 

• there exist groups in C that are not finitely presented. 
 

Question.  Is C closed under taking free products?  
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One-counter languages 

One-counter languages - languages accepted by pushdown automata 
where we have only one stack symbol (apart from a bottom marker). 

 

Cone - family of languages closed under 

 • homomorphism, 

 • inverse homomorphism, and 

 • intersection with regular languages. 
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Herbst.  Let F  be a cone contained in the family of context-free 
languages and then let G be the class of all finitely generated 
groups G such that W(G) ∈ F.  Then G is the set of regular 
groups, one-counter groups or context-free groups. 
 

Herbst.  The following are equivalent for a finitely generated 
group G:  
 • W(G) is one-counter. 
 • G is either finite or has a subgroup of finite index 

isomorphic to Z.  
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Herbst. Let G be a finitely generated group. Then the following 
conditions are equivalent: 
 • W(G) is one-counter. 
 • CF (G) = Alg (G). 
 • CF (G) = Rat (G). 
 

Question.  Which groups satisfy Rat (G) = Alg (G) ? 
 

Every one-counter group has this property but other groups do as 
well (such as all groups with an abelian subgroup of finite index). 
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Lecture 4 

Syntactic monoids and automatic groups 
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Syntactic monoids 

General idea of language recognition : construct a device that 
distinguishes elements of L from Σ* - L. 

 

L

Σ* - L

Σ*

M
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Idea: map Σ* to another monoid M such that elements of L are 
distinguished (in M) from elements of Σ*- L. 
 

The map ϕ should be a 
homomorphism, i.e. 

   (αβ)ϕ = (αϕ)(βϕ) 

for all α and β. 

The syntactic monoid ML of 
L is (essentially) the 
smallest such monoid M.  
  

 

Σ*

L
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If we have a homomorphism ϕ from Σ* to M, then M is isomorphic 
to Σ*/≈ for some congruence ≈. 

The syntactic congruence ≈L on Σ* is the coarsest congruence ≈ on Σ* 
such that L is a union of congruence classes; ML is then Σ*/≈L. 
 

 

L = Aϕ-1

Σ*
M

ϕ

A
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A subset A of a monoid M is said to be syntactic if there is no non-
trivial congruence ~ on M such that A is a union of ~ classes. 

If M is a monoid, ϕ : Σ* → M is a surjective homomorphism, A is a 
syntactic subset of M, and L = A ϕ-1, then M = ML. 
 

If ϕ : Σ* → M and ψ : Ω* → M are surjective homomorphisms, 
F is a family of languages closed under inverse homomorphism 
and A ⊆ M, then  Aϕ-1 ∈ F  ⇔  Aψ-1 ∈ F. 
 

L is regular if and only if ML is finite. 
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Context-free languages 

What about context-free languages? 

 regular languages  →  finite monoids; 

One might ask ...... 

 context-free languages  →  ? 

But ...... 

 ML is isomorphic to MΣ*-L; 

 the class of context-free languages is not closed under 
complementation. 
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Every group is the syntactic monoid of its word problem. 
 

Parkes & Thomas.  Let G be a finitely-generated group with an 
element of infinite order and let F  be a family of languages 
which is closed under inverse homomorphism and intersection 
with regular languages. 

Suppose that there exists K ⊆ {a}* with K ∉ F; then there exists a 
language L ∉ F  such that G = ML. 
 

Every finite group is the syntactic monoid of a regular language. 
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Every finitely-generated abelian group G is isomorphic to 

 Zk × Zd(1) × Zd(2) × .... × Zd(r) 

for some k ≥ 0, r ≥ 0, d(i) > 1.  We call k the rank of G. 
 

Perrot & Sakarovitch.  Suppose that L is a context-free language 
and that its syntactic monoid is an abelian group G.  

Suppose that G has rank k.  Then L is deterministic if k ≤ 1 and 
non-deterministic if k > 1. 

Moreover, every finitely generated abelian group is the syntactic 
monoid of a context-free language. 
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If J and K are context-free languages such that MJ and MK do not 
contain zeros, then there is a context-free language L with 

 ML = MJ × MK. 

Z is the syntactic monoid of a (deterministic) context-free 
language. 

N is not the syntactic monoid of any context-free language. 
 

Conjecture (Herbst). If L ⊆ Σ* is a deterministic context-free 
language and ML is a group G, then the word problem of G is 
deterministic context-free. 
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This is false (Röver). 
 

G context-free word-problem  ⇒  G the syntactic monoid of a 
deterministic context-free language. 

G co-context-free word-problem  ⇒  G the syntactic monoid of a 
context-free language. 

 

Question.  If G is the syntactic monoid of a deterministic context-
free language does G have a co-context-free word-problem ? 
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Notions of automaticity 

We have a group G 
with a (monoid) set 
of generators A; we 
have the natural 
homomorphism  
ϕ : A* → G.  Each 
element of G is 
represented by 
several words in A*. 
 

 
 

G

A*

ϕ

ϕ
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Example.  G is the group < a, b : ab = ba >  and A = { a, b, a-1, b-1}. 
The words a, abb-1, aa-1a, b-1ab, b2ab-2, … all represent the same 
element of G.  
We could consider the set of words of the form aibj with i, j ∈ Z 
(where we interpret a-n as (a-1)n for n > 0 and similarly for b-n);  
this forms a regular language which maps onto G.  
 

We will assume we have a regular language L ⊆ A* such that 
L maps onto G. 
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G

A*

ϕ

ϕ

L
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Automatic groups  (Epstein et al) 

For each a ∈ A ∪ {ε} there is a finite automaton Ma such that 

 

α

β

Accept if α, β ∈ L
and αa = β

Reject otherwise

Automaton Ma
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We can either read our words synchronously (we say that the 
group is automatic) .....  

 
..... or asyncronously (we say that the group is asyncronously 
automatic): 

 

a1 a2 a3 an $ $

b1 b2 b3 bn bn+1 bm

............

............ .........

.........

a1 a2 a3 an

b1 b2 b3 bn bn+1 bm

............

............ .........
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We say that (A, L) is an automatic structure for G. 

We can assume that L maps bijectively to G; (A, L) is then an 
automatic structure with uniqueness. 
 

Some advantages of this notion. 

1. Captures a wide class of groups. 

2. Some computation is effective – e.g. we can solve the word 
problem in quadratic time and finiteness is decidable. 

 

All of this (including the uniqueness) generalizes naturally to 
semigroups/monoids. 
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D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. Levy, M. S. Paterson 
and W. Thurston, “Word processing in groups”. 
 

Epstein et al.  If G is an automatic group, then we can solve the 
word problem for G in quadratic time.  
 

Campbell, Robertson, Ruskuc & Thomas.  This generalizes to 
monoids.  

Not everything generalizes to monoids … 
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Epstein et al.  Automatic groups are finitely presented.  
 

Example.  This does not hold for automatic monoids. 

Let M be the monoid defined by the presentation: 

 < a, b : abna = aba for n ∈ N >. 

M is not finitely presented. 

Let A = {a, b} and L be the regular language {b}*{a, ab}*{b}*.  Then 
(A, L) is an automatic structure for M (with uniqueness). 
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A language L is said to be prefix-closed if, whenever α ∈ L and β is 
a prefix of α, then β ∈ L. 

An automatic structure (A, L) is said to be prefix-closed if L is 
prefix-closed. 
 

Epstein et al.  Every automatic group has a prefix-closed 
automatic structure. 
 

Question. Does every automatic monoid have a prefix-closed 
automatic structure? 
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Fellow traveller property 

If G is a group generated by a finite set X, and if Σ is the alphabet 
X ∪ X-1, then we define the Cayley graph of G with respect to X to 
be the graph whose vertices are the elements of G and such that, 
for each x ∈ Σ and g ∈ G, there is a directed edge (labelled x) from 
g to gx. 
 

We often identify traversing an edge corresponding to x-1 from gx 
to g with traversing the edge corresponding to x from g to gx in 
the opposite direction. 
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For a finite group G, we 
obviously get a finite graph; for 
example, the Cayley graph of 
the group A5 of all even 
permutations of a set of five 
objects is shown on the right.  

 

This Cayley graph occurs in 
many common objects! 
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For an infinite 
group we have an 
infinite Cayley 
graph; on the right 
is a representation 
of the Cayley 
graph of the free 
group of rank 2. 
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Here is a 
representation of 
the Cayley graph 
of the free group 
of rank 3. 
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Here is a 
representation of 
the Cayley graph 
of the group with 
generators x and y 
and relations 

x2 = y3 = (xy)7 = 1. 
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Such Cayley graphs 
gives a natural tiling of 
hyperbolic space; this 
is used by artists such 
as Escher. 
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Note that a word α in Σ* is in WX(G) if and only if α corresponds 
to a closed path in the Cayley graph Γ. 

 

Let G be a group with Cayley graph Γ. 

There is a natural distance function d on Γ; if x and y are vertices, 
then d(x, y) is the shortest length of a path from x to y. 
 

The concept generalizes naturally to monoids. 
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In groups, we have a nice geometric characterization of 
automaticity (the fellow traveller property). 

 
 

The situation in automatic monoids is much more complicated but 
there is a complete geometric characterization (Hoffmann & 
Thomas). 
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